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Abstract

Neuropathic pain (NP) involves metabolic processes that are regulated by metabolic genes and their non-coding regulator 

genes such as microRNAs (miRNAs). Here, we aimed at exploring the key miRNA signatures regulating metabolic genes 

involved in NP pathogenesis. We downloaded NP-related data from public databases and identified differentially expressed 

microRNAs (miRNAs) and mRNAs through differential gene expression analysis. The miRNA target prediction was per-

formed, and integration with the differentially expressed metabolic genes (DEMGs) was used for constructing the miRNA-

DEMG network. Subsequently, functional enrichment analysis and protein–protein interaction (PPI) analysis were performed 

to explore the role of DEMGs in the regulatory network. The drug prediction was performed based on the DEMGs in the 

miRNA-DEMG network. A total of 8251 differentially expressed mRNAs (4193 upregulated and 4058 downregulated), 

and 959 differentially expressed miRNAs (455 upregulated and 504 downregulated) were identified. Moreover, after target 

gene prediction, a miRNA-DEMG network composed of 22 miRNAs and 113 mRNAs was constructed. The network was 

constituted of 135 nodes and 236 edges. We found that DEMGs in the network were mainly enriched in metabolic pathways 

and metabolic processes. A total of 1200 drugs were predicted as potential therapeutics for NP based on the differentially 

expressed genes, while 170 drugs were predicted for the DEMGs in the miRNA-DEMG network. Conclusively, our study 

predicted drugs that may be effective against the metabolic changes induced by miRNA dysregulation in NP. This informa-

tion will help further reveal the pathological mechanism of NP and provide more treatment options for NP patients.
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Abbreviations

NP  Neuropathic pain

lncRNA  Long non-protein-coding RNA

miRNA  MicroRNA

PPI  Protein-protein interaction

DAVID  Database for Annotation, Visualization, and 

Integrated Discovery

KEGG  Kyoto Encyclopedia of Genes and Genomes

GO  Gene Ontology

Introduction

Neuropathic pain, the main form of chronic pain, is caused 

by damage to the nervous system and dysfunction (Finnerup 

et al. 2016; Gaskin and Richard 2012). Currently, the treat-

ment of NP is limited to symptomatic treatment, and its 

prognosis is poor. To better understand the pathogenesis of 

NP, it is essential to develop effective prevention strategies 

and improve the efficacy of NP treatment. This necessitates 

the deepening in the comprehension of the molecular patho-

genesis of NP.

miRNAs are transcripts of about 20–25 nucleotide (nt)-

long; they regulate a variety of processes, including DNA 

methylation, transcription, and post-transcriptional RNA 
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processing. The miRNAs participate in various gene tran-

scriptional processes via interacting with transcription fac-

tors, coactivators, and/or inhibitors. For example, miRNAs 

can bind mRNAs and affect the expression of downstream 

pathways. Accumulating evidences show that miRNAs play 

an important role in the pathogenesis of nervous system dis-

eases (Liu et al. 2016; Wei et al. 2018). For instance, Zhou 

et al. (2017) found that a total of 134 lncRNAs, 12 miR-

NAs, 188 circRNAs, and 1066 mRNAs were significantly 

regulated after spared nerve injury (SNI) surgery. Wei et al. 

(2018) found that miR-154-5p inhibition promotes NP pro-

gression in rats via upregulation of TLR5S and proposed 

this pathway as a novel therapeutic target for NP treatment. 

It is known that miRNAs regulate gene expression and 

can be used as potential biomarkers. Dayer and colleagues 

(Dayer et al. 2019) reported that chronic pain may induce the 

abnormal and specific dysregulation of miRNA expression 

and that hsa-miR-320a and hsa-miR-98-5p (two circulating 

miRNA signatures) can serve as biomarkers for pain-type 

classification. The epigenetic intervention of miRNAs may 

also be a new therapeutic approach for complications such 

as injurious hypersensitivity caused by peripheral nerve 

injury. Pan and colleagues (Pan et al. 2018) reported that 

miR-23a may be involved in NP through the TXNIP/NLRP3 

inflammasome axis in spinal glial cells by directly targeting 

CXCR4.

Metabolism plays a major role in multiple biological pro-

cesses. Studies state that metabolic dysregulation plays a 

central role in painful peripheral neuropathies, and there is 

cross-communication between metabolism, inflammation, 

and immune response in NP (Navia-Pelaez et al. 2021). Pre-

vious studies have shown that CCI-induced NP causes meta-

bolic changes in serum and spinal cord (Chen et al. 2021); 

changes in metabolism of thalamic neurotransmitters have 

also been reported (Wang et al. 2020). However, a systemic 

analysis showing the overall profile of genes involved in 

metabolism has not yet been reported in PN. In addition, 

although many studies indicate the importance of microR-

NAs in gene regulation, the interaction between metabolic 

genes and miRNAs has not yet been elucidated, which con-

stitutes an important field to explore.

With the rapid development of high-throughput sequenc-

ing, data mining, and the wide application of precision medi-

cine, it becomes more feasible to extract miRNA and mRNA 

information of NP from the microarray datasets. Previous 

studies have reported the key genes and pathways asso-

ciated with NP based on expression patterns (Chen et al. 

2017; Zhu et al. 2019). The contributors of GSE24982, Von 

and colleagues, conducted a miRNA and mRNA expres-

sion profiling study of dorsal root ganglion (DRG) tissue 

from rats with spinal nerve ligation (SNL), and they found 

that the expression level of 63 miRNAs was significant by 

t-test (P-value < 0.001) (von Schack et al. 2011). GSE24982 

was analyzed in other studies as well: Gao and colleagues 

obtained 123 upregulated differentially expressed genes 

and identified p53 as a candidate prognostic biomarker for 

NP (Gao et al. 2018); a total of 206 differentially expressed 

genes was obtained in GSE24982 by unpaired t-test with a 

fold change ≥ 2, and the genes were enriched in DNA bind-

ing, cell cycle (Chen et al. 2017); Zhu and colleagues ana-

lyzed the differentially expressed genes of high and low pain 

compared with the normal control group and obtained 1243 

upregulated and 1533 downregulated genes in GSE24982 

by R “limma” package with a cutoff of |log2FC|> 1 and 

P-value < 0.05 (Zhu et al. 2019). A study reported a miRNA 

expression profiling study in DRG after peripheral nerve 

injury and found that a total of 220 miRNAs were upreg-

ulated in DRGs following three types of peripheral nerve 

injury (Chang et al. 2017). Although previous studies have 

investigated the role of the differentially expressed miRNAs 

and mRNAs in the NP, the interaction and regulatory net-

work of miRNAs and metabolic genes in NP have not been 

elucidated.

In this study, two datasets (GSE145199 and GSE24982) 

were downloaded to identify differentially expressed 

mRNAs and miRNAs. Then, we performed GO and KEGG 

pathway analysis of differentially expressed mRNAs and 

constructed a PPI network to investigate gene interactions. 

Moreover, the metabolic process related genes were down-

loaded from the GSEA database and used to identify the 

differentially expressed metabolic genes (DEMGs). Then, 

the miRNA-DEMG network was constructed to explore the 

interaction of miRNAs and DEMGs in NP. Finally, drugs 

were predicted based on the DEMGs in the regulatory net-

work. Our study will contribute to the understanding of NP 

pathogenesis and provide new strategies for targeted drugs 

and metabolic therapies.

Methods

Raw Data Collection

Raw data were obtained from Gene Expression Omni-

bus (GEO, https:// www. ncbi. nlm. nih. gov/ geo/) with 

the following search strategy: “Neuropathic Pain” AND 

(“miRNA” OR “mRNA”). Eligible datasets met the fol-

lowing inclusion criteria: (1) the dataset contains NP sam-

ples and control samples; (2) each sample has a group 

label; (3) the microarray data type has been specified; (4) 

gene symbol or GenBank ID in the dataset file for each 

probe has been provided; (5) the original data is available. 

Finally, the included data accessions were GSE145199 and 

GSE24982. GSE145199 is a miRNA expression profiling 

of prelimbic cortex (PL), including 3 SNI samples and 

3 control samples (Rattus norvegicus). GSE24982 is an 
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mRNA expression profiling in DRG that underwent spi-

nal nerve ligation (SNL) or a sham operation, including 

20 SNL samples and 20 SHAM samples (R. norvegicus). 

In this study, all the samples from the nerve injury were 

compared with the SHAM samples or control samples in 

the abovementioned datasets.

Raw Data Preprocessing and Screening 
for Differentially Expressed miRNAs and mRNAs 
and DEMGs

Before differential expression analysis, average expression 

of a gene was kept in the expression matrix when its gene 

symbol mapped multiple probes, and genes containing the 

missing value (or zero value) were removed. Data preproc-

essing and differentially expressed analyses were performed 

with the R limma package (Ritchie et al. 2015). Data nor-

malization was implemented by the quantile method with the 

R limma package and data scaling was performed by loga-

rithmic conversion in R. Differentially expressed miRNAs 

and mRNAs were identified with the significance thresholds 

of |log2FC|> 0.5 and P-value < 0.05. The R ggplot2 package 

(Ginestet C 2011) was used for data visualization. The ten 

most significant genes (sorted by P-values) of the upregu-

lated cluster and downregulated cluster were extracted to gen-

erate a heatmap using the R pheatmap package (https:// cran.r- 

proje ct. org/ web/ packa ges/ pheat map/ index. html). To identify 

the DEMGs, we first downloaded metabolic process-related 

gene sets in the GSEA database and combined them in a 

gene list. This gene list containing metabolic genes and the 

list of differentially expressed mRNAs were used for Venn 

diagram analysis. The intersection between both gene lists 

was considered the list of differentially expressed metabolic 

genes (DEMGs). The Venn diagram analysis was performed 

online at the Bioinformatics & Evolutionary Genomics 

domain (http:// bioin forma tics. psb. ugent. be/ webto ols/ Venn/).

Construction of miRNA‑DEMG Network

The R multiMiR package (Ru et  al. 2014) was used 

to predict target mRNAs regulated by differentially 

expressed miRNAs. Then, the Pearson correlation anal-

ysis was performed to evaluate the correlation between 

the expression of miRNAs and mRNAs. Target mRNAs 

with negative correlation (a negative correlation coeffi-

cient lower than − 0.8) with miRNA and overlapping with 

the DEMGs were used for network construction. The 

miRNA-DEMG network was visualized by Cytoscape 

software (Shannon et al. 2003), and the MCODE plugin 

in Cytoscape was used to identify hub miRNAs and 

DEMGs.

Protein–Protein Interaction Network

Search Tool for the Retrieval of Interacting Genes (STRING, 

version 11.0, https:// string- db. org/) is a database of known 

and predicted protein–protein interactions (Szklarczyk 

et  al. 2019). Currently, the STRING database contains 

24,584,628 proteins from 5090 organisms, and interactions 

in the database are derived from genomic context predic-

tions, high-throughput lab experiments, automated text min-

ing, co-expression, and previous knowledge in databases. 

The identified miRNA target DEMGs and differentially 

expressed DEMGs were input into the STRING database 

to construct the PPI network, in which individual non-con-

nected proteins were eliminated.

Functional Enrichment Analysis

Functional enrichment analysis of sets of genes was per-

formed using the online platform g:Profiler (https:// biit. cs. 

ut. ee/ gprofi ler/ gost). R. norvegicus was chosen as organism, 

and g:SCS threshold of 0.05 was chosen as significance cut-

off threshold for the enrichment terms. The results of the top 

ten terms were used to draw the bubble chart using a custom-

ized script in R software with the ggplot2 library.

Drug Prediction and Repurposing for the Set 
of Genes

The Drug Gene Interaction Database (DGIdb, www. dgidb. 

org) has been used to integrate, organize and display drugs, 

gene interactions, and gene-drug information from pub-

lished articles and web resources (Cotto et al. 2018). It is 

easily accessed through an intuitive Web user interface, 

an application programming interface (API), and publicly 

cloud-based server images. Here, we uploaded the miRNA 

target DEMGs in the miRNA-DEMG network, differentially 

expressed mRNAs, and hub genes in the protein–protein net-

work of the differentially expressed mRNAs onto the DGIdb 

to predict their potential targeting drugs effective for NP. 

Moreover, the  L1000CDS2 pharmacogenetic search tool 

(https:// maaya nlab. cloud/ l1000 cds2/#/ index) was applied 

to DEMGs to further retrieve potential perturbant drugs tar-

geting these genes.

Results

Detection of Differentially Expressed miRNAs 
and mRNAs

After data preprocessing, the raw data of each data-

set was normalized. The boxplots in Fig. 1 A and B 

show the difference of samples before and after data 
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normalization. The volcano plots of miRNA and mRNA 

expression profiles in GSE145199 and GSE24982 were 

as depicted in Fig. 2 A and B. A total of 959 differen-

tially expressed miRNAs were identified in GSE145199, 

of which 455 miRNAs were upregulated, and 504 were 

downregulated (Supplementary File S1). In GSE24982, 

we identified 8251 differentially expressed mRNAs 

(4193 upregulated and 4058 downregulated mRNAs) 

(Supplementary File S2). The heatmaps in Fig. 2 C and 

D displayed the top ten differentially expressed mRNAs 

sorted by P-values in the upregulated and downregulated 

clusters in GSE24982.

Functional analysis has a wide range of applications 

in bioinformatics and can explain biological mechanisms 

and functional pathways in genomics and transcriptom-

ics. In order to identify the functional importance of 

differentially expressed mRNAs, functional enrichment 

analysis of the 8251 differentially expressed mRNAs was 

performed. We found that the downregulated differen-

tially expressed mRNAs were significantly enriched in 

661 GO terms in the category of biological process (GO: 

BP) (Supplementary File S3). Based on adjusted P-values, 

the most significantly enriched biological processes were 

localization, regulation of biological quality, and positive 

regulation of biological process while on the basis of gene 

ratio, the largest sets of genes were involved in cellular 

process, biological regulation, and metabolism-related 

biological processes such as metabolic process, organic 

substance metabolic process, cellular metabolic process, 

and primary metabolic process (Fig. 3; Supplementary 

File S3). Protein binding, binding, ion binding, identical 

protein binding, small molecule binding, and catalytic 

activity were the most enriched in the category of molec-

ular function (Fig. 3; Supplementary File S3), whereas 

cytoplasm, intracellular anatomical structure, intracel-

lular membrane-bounded organelle, membrane-bounded 

Fig. 1  Box plot of each sample distribution in GEO data before and after normalization. The blue boxplots represent the distribution of the origi-

nal data, while the red boxplots represent the distribution of the normalized data. A GSE145199 and B GSE24982

Journal of Molecular Neuroscience  (2022) 72:468–481 471



organelle, organelle, intracellular organelle, endomem-

brane system, cell junction, and synapse were the terms 

mostly enriched in the category of cellular component 

(Fig. 3; Supplementary File S3). Additionally, we found 

that the downregulated differentially expressed mRNAs 

mainly participated in metabolic pathways, glutamater-

gic synapse, MAPK signaling pathway, calcium signaling 

pathway, cocaine addiction, neuroactive ligand-receptor 

interaction, PI3K-Akt signaling pathway, and cAMP sign-

aling pathway in the KEGG pathway analysis (Fig. 3; 

Supplementary File S3). More interestingly, in the WikiP-

athways (WP) analysis, spinal cord injury was found as 

the most significantly enriched pathway (Supplementary 

File S3). For the upregulated differentially expressed 

mRNAs, we found that the biological process terms of 

localization, positive regulation of biological process, 

transport, developmental process, and multicellular 

organism development were the most enriched (Fig. 4; 

Supplementary File S4). For molecular function category, 

the terms mostly enriched for the upregulated genes were 

protein binding, binding, identical protein binding, and 

enzyme binding (Fig. 4; Supplementary File S4), whereas 

cytoplasm and intracellular membrane-bounded organelle 

were the most enriched terms in the category of cellular 

component (Fig. 4; Supplementary File S4). The neuroac-

tive ligand-receptor interaction, “growth hormone synthe-

sis, secretion and action”, calcium signaling pathway, pro-

teoglycans in cancer, MAPK signaling pathway, prolactin 

signaling pathway, cholinergic synapse, and GABAergic 

synapse were the most enriched pathways (Fig. 4; Sup-

plementary File S4) obtained from the KEGG database, 

while VEGF-receptor signal transduction and IL-2 signal-

ing pathway were the most significantly enriched in the 

WP database (Supplementary File S4).

Fig. 2  Differential analysis of miRNAs and mRNAs in NP. Differ-

entially expressed genes were screened by the criteria of |log2FC|> 1 

and P-value < 0.05, the green spots represented the downregulated 

molecules, while the red spots represented the upregulated molecules. 

Volcano plot (A) and heatmap of top 10 differentially expressed 

miRNAs (B). Volcano plot (C) and heatmap of top 10 differentially 

expressed mRNAs (D)
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Protein–Protein Interaction Network of the DEGs

The PPI network based on the top 2000 differentially 

expressed mRNAs indicated strong interactions between 

these genes. The PPI network contained 1122 nodes and 

6012 edges, and the average number of neighbors was 

11.399 (Supplementary Figure S1). Using MCODE, we 

identified a significant cluster with the highest score of 45.43 

containing 79 genes as hub genes for the PPI; this repre-

sentative subnetwork was as depicted in Fig. 5 and contained 

72 nodes and 1772 edges. Functional enrichment analysis 

indicated that the hub genes were primarily implicated in the 

biological processes of G protein-coupled receptor signaling 

pathway, signal transduction, signaling, cell communication, 

regulation of cytosolic calcium ion concentration, and cel-

lular calcium ion homeostasis (Fig. 6; Supplementary File 

S5). The predominant molecular functions of the hub genes 

were G protein-coupled receptor activity, transmembrane 

signaling receptor activity, and molecular transducer activ-

ity (Fig. 6; Supplementary File S5), while the most enriched 

cellular component terms were integral component of mem-

brane, intrinsic component of membrane, plasma mem-

brane, and cell periphery (Fig. 6; Supplementary File S5). 

Furthermore, in the KEGG database, we identified neuroac-

tive ligand-receptor interaction, calcium signaling pathway, 

and chemokine signaling pathway as the most significantly 

enriched pathways for the hub genes (Fig. 6; Supplementary 

File S5).

Target Genes of Differentially Expressed miRNAs 
and Construction of miRNA‑DEMG Networks

To identify the miRNA-mRNA interactor pairs, the Pear-

son correlation between the differentially expressed miR-

NAs and the differentially expressed mRNAs was analyzed, 

and miRNA-mRNA pairs (24 miRNAs and 305 mRNAs) 

showing negative correlation coefficient lower than − 0.8 

(Supplementary File S6) were chosen for further analysis. 

Next, the 24 miRNAs were used for miRNA-target predic-

tion with the multimir package in R based on R norvegicus, 

Mus musculus and Homo sapiens as species. The prediction 

results were summarized in Supplementary File S7, and sub-

sequent intersection analysis indicated that the 305 differen-

tially expressed mRNAs were targets for the 24 miRNAs. As 

shown in Supplementary Figure S2, the intersection between 

the 304 mRNAs negatively correlated with the 24 miR-

NAs, the metabolic process gene list and predicted miRNA 

Fig. 3  Bubble chart of GO and KEGG pathway analysis of the down-

regulated differentially expressed mRNAs. The bubble size repre-

sented the count of differential expressed mRNAs, and the different 

colors of the bubble represented the indicated functional category

Fig. 4  Bubble chart of GO and KEGG pathway analysis of the upreg-

ulated differentially expressed mRNAs. The bubble size represented 

the count of differential expressed mRNAs, and the different colors of 

the bubble represented the indicated functional category
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targets allowed the identification of 110 metabolic process-

related differentially expressed genes (DEMGs) as targets 

of 22 differentially expressed miRNAs. These 22 miRNAs 

were considered as the metabolism-related signature miR-

NAs in NP. The PPI network of the 110 DEMGs targeted 

by miRNAs was constructed in the STRING database and 

revealed strong interactions between proteins encoded by 

the 110 DEMGs. We eliminated the unconnected nodes in 

the network and finally got a network with 83 nodes and 

126 edges (Supplementary Figure S3). The average number 

of neighbors was 3.477, while the network diameter and 

network radius were 10 and 5, respectively. The MCODE 

identification of hub genes indicated Cks2, Mcm4, Mcm5, 

Mcm6, Oxa1l, Mrpl17, and ENSRNOG00000047563 as the 

most significant hub genes in the PPI network of the 110 

DEMGs (Supplementary Figure S3).

The miRNA-DEMG pairs were used for miRNA-DEMG 

network visualization in Cytoscape. The miRNA-DEMG 

network showing miRNA-DEMG interactions and PPI 

interactions of the DEMGs in the network was depicted in 

Fig. 7, whereas the network parameters were summarized 

in Supplementary File S8. The network was constituted 

of 135 nodes and 236 edges (Fig. 7). The average number 

of neighbors was 3.496, while the network diameter and 

radius were nine and five, respectively (Supplementary 

File S8). MCODE analysis indicated miR-3613-3p, Polr2d, 

Nudt21, Sf3b3, Ddx6, Xrn1, Cks2, Mcm4, Mcm5, Mcm6, 

Zfp36, Oxa1l, Mrpl17, and ENSRNOG00000047563 as 

hub genes in the network (colored in orange) (Fig. 7). The 

top miRNAs with the highest number of interactors were 

miR-940, miR-5192, miR-2277-3p, miR-6882-3p, miR-

5698, and miR-6133. To explore the biological function 

of DEMGs in the miRNA-DEMG network, we performed 

functional enrichment analysis (Fig. 8; Supplementary 

File S9). We found that the DEMGs in the network were 

enriched in the biological processes of cellular metabolic 

process, metabolic process, and regulation of cellular pro-

tein metabolic process (Fig. 8, Supplementary File S9). 

For molecular function category, organic cyclic compound 

binding, RNA binding, and carboxylic acid binding were 

the most enriched terms (Fig. 8; Supplementary File S9), 

Fig. 5  Protein–protein interaction network of 79 hub genes identified 

in the protein–protein interaction network of differentially expressed 

mRNAs. Different colors represent different clusters, and the cluster-

ing result was obtained by the k-mean clustering method. The green 

nodes represent downregulated genes, while the red nodes represent 

upregulated genes

Fig. 6  Bubble chart of GO and KEGG pathway analysis of the 79 hub 

genes identified in the protein–protein interaction network of differ-

entially expressed mRNAs. The bubble size represented the count of 

mRNAs, and the depth of color of the bubble represented the signifi-

cance of the mRNAs based on the P-values
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whereas for cellular component, intracellular organelle 

lumen, membrane-enclosed lumen, and organelle lumen 

were the most enriched GO terms (Fig. 8; Supplementary 

File S9). In the KEGG pathway enrichment analysis, RNA 

degradation, cell cycle, and MAPK signaling pathway were 

the most enriched pathways (Fig. 8; Supplementary File 

S9).

Drug Prediction for NP

The DGIdb database provides the association between 

genes and their matching known or potential drugs. All 

the differentially expressed mRNAs were used for drug 

prediction via the DGIdb database, and the results were 

presented in Supplementary File S10. A total of 1200 

drugs were predicted. Among these drugs, fostamatinib 

had the highest number (66) of target genes. Other pre-

dicted drugs included cisplatin (37 target genes), copper 

(28 target genes), paclitaxel (26 target genes), dasatinib 

(24 target genes), erlotinib (23 target genes), artenimol (22 

target genes), sorafenib (22 target genes), fluorouracil (21 

target genes), gemcitabine (21 target genes), alcohol (18 

target genes), carboplatin (18 target genes), gefitinib (18 

target genes), docetaxel (17 target genes), imatinib (17 tar-

get genes), methotrexate (15 target genes), dexamethasone 

(14 target genes), everolimus (14 target genes), methyl-

dopa (14 target genes), palbociclib (14 target genes), pro-

gesterone(14 target genes), and tamoxifen (14 target genes) 

(Supplementary File S10). For the 79 hub genes in the 

PPI network, drugs could be predicted for 60 of them, and 

Fig. 7  Construction of the 

miRNA-DEMG network. The 

ellipses represent the DEMGs 

and the triangles represent miR-

NAs. The orange color indicate 

hub miRNAs and DEMGs; the 

green color indicates non-hub 

miRNAs; the violet color indi-

cates non-hub DEMGs
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the genes targeted by most of the drugs were DRD2 (177 

drugs), OPRM1 (124 drugs), HTR2 (146 drugs), CHRM3 

(100 drugs), OPRK1 (89 drugs), AGTR1 (49 drugs), and 

ADRA1D (47 drugs) (Supplementary File S11).

For the DEMGs targeted by miRNAs, 170 drugs were 

predicted from the DGIdb database, among which each 

of Adriamycin, bevacizumab, carboplatin, cisplatin 

genistein, imatinib, irinotecan, pioglitazone, and tri-

amcinolone were found to have two targets in the set of 

DEMGs in the miRNA-DEMG network (Supplementary 

File S12). All of the other drugs had only one target as 

DEMG (Supplementary File S12). Furthermore, the char-

acteristic direction signature search engine  L1000CDS2 

was applied to the 110 DEMGs for drug repurposing. 

Depending on the expression trend (upregulated or down-

regulated) of the 110 DEMGs in the network, compounds 

or drugs that potentially reversed the gene signatures were 

retrieved. The heatmap of potential drugs and their modu-

lated signatures were shown in Fig. 9. Upregulated con-

sensus DEMGs were downregulated by these compounds, 

while downregulated consensus DEMGs were upregu-

lated after stimulation by the compounds. Rottlerin, 

BRD-K31912990, and BRD-K08448573 were the top-3 

drugs obtained based on the overlap score values. Rot-

tlerin downregulated nine upregulated DEMGs (CKS2, 

FBLN5, MCM4, MCM5, MCM6, NUP210, RPS6KA3, 

SFPQ, and SHMT1) among the input DEMG list. It is 

worth noting that Cks2, Mcm4, Mcm5, and Mcm6 are 

hub genes in the miRNA-DEMGs network (Fig. 5); these 

genes were targeted by the vast majority of the predicted 

drugs (Fig.  9). Among the downregulated DEMGs, 

DUSP1 and GADD45A were both activated by 23 of the 

predicted drugs, followed by DUSP6 (16 drugs) (Fig. 9).

Fig. 8  Bubble chart of GO and KEGG pathway analysis of the 

DEMGs in the miRNA-DEMG network. The bubble size represented 

the count of mRNAs, and the depth of color of the bubble represented 

the significance of the mRNAs based on the P-values

Fig. 9  Drug repositioning analysis of the DEMGs in the miRNA-DEMG network
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Discussion

Neuropathic pain is a debilitating condition caused by 

damage to the nervous system and chronic disease. As 

a kind of non-coding RNA, miRNA-related research has 

become a hot spot in genetic research. As short non-coding 

single-stranded RNA molecules, miRNAs participate in 

the regulation of post-transcriptional gene expression in 

animals and plants (Singh et al. 2020; Yanai et al. 2020) 

and are involved in many cellular activities such as epige-

netic regulation, cell cycle regulation, cell differentiation, 

and metabolic processes. At present, many miRNAs have 

been reported in neurodegenerative diseases (Eyileten 

et al. 2020), cancers (Kapoor et al. 2020; Wilczynski et al. 

2020), bowel disease (Ambrozkiewicz et al. 2020), and 

diabetic heart disease (DHD) (Lew et al. 2020). Although 

some miRNAs (Kalpachidou et al. 2020; Tang et al. 2020) 

have been reported in NP, reports on how miRNAs and 

mRNAs jointly regulate the pathogenesis of NP are still 

limited and have only captured partial insights of the com-

plex pathogenetic mechanisms. In addition, studies have 

indicated the shift in metabolic processes in NP and nerv-

ous system-related diseases, but, to the best of our knowl-

edge, no study has explored the regulatory relationship 

between miRNAs and metabolic genes, which would be 

important for understanding the pathogenesis of NP and 

developing essential metabolic therapies for this condition. 

Thus, in the present study, we identified the miRNA sig-

nature regulating metabolic genes in NP and constructed 

the corresponding miRNA-DEMG network. Furthermore, 

in order, to uncover drugs that could revert the deleterious 

effects induced by the miRNAs, drug-gene interactions 

and drug repositioning analysis were performed and a list 

of potential drugs were predicted. This study is the first 

of its kind to establish the miRNA-DEMG network and 

predict the potential drugs for this network in NP.

At present, the pathological mechanism of NP is still 

unknown and might be caused by differentially expressed 

mRNAs. Therefore, we screened differentially expressed 

mRNAs in the GSE24982 dataset and functional enrich-

ment analysis showed that the main pathways for these 

differentially expressed mRNAs in NP were neuroactive 

ligand-receptor interaction, PI3K-Akt signaling path-

way, MAPK signaling pathway, cAMP signaling path-

way, and calcium signaling pathway. A previous study 

reported that jct-801 relieves paclitaxel-induced neuro-

pathic pain through the PI3K/Akt pathway (Huang et al. 

2020). Our study suggested that differentially expressed 

mRNAs are involved in NP possibly through regulating 

the MAPK signaling pathway, which is consistent with 

a previous study (Galan-Arriero et al. 2015). The cyclic 

adenosine monophosphate (cAMP) signaling pathway is 

a key contributor to the development of chronic pain, and 

an existing study indicated that knockdown of the cAMP 

effector can relieve the pain-like responses in chronic pain 

models (Berkey et al. 2020). In addition, the PPI network 

analysis of differentially expressed mRNAs indicated that 

proteins encoded by these genes were involved in strong 

interactions, which indicated that these genes work in con-

cert to occasion the deleterious effects associated with NP. 

A robust cluster of 79 hub genes were identified and was 

found to be mainly involved in the biological process of 

G protein-coupled receptor signaling pathway. The find-

ing corroborated previous studies indicating that the G 

protein-coupled receptors are involved in pain transmis-

sion (Pan et al. 2008) and that targeting these molecules 

may be vital for the relief of pain (Li et al. 2017). The hub 

genes were also involved in other processes and pathways 

associated with signal transmission such as neuroactive 

ligand-receptor interaction, calcium signaling pathway, 

and chemokine signaling pathway, suggesting that target-

ing these hub genes may be vital for treating NP. There-

fore, our study provided a supplementary contribution 

for the molecular understanding of the NP pathological 

mechanism.

miRNAs and mRNAs often coordinate the occurrence 

and prognosis of diseases in organisms. Up to date, only 

few studies have analyzed the mRNA-miRNA network in 

NP (Zhou et al. 2017). Various studies have provided new 

mechanisms for the molecular roles of miRNAs in the 

pathogenesis of NP (Chang et al. 2020; Phạm et al. 2020; 

Wilkerson et al. 2020). However, whether there is a regula-

tory miRNA signature controlling the metabolic genes in 

NP is unknown. Herein, we identified a 24-miRNA signa-

ture regulating DEMGs in NP and constructed the corre-

sponding miRNA-DEMG network. These miRNAs have 

not been reported in metabolic processes associated with 

NP in the past. For the first time, we reported that miR-

940 and miR-2277-3p may play an important role in meta-

bolic changes associated with NP pathology based on the 

miRNA-DEMG regulatory network of NP; these miRNAs 

were previously reported mainly in cancer research (Fan 

et al. 2018; Gao et al. 2020; Zhou et al. 2019). Addition-

ally, miR-5689, identified in the miRNA-DEMG regulatory 

network, was also reported as a biomarker for predicting 

the development of new distant metastasis (Satomi-Tsushita 

et al. 2019). MCODE analysis pinpointed miR-3613-3p as 

a hub miRNA in the miRNA-DEMG network; this finding 

corroborated the findings of previous researchers putatively 

showing that miR-3613-3p is a regulator of pain-associated 

genes such as GABRB3, NPY1R, GRIN3A, TRPV1, and 

SCN9A (Linnstaedt et al. 2015). The hub DEMGs in the 

miRNA-DEMG regulatory network were Polr2d, Nudt21, 

Sf3b3, Ddx6, Xrn1, Cks2, Mcm4, Mcm5, Mcm6, Zfp36, 
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Oxa1l, Mrpl17, and ENSRNOG00000047563. However, 

the functions of these genes have not been systematically 

reported in NP. Thus, we anticipate that these genes might 

be new potential therapeutic targets for NP. Further experi-

mental studies are required to confirm their role in NP and 

explore whether their modulation might be beneficial for 

the treatment of NP. These genes might also be essential for 

the development of metabolic therapies for NP. In short, we 

have discovered for the first time some miRNAs and mRNAs 

that may be involved in NP, but their specific function in NP 

needs more validation studies.

To further explore the biological function of the miRNA-

DEMG network, we performed the GO and KEGG pathway 

analysis. We found that the DEMGs in the network were 

involved in the pathways of RNA degradation and cell cycle. 

These results indicated that the miRNA-DEMG network 

may participate in the pathogenesis of NP by regulating 

these pathways. Studies have reported that the cell cycle 

is activated in spinal cord injury (SCI), which may regu-

late chronic pain after SCI (Wu et al. 2013, 2016). RNA 

degradation plays significant roles in neurodegenerative 

diseases as previously reviewed (Weskamp and Barmada 

2018). However, the implication of RNA degradation in NP 

is not-well documented; the enrichment of the DEMGs in 

the miRNA-mRNA network in this pathway indicated that 

RNA degradation is highly active in NP and this pathway 

could be a potential therapeutic target for NP.

Up to date, there is still no effective treatment drug 

for NP. As indicated above, significant dysregulation of 

miRNAs and mRNAs is associated with NP. Thus, finding 

drugs targeting these genes may help correct the deleteri-

ous effect encountered in NP. For this reason, we planned 

to uncover drugs targeting the differentially expressed 

mRNAs and DEMGs in the miRNA-DEMG network  

using the DGIdb. DGIdb database can infer the targeted 

drugs of genes in diseases based on existing resources. 

The drugs included in this database contain the US Food 

and Drug Administration (FDA) certified drugs, which 

will provide more professional and reliable assurance for 

target drug prediction. For example, Nambou and Anakpa 

(2020) recently discovered nicotinamide adenine dinu-

cleotide (NAD) and CHEMBL1161866 with potential 

therapeutic value for coronavirus disease 2019 (COVID-

19) through the DGIdb database, which provided novel 

insight for the treatment of COVID-19. In addition, Yang 

and colleagues predicted candidate drugs for lung adeno-

carcinoma (LUAD) via the DGIdb database as well (Yang 

et al. 2020). Here, we predicted a series of drugs that could 

be potentially used for NP treatment based on differentially 

expressed mRNAs and DEMGs in the regulatory networks 

of NP. It is reported that inhibition of spleen tyrosine 

kinase (Syk) can alleviate mechanical allodynia (Choi 

and Yang 2019). Fostamatinib is an oral Syk inhibitor  

that has been approved by the FDA for the adult treatment 

of chronic immune thrombocytopenia (ITP) (Bussel et al. 

2018). Although there are differences between the patho-

logical processes of mechanical pain and neuropathic pain, 

the number of genes targeted by this drug is high (66 target 

genes), which deserves more clinical studies. Dexametha-

sone is a synthetic glucocorticoid with anti-inflammatory 

activity and minimal glucocorticoid effect, which is widely 

used in the treatment of various inflammation disorders 

(Coutinho and Chapman 2011). It has been reported that 

low doses of ibuprofen and dexamethasone have a syn-

ergistic therapeutic effect on trigeminal NP in rats and 

can significantly inhibit mechanical allodynia (Park et al. 

2019). Dexamethasone is effective in the treatment of NP 

caused by tumor-related spinal cord compression, and pre-

gabalin is effective for malignant painful radiculopathy 

(Tagami et al. 2020). Nevertheless, the long-term use of 

dexamethasone also has certain side effects (Lieberthal 

et al. 2015). In the past, opioids such as morphine were 

often ineffective in the treatment of neuropathic pain, but 

a study showed that the combination of imatinib and mor-

phine can completely relieve pain (Donica et al. 2014), 

which provides more treatment options for NP patients. 

A recent study reported that in rats of infraorbital nerve 

ligation trigeminal neuralgia, c-Abl expression was signifi-

cantly increased, and the downstream activation product 

p38 was also abnormally activated. Interestingly, imatinib 

mesylate (STI571), a specific c-Abl family kinase inhibi-

tor, can reduce the expression of p38 and reduce the loss 

of dopaminergic neurons, suggesting that imatinib may 

alleviate the symptoms of NP through the c-abl-p38 sign-

aling pathway (Fu et al. 2020). Additionally, our study 

predicted the treatment ability of progesterone (PROG) in 

NP and was supported by a previous study, demonstrating 

that PROG may provide new strategies for the treatment 

of NP (Jarahi et al. 2014). NP caused by chemotherapy can 

reduce the prognosis of patients with the quality of life. 

Tamoxifen can alleviate NP induced by paclitaxel, vin-

cristine, and bortezomib in chemotherapy through inhibit-

ing protein kinase C/extracellular signal-regulated kinase 

pathway (Tsubaki et al. 2018). Although we have only 

discussed the therapeutic effects of the drugs above, we 

cannot ignore the potential effects of other drugs that have 

not been mentioned. These predicted drugs can be verified 

in future studies, either individually or in combination. 

The number of genes corresponding to the targeting drugs 

was small, indicating that the therapeutic effect of these 

drugs may still be relatively weak. The drug repurposing 

for DEMGs in the miRNA-DEMG network allowed the 

identification of drugs that could reverse the expression 

levels of these genes; these drugs are potentially those 

that can possibly correct the abnormal expression induced 

by miRNAs in the pathogenesis of NP. However, all the 
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abovementioned therapeutic effects of drugs in NP were 

based on bioinformatic analysis and literature reports. The 

specific therapeutic effects of drugs still need more experi-

mental and clinical studies for validation.

Although this study found several miRNAs and mRNAs 

that may be related to NP through the public datasets, and 

analyzed the pathways that may participate in the pathological 

mechanism of NP through GO and KEGG pathway analysis, 

our research still has some limitations. Circular RNAs (circR-

NAs) and lncRNAs are non-coding RNA molecules that have 

recently been reported to regulate the function of miRNAs and 

affect a variety of complex human diseases (Fan et al. 2020; 

Harrison et al. 2020; Li et al. 2020b). Although there have 

been some studies on the circRNA regulation in NP (Li et al. 

2020a; Wei et al. 2020; Zhang et al. 2020), the present public 

databases still do not include the circRNA expression data of 

NP. In addition, the annotation of the available lncRNA data 

is not complete, and the prediction of lncRNA target miR-

NAs and mRNAs is critical. Therefore, we used microarray 

sequencing data, including the sequencing results of miRNA 

and mRNA in NP, which may not fully reflect the pathologi-

cal mechanism of NP. This study found some miRNAs and 

mRNAs that may be related to NP, but their relationship with 

NP is still unclear. We predicted several drugs that may have 

therapeutic effects on NP, but the effects of these drugs in 

clinical treatment have not yet been reported. It should be 

noted that the information of miRNA and mRNA is taken 

from the datasets obtained by different samples, which may 

affect the reliability of the results. In the future, we will col-

lect samples from human NP patients, and obtain lncRNA, 

miRNA, mRNA, and circRNA data of NP patients through 

high-throughput sequencing technology. We plan to verify the 

functions of the genes and drugs identified here through more 

in vitro and in vivo experiments and strive to further reveal the 

pathological mechanism of NP.

Conclusions

Our study predicted drugs to treat NP based on the NP regula-

tory miRNA-DEMG network. Some of the predicted drugs 

have been reported to alleviate NP in previous studies, but the 

role of other drugs in NP therapy remains unknown. Future 

research will require more studies to validate these drugs. 

In vitro and in vivo experiments based on cell and animal mod-

els of NP, and clinical trials are necessary to validate these 

drugs.
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