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Abstract
Bioinformatics plays an essential role in today’s plant science. As the
amount of data grows exponentially, there is a parallel growth in the
demand for tools and methods in data management, visualization, in-
tegration, analysis, modeling, and prediction. At the same time, many
researchers in biology are unfamiliar with available bioinformatics
methods, tools, and databases, which could lead to missed oppor-
tunities or misinterpretation of the information. In this review, we
describe some of the key concepts, methods, software packages, and
databases used in bioinformatics, with an emphasis on those relevant
to plant science. We also cover some fundamental issues related to
biological sequence analyses, transcriptome analyses, computational
proteomics, computational metabolomics, bio-ontologies, and bio-
logical databases. Finally, we explore a few emerging research topics
in bioinformatics.
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INTRODUCTION

Recent developments in technologies and in-
strumentation, which allow large-scale as well
as nano-scale probing of biological samples,
are generating an unprecedented amount of
digital data. This sea of data is too much for

the human brain to process and thus there
is an increasing need to use computational
methods to process and contextualize these
data.

Bioinformatics refers to the study of bio-
logical information using concepts and meth-
ods in computer science, statistics, and engi-
neering. It can be divided into two categories:
biological information management and com-
putational biology. The National Institutes
of Health (NIH) (http://www.bisti.nih.gov/)
defines the former category as “research, de-
velopment, or application of computational
tools and approaches for expanding the use
of biological, medical, behavioral or health
data, including those to acquire, represent, de-
scribe, store, analyze, or visualize such data.”
The latter category is defined as “the devel-
opment and application of data-analytical and
theoretical methods, mathematical modeling,
and computational simulation techniques to
the study of biological, behavioral, and social
systems.” The boundaries of these categories
are becoming more diffuse and other cate-
gories will no doubt surface in the future as
this field matures.

The intention of this article is not to pro-
vide an exhaustive summary of all the advances
made in bioinformatics. Rather, we describe
some of the key concepts, methods, and tools
used in this field, particularly those relevant
to plant science, and their current limitations
and opportunities for new development and
improvement. The first section introduces
sequence-based analyses, including gene find-
ing, gene family and phylogenetic analy-
ses, and comparative genomics approaches.
The second section presents computational
transcriptome analysis, ranging from analy-
ses of various array technologies to regula-
tory sequence prediction. In section three,
we focus on computational proteomics, in-
cluding gel analysis and protein identifica-
tion from mass-spectrometry data. Section
four describes computational metabolomics.
Section five introduces biological ontologies
and their applications. Section six addresses
various issues related to biological databases
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ranging from database development to cura-
tion. In section seven, we discuss a few emerg-
ing research topics in bioinformatics.

SEQUENCE ANALYSIS

Biological sequence such as DNA, RNA, and
protein sequence is the most fundamental
object for a biological system at the molecular
level. Several genomes have been sequenced
to a high quality in plants, including Arabidop-
sis thaliana (130) and rice (52, 147, 148). Draft
genome sequences are available for poplar
(http://genome.jgi-psf.org/Poptr1/) and
lotus (http://www.kazusa.or.jp/lotus/), and
sequencing efforts are in progress for several
others including tomato, maize, Medicago
truncatula, sorghum (11) and close relatives
of Arabidopsis thaliana. Researchers also gen-
erated expressed sequence tags (ESTs) from
many plants including lotus, beet, soybean,
cotton, wheat, and sorghum (see http://
www.ncbi.nlm.nih.gov/dbEST/).

Genome Sequencing

Advances in sequencing technologies provide
opportunities in bioinformatics for manag-
ing, processing, and analyzing the sequences.
Shotgun sequencing is currently the most
common method in genome sequencing:
pieces of DNA are sheared randomly, cloned,
and sequenced in parallel. Software has been
developed to piece together the random,
overlapping segments that are sequenced
separately into a coherent and accurate con-
tiguous sequence (93). Numerous software
packages exist for sequence assembly (51), in-
cluding Phred/Phrap/Consed (http://www.
phrap.org), Arachne (http://www.broad.
mit.edu/wga/), and GAP4 (http://staden.
sourceforge.net/overview.html). TIGR
developed a modular, open-source package
called AMOS (http://www.tigr.org/soft
ware/AMOS/), which can be used for com-
parative genome assembly (102). Current
limitations in shotgun sequencing and assem-
bly software remain largely in the assembly of

highly repetitive sequences, although the cost
of sequencing is another limitation. Recently
developed methods continue to reduce the
cost of sequencing, including sequencing by
using differential hybridization of oligonu-
cleotide probes (48, 62, 101), polymorphism
ratio sequencing (16), four-color DNA
sequencing by synthesis on a chip (114), and
the “454 method” based on microfabricated
high-density picoliter reactors (87). Each of
these sequencing technologies has significant
analytical challenges for bioinformatics in
terms of experimental design, data interpre-
tation, and analysis of the data in conjunction
with other data (33).

Gene Finding and Genome
Annotation

Gene finding refers to prediction of introns
and exons in a segment of DNA sequence.
Dozens of computer programs for identifying
protein-coding genes are available (150).
Some of the well-known ones include Gen-
scan (http://genes.mit.edu/GENSCAN.ht
ml), GeneMarkHMM (http://opal.biology.
gatech.edu/GeneMark/ ), GRAIL (http://
compbio.ornl.gov/Grail-1.3/ ), Genie
(http://www.fruitfly.org/seq tools/genie.
html), and Glimmer (http://www.tigr.org/
softlab/glimmer). Several new gene-finding
tools are tailored for applications to plant
genomic sequences (112).

Ab initio gene prediction remains a chal-
lenging problem, especially for large-sized eu-
karyotic genomes. For a typical Arabidopsis
thaliana gene with five exons, at least one
exon is expected to have at least one of its
borders predicted incorrectly by the ab ini-
tio approach (19). Transcript evidence from
full-length cDNA or EST sequences or sim-
ilarity to potential protein homologs can sig-
nificantly reduce uncertainty of gene identi-
fication (154). Such methods are widely used
in “structural annotation” of genomes, which
refers to the identification of features such
as genes and transposons in a genomic se-
quence using ab initio algorithms and other
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information. Several software packages have
been developed for structural annotation (3,
45, 57, 66). In addition, one can use genome
comparison tools such as SynBrowse (http://
www.synbrowser.org/) and VISTA (http://
genome.lbl.gov/vista/index.shtml) to en-
hance the accuracy of gene identification.
Current limitations of structural annotation
include accurate prediction of transcript start
sites and identification of small genes en-
coding less than 100 amino acids, noncoding
genes (such as microRNA precursors), and al-
ternative splicing sites.

An important aspect of genome annota-
tion is the analysis of repetitive DNAs, which
are copies of identical or nearly identical
sequences present in the genome (78). Repet-
itive sequences exist in almost any genome,
and are abundant in most plant genomes
(69). The identification and characterization
of repeats is crucial to shed light on the evo-
lution, function and organization of genomes
and to enable filtering for many types of
homology searches. A small library of plant-
specific repeats can be found at ftp://ftp.
tigr.org/pub/data/TIGR Plant Repeats/;
this is likely to grow substantially as more
genomes are sequenced. One can use Repeat-
Masker (http://www.repeatmasker.org/) to
search repetitive sequences in a genome.
Working from a library of known repeats,
RepeatMasker is built upon BLAST and
can screen DNA sequences for interspersed
repeats and low complexity regions. Repeats
with poorly conserved patterns or short
sequences are hard to identify using Repeat-
Masker due to the limitations of BLAST.
To identify novel repeats, various algorithms
were developed. Some widely used tools
include RepeatFinder (http://ser-loopp.tc.
cornell.edu/cbsu/repeatfinder.htm) and
RECON (http://www.genetics.wustl.edu/
eddy/recon/). However, due to the high
computational complexity of the problem,
none of the programs can guarantee finding
all possible repeats as all the programs use
some approximations in computation, which
will miss some repeats with less distinctive

patterns. Inevitably, a combination of re-
peat finding tools is required to obtain a
satisfactory overview of repeats found in an
organism.

Sequence Comparison

Comparing sequences provides a foundation
for many bioinformatics tools and may al-
low inference of the function, structure, and
evolution of genes and genomes. For ex-
ample, sequence comparison provides a ba-
sis for building a consensus gene model like
UniGene (18). Also, many computational
methods have been developed for homology
identification (136). Although sequence com-
parison is highly useful, it should be noted
that it is based on sequence similarity between
two strings of text, which may not correspond
to homology (relatedness to a common an-
cestor in evolution), especially when the con-
fidence level of a comparison result is low.
Also, homology may not mean conservation in
function.

Methods in sequence comparison can be
largely grouped into pair-wise, sequence-
profile, and profile-profile comparison. For
pair-wise sequence comparison, FASTA
(http://fasta.bioch.virginia.edu/) and
BLAST (http://www.ncbi.nlm.nih.gov/
blast/) are popular. To assess the confidence
level for an alignment to represent homol-
ogous relationship, a statistical measure
(Expectation Value) was integrated into
pair-wise sequence alignments (71). Remote
homologous relationships are often missed by
pair-wise sequence alignment due to its insen-
sitivity. Sequence-profile alignment is more
sensitive for detecting remote homologs.
A protein sequence profile is generated by
multiple sequence alignment of a group of
closely related proteins. A multiple sequence
alignment builds correspondence among
residues across all of the sequences simulta-
neously, where aligned positions in different
sequences probably show functional and/or
structural relationship. A sequence profile
is calculated using the probability of

338 Rhee · Dickerson · Xu

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

06
.5

7:
33

5-
36

0.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 S

ta
nf

or
d 

U
ni

ve
rs

ity
 R

ob
er

t C
ro

w
n 

L
aw

 L
ib

. o
n 

05
/1

0/
07

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV274-PP57-13 ARI 5 April 2006 19:12

occurrence for each amino acid at each align-
ment position. PSI-BLAST (http://www.
ncbi.nlm.nih.gov/BLAST/) is a popular
example of a sequence-profile alignment tool.
Some other sequence-profile comparison
methods are slower but even more accu-
rate than PSI-BLAST, including HMMER
(http://hmmer.wustl.edu/), SAM (http://
www.cse.ucsc.edu/research/compbio/sam.
html), and META-MEME (http://met
ameme.sdsc.edu/). A profile-profile align-
ment is more sensitive than the sequence-
profile-based search programs in detecting
remote homologs (146). However, due to
its high false positive rate, profile-profile
comparison is not widely used. Given poten-
tial false positive predictions, it is helpful to
correlate the sequence comparison results
with the relationship observed in functional
genomic data, especially the widely available
microarray data as discussed in the section
Transcriptome Analysis below. For example,
when a gene is predicted to have a particular
function through sequence comparison,
one can gain confidence in the prediction
if the gene has strong correlation in gene
expression profile with other genes known to
have the same function.

Proteins can be generally classified based
on sequence, structure, or function. Several
sequence-based methods were developed
based on sizable protein sequence (typically
longer than 100 amino acids), including Pfam
(http://pfam.wustl.edu/ ), ProDom (http://
protein.toulouse.inra.fr/prodom/current/
html/home.php), and Clusters of Orthol-
ogous Group (COG) (http://www.ncbi.
nlm.nih.gov/COG/new/). Other methods
are based on “fingerprints” of small con-
served motifs in sequences, as with PROSITE
(http://au.expasy.org/prosite/), PRINTS
(http://umber.sbs.man.ac.uk/dbbrowser/
PRINTS/), and BLOCKS (http://www.psc.
edu/general/software/packages/blocks/blo
cks.html). The false positive rate of motif
assignment is high due to high probability of
matching short motifs in unrelated proteins
by chance. Other sequence-based protein

family databases are built from multiple
sources. InterPro (http://www.ebi.ac.uk/
interpro/) is a database that integrates
domain information from multiple protein
domain databases. Using protein family
information to predict gene function is more
reliable than using sequence comparison
alone. On the other hand, very closely related
proteins may not guarantee a functional
relationship (97). One can use structure-
or function-based protein families (when
available) to complement sequence-based
family for additional function information.
SCOP (http://scop.mrc-lmb.cam.ac.uk/
scop/) and CATH (http://cathwww.bio
chem.ucl.ac.uk/) are the two well-known
structure-based family resources. ENZYME
(http://us.expasy.org/enzyme/) is a typical
example of a function family.

A protein family can be represented in a
phylogenetic tree that shows the evolutionary
relationships among proteins. Phylogenetic
analysis can be used in comparative genomics,
gene function prediction, and inference of
lateral gene transfer among other things
(36). The analysis typically starts from
aligning the related proteins using tools
like ClustalW (http://bips.u-strasbg.fr/fr/
Documentation/ClustalX/). Among the
popular methods to build phylogenetic trees
are minimum distance (also called neighbor
joining), maximum parsimony, and maximum
likelihood trees (reviewed in 31). Some
programs provide options to use any of the
three methods, e.g., the two widely used
packages PAUP (http://paup.csit.fsu.edu),
and PHYLIP (http://evolution.genetics.
washington.edu/phylip.html). Although
phylogenetic analysis is a research topic
with a long history and many methods
have been developed, various heuristics and
approximations are used in constructing
a phylogenetic tree, as the exact methods
are too computationally intense. Hence,
different methods sometimes produce signif-
icantly different phylogenetic trees. Manual
assessment of different results is generally
required.
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TRANSCRIPTOME ANALYSIS

The primary goal of transcriptome analysis is
to learn about how changes in transcript abun-
dance control growth and development of an
organism and its response to the environ-
ment. DNA microarrays proved a powerful
technology for observing the transcriptional
profile of genes at a genome-wide level (22,
111). Microarray data are also being combined
with other information such as regulatory se-
quence analysis, gene ontology, and pathway
information to infer coregulated processes.
Whole-genome tiled arrays are used to de-
tect transcription without bias toward known
or predicted gene structures and alternative
splice variants. Other types of analysis include
ChIP-chip [chromatin immunoprecipitation
(ChIP) and microarray analysis (chip)] analy-
sis, which combines microarrays with meth-
ods for detecting the chromosomal locations
at which protein-DNA interactions occur
across the genome (23). A related technique
uses DNA immunoprecipitation (DIP-chip)
to predict DNA-binding sites (80). This re-
view does not cover all available technolo-
gies for measuring expression data such as
tag-based transcriptional profiling technolo-
gies like massively parallel signature sequenc-
ing (MPSS) and SAGE (20, 28).

Microarray Analysis

Microarray analysis allows the simultane-
ous measurement of transcript abundance for
thousands of genes (153). Two general types of
microarrays are high-density oligonucleotide
arrays that contain a large number (thou-
sands or often millions) of relatively short (25–
100-mer) probes synthesized directly on the
surface of the arrays, or arrays with ampli-
fied polymerase chain reaction products or
cloned DNA fragments mechanically spot-
ted directly on the array surface. Many differ-
ent technologies are being developed, which
have been recently surveyed by Meyers and
colleagues (89). Competition among microar-
ray platforms has led to lower costs and in-

creased numbers of genes per array. Unfortu-
nately, the diversity of array platforms makes
it difficult to compare results between mi-
croarray formats that use different probe se-
quences, RNA sample labeling, and data col-
lection methods (142).

Other important issues in microarray anal-
ysis are in processing and normalizing data.
Some journals require multiple biological
replicates (typically at least three) and sta-
tistically valid results before publishing mi-
croarray results. Replication of the microarray
experiment and appropriate statistical design
are needed to minimize the false discovery
rate. The microarray data must also be de-
posited into a permanent public repository
with open access. A good overview of microar-
ray data analysis can be found in References
37 and 118. The main difficulty of dealing
with microarray data is the sheer amount of
data resulting from a single experiment. This
makes it very difficult to decide which tran-
scripts to focus on for interpreting the results.
Even for standardized arrays such as those
from Affymetrix, there are still arguments on
the optimal statistical treatment for the sets of
probes designed for each gene. For example,
the Affycomp software compares Affymetrix
results using two spike-in experiments and
a dilution experiment for different meth-
ods of normalization under different assess-
ment criteria (27). This information can be
used to select the appropriate normalization
methods.

Many tools are available that perform a
variety of analysis on large microarray data
sets. Examples include commercial software
such as Gene Traffic, GeneSpring (http://
www.agilent.com/chem/genespring), Affy-
metrix’s GeneChip Operating Software
(GCOS), and public software such as Cluster
(41), CaARRAY (http://caarray.nci.nih.
gov/), and BASE (109). A notable exam-
ple is Bioconductor (http://www.biocon
ductor.org), which is an open-source and
open-development set of routines written for
the open-source R statistical analysis package
(http://www.r-project.org).
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Observing the patterns of transcriptional
activity that occur under different conditions
such as genotypes or time courses reveals
genes that have highly correlated patterns of
expression. However, correlation cannot dis-
tinguish between genes that are under com-
mon regulatory control and those whose ex-
pression patterns just happen to correlate.
Recent efforts in microarray analysis have fo-
cused on analysis of microarray data across
experiments (91). A study by the Toxicoge-
nomics research consortium indicates that
“microarray results can be comparable across
multiple laboratories, especially when a com-
mon platform and set of procedures are used”
(7). Meta-analysis can investigate the effect of
the same treatment across different studies to
arrive at a single estimate of the true effect of
the treatment (106, 123).

Tiling Arrays

Typical microarray sample known and pre-
dicted genes. Tiling arrays cover the genome
at regular intervals to measure transcrip-
tion without bias toward known or predicted
gene structures, discovery of polymorphisms,
analysis of alternative splicing, and identi-
fication of transcription factor-binding sites
(90). Whole-genome arrays (WGAs) cover
the entire genome with overlapping probes or
probes with regular gaps. The WGA ensures
that the experimental results are not depen-
dent on the level of current genome annota-
tion as well as discovering new transcripts and
unusual forms of transcription. In plants, sim-
ilar studies have been performed for the en-
tire Arabidopsis genome (127, 143) and parts of
the rice genome (70, 79). These studies iden-
tified thousands of novel transcription units
including genes within the centromeres, sub-
stantial antisense gene transcription, and tran-
scription activity in intergenic regions. Tiling
array data may also be used to validate pre-
dicted intron/exon boundaries (132).

Further work is needed to establish the
best practices for determining when transcrip-
tion has occurred and how to normalize array

data across the different chips. Visualization
of the output from tiling arrays requires view-
ing the probe sequences on the array together
with the sequence assembly and the probe
expression data. The Arabidopsis Tiling Ar-
ray Transcriptome Express Tool (also known
as ChipViewer) (http://signal.salk.edu/cgi-
bin/atta) displays information about what
type of transcription occurred along the
Arabidopsis genome (143). Another tool is
the Integrated Genome Browser (IGB) from
Affymetrix, a Java program for exploring
genomes and combining annotations from
multiple data sources. Another option for vi-
sualizing such data are collaborations such as
those between Gramene (137) and PLEXdb
(116), which allow users to overlay probe ar-
ray information onto a comparative sequence
viewer.

The major limitations of WGAs include
the requirement of a sequenced genome, the
large number of chips required for complete
genome coverage, and analysis of recently du-
plicated (and thus highly homologous) genes.

Regulatory Sequence Analysis

Interpreting the results of microarray exper-
iments involves discovering why genes with
similar expression profiles behave in a coordi-
nated fashion. Regulatory sequence analysis
approaches this question by extracting mo-
tifs that are shared between the upstream se-
quences of these genes (134). Comparative
genomics studies of conserved noncoding se-
quences (CNSs) may also help to find key
motifs (56, 67). There are several methods
to search over-represented motifs at the up-
stream of coregulated genes. Roughly they
can be categorized into two classes: oligonu-
cleotide frequency-based (68, 134) and prob-
abilistic sequence-based models (76, 85,
108).

The oligonucleotide frequency-based
method calculates the statistical significance
of a site based on oligonucleotide frequency
tables observed in all noncoding regions of
the specific organism’s genome. Usually, the
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length of the oligonucleotide varies from 4
to 9 bases. Hexanucleotide (oligonucleotide
length of 6) analysis is most widely used.
The significant oligonucleotides can then
be grouped as longer consensus motifs.
Frequency-based methods tend to be simple,
efficient, and exhaustive (all over-represented
patterns of chosen length are detected). The
main limitation is the difficulty of identifying
complex motif patterns. The public Web
resource, Regulatory Sequence Analysis
Tools (RSAT), performs sequence similar-
ity searches and analyzes the noncoding
sequences in the genomes (134).

For the probabilistic-based methods, the
motif is represented as a position probability
matrix, where the motifs are assumed to be
hidden in the noisy background sequences.
One of the strengths of probabilistic-based
methods is the ability to identify motifs with
complex patterns. Many potential motifs can
be identified; however, it can be difficult to
separate unique motifs from this large pool
of potential solutions. Probabilistic-based
methods also tend to be computationally
intense as they must be run multiple times
to get an optimal solution. AlignACE, Aligns
Nucleic Acid Conserved Elements (http://
atlas.med.harvard.edu/), is a popular motif
finding tool that was first developed for yeast
but has been expanded to other species (107).

COMPUTATIONAL
PROTEOMICS

Proteomics is a leading technology for the
qualitative and quantitative characterization
of proteins and their interactions on a genome
scale. The objectives of proteomics include
large-scale identification and quantification of
all protein types in a cell or tissue, analysis of
post-translational modification and associa-
tion with other proteins, and characterization
of protein activities and structures. Applica-
tion of proteomics in plants is still in its ini-
tial phase, mostly in protein identification (24,
96). Other aspects of proteomics (reviewed
in 152), such as identification and prediction

of protein-protein interactions, protein ac-
tivity profiling, protein subcellular localiza-
tion, and protein structure, have not been
widely used in plant science. However, re-
cent efforts such as the structural genomic
initiative that includes Arabidopsis (http://
www.uwstructuralgenomics.org/) are en-
couraging.

Electrophoresis Analysis

Electrophoresis analysis can qualitatively and
quantitatively investigate expression of pro-
teins under different conditions (54). Several
bioinformatics tools have been developed for
two-dimensional (2D) electrophoresis analy-
sis (86). SWISS-2DPAGE can locate the pro-
teins on the 2D PAGE maps from Swiss-
Prot (http://au.expasy.org/ch2d/). Melanie
(http://au.expasy.org/melanie/) can ana-
lyze, annotate, and query complex 2D
gel samples. Flicker (http://open2dprot.
sourceforge.net/Flicker/) is an open-source
stand-alone program for visually compar-
ing 2D gel images. PDQuest (http://www.
proteomeworks.bio-rad.com) is a popular
commercial software package for comparing
2D gel images. Some software platforms han-
dle related data storage and management, in-
cluding PEDRo (http://pedro.man.ac.uk/),
a software package for modeling, capturing,
and disseminating 2D gel data and other
proteomics experimental data. Main limita-
tions of electrophoresis analysis include lim-
ited ability to identify proteins and low accu-
racy in detecting protein abundance.

Protein Identification Through Mass
Spectrometry

After protein separation using 2D elec-
trophoresis or liquid chromatography and
protein digestion using an enzyme (trypsin,
pepsin, glu-C, etc.), proteins are identified by
typically using mass spectrometry (MS) (1). In
contrast to other protein identification tech-
niques, such as Edman degradation microse-
quencing, MS provides a high-throughput
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approach for large-scale protein identifica-
tion. The data generated from mass spec-
trometers are often complicated and compu-
tational analyses are critical in interpreting the
data for protein identification (17, 55). A ma-
jor limitation in MS protein identification is
the lack of open-source software. Most widely
used tools are expensive commercial pack-
ages. In addition, current statistical models for
matches between MS spectra and protein se-
quences are generally oversimplified. Hence,
the confidence assessments for computational
protein identification results are often unreli-
able. There are two types of MS-based protein
identification methods: peptide mass finger-
printing (PMF) and tandem mass spectrome-
try (MS/MS).

Peptide mass fingerprinting. PMF pep-
tide/protein identification compares the
masses of peptides derived from the experi-
mental spectral peaks with each of the possible
peptides computationally digested from pro-
teins in the sequence database. The proteins in
the sequence database with a significant num-
ber of peptide matches are considered can-
didates for the proteins in the experimental
sample. MOWSE (99) was an earlier software
package for PMF protein identification, and
Emowse (http://emboss.sourceforge.net/)
is the latest implementation of the MOWSE
algorithm. Several other computational tools
have also been developed for PMF protein
identification. MS-Fit in the Protein Prospec-
tor (http://prospector.ucsf.edu/) uses a vari-
ant of MOWSE scoring scheme incorporat-
ing new features, including constraints on the
minimum number of peptides to be matched
for a possible hit, the number of missed
cleavages, and the target protein’s molec-
ular weight range. Mascot (http://www.
matrixscience.com/) is an extension of the
MOWSE algorithm. It incorporates the
same scoring scheme with the addition of a
probability-based score. A limitation of PMF
protein identification is that it sometimes can-
not identify proteins because multiple pro-
teins in the database can fit the PMF spectra.

In this case, additional MS/MS experiments
are needed to identify the proteins.

Tandem mass spectrometry. MS/MS fur-
ther breaks each digested peptide into smaller
fragments, whose spectra provide effective
signatures of individual amino acids in the
peptide for protein identification. Many
tools have been developed for MS/MS-based
peptide/protein identification, the most
popular ones being SEQUEST (http://
fields.scripps.edu/sequest/) and Mascot
(http://www.matrixscience.com/). Both
rely on the comparison between theoretical
peptides derived from the database and
experimental mass spectrometric tandem
spectra. SEQUEST, one of the earliest tools
developed for this, produces a list of possible
peptide/protein assignments in a protein
mixture based on a correlation scoring
scheme (145). Mascot, together with its PMF
protein identification capacity, uses a similar
algorithm as SEQUEST for MS/MS pep-
tide/protein identification. The limitations of
these programs are that a significant portion
of MS/MS spectra cannot be assigned due
to various factors, including sequencing and
annotation errors in the search database.
In addition, post-translational modifica-
tions are currently not handled well using
computational approaches.

The de novo sequencing approach based
on MS/MS spectra is an active research area
(30). Typically the algorithms match the
separations of peaks by the mass of one or
several amino acids and infer the probable
peptide sequences that are consistent with
the matched amino acids (25). There are a
few popular software packages for peptide
de novo sequencing using MS/MS data,
including Lutefisk (http://www.hairyfatguy.
com/lutefisk/) and PEAKS (http://www.bio
informaticssolutions.com/products/peaks).
One limitation of current de novo methods
is that they often cannot provide the exact
sequence of a peptide. Instead, several top
candidate sequences are suggested.
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METABOLOMICS AND
METABOLIC FLUX

Metabolomics is the analysis of the com-
plete pool of small metabolites in a cell at
any given time. Metabolomics may prove to
be particularly important in plants due to
the proliferation of secondary metabolites.
As of 2004, more than 100,000 metabolites
have been identified in plants, with estimates
that this may be less that 10% of the total
(133). In a metabolite profiling experiment,
metabolites are extracted from tissues, sep-
arated, and analyzed in a high-throughput
manner (44). Metabolic fingerprinting looks
at a few metabolites to help differentiate sam-
ples according to their phenotype or bio-
logical relevance (58, 115). Technology has
now advanced to semiautomatically quantify
>1000 compounds from a single leaf extract
(138).

The key challenge in metabolite profiling
is the rapid, consistent, and unambiguous
identification of metabolites from complex
plant samples (110). Identification is routinely
performed by time-consuming standard ad-
dition experiments using commercially avail-
able or purified metabolite preparations. A
publicly accessible database that contains the
evidence and underlying metabolite identi-
fication for gas chromatography-mass spec-
trometry (GC–MS) profiles from diverse bi-
ological sources is needed. Standards for
experimental metadata and data quality in
metabolomics experiments are still in a very
early stage and a large-scale public repository
is not yet available. The ArMet (architecture
for metabolomics) proposal (61) gives a de-
scription of plant metabolomics experiments
and their results along with a database schema.
MIAMET (Minimum Information About a
Metabolomics Experiment) (13) gives report-
ing requirements with the aim of standard-
izing experiment descriptions, particularly
within publications. The Standard Metabolic
Reporting Structures (SMRS) working group
(119) has developed standards for describing
the biological sample origin, analytical tech-

nologies, and methods used in a metabolite
profiling experiment.

Metabolite data have been used to con-
struct metabolic correlation networks (121).
Such correlations may reflect the net parti-
tioning of carbon and nitrogen resulting from
direct enzymatic conversions and indirect cel-
lular regulation by transcriptional or bio-
chemical processes. However, metabolic cor-
relation matrices cannot infer that a change
in one metabolite led to a change in another
metabolite in a metabolic reaction network
(122).

Metabolic flux analysis measures the
steady-state flow between metabolites. Fluxes,
however, are even more difficult to measure
than metabolite levels due to complications
in modeling intracellular transport of metabo-
lites and the incomplete knowledge about the
topology and location of the pathways in vivo
(115). The most basic approach to metabolic
flux analysis is stoichiometric analysis that cal-
culates the quantities of reactants and prod-
ucts of a chemical reaction to determine the
flux of each metabolite (39). However, this
method is numerically difficult to solve for
large networks and it has problems if paral-
lel metabolic pathways, metabolic cycles, and
reversible reactions are present (140). Flux-
Analyzer is a package for MATLAB that inte-
grates pathway and flux analysis for metabolic
networks (75).

Flux analysis using 13C carbon labeling
data seeks to overcome some of the disadvan-
tages of stoichiometric flux analysis described
above (120). More rigorous analysis is needed
for full determination of fluxes from all of
the experimental data in 13C constrained flux
analysis (stoichiometric model with a few flux
ratios as constraints) and the stoichiometric
and isotopomer balances. Iterative methods
have been used to solve the resulting matrix
of isotopomer balances, with the nuclear
magnetic resonance or gas chromatography
measurements used to provide consistency.
As more reliable data are collected, one
can use ordinary differential equations for
dynamic simulations of metabolic networks

344 Rhee · Dickerson · Xu

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

06
.5

7:
33

5-
36

0.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 S

ta
nf

or
d 

U
ni

ve
rs

ity
 R

ob
er

t C
ro

w
n 

L
aw

 L
ib

. o
n 

05
/1

0/
07

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV274-PP57-13 ARI 5 April 2006 19:12

and combine information about connectivity,
concentration balances, flux balances,
metabolic control, and pathway optimization.
Ultimately, one may integrate all of the infor-
mation and perform analysis and simulation in
a cellular modeling environment like E-Cell
(http://www.e-cell.org/) or CellDesigner
(http://www.systems-biology.org).

ONTOLOGIES

The data that are generated and analyzed as
described in the previous sections need to be
compared with the existing knowledge in the
field in order to place the data in a biologically
meaningful context and derive hypotheses. To
do this efficiently, data and knowledge need
to be described in explicit and unambiguous
ways that must be comprehensible to both hu-
mans and computer programs. An ontology is
a set of vocabulary terms whose meanings and
relations with other terms are explicitly stated
and which are used to annotate data (5, 10,
14, 124). This section introduces the types of
ontologies in development and use today and
some applications and caveats of using the on-
tologies in biology.

Types of Bio-Ontologies

A growing number of shared ontologies are
being built and used in biology. Examples in-
clude ontologies for describing gene and pro-
tein function (59), cell types (9), anatomies
and developmental stages of organisms (50,
135, 144), microarray experiments (126),
and metabolic pathways (84, 151). A list of
open-source ontologies used in biology can
be found on the Open Biological Ontolo-
gies Web site (http://obo.sourceforge.net/).
Many ontologies on this site are un-
der development and are subject to fre-
quent change. The Gene Ontology (GO)
(www.geneontology.org) is an example of
bio-ontologies that has garnered community
acceptance. It is a set of more than 16,000
controlled vocabulary terms for the biolog-
ical domains of ‘‘molecular function,” “sub-

cellular compartment,” and “biological pro-
cess.” GO is organized as a directed acyclic
graph, which is a type of hierarchy tree that
allows a term to exist as a specific concept
belonging to more than one general term.
Other examples of ontologies currently in de-
velopment are the Sequence Ontology (SO)
project (40) and the Plant Ontology (PO)
project (www.plantontology.org). The SO
project aims to explicitly define all the terms
needed to describe features on a nucleotide
sequence, which can be used for genome se-
quence annotation for any organism. The PO
project aims to develop shared vocabularies
to describe anatomical structures for flower-
ing plants to depict gene expression patterns
and plant phenotypes.

A few challenges in the development and
use of ontologies remain to be addressed,
including redundancies in the ontologies,
minimal or lack of formal, computer-
comprehensive definitions of the terms in the
ontologies, and general acceptance by the re-
search and publishing community (10, 14).
There is an opportunity for an international
repository of ontology standards that could
oversee the development and maintenance of
the ontologies.

Applications of Ontologies

Ontologies are used mainly to annotate data
such as sequences, gene expression clusters,
experiments, and strains. Ontologies that
have such annotations to data in databases
can be used in numerous ways, including
connecting different databases, refining
searching, providing a framework for inter-
preting the results of functional genomics
experiments, and inferring knowledge (8, 10,
47). For example, one can ask which functions
and processes are statistically significantly
over-represented in an expression cluster
of interest compared to the functions and
processes carried out by all of the genes from
a gene expression array. Because GO is one of
the more well-established ontologies, this sec-
tion focuses on GO to illustrate applications
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of ontologies in biology. Ontologies have
been used by many model organism databases
to annotate genes and gene products
(http://www.geneontology.org/GO.curren
t.annotations.shtml, http://www.geneonto
logy.org/GO.biblio.shtml#annots). Func-
tion annotations of genes using GO have
been used mainly in two ways: predicting
protein functions, processes, and localization
patterns from various data sources (http://
www.geneontology.org/GO.biblio.shtml#
predictions) and providing a biological
framework or benchmark set for inter-
preting results of large-scale probing of
samples such as gene expression profiles and
protein-protein interactions (http://www.
geneontology.org/GO.biblio.shtml#gene
exp). In addition, GO annotations have
been used to test the robustness of semantic
similarity searching methods (83) and to
study adaptive evolution (4).

There are several issues in using GO an-
notations to predict function and to use as
a benchmark for large-scale data. One is
the misuse or lack of use of evidence codes,
which provide the type of evidence that was
used to make the annotation (http://www.ge
neontology.org/GO.evidence.shtml). Only
about half of the evidence codes refer to direct
experimental evidence. Also, several evidence
codes are used for indirect evidence, which
indicate less certainty in the assertion of the
annotation than those made with direct ex-
perimental evidence. Other codes are used for
computationally derived annotations and have
no experimental support and have a higher
probability of being incorrect. Researchers
and computer programs that use the anno-
tations for inferring knowledge or analyzing
functional genomics data should be familiar
with these evidence codes in order to mini-
mize misinterpretation of the data. For exam-
ple, methods to assess relationship between
sequence conservation and coexpression of
genes and using GO annotations to validate
their results should ensure that no annotations
using the ISS and IEA evidence codes are used
to avoid circular arguments. Similarly, stud-

ies that attempt to define biological processes
and functions from gene expression data us-
ing the GO annotations should ensure that
no annotation with inferred from expression
pattern (IEP) evidence code is used. The other
caveat is that annotations to GO are not equiv-
alently represented throughout GO. When
looking for statistical over-representation of
GO terms in genes of an expression cluster,
there is low statistical power for detecting de-
viations from expectation for terms that are
annotated with a small number of genes (74).

Software for Accessing and Analyzing
Ontologies and Annotations

There are a number of software tools for
visualizing, editing, and analyzing ontologies
and their annotations. The GO Web site
maintains a comprehensive list of these tools
(http://www.geneontology.org/GO.tools.
shtml). Some of them are accessible via Web
browsers and others have to be installed
locally. Tools are also needed to facilitate
data integrity checks and more flexible
and customizable searching and browsing
capabilities to explore these complex net-
works of concepts. Most of the tools that
facilitate analysis of the GO annotations are
developed to help interpret gene expression
studies. These applications allow researchers
to compare a list of genes (for example,
from an expression cluster) and identify
over-represented GO terms in this list as
compared to the whole genome or whole list
of genes under study. Most of these software
programs use statistical models to provide
significance in the over-representation.
Recently, Khatri and colleagues reported
comparisons of 14 of these tools on their
functionalities, advantages, and limitations
(74). Finally, most of the bio-ontologies are
informal in their semantic representation.
Definitions of the terms are provided in
natural language, which is fine for human
comprehension but does not easily allow
computers and software to be developed that
can help check for ontology integrity and

346 Rhee · Dickerson · Xu

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

06
.5

7:
33

5-
36

0.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 S

ta
nf

or
d 

U
ni

ve
rs

ity
 R

ob
er

t C
ro

w
n 

L
aw

 L
ib

. o
n 

05
/1

0/
07

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV274-PP57-13 ARI 5 April 2006 19:12

provide more semantically powerful search
functions. More tools are needed that can fa-
cilitate the conversion of bio-ontologies to be
more formal and computer comprehensive.

DATABASES

Traditionally, biologists relied on textbooks
and research articles published in scientific
journals as the main source of information.
This has changed dramatically in the past
decade as the Internet and Web browsers be-
came commonplace. Today, the Internet is
the first place researchers go to find infor-
mation. Databases that are available via the
Web also became an indispensable tool for bi-
ological research. In this section, we describe
types and examples of biological databases,
how these databases are built and accessed,
how data among databases are exchanged, and
current challenges and opportunities in bi-
ological database development and mainte-
nance.

Types of Biological Databases

Three types of biological databases have
been established and are developed: large-
scale public repositories, community-specific
databases, and project-specific databases.
Nucleic Acids Research (http://nar.oxford
journals.org/) publishes a database issue in
January of every year. Recently, Plant Phys-
iology started publishing articles describing
databases (105). Large-scale public reposito-
ries are usually developed and maintained by
government agencies or international con-
sortia and are places for long-term data
storage. Examples include GenBank for se-
quences (139), UniProt (113) for protein in-
formation, Protein Data Bank (32) for pro-
tein structure information, and ArrayExpress
(100) and Gene Expression Omnibus (GEO)
(38) for microarray data. There are a num-
ber of community-specific databases, which
typically contain information curated with
high standards and address the needs of
a particular community of researchers. A

prominent example of community-specific
databases are those that cater to researchers
focused on studying model organisms (77,
104, 144) or clade-oriented comparative
databases (53, 88, 92, 137). Other exam-
ples of community-specific databases include
databases focused on specific types of data
such as metabolism (151) and protein mod-
ification (129). The concept of community-
specific databases is subject to change as re-
searchers are widening their scope of research.
For example, databases focused on com-
paring genome sequences recently emerged
(e.g., http://www.phytome.org and Refer-
ence 64). The third category of databases
includes smaller-scale, and often short-lived,
databases that are developed for project data
management during the funding period. Of-
ten these databases and Web resources are not
maintained beyond the funding period of the
project and currently there is no standard way
of depositing or archiving these databases af-
ter the funding period.

There are some issues in database man-
agement. First, there is a general lack of
good documentation on the rationale of the
design and implementation. More effort is
needed to share the experiences via con-
ferences and publications. Also, there are
no accepted standards in making databases,
schema, software, and standard operating
procedures available. In response to this, the
National Human Genome Research Institute
(NHGRI) has funded a collaborative project
called the Generic Model Organism Database
(http://www.gmod.org) to promote the de-
velopment and sharing of software, schemas,
and standard operation procedures. The
project’s major aim is to build a generic or-
ganism database toolkit to allow researchers
to set up a genome database “off the shelf.”
Another major issue is that there is a gen-
eral lack of infrastructure of supporting,
managing, and using digital data archived in
databases and Web sites in the long term (82).
One possibility to alleviate this problem is to
create a public archive of biological databases
and Web sites to which finished projects
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could deposit the database, software, and
Web sites. There are several projects that are
building digital repository systems that can
be models for such a repository such as D-
Space (http://dspace.org/) and the CalTech
Collection of Open Digital Archives (CODA;
http://library.caltech.edu/digital/). Some
additional challenges in long-term archiving
of data were articulated in a recent National
Science Board report (http://www.nsf.gov/
nsb/documents/2005/LLDDC report.pdf).

Data Representation and Storage

Databases can be developed using a num-
ber of different methods including simple
file directories, object-oriented database soft-
ware, and relational database software. Due
to the increasing quantity of data that need to
be stored and made accessible using the In-
ternet, relational database management soft-
ware has become popular and has become
the de facto standard in biology. Relational
databases provide effective means of storing
and retrieving large quantities of data via
indexes, normalization, referential integrity,
triggers, and transactions. Notable relational
database software that is freely available and
quite popular in bioinformatics is MySQL
(http://www.mysql.com/) and PostgreSQL
(http://www.postgresql.org/). In relational
databases, data are represented as entities, at-
tributes (properties of the entities), and rela-
tionships between the entities. This type of
representation is called Entity-Relationship
(ER) and database schemas are described
using ER diagrams (e.g., TAIR schema
at http://arabidopsis.org/search/schemas.
html). Entities and attributes become tables
and columns in the physical implementation
of the database, respectively. Data are the val-
ues that are stored in the fields of the tables.

Although relational databases are power-
ful ways of storing large quantities of data,
they have limitations. For example, it is not
trivial to represent complex relationships be-
tween data such as signal transduction path-

ways. Also, it is difficult to create rich seman-
tic relationships in relational databases to ask
the database “what if ” types of queries with-
out having extensive software built on top of
the database. Another limitation of relational
databases is that it is very difficult, if not im-
possible, to preserve all of the changes that
occur to attributes of entities.

Data Access and Exchange

The most direct, powerful, and flexible way
of accessing data in a database is using
structured query language (SQL) (http://
databases.about.com/od/sql/). SQL has a
reasonably intuitive and simple syntax that
requires no programming knowledge and is
suited for biologists to learn without a steep
learning curve. However, to use SQL, users
need to know the database schema. In addi-
tion, some queries that are based on less opti-
mized database structure could result in slow
performance and can even sometimes lock the
database system. In most databases, access to
the data is provided via database access soft-
ware and graphical user interface (GUI) that
allow searching and browsing of the data. In
addition to text-based search user interfaces,
more sophisticated ways of accessing data such
as graphical displays and tree-based browsers
are also common.

Although accessing information from a
database is fairly easy if one knows which
database to go to, it is not as easy to find infor-
mation if one does not know which database
to search. There are several ways to solve
this problem such as indexing the content
of database-driven pages, developing software
that will connect to individual databases di-
rectly, or developing a data warehouse of many
different data types or database in one site. A
relatively new method that is gaining some
attention is to use a registry system where dif-
ferent databases that specialize on particular
information can declare what data are avail-
able in their system and register methods to
access their data. Users can send requests to
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the registry system, which then contact the ap-
propriate databases to retrieve the requested
data. Conceptually, this is an elegant way of in-
tegrating different databases without depend-
ing on the individual databases’ schema. How-
ever, this relies on the willingness of individual
databases to participate in the registry system.
This method is called Web services and has
been accepted widely by the Internet industry
but has not yet been commonly implemented.
Projects like BioMOBY (141) and myGRID
(125) are implementing this idea for biological
databases, but they have not yet been widely
used.

Semantics (meaning) and syntax (format)
of data need to be made explicit in order
to exchange data for analysis and mining.
A simple way of formatting data is using
a tag and value system (called markup lan-
guage). An emerging standard for exchanging
data and information via the Web is Exten-
sible Markup Language (XML), which al-
lows information providers to define new tag
and attribute names at will and to nest doc-
ument structures to any level of complex-
ity, among other features. The document
that defines the meaning of the tags for an
XML document is called Document Type
Definition (DTD). The use of a common
DTD allows different users and applications
to exchange data in XML. Although many
databases and bioinformatics projects present
their data in XML, currently almost every
group has their own DTD. Standardization
and common use of DTDs for exchanging
common data types will be pivotal. There are
notable exceptions to this rule including the
specification of microarray data, MAGEML
(Microarray Gene Expression Markup Lan-
guage), provided by the Microarray Gene Ex-
pression Database Society (MGED) (http://
www.mged.org/). To a lesser extent, the
BIOPAX (http://www.biopax.org/) is also
becoming a community-accepted standard to
describe pathways and reactions. Other than
DTDs, biological database communities do
not yet have a standard system in software en-
gineering to communicate with each other.

Data Curation

Data curation is defined as any activity de-
voted to selecting, organizing, assessing qual-
ity, describing, and updating data that result
in enhanced quality, trustworthiness, inter-
pretability, and longevity of the data. It is a
crucial task in today’s research environment
where data are being generated at an ever-
increasing rate and an increasing amount of
research is based on re-use of data. In general,
some level of curation is done by data gener-
ators, but most curation activities are carried
out in data repositories. A number of differ-
ent strategies to curation are used, including
computational, manual, in-house, and those
that involve external expertise. Assessing data
quality involves both determining the crite-
ria for measuring quality and performing the
measurements. Data quality criteria for raw
data are tied with methods of data acquisition.
In many databases, these criteria are not made
explicit and the information on the metrics of
data-quality assessment is rare.

Curation of data into public repositories
should be a parallel and integrated process
with publication in peer-reviewed journals.
Although much progress has been made in
electronic publication and open-access pub-
lishing, there is still a gap between connect-
ing the major conclusions in papers and the
data that were used to draw the conclusions.
In a few cases, data are required to be sub-
mitted to public repositories (e.g., sequence
data to GenBank, microarray data to Array-
Express/GEO, and Arabidopsis stock data to
ABRC). However, there are no such stan-
dards established for other data types (e.g.,
proteomics data, metabolomics data, protein
localization, in situ hybridization, phenotype
description, protein function information).
Standards, specifications, and requirements
for publication of data into repositories should
be made more accessible to researchers early
on in their data-generation and research-
activity processes.

One of the most important aspects
of today’s changing research landscape is
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the culture of data and expertise sharing.
The now famous Bermuda principle (http://
www.gene.ucl.ac.uk/hugo/bermuda.htm)
was extended to large-scale data at a recent
meeting (131). In this meeting, the policy
for publicly releasing large-scale data pre-
publication and appropriate conduct and
acknowledgment of the uses of these data
by the scientific community were discussed.
Clearly articulated and community-accepted
policies are needed on how data from data
repositories should be cited and referenced
and how the generators of the data should
be acknowledged. Establishing this standard
should include journal publishers, database
scientists, data generators, funding bodies,
and representatives of the user community.
Additional challenges and opportunities in
database curation were recently articulated
(82, 103).

EMERGING AREAS IN
BIOINFORMATICS

In addition to some of the challenges and op-
portunities mentioned in this review, there are
many exciting areas of research in bioinfor-
matics that are emerging. In this section, we
focus on a few of these areas such as text min-
ing, systems biology, and the semantic web.
Some additional emerging areas such as im-
age analysis (117), grid computing (46, 49),
directed evolution (29), rational protein de-
sign (81), microRNA-related bioinformatics
(21), and modeling in epigenomics (43) are
not covered due to the limitation of space.

Text Mining

The size of the biological literature is expand-
ing at an increasing rate. The Medline 2004
database had 12.5 million entries and is ex-
panding at a rate of 500,000 new citations
each year (26). The goal of text mining is to
allow researchers to identify needed informa-
tion and shift the burden of searching from
researchers to the computer. Without auto-
mated text mining, much of biomolecular in-

teractions and biological research archived in
the literature will remain accessible in prin-
ciple but underutilized in practice. One key
area of text mining is relationship extraction
that finds relationships between entities such
as genes and proteins. Examples include Med-
Miner at the National Library of Medicine
(128), PreBIND (35), the curated BIND sys-
tem (2, 6), PathBinderH (155), and iHOP
(63). (See Reference 26 for a complete sur-
vey of text mining applications.) Results on
real-world tasks such as the automatic extrac-
tion and assignment of GO annotations are
promising, but they are still far from reaching
the required performance demanded by real-
world applications (15). One key difficulty
that needs to be addressed in this field is the
complex nature of the names and terminology
such as the large range of variants for protein
names and GO terms in free text. The current
generation of systems is beginning to combine
statistical methods with machine learning to
capture expert knowledge on how genes and
proteins are referred to in scientific papers to
create usable systems with high precision and
recall for specialized tasks in the near future.

Computational Systems Biology

Classical systems analysis in engineering
treats a system as a black box whose in-
ner structure and behavior can be analyzed
and modeled by varying internal or exter-
nal conditions, and studying the effect of
the variation on the external observables.
The result is an understanding of the in-
ner makeup and working mechanisms of the
system (72). Systems biology is the applica-
tion of this theory to biology. The observ-
ables are measurements of what the organism
is doing, ranging from phenotypic descrip-
tions to detailed metabolic profiling. A crit-
ical issue is how to effectively integrate var-
ious types of data, such as sequence, gene
expression, protein interactions, and pheno-
types to infer biological knowledge. Some
areas that require more work include creat-
ing coherent validated data sets, developing
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common formats for pathway data [SBML
(65) and BioPAX (http://www.biopax.org)],
and creating ontologies to define complex in-
teractions, curation, and linkages with text-
mining tools. The Systems Biology Work-
bench project (http://sbw.kgi.edu/) aims to
develop an open-source software framework
for sharing information between different
types of pathway models. Other issues are
that biological systems are underdefined (not
enough measurements are available to charac-
terize the system) and samples are not taken
often enough to capture time changes in a sys-
tem that may occur at vastly different time
scales in different networks such as signaling
and regulatory networks (98). The long-term
goal to create a complete in silico model of
a cell is still distant; however the tools that
are being developed to integrate information
from a wide variety of sources will be valuable
in the short term.

Semantic Web

Semantic web is a model to “create a univer-
sal mechanism for information exchange by
giving meaning, in a machine-interpretable
way, to the content of documents and data
on the Web” (95). This model will enable the
development of searching tools that know
what type of information can be obtained
from which documents and understand how
the information in each document relates to
another, which will allow software agents that
can use reasoning and logic to make deci-
sions automatically based on the constraints
provided in the query (e.g., automatic travel
agents, phenotype prediction) (12). Bioin-
formatics could benefit enormously from
successful implementation of this model and
should play a leading role in realizing it (95).
Current efforts to realize the concepts of the
semantic web have been focused on develop-
ing standards and specifications of identifying
and describing data such as Universal
Resource Identifier (URI) and Resource
Definition Framework (RDF), respectively
(http://www.w3c.org/2001/sw). Although

implementation of applications using the
semantic web is scarce at this point, there
are some useful examples being developed
such as Haystack (a browser that retrieves
data from multiple databases and allows users
to annotate and manage the information to
reflect their understanding) (http://www-db.
cs.wisc.edu/cidr/cidr2005/papers/P02.pdf )
and BioDash (a drug development user inter-
face that associates diseases, drug progression
stages, molecular biology, and pathway
knowledge for users) (http://www.w3.org/
2005/04/swls/BioDash/Demo/).

Cellular Localization and Spatially
Resolved Data

Research in nanotechnology and electron mi-
croscopy is allowing researchers to select spe-
cific areas of cells and tissues and to image
spatiotemporal distributions of signaling re-
ceptors, gene expression, and proteins. Laser
capture microdissection allows the selection
of specific tissue types for detailed analysis
(42). This technique has been applied to spe-
cific plant tissues in maize and Arabidopsis
(73, 94). Confocal imaging is being used to
model auxin transport and gene expression
patterns in Arabidopsis (60). Methods in elec-
tron microscopy are being applied to image
the spatiotemporal distribution of signaling
receptors (149). Improved methods in laser
scanning microscopes may allow measure-
ments of fast diffusion and dynamic processes
in the microsecond-to-millisecond time range
in live cells (34). These emerging capabili-
ties will lead to new understanding of cell
dynamics.

CONCLUSION

In this review, we attempt to highlight some of
the recent advances made in bioinformatics in
the basic areas of sequence, gene expression,
protein, and metabolite analyses, databases,
and ontologies, current limitations in these
areas, and some emerging areas. A number
of unsolved problems exist in bioinformatics
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today, including data and database integra-
tion, automated knowledge extraction, robust
inference of phenotype from genotype, and
training and retraining of students and estab-
lished researchers in bioinformatics. Bioinfor-
matics is an approach that will be an essen-
tial part of plant research and we hope that
every plant researcher will incorporate more
bioinformatics tools and approaches in their
research projects.

If the next 50 years of plant biology can be
summed into one word, it would be “integra-
tion.” We will see integration of basic research
with applied research in which plant biotech-
nology will play an essential role in solving ur-
gent problems in our society such as develop-
ing renewable energy, reducing world hunger
and poverty, and preserving the environment.
We will see integration of disparate, special-
ized areas of plant research into more com-

parative, connected, holistic views and ap-
proaches in plant biology. We will also see
more integration of plant research and other
biological research, from microbes to human,
from a large-scale comparative genomics per-
spective. Bioinformatics will provide the glue
with which all of these types of integration
will occur. However, it will be people, not
tools, who will enable the gluing. Ways in
which biological research will be conducted
in 2050 will be much different from the way
in which it was done in 2000. Each researcher
will spend more time on the computer and the
Internet to generate and describe data and ex-
periments, to analyze the data and find other
people’s data relevant for comparison, to find
existing knowledge in the field and to relate it
to his or her results into the current body of
knowledge, and to publish his or her results
to the world.
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