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Abstract
Intrinsically disordered/unstructured proteins exist without a stable three-dimensional (3D) structure as highly
flexible conformational ensembles. The available genome sequences revealed that these proteins are surprisingly
common and their frequency reaches high proportions in eukaryotes. Due to their vital role in various biologi-
cal processes including signaling and regulation and their involvement in various diseases, disordered proteins
and protein segments are the focus of many biochemical, molecular biological, pathological and pharmaceutical
studies. These proteins are difficult to study experimentally because of the lack of unique structure in the
isolated form.Their amino acid sequence, however, is available, and can be used for their identification and charac-
terization by bioinformatic tools, analogously to globular proteins. In this review, we first present a small survey of
current methods to identify disordered proteins or protein segments, focusing on those that are publicly available
as web servers. In more detail we also discuss approaches that predict disordered regions and specific regions
involved in protein binding by modeling the physical background of protein disorder. In our review we argue that
the heterogeneity of disordered segments needs to be taken into account for a better understanding of protein
disorder.
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INTRODUCTION
Classical biochemical studies reinforced the view that

the formation of a well-formed structure is a prereq-

uisite for a protein to carry out its function.

Following the advice of Crick: ‘If you want to

understand the function, study the structure,’ this

notion motivated a large number of structure–func-

tion studies and lead to the structure determination

of more than 50 000 proteins [1]. While databases of

known protein structures have grown relatively

slowly, the number of sequences and data on protein

interactions increased drastically as a result of new

experimental techniques and large-scale sequencing

projects. This new information reshaped our view of

the protein world [2]. It has become evident that a

large number of naturally occurring proteins do not

require a well-folded structure to fulfill their biolog-

ical role [3–6]. These intrinsically unstructured/dis-

ordered proteins (IUPs/IDPs) exist as ensembles of

rapidly interconverting conformations, even under

physiological conditions. Their importance is also

underlined by their expected high frequency in pro-

teomes. Using bioinformatic predictors it was esti-

mated that 30–50% of eukaryotic proteins contain at

least one long disordered segment [7, 8]. These pro-

teins participate in important regulatory functions in
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the cell including transcription, translation [9, 10]

and cell signaling [2, 11–14]. Several IDPs were

shown to be associated with various diseases such as

cancer and neurodegenerative diseases [15, 16].

Recently, new strategies for drug discovery were

suggested specifically targeting disordered proteins

[17]. Recognizing the relevance of these proteins

stimulated more systematic efforts aiming at their

structural characterization and determination of

their mechanisms of action.

From structural point of view, disordered seg-

ments are heterogeneous and affect various levels

of protein structure. Some of them exist in the

form of random-coils that corresponds to a largely

random distribution of conformations dominated by

extended structures [18]. In reality, however, no

protein is ever random-coil, and the macroscopic

properties compatible with random-coils do not

exclude the possibility of transient short- or

long-range interactions resulting in transient struc-

tural elements [12, 19]. Disordered proteins can

also exist as molten-globules exhibiting a compact

but disordered state with some secondary-structure

content [4, 18]. In general, while some proteins

appear fully disordered, many proteins are composed

of both ordered and disordered regions of various

lengths [20]. Larger proteins are usually segregated

into multiple domains and contain flexible linker

regions connecting the domains. Disordered seg-

ments can correspond to loop regions or flexible ter-

mini within the context of globular proteins [21].

Generally, various types of disorder and the transition

between these states can be linked to specific func-

tion of the proteins.

In the case of many proteins, like entropic chains,

the function directly originates from their permanent

disordered state [22]. However, numerous examples

show that disordered regions can undergo a

disorder-to-order transition upon binding to other

macromolecules [23]. Many such disordered proteins

are involved in molecular recognition and function

via binding to a structured protein partner. The

inherent flexibility of disordered proteins imposes

specific thermodynamic and kinetic properties

during complex formation and allows them to com-

bine low affinity with high specificity in their bind-

ing [2, 24]. In the bound form, they can lend

themselves to traditional structure determination.

Although the number of such complexes is rather

limited, these examples show significant differences

compared to the complexes formed between

globular proteins [25–27]. This indicates that the dis-

tinct properties of disordered protein regions are

imprinted even in the rigid conformation adopted

in the complex. As exemplified by the C-terminal

region of p53, they can bind multiple partners even

in different conformations [28], and conformational

preferences observed in their free form is not neces-

sarily indicative of the adopted conformation in the

bound state [23]. Disordered proteins often use a

single continuous segment for partner binding

whereas the binding sites of ordered proteins are

more segmented [26, 27]. Beside their involvement

in protein–protein interactions, these proteins are

also subjects of various post-translational modifica-

tions that control their functions, localization and

turnover [12, 29].

The detailed structural and functional character-

ization of disordered proteins is quite a challenging

task [30, 31]. The existing experimental procedures

are highly biased for ordered proteins, and most

techniques provide only indirect information about

disorder [2]. Consequently, the current list of exper-

imentally verified disordered proteins is rather lim-

ited. Because of these difficulties, bioinformatic tools

play a very important role in the identification and

characterization of IDPs.

In the past few decades several algorithms

were developed to predict various aspects of pro-

teins with unique structures, including prediction

of secondary-structure [32–34], solvent accessibility

of residues [35, 36], the covalent state of residue

Cys [37–39], domain boundaries of globular proteins

[40–42], sites for protein interactions [43], as well

as the topology of transmembrane proteins

[44–46]. These methods generally use only

sequence information as input that is also available

for unstructured proteins. The success of these

methods suggests that appropriate tools can be

developed analogously to study proteins that have

no unique structure. In fact, several methods

have been developed to identify unstructured

proteins or protein segments and a few additional

methods are also available to estimate further proper-

ties of these unstructured segments [47–49]. In

this work we highlight some of the main ideas and

challenges in predicting protein disorder in

general. We provide a brief overview of current

methods focusing on those that are publicly

available. We put a special emphasis on methods

that can provide more specific information about

disordered proteins.

226 Z. Doszta¤ nyi et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/2/225/216545 by U
.S. D

epartm
ent of Justice user on 16 August 2022



THE BASIC COMPONENTSOF
DISORDER PREDICTION
METHODS
Databases
An essential components of disorder prediction

methods are the various datasets used for optimiza-

tion and evaluation. Ordered proteins are collected

from the Protein Data Bank (PDB) [1, 50], as the

presence of known coordinates is generally accepted

as a direct evidence of structural order. Indirectly, the

PDB also contains information about disordered

regions. In protein structures solved by X-ray crystal-

lography, disorder is defined by missing electron

density. Missing residues usually appear within the

context of ordered structures, either as terminal

regions or short loops within an otherwise ordered

protein. Their length spans from a single residue to

hundreds, but most often these regions are <30 res-

idues long. The current most comprehensive

resource on protein disorder is the DisProt database

[51]. It aims to collect disordered proteins and pro-

tein regions characterized by various experimental

techniques. Most of these regions are more than 30

residues long. However, our current collection of

experimentally well-characterized disordered protein

regions is still rather limited. To overcome this lim-

itation, large sequence databases can also be exploited

in certain type of predictions [52]. These

databases are likely to contain many more disordered

proteins that are yet uncharacterized, but they are

not biased by limitations of current experimental

techniques.

Datasets of experimentally verified ordered and

disordered regions contain many mis-classified seg-

ments. Some regions that appear ordered in the crys-

tal structure only adopt a well-defined structure as

part of a larger complex, but would be disordered in

isolation. Disordered segments are even more prone

to misclassification since most longer disordered

regions are characterized by semi-quantitative exper-

iments that lack position specific information.

Furthermore, the order/disorder status can also be

sensitive to various environmental conditions

[53, 54]. The lack of sufficiently large datasets and

the noise in the assignment of order and disorder

represent a serious limitation in developing accurate

prediction methods for protein disorder.

Evaluation
The performance of various disorder prediction

methods was critically assessed in the last four

rounds of CASP experiments [55–58]. The reports

of these meetings also provide a guide for the eval-

uation of various disorder prediction methods [56].

According to one of the favored evaluation mea-

sures, the area under the ROC curve (AUC), top

methods can reach at least 0.9 AUC. In other terms,

they can identify �70% of disordered residues at the

expense of misclassifying <10% of ordered residues.

However, CASP evaluations are restricted to residues

with missing X-ray coordinates and there is no sim-

ilar blind testing for long disordered regions. Several

authors carried out performance tests of various

methods specifically on longer segments of ordered

and disordered proteins and found �80% efficiency

on both datasets [20, 59–61]. However, these results

can be biased and should be treated with a grain of

salt. The general wisdom is that the performance of

disorder prediction methods critically depends on the

dataset used for testing, or more generally, the type

of disorder studied. It is also influenced by the eval-

uation criteria. For this reason, we do not try to rank

various prediction methods. Rather, we focus on the

key concepts and ideas in the field of disorder

prediction.

Basic sequence properties of disordered
segments
The first analyses of sequences of disordered proteins

revealed significant differences in the amino acid

composition of ordered and disordered proteins.

Disordered proteins are generally depleted in bulky

hydrophobic and aromatic amino acids and are

enriched in polar and charged amino acids.

At closer inspection, however, various datasets of

disordered protein sequences exhibited further vari-

ations in their sequential bias. Differences could be

observed depending on the experimental method

used to identify disordered regions (e.g. CD,

NMR, or X-ray crystallography) [62], depending

on the length of disordered regions [63], and the

location in the sequence (N- and C-terminal,

middle regions) [64]. Although these differences are

smaller compared to the differences observed

between ordered and disordered proteins, they

should be taken into account during the develop-

ment of prediction methods.

The amino acid compositional bias of disordered

proteins suggests the relevance of hydrophobicity

scales for the discrimination of ordered and disor-

dered segments. Among various amino acid scales,
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properties related to flexibility and coordination

number had the highest discriminatory power [65,

66]. Several disordered prediction methods are based

on simple amino acid propensity scales [6, 18, 67].

Globplot is based on the hypothesis that the ten-

dency for disorder can be expressed as the difference

of the amino acid propensities to be in coil and reg-

ular secondary-structure elements [68]. A specific

amino-acid scale optimized to discriminate ordered

and disordered regions was also constructed [66].

The appeal of single amino acid propensities is

that they are easy to calculate and to interpret, how-

ever, they are limited to a single effect. This can be

insufficient to account for the complex phenomenon

of protein disorder. Such properties, however, are

also useful to reduce the dimensionality of the

input data. By focusing on the relevant properties,

an increased performance can be achieved during

prediction. Several methods exploited amino-acid

scales in their predictions, including PONDR

VL-XT [64], and VSL2 [59] or DisPSSMP [69].

Low complexity
The most traditional approach to filter out

non-globular protein regions relies on finding

low-complexity segments [70, 71]. Compositional

complexity is a bioinformatic measure of the ran-

domness of a protein sequence and it is calculated

based on sequence entropy. It was first introduced

for the purpose of sequence alignments and searches,

to filter out regions which violated the basic assump-

tion of the underlying statistical model of sequence

alignments. Low complexity segments are common

in disordered proteins, and the more biased the

amino acid composition of disordered segments, it

is more likely to be also of low complexity [72].

Nevertheless, many disordered proteins are practi-

cally indistinguishable from ordered proteins based

on their sequence complexity alone, while low com-

plexity regions can also include ordered structural

proteins or proteins with strong structural propensity,

like collagens, coiled-coils or other fibrous proteins.

Therefore, low complexity in itself is not sufficient to

identify protein disorder in general, although, it can

capture an important component of certain types of

protein disorder [72, 73].

Evolutionary information
Using amino acid profiles calculated from evolution-

ary related sequences [74] instead of a single

sequence window as an input has significantly

boosted various areas of structure prediction. The

incorporation of this information into prediction of

protein disorder, however, is more problematic.

Disordered regions are often excluded prior to

sequence searches by using low complexity filter.

Some remaining regions possess a strong sequence

bias that can still distort the result of sequence sim-

ilarity searches. Compared to globular proteins, both

the type and the rate of amino acid substitutions

differ in the case of disordered proteins [75].

Generally, most disordered proteins evolve faster

due to the lack of structural constraints. In certain

cases, amino acid sequence conservation is not

required for the conservation of dynamic behavior

and presumably molecular function of disordered

regions [76]. Nevertheless, evolutionary conserved

IDPs can also be found, especially among those

that are involved in complex formation [26, 75].

Generally, the incorporation of evolutionary infor-

mation led to a much smaller increase in the perfor-

mance of disorder prediction methods, compared for

example to secondary structure prediction methods

[59].

Secondary structure and disorder
Bioinformatical methods often benefited from

additional predicted properties, including second-

ary structure or solvent accessibility [32, 35].

These predicted properties can also be exploited

in the prediction of protein disorder. It should be

noted, however, that these methods have been

exclusively trained on ordered proteins, and

should be used only with caution outside this

realm. For example, predicted secondary-structure

does not necessarily contradict protein disorder.

Often these regions correspond to transient

secondary-structural elements, or to the confor-

mation adopted in the complex form [77]. In

the isolated form, with the exception of highly spe-

cific scenarios [78], predicted secondary-structures

are not expected to be stable for disordered

proteins. Nevertheless, several methods include

prediction of secondary-structure or solvent accessi-

bility in their input [79–81]. Furthermore, certain

types of disordered proteins can be identified

as long regions with no predicted secondary-

structures [82].
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OVERVIEWOF PREDICTION
METHODS FORDISORDERED
REGIONS
Machine learning approaches
The prediction of protein disorder can be viewed as a

classic binary classification problem and can be

addressed by standard machine learning techniques.

The underlying assumption is that sequence features

calculated from a local sequence window can be

directly mapped into the property of order or disor-

der. Most methods assign disordered and ordered

status at the amino acid residue level. The novelty

of many disorder prediction methods based on

machine learning approaches lies in the representa-

tion of input information, rather than in the algo-

rithms themselves. A comprehensive review [49] of

published methods appeared in the literature

recently. Here, we focus on those methods which

are publicly available via web servers or standalone

programs, and provide residue based predictions. A

summary of these methods can be found in Table 1.

The first method developed for the prediction of

disordered proteins is PONDR VL-XT [72]. This

method is based on feed-forward neural networks,

one the most common methods in the field of bioin-

formatics. PONDR VL-XT is composed of two sep-

arate predictors developed for the N- and C-terminal

regions trained on terminal disordered regions char-

acterized by X-ray [64] and a specific predictor for

middle regions trained on variously characterized

long disordered regions [83]. The inputs of these

predictors are specific sequence attributes calculated

within a given window. These attributes include the

coordination number, net charge, hydropathy,

and the fraction of various amino acid groups.

Because the available datasets at the time were very

small, a small number of attributes were selected

by analyzing their discriminatory power, their

orthogonality, and based on their effect on the per-

formance. The resulting method was found particu-

larly useful to pinpoint certain regions that are

candidates for undergoing disorder-to-order transi-

tions [84, 85].

Several other methods use standard feed-forward

neural networks. One of these is PONDR VL3 [86]

that was trained on a much larger dataset of variously

characterized disordered segments, compared to

VL-XT. The input is formed by 18 amino acid fre-

quencies, the average flexibility and sequence com-

plexity, calculated within a window of 41 residues.

DisEMBL [87] was trained specifically on missing

residues of X-ray structures but it also incorporates

additional methods to predict residues with high

B-factor and in loop regions. The differences in

these three predictors, trained on missing residues,

high B-factor regions and loops, respectively, under-

lined the distinct features of each group.

A more recent method, DisPSSMP [69] used

radial basis function networks as a training algorithm.

Although it uses position specific scoring matrices

generated by PSI-BLAST [74], these matrices are

significantly condensed using basic physico-chemical

properties. The optimal set of properties is the result

of a step-wise feature selection procedure. The

newer version of the method incorporates

secondary-structure predictions as well [80]. Using

a different approach, RONN predictions [88] are

based on similarity to known examples of disordered

segments. In this method, sub-sequences of a query

sequence are aligned to all prototype segments, and

the similarity to these sequence fragments is calcu-

lated using a standard mutation matrix. The resulting

homology scores are combined by a modified ver-

sion of radial basis function network called bio-basis

function neural networks.

Another class of standard machine-learning algo-

rithms is support vector machines (SVMs). SVMs are

less prone to overfitting, compared to neural net-

works, and can be trained more efficiently. The

first method utilizing SVMs for the prediction of

disorder was DISOPRED2 [8]. This method was

trained on a dataset of missing residues of solved

structures, separately for N-, C- and middle regions.

The input was generated from PSI-BLAST gener-

ated profiles of position specific scoring matrices [74].

One of the advantages of SVMs is that it can incor-

porate greater cost of misclassification for one of

the classes, therefore it can compensate for unbal-

anced datasets. This is the key for the low false

positive rate of DISOPRED2. PrDOS [89] is also

a basic SVM based prediction method, however,

it is combined with a template based prediction

that takes into account the disordered status

observed in structures homologous to the query

sequence.

The POODLE-S [90] and POODLE-L [61] pre-

dictors are specific methods for recognizing short and

long disordered regions. They employed SVMs

with radial basis kernels for training and constructed

the input from phsyico-chemical properties using
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PSI-BLAST profiles. In the case of POODLE-L,

which aims to predict disordered segments longer

than 40 residues, the input is composed of mean

hydropathy, average contact density propensity,

mean net charge, sequence complexity, amino acid

compositions relative to the composition of disor-

dered and ordered training sets and secondary struc-

ture preferences. POODLE-S calculates the input

vector by using physico-chemical features and a

reduced amino acid set of position-specific scoring

matrices.

In the case of feed forward neural networks and

SVMs the prediction for each residue is independent

of the prediction of other residues. In contrast, recur-

rent networks can also propagate data from later pro-

cessing stages to earlier stages. Such technique is used

in DISpro [79]. It employs a 1D recursive neural

network and leverages evolutionary information as

well as predicted secondary structure and solvent

accessibility. Instead of using a fixed window size,

the prediction at each position depends on the

entire sequence through a recursive network of

neighboring positions. The recently published

method OnD-CRF [81] utilizes conditional

random fields for the prediction of protein disorder.

Common to both methods is the ability to take into

account the predicted disorder tendency of neigh-

boring positions.

Instead of using explicit datasets for disordered

proteins, methods can also exploit the information

stored in large sequence databases. The DRIP-

PRED method [91] uses this strategy. For this pur-

pose, sequence profile windows corresponding

to the complete database of UniProt sequences

were clustered using Kohonen’s self-organizing

map [91]. It was found that there are regions of

‘UniProt space’ which are essentially unpopulated

by proteins of known structure. Sequence windows

which map to these locations are not well repre-

sented in the PDB and therefore are predicted as

disordered. In a different approach, mostly ordered

and disordered proteins are classified by spectral

graph transducer by POODLE-W [52]. This

method uses sequences of the SwissProt database

which is more reliable compared to the UniProt

database. These sequences are treated as an unlabeled

dataset and are used together with ordered proteins

collected from the PDB during training. A graph is

constructed based on the similarity of both labeled

and unlabeled sequences, calculated from their

amino acid composition. The classification is based

on the optimal separation of this graph into ordered

and disordered data.

Generally, the prediction methods assign a score

to each residue in the sequence. These scores, how-

ever, can show large fluctuations from one residue to

the other. This effect is generally smoothed out by

various techniques. The simplest solution uses the

average of the scores calculated within a given

window. The optimal window size is characteristic

of the disordered data, for example mostly disordered

proteins, or longer segments of disorder prefer larger

windows for smoothing. An alternative approach for

smoothing is based on curve fitting algorithms,

applied for example in the case of GlobPlot [68].

As the aim of GlobPlot approach is to identify

ordered domains, it also eliminates short segments

predicted as ordered that are too short to fold on

their own, and a similar filter is applied for disordered

segments. Several methods apply a second level of

prediction using the output of the first level predic-

tion as an input. DISOPRED2 employs a neural

network based predictor, while POODLE-L imple-

mented another SVM based predictor for this pur-

pose. There are also specialized predictors to assign

disorder and order status at the level of whole pro-

teins [92].

The methods described so far are all specific to

one type of protein disorder only, represented either

by DisProt [51] dataset or missing residues of X-ray

structures. Their performance tested on the other

dataset resulted in significantly lower efficiencies.

This problem was first addressed by the PONDR

VSL2 method [59, 93]. It is composed of two sepa-

rate predictors optimized for short and long (>30

residues) disordered regions that are combined by

an independent meta-predictor. Linear SVM was

chosen as the learning algorithm, because it has sim-

ilar performance but better generalization ability

compared to other techniques. The input of all

three methods are composed of various amino acid

propensities, sequence complexity, and optionally

sequence profiles and secondary-structure predic-

tions, calculated within a sliding local window. At

the first level, the two methods predict short and

long disordered segments, respectively. The

meta-predictor then determines the optimal weight

to combine the output of these two composite pre-

dictors. This architecture ensured that PONDR

VSL2 has a more balanced performance on disor-

dered segments of various lengths. Another

approach, POODLE-I [94] also integrates methods
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that target different disordered regions according to

their length, by incorporating their specific predic-

tors that recognize short and long disordered seg-

ments as well as mostly disordered proteins, and

combine their outputs with various secondary struc-

ture predictions.

Meta approaches that integrate the results of sev-

eral prediction methods have been very successful in

various areas of structure predictions [95] and

appeared for the prediction of protein disorder as

well. These methods achieve improved performance

by decreasing the noise of individual predictors.

Furthermore, since individual disorder prediction

methods are often specific to certain types of protein

disorder, their combination could cover more aspects

of disorder. In this vein, MD combines four, but

largely orthogonal predictions [60]. This meta-

predictor was trained on the DisProt dataset using a

neural network. Othogonality is also a key in the

DISOclust server [96]. It improves on the predictions

provided by DISOPRED2 by complementing it

with structural variability calculated over multiple

fold recognition models. The premise of this

method is that residues that are highly variable in

the 3D space from one model to the other may

coincide with regions of disorder. Another method,

metaPrDOS [97] predicts disordered regions by

integrating the results of eight different prediction

methods that are combined into a single predictor

using an SVM trained on missing residues. In the

GSMetaDisorder server 13 individual methods are

combined with prediction of secondary structure

and solvent accessibility using a neural network

that was trained on data both from DisProt database

and missing residues of X-ray structures [98].

The last round of CASP experiment was clearly

dominated by meta-predictors [58]. Nevertheless,

there is still an urgent need for specialized predictors

that can accurately capture certain types of disorder.

Although these predictors might be inferior to

meta-predictors in certain evaluations, they provide

more insight into the structural and even the func-

tional properties of disordered regions.

Physics-based methods
An alternative approach to various machine learning

algorithms in predicting protein disorder is the direct

implementation of physical principles governing the

process of protein folding. It was suggested that dis-

ordered proteins can be identified based on the com-

bination of low hydrophobicity and high net charge

[6, 18]. The rationale behind this approach is that

high net charge leads to charge–charge repulsion

and low hydrophobicity means less driving force

for a compact structure. This algorithm was imple-

mented in the FoldIndex algorithm to provide posi-

tion specific prediction [99]. A similar concept is

behind the FoldUnfold method [67]. It predicts pro-

tein disorder based on the expected average number

of contacts per residue. These values are taken from a

single amino acid propensity scale that encodes the

average number of contacts for the 20 amino acid

residues in a dataset of globular proteins. The IUPred

algorithm captures the essential cause of protein

non-folding in a more general way: if a residue in

a protein is not able to form enough favorable intra-

chain contacts, it will not adopt a stable position in

the 3D structure of the chain [100, 101]. If such

residues are clustered along a segment of a protein

or the whole protein, then this segment or the entire

protein will be disordered.

The implementation of the above principle relies

on statistical potentials [102]. Statistical potentials are

calculated from the observed frequency of interac-

tions between amino acids based on the Boltzmann

hypothesis. With these energy-like quantities, the

total pairwise energy of a protein can be calculated

in a given conformation. The core of IUPred is a

method that enables the direct estimation of the

interaction energies using the protein sequence

alone. In this approach, the estimated energy for

each residue depends on the amino acid type but

also on the amino acid composition of the sequential

neighborhood. Generally, residues with less favor-

able predicted energies are more likely to be

disordered.

The parameters of this method are derived from a

globular protein dataset without the use of specific

datasets of disordered proteins. As globular protein

datasets are considerably larger than that of disor-

dered proteins, this grants the method substantial sta-

bility compared to methods where a large number of

parameters are trained on a limited and sometimes

ambiguous disordered protein dataset.

Prediction of disordered binding regions
Many disordered proteins carry out important func-

tions via binding to other macromolecules that

involves coupled folding and binding. Due to their

specific functional and structural properties, these

binding regions have distinct properties compared

to both globular and disordered proteins in general.
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While there are many algorithms for predicting

IDPs, apparently the choice of methods for predict-

ing regions undergoing disorder-to-order transition

upon protein binding is rather limited.

A recent method for the prediction of disordered

binding regions, ANCHOR aims to capture the

basic biophysical properties of disordered binding

segments [103]. The essential feature of these regions

is that they exist in a disordered state in isolation, but

they can favorably interact with a globular protein

and adopt a rigid conformation upon binding. Based

on this model, the combination of the high disor-

dered tendency of the environment, the unfavorable

intrachain interaction energies and high energetic

gain by interacting with a globular protein partner

indicates the presence of a disordered binding region.

The implementation of these principles follows the

basic idea behind IUPred, and are quantified with

the use of estimated energies.

The ANCHOR predictor could recognize 68%

of disordered binding regions at a segment level,

while falsely predicting only 5% of residues in

ordered proteins. As the available dataset for exper-

imentally verified disordered protein complexes is

limited in size, the benefit of using physical models

instead of machine learning algorithms is evident.

Another strength of ANCHOR comes from the

fact, that the efficiency of the prediction is largely

independent of the amino acid composition of the

query protein. For example, basic binding regions,

such as certain calmodulin binding sites, are recov-

ered with approximately the same success rate as pro-

line rich binding regions, such as SH2 and SH3

domain binding sites, or hydrophobic sites, such as

the MDM2 binding region of p53. Furthermore, the

goodness of the prediction is also independent of the

conformation the binding region adopts in the

bound conformation. As most of the disordered

binding regions tend to bind in either helical or

coil conformation, the exclusion of either would

seriously impart the usefulness of such predictor.

This independency also shows the generality of

ANCHOR.

The results obtained with IUPred and

ANCHOR are demonstrated through the example

of Human calcium/calmodulin-dependent protein

kinase IV (UniProt ID: Q98TZ2), shown on

Figure 1. The plot was generated with the online

version of ANCHOR [104], available at http://

anchor.enzim.hu/. Calcium/calmodulin-dependent

kinase IV binds to calmodulin near its C-terminal

end (residues 327–346). This patch is correctly iden-

tified using ANCHOR as shown in the figure.

The binding region can also be identified based

on one of the subclasses of calmodulin bind-

ing motifs, namely the basic 1-8-14 binding

motif ([RK][RK][RK][FILVW]. . . . . .[FAILVW]

. . . . . .[FILVW]). The location of this motif is also

indicated on the Figure 1.

Despite the similar underlying philosophy of

IUPred and ANCHOR, their prediction profiles

are quite independent of each other. Generally, dis-

ordered binding regions can appear within highly

disordered segments as well as more ordered regions.

In the case of PONDR VL-XT, however, it was

noted, that disordered binding regions are often

Figure 1: Output of the ANCHOR prediction server for calcium/calmodulin-dependent protein kinase IV.The plot
shows the predicted disordered binding regions with the output of the general prediction method IUPred and the
location of the calmodulin binding motif.
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indicated by a locally more ordered region within a

longer segment predicted as generally disordered

[105]. Based on this finding, a specialized method

was developed to recognize regions adopting

a-helical conformation in their bound state, termed

a-MoRFs [84]. The a-MoRF-PredII predictor

employs two steps of prediction; first potential bind-

ing regions are identified by short, well pronounced

dips in the VL-XT prediction score. Then these

potential regions are filtered using a neural network

that was trained on a selection of known a-helical

disordered binding sites using sequence features such

as disorder, secondary-structure predictions and

amino acid indices [84, 85].

Disorder predictions can help to improve the rec-

ognition of the binding partner of certain proteins as

well. For example, disorder is common within the

binding partners of calmodulin, and incorporating

information about predicted disorder can greatly

improve the identification of potential binding part-

ners [106]. Disorder also plays an important role in

protein phosphorylation [12]. A recent method,

DISPHOS [29], combines position specific amino

acid frequencies with disorder information and

achieves a better discrimination between phosphory-

lated and non-phosphorylated sites. Overall, these

specific predictors can recognize subsets of disordered

proteins and can provide information about their

potential function.

EXAMPLES
As the case of disordered binding regions indicates,

the strict categorization into order and disorder is a

great oversimplification. Disorder is a complex phe-

nomenon, and there are many examples that go

beyond the classical ordered/disordered classes. In

these cases, there is no single good answer from

the perspective of predictions. The inability of pre-

diction methods to handle various types of protein

disorder causes a serious limitation in their efficiency.

We illustrate this problem through three examples

that contain a coiled-coil, a molten globule, or a

disordered binding region. Although none of them

have a stable 3D structure on their own, they exhibit

strong structural preferences. This places them at the

borderline of order and disorder in various aspects.

The comparison of the behavior of several disordered

prediction methods can provide insights into their

general features and usability.

Heat shock factor-binding protein 1
(HSBP1)
Human HSBP1 consists of 76 amino acids. It can

bind to the heat shock 70 kDa protein (HSP70)

and the heat shock factor protein 1 (HSF1). Via

these interactions HSBP1 negatively regulates the

heat shock response [107]. HSBP1 does not have a

stable structure on its own in monomeric form;

however it naturally forms a homotrimer. The

approximate regions between residues 8–58 of the

three chains interact and form a coiled-coil structure

with the rest of the protein remaining disordered

[108].

This transient structure causes all of the tested

prediction algorithms to react with a significantly

lower score on the coiled-coil region than on the

disordered N- and C-terminal parts, albeit to very

different extents. VSL2B, VL3 and DisPSSMP pre-

dict the coiled-coil region to be rather disordered,

POODLE-I, IUPred and RONN give a prediction

of �0.5 reflecting its ambiguous order/disorder char-

acter, and the rest of the predictors clearly predict it

to be mostly ordered. While most of the prediction

scores are homogenous along the coiled-coil region,

there are a few profiles that distinguish certain areas.

However, no conclusion can be drawn from these

peaks regarding structural properties, due to the lack

of clear consensus. The 13 disorder profiles are

shown on Figure 2. Methods trained on short disor-

dered regions defined by missing residues of X-ray

structures only and those that rely on secondary-

structure predictions heavily (e.g. DRIP-PRED)

(see Table 1) clearly emphasize the tendency of the

coiled region to become ordered.

Human CREB binding protein (CBP)
CBP is a 2442 residue long nuclear protein that can

acetylate histones and non-histone proteins, like the

NCOA3 coactivator. Among others, it binds to

phosphorylated cyclic AMP-responsive element-

binding protein (pCREB) and up-regulates its tran-

scriptional activity [109, 110]. CBP is involved in

transcriptional regulation and host-virus interactions

as well [111]. Its segment between 2059 and 2117

constitutes the nuclear coactivator binding domain

(NCBD) that is able to bind to the ACTR domain

of p160 [112]. NCBD is a part of the CREB binding

region (residues 2016–2115) and in its unbound

form forms a molten globule that exhibits a high

degree of structural order and has a large a-helical

content. However, NCBD is not a folded domain

234 Z. Doszta¤ nyi et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/2/225/216545 by U
.S. D

epartm
ent of Justice user on 16 August 2022



Figure 2: Disorder predictions for human HSBP1 (UniProt AC: O75506). In the case of DisPSSMP, OnD-CRF and
DISOPRED2, the original prediction scores were rescaled linearly to be directly comparable with other methods.
Disorder predictions were sorted top to bottom by decreasing average predicted disorder tendency on the coiled
coil region that is marked by the grey box on the prediction outputs. Underneath the prediction outputs, the
sequence parts that were shown experimentally to adopt a-helical structure in the trimeric form either by X-ray
diffraction (based on the PDB entry 3ci9 [120], marked by black box) or NMR and other experimental techniques
(marked by shaded box) are shown (‘X-ray/NMR’). The middle line (‘PSIPRED’) shows the secondary-structure pre-
diction by PSIPRED [33], black boxes indicating predicted a-helical structure.The bottom line shows the disordered
binding site prediction by ANCHOR. Shading of the boxes corresponds to the overall confidence of the predicted
binding region, with black corresponding to maximal confidence.
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on its own, it only adopts a well-defined tertiary

structure upon binding to the fully disordered

ACTR [113].

The 13 prediction profiles are shown on Figure 3

for the CREB binding domain of CBP. The order of

methods according to the average predicted disor-

dered on this proteins is remarkably similar to the

one measured on HSBP1. VSL2B, VL3 and

DisPSSMP predict NCBD to be generally disordered

while the rest of the methods either give borderline

predictions �0.5 (as in the case of IUPred or

OnD-CRF) or predict regions to be ordered.

However, due to the uneven structural propensities

of the protein, most of the predictions are not

homogenous either. About half of the predictors

respond to the more pronounced a-helical prefer-

ences of NCBD on the last two a-helices between

2084 and 2111 with strong dips in the scores. It is

also clear that methods that involve secondary-

structure predictions (DisPSSMP, POODLE-I,

OnD-CRF, DRIP-PRED and DISpro) tend to

respond to the three helices more uniformly than

those that omit this kind of information. This also

shows that in cases that are not unambiguously

ordered or disordered, different prediction methods

can behave drastically differently. These differences

are not only reflected in the average amount of dis-

order predicted, but also in the resolution of predic-

tions concerning underlying transient structural

elements.

Human calpastatin
Calpastatin is a 708 residue long protein that is a

specific inhibitor of calpain, a Ca2þ activated cystein

protease [114]. The calpain–calpastatin interaction is

part of multiple larger networks of interactions

involved in the regulation of cell division, cell motil-

ity and muscle protein degradation [115]. Calpastatin

contains four repeats of the calpain inhibitory

domain and thus is able to inhibit four different cal-

pain molecules at the same time. Each inhibitory

domain binds to calpain via three separate binding

sites (A, B and C). The center binding site B binds to

the active site of calpain in an extended conforma-

tion, while the other two sites A and C bind as

a-helices and increase the specificity of the interac-

tion between the two molecules. Although calpasta-

tin is fully disordered along its entire length, the

binding sites exhibit considerable transient structure

in isolated form as well [116]. These transient,

preformed structural elements correspond to the

secondary-structure these segments adopt upon

binding to calpain, namely a-helical structure for

sites A and C but site B also has highly non-random

conformational preferences.

Figure 4 shows the 13 prediction profiles for the

first inhibitory domain of calpastatin (137–277).

While most of the predictors respond to the pre-

formed structural elements in these sites similarly to

the structural motifs present in both HSBP1 and

CBP, there are a few differences. DRIP-PRED

does not react to transient structure at all and

simply goes into overload giving a maximal score

of 1.0 through the whole domain. POODLE-I and

DISOPRED2 also give scores close to 1.0, however

DISOPRED2 shows some slight dips in binding sites

B and C. These methods are clearly not sensitive to

the capability of these binding sites to undergo a

disorder-to-order transition. The rest of the predic-

tors behave similarly to previous two examples.

This shows that although some predictors tend to

predict more disorder than others, this order

among predictors can be heavily rearranged in the

presence of different underlying propensity for

structural order.

Although the dips apparent near the three binding

sites are more consistent among different methods

than in the previous cases, they react to these seg-

ments in a variety of ways. Some predictors only

react to the general structural content of the inhib-

itory domain as a whole and give a slight dip in the

middle of the domain coinciding with binding site B

(VSL2B, DisPSSMP and POODLE-I), while some

others give three distinct dips approximately corre-

sponding to the three separate binding regions

(IUPred, OnD-CRF, RONN, PrDOS, DisEMBL

and DISpro). The average score on linker regions

between binding sites is generally larger than the

linker regions between the a-helices in CBP

NCBD. This is due to the more flexible nature of

these regions—as opposed to the case of CBP

NCBD, these regions retain their disordered nature

even in the bound form. On the other hand, the large

variation in the prediction scores on the binding

regions show that at these regions a naı̈ve consensus

prediction is either meaningless or very misleading.

HOWTOUSE DISORDER
PREDICTORS
A typical use of disorder predictions involve

large-scale studies often made on whole proteomes.

236 Z. Doszta¤ nyi et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/2/225/216545 by U
.S. D

epartm
ent of Justice user on 16 August 2022



Figure 3: Disorder predictions for the NCBD of human CREB binding protein CBP (UniProt AC: Q92793).
Disorder predictions were sorted top to bottom by decreasing average predicted disorder tendency on the
molten globule that is marked by the light grey box on the prediction outputs, while dark grey boxes show the
three a-helical regions. Underneath the prediction outputs, the sequence parts that were shown experimentally to
adopt a-helical structure when bound to ACTR (based on the PDB entry 1kbh [112]) are shown (‘structure’).
For other details see Figure 2 legend.
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Figure 4: Disorder predictions for the first inhibitory domain of human calpastatin (UniProt AC: P20810).
Disorder predictions were sorted top to bottom by decreasing average predicted disorder tendency calculated on
the shown sequence part.Grey boxes labeled A, B and C on the prediction outputs mark the three binding regions.
Underneath the prediction outputs, the sequence parts that were shown experimentally to adopt a-helical struc-
ture when bound to calpain (based on the PDB entry 3df0 [121]) are shown (‘structure’). For other details see
Figure 2 legend.

238 Z. Doszta¤ nyi et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/2/225/216545 by U
.S. D

epartm
ent of Justice user on 16 August 2022



In these cases usually only longer disordered seg-

ments (typically over 30 continuous residues) are

considered. Another useful term is the introduction

of fully disordered proteins that can be defined by

the lack of long continuous segments of predicted

order (also over 30 residues). This necessitates the use

of predictors that recognize larger stretches of disor-

dered residues, such as IUPred, RONN, DisPSSMP

or PONDR VL3. These methods are relatively

insensitive to short regions of both order and disor-

der and as such usually do not segment globular or

disordered domains. The output of the predictor is

converted to a binary classification using a cutoff

value in the prediction score. This loss of information

is compensated for by the sheer volume of the ana-

lyzed sequences. It should be taken into account that

two predictors can differ simply because they work at

different false predictions rates. Indeed, the false pre-

diction rate of existing methods range from 2% to

nearly 15%. Calibrating the methods on the same

dataset to the same false positive rate can result in

more meaningful comparison.

Upon investigating single sequences, much more

detail can be extracted from the prediction outputs.

State-of-the-art prediction algorithms usually assign

continuous scores (typically in the range of [0,1]) to

residues. Again, starting by using predictors sensitive

to larger regions of disorder and order, such as

IUPred, RONN and PONDR VSL3, it is possible

to map out globular and disordered domains. Next,

predictors that can react to local disorder, such as

DISpro and DISOPRED2 can be used to detect

smaller disordered segments inside the globular

domains. Furthermore, domain databases such as

Pfam can also be incorporated into the annotation

procedure that enables the distinction of flexible

loops inside or between folded domains and possible

checking of the location of globular domains [117].

Domain boundary predictions can also help to dis-

tinguish flexible loops from domain boundaries

[118].

Another major difference between methods that

should be kept in mind is their different response to

partially or transiently ordered segments as shown in

the above discussed three examples. On regions that

are clearly fully ordered of fully disordered, most of

the predictors are in agreement. However, some pre-

dictors, such as PONDR VSL2B, tend to react to

transient structure only in a limited way, showing

them to be mostly disordered. Other methods,

such as DISpro, show these regions to be almost

fully ordered. Generally, methods trained on disor-

dered segments collected from PDB structures are

generally biased towards order in these cases. The

borderline characters are well-reflected in the

output of IUPred or RONN, which gives predic-

tions �0.5 on these segments.

Dedicated predictions can reveal coiled-coil

regions, while secondary-structure predictors can

predict secondary-structural elements adopted in

the bound state. Isolated, partially ordered a-helices

can be predicted with the AGADIR method [119].

It is known that PONDR VL-XT usually responds

to disordered binding sites with a-helical structural

propensities with sharp dips in the prediction score.

Furthermore, binding regions can be detected by

using ANCHOR, regardless of secondary-structural

preferences. On the other hand, larger regions that

appear as ordered or contain multiple, clustered seg-

ments of local order in some predictions without

a clear consensus between the output of different

algorithms can be a signature of molten globules.

Generally it is a good idea not to rely on one

single algorithm when annotating unknown

sequences. Instead, as these algorithms all capture

different aspects of the structural properties of pro-

teins, in certain cases they can complement each

other to give a more complete picture.

CONCLUSION
The importance of intrinsically unstructured/disor-

dered proteins has been recognized relatively

recently as a result of large-scale genome projects

and advances in experimental techniques. These pro-

teins exist as highly flexible structural ensembles, yet

they carry out vital functions in living cells and are

often involved in signaling and regulatory processes.

Their specific functional modes are directly linked to

their intrinsic flexibility. However, this also makes

them challenging subjects for experimental studies.

Therefore, bioinformatic tools are indispensible for

their characterization. In the last decade, several

bioinformatic tools have been developed to study

these proteins and some of their properties.

However, disordered proteins are quite heteroge-

neous and existing methods can capture this only

partially. This suggests that approaches that go

beyond the binary classification of proteins as

ordered or disordered are necessary. Recently, it

was shown that the phenomenon of the lack of

structure can be understood on the basis of the
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energy of interresidue interactions. Using this con-

cept, not only disordered segments, but regions

undergoing disorder-to-order transition could be

recognized as well. This suggests that simple

models incorporating basic biophysical properties of

disordered segments hold the key to more detailed

predictions of protein disorder.

Key Points

� Intrinsically disordered/unstructured proteins exist without a
well-defined structure but carry out vital functions in the cell.

� Intrinsically unstructured proteins can be recognized from the
amino acid sequence by variousmachine-learning algorithms.

� Theseproteins cannot adopt awell-defined structurebecause of
their amino acid sequence that does not allow the formation of
enough favorable interactions. This property is directly used in
the IUPred method to recognize disordered proteins. Based on
similar principles, ANCHOR predicts disordered binding
regions.

� Protein disorder is a heterogeneous phenomenon.Methods that
can target various types of disorder are needed.
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