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1. Introduction
Lipids play an important role in physiology and pathophysiology of living systems. Until a
few decades ago, the number of lipid molecules that were chemically characterized was a
few hundred at most and were catalogued in monographs and compendia.1 Since the advent
of the era of the genome and the proteome, there has been increasing recognition that other
macromolecules like lipids and polysaccharides in living systems display considerable
structural diversity and systematic efforts are underway to identify, characterize and catalog
these molecules. With mass spectrometric techniques coming of age, several thousand
distinct molecular species have been identified from living species and the roles of several
of these are beginning to be characterized.2 Unlike genes and proteins, whose defined
alphabets provide the framework for ontologies and classification at the sequence level,
lipids and polysaccharides have been characterized for the large part by popular names, with
no foundations for systematic classification.

The past two decades have witnessed two major advances in lipid biology. In the first, mass
spectrometry has enabled the identification of thousands of lipid molecular species from
cells and tissues and this has pointed to the important need for developing a systematic
ontology that can rationally name and catalog the molecules. Second, the ability to
investigate the functional roles of lipid molecules through systematic phenotypic studies has
led to the identification of lipids as extremely important players in physiology and
pathophysiology of living species.3 In combination with proteins and nucleic acids, lipids
are integrally involved in biochemical networks that lead to phenotypes such as homeostasis,
differentiation, and death of cells and tissues. Any approach to systems characterization of
living systems, of necessity, has to include lipids along with other macromolecules and all
complex cellular pathways involving lipid molecular species. Systems biology now extends
in its scope to identify biosynthetic and metabolic lipid networks, cellular signaling
networks that explicitly include lipid molecules and transcriptional and epigenetic networks
where lipids play an integral role.4

Several large scale projects to characterize lipids and their functional roles have been
initiated as exemplified by the LIPID MAPS5 effort. The LIPID MAPS is an exemplar
systems biology project that measures cell-wide lipid changes in an attempt to reconstruct
biochemical pathways associated with lipid processing and signaling. The cell-wide
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measurements of components of these pathways include mass spectrometric measurements
of lipid changes in response to stimulus in mammalian cells, changes in transcription
profiles in response to stimulus and in select cases proteomic changes in response to
stimulus. Figure 1 shows a schematic of the LIPID MAPS experiments related to different
lipid categories/pathways and the subsequent processing of the experimental data generated.
Network reconstruction efforts rely on organization, analysis and integration of these data
and this requires a strong bioinformatics and systems biology effort. The former has to
include development of a systematic and universal classification and nomenclature system,
design and development of lipid and lipid-gene, lipid-protein databases with appropriate
functional annotations, and efficient query and analysis systems that can be broadly useful to
the biology research community. The latter has to include methods for analysis of large scale
lipid measurements in cells, reconstruction of lipid metabolic and biosynthetic pathways,
and quantitative models of lipid fluxes in cells under varied perturbations. In this review, we
will provide a comprehensive summary of extant developments in lipid bioinformatics and
systems biology and discuss the outlook for the future integration of lipidomics into cellular
and organismic biology. The sections that follow are delineated into the informatics
approaches specific to lipid biology followed by an overview and exemplar approach to
analysis of large scale lipidomic data towards a systems description of mammalian cells.

2. Classification, Ontology, Nomenclature and Structure Representation of
Lipid Molecules

The first step towards classification of lipids is the establishment of an ontology that is
extensible, flexible and scalable. One must be able to classify, name and represent these
molecules in a logical manner which is amenable to data basing and computational
manipulation. Lipids have been loosely defined as biological substances that are generally
hydrophobic in nature and in many cases soluble in organic solvents.6 These chemical
features are present in a broad range of molecules such as fatty acids, phospholipids, sterols,
sphingolipids, terpenes and others. In view of the fact that lipids comprise an extremely
heterogeneous collection of molecules from a structural and functional standpoint, it is not
surprising that there are significant differences with regard to the scope and organization of
current classification schemes.

2.1. Classification, Ontology and Nomenclature
In order to address the lack of a consistent classification and nomenclature methodology for
lipids, LIPID MAPS consortium members have developed a comprehensive classification
system for lipids.7 The consortium has taken a more chemistry-based approach and defines
lipids as hydrophobic or amphipathic small molecules that may originate entirely or in part
by carbanion based condensations of thioesters (such as fatty acids and polyketides) and/or
by carbocation based condensations of isoprene units (such as prenols and sterols). Figure 2
shows the mechanisms of lipid biosynthesis.8 Based on this classification system, lipids
have been divided into eight categories: Fatty acyls, Glycerolipids, Glycerophospholipids,
Sphingolipids, Sterol lipids, Prenol lipids, Saccharolipids, and Polyketides. Each category is
further divided into classes and subclasses. Additionally, following the existing rules and
recommendations proposed by the International Union of Biochemistry and Applied
Chemists and the International Union of Biochemistry and Molecular Biology (IUPAC-
IUBMB) commission on Biochemical Nomenclature, a consistent nomenclature scheme has
also been developed to provide systematic names for various classes and subclasses of
lipids.7
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All lipids in the LIPID MAPS Structure Database (LMSD) are classified and annotated
using this comprehensive classification and nomenclature system developed by the LIPID
MAPS consortium.

2.2. Structure Representation
Currently, different members of the lipids community draw lipid structures in distinct ways.
The same lipid structure in one lipid database can appear quite different in another
database.9 Moreover, large and complex lipids are rather difficult to draw manually which
leads to proliferation of shorthand and other abbreviations to represent lipid structures. In
order to address these issues, the LIPID MAPS consortium proposed a consistent framework
for representing lipid structures.7,10 In general, the acid/acyl group or its equivalent is drawn
on the right side and hydrophobic chain is on the left. A number of structurally complex
lipids – acylaminosugar glycans, polycyclic isoprenoids, and polyketides – cannot be drawn
using these simple rules; these structures are drawn using commonly accepted
representations. Structures of all lipids in LMSD adhere to the structure drawing rules
proposed by the LIPID MAPS consortium. Figure 3 shows representative structures for each
lipid category.

2.2.1. Structural Representation of Positional Isomers—LIPID MAPS core
laboratories are engaged in identification, characterization and quantification of known and
new lipids using liquid chromatography (LC) and mass spectrometry (MS) experimental
techniques; Information about various lipid standards developed for these experiments,
along with the protocols used, is available on the Lipidomics Gateway website.5 However,
for some lipid categories such as glycerolipids and glycerophospholipids, it is not always
straightforward to identify the positions of radyl (acyl, alkyl or alkenyl) hydrocarbon chains
at the sn carbons on the glycerol group. For example, MS/MS experiments might be able to
identify presence of three radyl hydrocarbons chains in a triacylglycerol but their positions
on the glycerol backbone would be unknown. Combinatorial enumeration of the three radyl
chains at sn carbons leads to six possible isomeric structures. These positional isomers are
stored in LMSD as one structure and it is marked as a computationally generated structure.
Structures for all other positional isomers are created on demand. To indicate the positional
isomeric nature of the structure, a suffix “iso” followed by the number of isomers is also
added to the abbreviation used as common name. For example, entry LMGL03010043 in
LMSD, with common name TG(16:0/16:1(9Z)/18:1(9Z))[iso6] and systematic name 1-
hexadecanoyl-2-(9Z-hexadecenoyl)-3-(9Z-octadecenoyl)-sn-glycerol, represents a lipid
structure with six possible positional isomers.

2.2.2. Structural Representation of Glycans in Glycosphingolipids—For
structural representation of lipids in neutral and acidic glycosphingolipids main classes
under sphingolipids category, LMSD uses the symbol and text nomenclature as proposed by
the Consortium for Functional Glycomics nomenclature committee on symbol and text
representation of glycan structures.11 In addition to using symbol and text representation for
glycans, the last four digits of LIPID MAPS identifier (LM ID) are further subdivided into
two groups: The first two positions are used to differentiate glycan series within a subclass;
the last two positions represent a unique ID. For the first two positions, only letters are used;
the last two positions use combinations of numbers and letters.

2.3. Structure Drawing
The structures of large and complex lipids are difficult to represent in drawings, which leads
to the use of many custom formats that often generate more confusion than clarity among
members of the lipid research community. For example, usage of the Simplified Molecular
Line Entry Specification (SMILES)12 format to represent lipid structures, while being very
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compact and accurate in terms of bond connectivity, valence and stereochemistry, does not
contain information about atomic coordinates and causes problems when the structure is
rendered. Different structure drawing tools end up generating different 2-dimensional
structural layout corresponding to the same SMILES string for a lipid molecule. The
structure drawing step is typically most time-consuming process in creating molecular
databases of lipids. However, many classes of lipids lend themselves to automated structure
drawing paradigms, due to their consistent 2-dimensional layout. The LIPID MAPS
consortium has developed and deployed a suite of structure drawing tools13 that greatly
increase the efficiency of data entry into lipid structure databases and permit “on-demand”
structure generation. A consistent format is chosen for representing lipid structures7,10

where, in the simplest case of the fatty acid derivatives, the acid group (or equivalent) is
drawn on the right and the hydrophobic hydrocarbon chain is on the left. Similarly for
glycerolipids, glycerophospholipids and sphingolipids, the radyl hydrocarbon chains are
drawn to the left and the headgroups are depicted on the right. This approach enables a more
consistent, error-free approach to drawing lipid structures and has been used extensively in
populating the LMSD, which currently contains over 30,000 molecules.10

“Core” structures such as diacetyl glycerol (glycerolipids) and formic acid (fatty acyls) are
represented as text-based MDL MOL files,14 and these MOL file templates are then
manipulated to generate a variety of structures in MDL MOL files and Structure Data
Format (SDF) files containing that core and other appropriate modifications (Figure 4). This
manipulation is carried out by command-line or online programs written in the Perl15

programming language.

The Lipidomics Gateway website5 currently contains a suite of structure drawing tools for
the following lipid categories: fatty acyls, glycerolipids, glycerophospholipids, cardiolipins,
sphingolipids, sterols, and sphingolipid glycans. The online layout (Figure 5) consists of a
“core” structure and pull-down menus arranged in locations appropriate for that structure.
For example, in the case of the glycerophospholipid drawing tool, a central glycerol core is
surrounded by pull-down menus allowing the end-user to choose from a list of head groups
and sn1 and sn2 acyl side-chains. The list of acyl chains represents the more common
species found in mammalian cells, and could easily be modified to include additional chains.
The selected lipid structure is then generated via a server-side Perl script. The structure is
rendered in the web browser as a Java®-based MarvinView applet16 or Jmol17 applet.
Additionally, the structure may be viewed online with the Chemdraw ActiveX/Plugin18 by
users who have this component installed on their system. Current versions of the fatty acyl
drawing tools are now capable of drawing chiral centers and ring structures. Molecules with
correct stereochemistry are drawn by implementing the following method: (1) Usage of
custom developed module to define atoms, bonds and neighbors; (2) A recursive algorithm
which applies Cahn-Ingold-Prelog (CIP)19 rules to a chiral center; (3) A scoring system to
estimate substituent priority to assign chirality.

Concurrently, a generalized lipid abbreviation format7 has been developed which enables
structures, systematic names and ontologies to be generated automatically from a single
source format. Using this approach, a text file containing a list of lipid abbreviations may be
submitted in batch mode to a drawing application which then generates structures (as MDL
MOL files or SDF files), systematic names and ontological information such as formula,
molecular weight, number of rings, number of double/triple bonds, hydroxyl, amino, keto
groups, etc. In this way, thousands of lipid structures have been generated in a consistent
fashion and deposited in the LMSD with considerable savings in time. Furthermore, the
associated ontological information has been databased and used in various online search
interfaces where, end-users may search for structures by presence (or number) of a
functional group or other features.
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2.3.1. On-line Tools—A set of simple online interfaces have been developed to enable an
end-user to rapidly generate a variety of lipid chemical structures, along with corresponding
systematic names and ontological information. These are available in the “Tools” section of
the Lipidomics Gateway website. The user interface is implemented using combination of
Perl and Hypertext Preprocessor (PHP)20 scripts.

The lipid categories covered are fatty acyls, glycerolipids, glycerophospholipids (including
cardiolipins as a special case), sphingolipid and sterols. Using the glycerophospholipids
structure drawing tool as an example, the user selects from a pull-down list of radyl chain
abbreviations for sn1 and sn2 position and also from a list of head groups. The
corresponding lipid structure is then generated in MDL MOL format and rendered in the
web browser using MarvinView applet16 which may alternatively be viewed using JMol17

applet or Chemdraw ActiveX/Plugin18. The fatty acyl structure drawing tool has a different
user-input format where the user enters a valid fatty acyl LIPID MAPS abbreviation
representing acyl chain length, presence of double or triple bonds and substituents on the
acyl chain. Examples are “18:1(9Z)” (oleic acid) and “20:4(5Z,8Z,11E,14Z)(11OH[S])”
(11S-hydroxy-5Z,8Z,11E,14Z-eicosatetraenoic acid).

The sterol drawing tools currently support the generation of structures derived from
cholestane, ergostane, campestane, and stigmastane sterol cores. In addition to double bond
position specification, the user can choose to substitute atoms in the cholestane core by C,
N, O, and H along with the stereochemistry specification of alpha or beta for the substituted
atom. Pull-down lists for position, stereochemistry and atom specification are provided for
up to four simultaneous substitutions.

All major lipid categories contain glycosylated forms whose glycan substituents can be
challenging to draw in full chair conformation. The LIPID MAPS glycan structure drawing
tools support the generation of a wide variety of glycan structures by specifying the
constituent sugars using the Consortium for Functional Glycomics nomenclature.11 The
following sugar residues are supported: Glucose (Glc), Galactose (Gal), Mannose (Man), N-
Acetylglucosamine (GlcNAc), N-Acetylgalactosamine (GalNAc), Xylose (Xyl), Fucose
(Fuc), Acetylneuraminic acid (NeuAc), Glycolylneuraminic acid (NeuGc), Deaminated
neuraminic acid (KDN) as either α or β anomers. Matched parentheses inside glycan chain
specification indicate branched glycan chains; for example:
GalNAca1-3GalNAcb1-3(Galb1-3GalNAcb1-4)Gala1-4Galb1-4Glcb.

2.3.2. Standalone Command Line Tools—A suite of structure drawing tools in the
form of Perl scripts have been developed which can generate a large number of structures
relatively quickly using a command-line interface. These command-line tools are
particularly useful in the area of bioinformatics because structures and related information
such as formulae, masses and abbreviations may be generated rapidly for large permutations
of side-chain substituents. The tools are available from the Lipidomics Gateway website
along with detailed documentation on the methods and functions used by these programs.

In addition to consistent structure representations from lipid abbreviations, the command
line tools developed by the LIPID MAPS consortium also generate ontological information
such as number of double bonds, chain lengths at different positions on the glycerol
backbone, number of various functional groups, and other structural characteristics. The
ontological information is also loaded into LMSD. The IUPAC International Chemical
Identifier21 (InChI) string and InChIKeys for lipid structures are also generated using
command line executable available from InChI website and loaded into LMSD database
tables. Table 1 provides a list of tools available from LIPID MAPS.
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2.4. Ontology Generation
An issue of major importance in dealing with lipid structures is the huge diversity of
chemical functional groups. This presents problems in explicitly classifying certain lipids
containing multiple functional groups since assignment of a structure to a particular subclass
may be somewhat subjective. For example, a fatty acid containing both epoxy and hydroxyl
groups could be assigned to either the epoxy or hydroxy fatty acids subclass. To address this
problem, the LIPID MAPS bioinformatics group has developed command line tools which
calculate the number of functional groups, number of rings and other structural information
from a MDL MOL file representation of a molecular structure (Figure 6). These tools are
available for download from Lipidomics Gateway website. This approach may be performed
in batch mode on the entire lipid structure database, thereby creating an “ontology” table
which may then be incorporated into the database infrastructure. This in turn enables the use
of an ontology-based search where a user may choose to search for lipids containing certain
functional groups, number of carbons, rings, etc., irrespective of their classification
designation. A web-based implementation of this type of ontology-based search has been
implemented on the Lipidomics Gateway website.

3. Lipidome, Lipid Genome and Lipid Proteome Databases
3.1. Lipid Databases and Other Small Molecule Databases Containing Lipids

Lipids are generally hydrophobic in nature and soluble in organic solvents. However, lipid
molecules show a remarkable structural and combinatorial diversity unlike other biological
molecules such as nucleic acids and proteins. Chemical structures of lipids across different
lipid categories are quite different and cover a wide range of chemical space. For example,
sterol lipids are characterized by a four fused ring template consisting of three six membered
rings and one five membered ring; Glycerolipids, on the other hand, typically do not contain
any rings and contain radyl chains attached to sn carbons on glycerol group. The radyl
chains may be further unsaturated with varied double bond positions and geometry adding to
the structural heterogeneity of lipids. Additionally, a large number of possible radyl chains
at various sn carbons on glycerol group along with different head groups lead to
combinatorial isomeric positional diversity of lipid structures for various lipid categories
such as glycerolipids, glycerophospholipids and sphingolipids. Given the structural diversity
of lipids and the importance of their role in the regulation and control of cellular function
and disease, it is essential to have a database of lipids which not only facilitates the storage,
retrieval and dissemination of existing lipid structures and associated physiochemical
properties data for the lipidomics community but is also extensible, flexible and scalable to
handle the vast amount of data being generated by new lipidomic studies. A well-designed
lipids database must include a defined ontology which incorporates classification,
nomenclature, structure representations, definitions, related biological/biophysical
properties, cross-references and physicochemical properties (formula, molecular weight,
number of carbon atoms, number of various functional groups, etc.) of all objects stored in
the database. This ontology can then be transformed into a well-defined schema that forms
the foundation for a relational database of lipids. A large number of repositories (e.g.
GenBank,22 SwissProt,23 ENSEMBL24 and GlycomeDB25) exist to support nucleic acids,
proteins and carbohydrate databases; however, there are only a few specialized databases
and resources (e.g. LMSD, LipidBank,9c,d LIPIDAT,9a,b Lipid Library9e and Cyberlipids9f)
that are dedicated to cataloging lipids. A variety of other small molecule public and
commercial databases (e.g. Human Metabolome Database (HMDB),26 DrugBank,27

Therapeutic target database (TTD),28 Chemical Entities of Biological Interest (ChEBI),29

ChemBank,30 PubChem,31 ZINC,32 ChemSpider,33 Chemical Abstract Service (CAS),34

eMolecules,35 Beilstein36 and Kyoto Encyclopedia of Genes and Genomes (KEGG)
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LIGAND37) also exist which provide information about lipid structures and their associated
physicochemical properties.

While there has been no prior effort at systematic and comprehensive classification and
nomenclature of lipid molecules, there are several small databases as mentioned in the
previous paragraph which contain some or several lipid molecules. The LMSD database
being developed by LIPID MAPS consortium is one of the latest databases dedicated to
lipids and provides comprehensive information about lipids. We provide an overview of the
LMSD database, other lipid specific databases and small molecule databases (Table 2)
containing lipids in the rest of this section followed by detailed description of the LMSD
database.

The LMSD10 is a relational database containing structures and annotations of biological
relevant lipids. It is being developed and maintained by LIPID MAPS consortium, and
currently contains over 30,000 structures which are obtained from the following sources
(Figure 7): LIPID MAPS Consortium's core laboratories and partners; lipids identified by
LIPID MAPS experiments; computationally generated structures for appropriate lipid
classes; biologically relevant lipids manually curated from LIPID BANK, LIPIDAT and
other public databases; peer-reviewed journals and book chapters describing lipid structures.

The LIPID BANK is a lipid database of Japanese Conference on the Biochemistry of Lipids
(JCBL). It contains over 7,000 lipids corresponding to the following main lipid classes:
acylglycerol, bile acid, derived lipid, eicosanoid, ether type lipid, fat soluble vitamin,
glycolipid, isoprenoid, lipid peroxide, lipoamino acid, lipopolysaccharide, lipoprotein,
mycolic acid, phospholipid, steroid, and wax. In addition to classification-based browsing of
lipids, the LIPID BANK supports text-based search and retrieval of lipids data using name
and other physicochemical properties; the structure-based search is not available. The search
results along with structure and other basis information such as molecular weight, molecular
formula, name, and common name provide the following additional information about a
lipid: biological activity, physical and chemical properties, spectral data (Ultra violet (UV),
Infrared (IR), Nuclear magnetic resonance (NMR), Mass spectrometry (MS)),
chromatogram data, chemical synthesis, metabolism, genetic information, and references.

The LIPIDAT is a relational database of thermodynamic and associated physicochemical
properties information on lipids. It contains over 20,000 lipids. The users can search the
database using various physicochemical properties through more than 2 dozens available
text-based query pages. The detailed search results page about a lipid includes the following
information: structure, name, and formula along with other basic information; bibliographic
information; experimental results and methods.

The LIPID LIBRARY is not a database of lipids but an online resource about chemistry,
biology, technology, and analysis of lipids. The online pages provide information about
lipids organized into the following sections: basic information, biochemistry and nutrition,
lipid analysis, oils and fats, and latest news. The basic information section covers structures,
definitions, composition, biochemistry, and functions of these lipid categories: fatty acids
and eicosanoids, simple and complex glycerolipids and phospholipids, sphingolipids, and
sterols. The biochemistry and nutrition section covers only plant lipid biochemistry. The
lipid analysis section provides descriptions of both chromatographic and spectroscopic
techniques used for analysis of lipids along with literature surveys of analytical
methodologies. The oils and fats section cover the chemistry and technology of oils and fats
along with the history of science and technology. The detailed information available for
lipids covered in basic information section provides the following details for each lipid:
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structure, name, source and occurrence, biochemistry and function along with appropriate
literature references.

The Cyberlipids is an online resource for studies of lipids. It provides information about
definitions, source, compositions, and physicochemical properties of lipids along with
detailed review of various lipid analysis techniques. The users can retrieve detailed
information about a lipid using its name for more than 900 lipids or get a list of all lipids
with links to detailed information.

The Human Metabolome Database (HMDB) is a database containing information about
small molecule metabolites, including lipids, found in the human body. It contains over
7,900 metabolites entries with links to over 7,200 protein and deoxyribo nucleic acid (DNA)
sequences. The database provides links to three kinds of data: chemical data, clinical data,
and molecular biology/biochemistry data. The users can search HMDB using text, chemical
structure, and arbitrary relationships of available data fields. The database searching using
spectral and chromatography data (MS, MS-MS, GC-MS, and NMR) is also available.
Additionally, a variety of different data browsing options are provided: class-based
browsing, pathway, disease, and so on. The detailed information about each molecule is
presented as a MetaboCard containing over 110 different data fields with 2/3rd of the data
fields containing information about chemical/clinical data and the rest about enzymatic and
biological data. The links to other external data sources are also provided.

The DrugBank database provides detailed information about drugs, including lipids, along
with the drug targets. The detailed drug information consists of chemical, pharmacological,
and pharmaceutical information; the targets information corresponds to sequence, structure,
and pathway. The database contains over 6,800 drug entries covering the following types of
drugs: over 1,400 food and drug administration (FDA)-approved small molecule drugs, over
130 FDA-approved biologics drugs, over 83 nutraceuticals, and over 5,000 experimental
drugs. Additionally, information for over 4000 non-redundant protein target sequences is
linked to drug entries. The users can search the DrugBank database using text, chemical
structure, and arbitrary combination of available data fields. A variety of different data
browsing options are also available: drug name, pathway, class name, and so on. The
detailed information about each drug is presented as a DrugCard containing over 150 data
fields with half the information covering drug/chemical data and the rest corresponding to
drug target.

The Therapeutic Targets Database (TTD) provides information about known targets along
with information for associated disease, pathways, and drugs for these targets. The TTD
database contains information for over 1,900 targets and over 5,000 drugs with over 3,000
small molecule drugs. The drugs information covers over 1,500 approved drugs, over 1,100
drugs in clinical trials, and over 2,300 experimental drugs. The text-based database search
provides searching using target/disease name, drug name, function and classification. The
detailed search results page contains information about target and disease, drug name and its
function, and links to other external database containing information about targets and
drugs.

The Chemical Entities of Biological Interest (ChEBI) database provides structural and
ontological information about molecular entities focused on small molecule compounds
including lipids. The molecular entities are either natural products or synthetic products used
for biological intervention; nucleic acids are not included. The ChEBI database contains
over 19,000 small molecules. The information about small molecules in ChEBI comes from
these four key sources: IntEnz38 – the integrated relational enzyme database of the European
Bioinformatics Institute (EBI); KEGG COMPOUND;39 PDBeChem;40 and ChEMBL41 The
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users can search ChEBI database using text, chemical structure, and arbitrary combination
of available data fields. The structure-based search also supports similarity and substructure
searching. The detailed search results along with structure and other basic information such
as molecular weight, molecular formula, name, and common name provide the following
additional information about a small molecule: ChEBI ontology, brand name, references to
other databases, registry numbers corresponding to external sources (CAS, Beilstein, and
Gmelin), and literature references.

The ChemBank is a relational database containing data derived from small molecules,
including lipids, and small molecule screens along with tools for analyzing these data. The
database contents include chemical structures and names, calculated molecular descriptors,
human curated information about small molecules activities, raw experimental results from
high-throughput biological assays, and metadata describing the screening experiments. The
ChemBank database contains data for over 1.7 million compound samples with over 1.2
million unique small molecule structures screened against more than 2,500 assays covering
more than 180 projects. Additionally, it contains information for over 1,000 proteins, 500
cell lines and 70 species associated with various assays. The users can search ChemBank
using text, chemical structure, and arbitrary relationships of available data fields. The
structure-based searching, in addition to substructure and exact match, also supports
similarity searching. The database searching using information about high-throughput
screens and small molecule assays is also available. Additionally, a number of tools for
analysis and visualization of small molecule screening results are provided. The detailed
search results along with structure and other basic information such as molecular weight,
molecular formula, name, and common name provide the following additional information
for a small molecule: a large number of calculated physicochemical properties; compound
sample information; screening information including project name, assay name, assay type,
plate, well and z-score.

The PubChem database is a database of chemical molecules and biological activities of
molecules screened against various assays. It also contains information about lipids as
LIPID MAPS consortium upload its LMSD database of lipids into PubChem on a regular
basis. The PubChem database is divided into three main categories: Compound database
with over 32 million entries contains unique chemical substances derived from substance
depositions; Substance database with over 74 million entries consists of chemical
compounds submitted by depositors corresponding to mixtures, extracts, and complexes;
BioAssay database containing biological activity results from over 1,600 high-throughput
screening projects with several million measured values. The PubChem data deposition is
open to the scientific community. The growing list of over 140 substance and 47 assay
depositors represent all major sources including commercial vendors, public non-profit
organizations, pharmaceutical companies, and individual contributors. The users can search
PubChem compounds, substances, and bioassay databases using text, chemical structure,
and arbitrary relationships of available data fields. The text-based searching supports the
usage of a wide variety of parameters including name, formula, physiochemical properties,
stereochemistry specifications, elements, and so on. The structure-based searching provides
support for substructure/superstructure search, and identity/similarity search. The detailed
search results page for compound along with structure and other basic information such as
molecular weight, molecular formula, name, and common name provide the following
additional information for a compound: synonyms, calculated physicochemical properties,
substance information, biomedical annotation, pharmacological action and classification,
chemical classification, safety and toxicology, links to exiting literature, and so on. The
substance detailed results page, in addition to basic information such as chemical structure,
name, and formula contains the following additional information: link to data depositor,
links to any bioactivity information and other structurally related substances, and links to
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other databases maintained by the National Center of Biotechnology Information (NCBI). A
variety of analysis tools such as bioactivity structure activity analysis and chemical structure
clustering are also provided for the analysis of bioassay screening data.

The ZINC database contains commercially available small molecules for virtual screening.
It contains over 13 million purchasable compounds including lipids. The users can search
the ZINC database using compound name, chemical structure/substructure, physicochemical
properties, vendor catalog number/source, and so on. The compound detailed search page
includes chemical structure, name, formula, various calculated physicochemical properties,
vendor and purchase information, and availability.

The ChemSpider is a chemical database and an online resource linking together compound
information across the web. The compound information includes physical and chemical
properties, chemical structure, systematic nomenclature spectral data, synthetic methods,
known reactions, and safety information. The ChemSpider contains over 25 million unique
chemical compounds sourced and linked to over 400 separate data sources including LIPID
MAPS for lipids. The compound data is collected from over 50 difference sources.
Additionally, the ChemSpider supports the uploading and curation of chemical structure and
spectra data by the scientific community. The users can search ChemSpider database using
text, chemical structure, and arbitrary relationships of available data fields. The text-based
searching supports the usage of a wide variety of parameters including name, formula,
physiochemical properties, literature search, and so on. The structure-based search supports
chemical structure/substructure search along with arbitrary combinations of calculated
physicochemical properties. The detailed search results page for a compound along with
structure and other basic information such as molecular weight, molecular formula, name,
and common name provide the following additional information: links to Wikipedia articles;
associated data sources and commercial suppliers; patents; literature articles; calculates
physicochemical properties; medical subject headings classification; pharmacological data;
spectra; and inks to other literature data. The ChemSpider online resource also hosts a
variety of web services such as chemical names to structure conversion, generation InChI
strings, and calculation of various physicochemical properties.

The Chemical Abstract Service (CAS) is a comprehensive resource of chemical information
combining databases with search and analysis tools available as chemical abstracts and
chemical databases. The CAS provides two main chemical databases: CAplus and CAS
Registry. The CAplus database consists of summaries and indices of scientific literature
covering chemistry and chemistry related topics such as proteomics, genomics, and so on.
The CAplus database contains over 33 million references and its coverage of scientific
literature starts from early 1,800s and spans across 10,000 journals, technical reports,
conference proceedings, and books in more than 60 languages; it also covers patent
literature from over 60 countries. The CAS REGISTRY database contains over 52 million
organic and inorganic chemical substances, and over 62 million sequences. Its coverage of
chemical substances also starts from early 1,800 and covers substances from patents,
chemical catalogs, and various web sources; the sequence data is retrieved from GenBank.
In addition to basic compound information such as structure, name, formula, and molecular
weight, the chemical substance record contains the following additional information: a
unique CAS number, experimental and calculated physicochemical properties, ring analysis,
and literature references. The CAS databases are searched using SciFinder which support
both text-based and structure-based searching along with usage of other parameters during
the search. In addition to CAplus and CAS REGISTRY, the CAS provides the following
three databases: CASREACT, CHEMLIST, and CHEMCATS. The CASREACT and
CHEMLIST databases contain information about chemical synthesis and regulated
chemicals respectively. The CHEMACTS database contains over 44 million commercially
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available substances covering over 1,200 catalogs from 1,100 suppliers; it has over 12
million chemical substances with unique CAS numbers.

The eMolecules is an online resource for commercially available chemical molecules
including lipids. It contains over 8 million unique molecules from variety of commercial
catalogs and other on-line data sources such as National Institute of Standards and
Technology (NIST), PubChem, DrugBank, and LIPID MAPS. The users can search
eMolecules database using molecule name, molecule structure/substructure, suppliers, and
various physicochemical properties. In addition to basic molecule information such as
structure, name, formula, and molecular weight, the molecule record contains the
information about suppliers and links to ordering chemicals.

The Beilstein database provides experimentally validated information about millions of
chemical compounds uniquely identified by Beilstein Registry Numbers and chemical
reactions compiled from scientific literature starting from 1,771. The original database was
created using Beilstein's Handbook of Organic Chemistry and contains information about
reactions, chemical substances, chemical structures, and physiochemical properties. The
record for each substance has over 350 data fields corresponding to chemical and physical
data along with appropriate literature references. The users can search the database using
Reaxys system using one of the following three search options: reactions searching,
substances and properties searching, and text searching. During reaction searching, a variety
of other parameters such as starting materials, product, reaction conditions, and so on can
also be specified. The substance and properties searching provides structure/substructure
search along with specification of various physical and chemical properties. The text-based
search allows the users to retrieve appropriate data using substance name, authors, and
variety of other parameters. The detailed search results page for substance along with
structure and other basis information such as molecular weight, molecular formula, name,
and common name provide the following additional information: calculated
physicochemical properties, physical and spectral data, synthesis information, and links to
literature.

The KEGG LIGAND is a database of chemical compounds and reactions involved in
biological pathways. It is a composite database consisting of three other databases: KEGG
COMPOUND, KEGG ENZYME, and KEGG REACTION. The KEGG COMPOUND
database contains information for over 7,000 metabolites and biologically relevant chemical
compounds including lipids which are classified according to LIPID MAPS classification
system and made available through KEGG BRITE database. The KEGG REACTION
database contains information for over 5,000 reactions corresponding to metabolic and other
reactions. The KEGG ENZYME database has information for over 3,800 enzymes involved
in various transformations. The users can search KEGG LIGAND databases using text and
chemical structures. The structure-based search supports structure/substructure search along
with similarity searching. The detailed search results page for a compound along with
structure and other basic information such as molecular weight, molecular formula, name,
and common name provide the following additional information: links to ENZYME and
REACTION databases, links to external data sources such as PubChem and CAS numbers.

3.1.1. Populating the Structure Database—An object-relational database of lipids
containing structural, biophysical and biochemical characteristics is available on the
Lipidomics Gateway website with browsing and searching capabilities. The LMSD currently
contains over 30,000 structures which are obtained from a variety of sources: LIPID MAPS
Consortium's core laboratories and partners; Lipids identified by LIPID MAPS experiments;
computationally generated structures for appropriate lipid classes; biologically relevant
lipids manually curated from LIPID BANK, LIPIDAT and other public databases; peer-

Subramaniam et al. Page 11

Chem Rev. Author manuscript; available in PMC 2012 October 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reviewed journals and book chapters describing lipid structures (Figure 7). All structures
have been classified and redrawn according to LIPID MAPS guidelines. After lipids have
been selected for inclusion into LMSD, they are classified following the LIPID MAPS
classification scheme as explained earlier under the classification, ontology and
nomenclature of lipid molecules section. Structures of the lipids are drawn either manually
or generated automatically by computational structure drawing tools developed by the
LIPID MAPS consortium; the structure representation is consistent and adheres to the rules
proposed by LIPID MAPS consortium. Based on its classification, each lipid structure in
LMSD is assigned a unique LM ID. The format of the LM ID (Figure 8) not only maintains
uniqueness of ID but also provides the capability to add new categories, classes, and
subclasses as the need arises.

In addition to import and manual curation of biologically relevant lipids from other database
sources, LMSD also stores their original IDs to enable cross-referencing. LMSD lipid
structures are deposited into PubChem database periodically and a link to PubChem
Substance ID (SID) is also maintained within LMSD. Access to complete set of LMSD lipid
structures in the PubChem database is also available.42

LMSD structures are either drawn manually using ChemDraw or generated automatically by
structure drawing tools developed by LIPID MAPS consortium for various subclasses in
fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterols. The structure
drawing tools are Perl scripts which can generate a large number of structures relatively
quickly via command-line or web-based interface. In addition to consistent structure
representations from lipid abbreviations, these scripts also generate ontological information
such as number of double bonds, chain lengths at different positions on the glycerol
backbone, number of various functional groups, and other structural characteristics. The
ontological information is also loaded into LMSD. The InChI string and InChIKeys for lipid
structures are also generated using command line executable available from InChI website
and loaded into Oracle database43 tables. The database schema used for LMSD is outlined in
an entity relationship diagram in Figure 9.

3.1.2. Searching the Structure Database—The Lipidomics Gateway website supports
the searching of LMSD database in three different ways: classification-based, text/ontology-
based, and structure-based search. The classification-based browsing provides the capability
to retrieve lipids based on the LIPID MAPS classification scheme. After the user selects one
of the main categories of lipids, a listing of all lipids present in the selected category, along
with a link to the set of lipids in each main class and subclass, is provided. The user may
then select all lipids which belong to either a main class or a subclass and display the results
as a result summary page.

In case of lipids containing multiple functional groups, assignment of a structure to a
particular subclass may be somewhat subjective. For example, a fatty acid containing both
epoxy and hydroxy groups could be assigned to either epoxy or hydroxy fatty acids subclass.
To address this situation, an ontology-based search is also provided. The user may choose to
search for lipids containing similar functionality and all the lipids with the specific
functionality, irrespective of their subclass designation, would be retrieved. The text/
ontology-based query page allows the user to search LMSD by any combination of these
data fields: LM ID, common or systematic name, mass along with a tolerance value,
formula, category, main class, subclass, and various combinations of ontology parameters.
The structure-based search page provides the capability to search LMSD by performing a
substructure or exact match using the structure drawn by the user. Three supported structure
drawing tools are MarvinSketch,16 JME,44 and ChemDrawPro.18 The first two of these
structure drawing tools are Java applets and require only applet support in the browser. In
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addition to structure, the user can also specify LM ID and common or systematic name for
the search.

The record details page, in addition to displaying the structure for the selected lipid, also
contains all relevant information for that molecule such as, common and systematic names,
synonyms, molecular formula, exact mass, classification hierarchy, InChIKey, and cross-
references (if any) to other databases.

The default lipid detail page uses a Graphics Interchange Format (GIF) image for
representing structure of the lipid. The decision to use GIF format for representing lipid
structures in the web browser was made due to its native support across all the browsers.
The structure may also be viewed and manipulated using MarvinView,16 JMol,17 and the
ChemDraw, ActiveX/Plugin18 formats where structures may be manipulated, scaled and
saved in a number of high-resolution formats. Figure 10 shows screen shots of the LMSD
user interface for lipid classification-based browsing, text-based and structure-based
searching.

3.2. Lipid Proteome Databases
3.2.1. Populating the Proteome Database—To fully understand the roles of lipids, we
must also understand the enzymes that catalyze lipid-related metabolic pathways,
transcription factors and signaling agents involved in lipid regulation, and other proteins that
affect lipid biochemistry by binding to or interacting with lipids. While Entrez Gene45 and
UniProt46 provide annotations of proteins and their corresponding genes vis-à-vis their
functional role, there was previously no database that comprehensively cataloged all lipid-
associated proteins. The LIPID MAPS Proteome Database (LMPD)47 developed by LIPID
MAPS serves such a purpose.5

UniProt and Entrez Gene contain a significant part of the annotations of proteins and genes
respectively, and most of the known lipid-related proteins have been annotated in these
databases. However, prior to the development of LMPD there was no unique database of
lipid-associated proteins that contained comprehensive and context dependent annotations.
LMPD was developed in order to fill this void by providing a catalog of genes and proteins
involved in lipid metabolism and signaling. LMPD can be searched by database ID,
keyword, KEGG pathway, or Gene Ontology (GO) term, and is publicly available from the
Lipidomics Gateway website.

LMPD is constructed as an object-relational database of lipid-associated protein sequences
and annotations. The database schema used for LMPD is outlined in an entity relationship
diagram in Figure 11. The initial release of LMPD established a framework for creating a
lipid-associated protein list, collecting relevant annotations, databasing this information and
providing an online user interface. A similar approach was used previously for development
of the MitoProteome database.48 The current release of LMPD contains approximately 1200
lipid-related proteins for each of human and mouse species.

In order to construct LMPD, a curated set of lipid-related keywords was created for each of
the 8 lipid categories. These keywords, containing terms such as “lipase”,
“cyclooxygenase”, “ceramide” and “choline”, were then used to search name, description
and annotation information in publicly available UniProt46, Entrez Gene,, GO49 and
KEGG50 data repositories for mouse and human species in order to identify proteins, genes
and related pathway and ontology information containing these terms. The GO terms
identify proteins that are involved in particular anabolic, catabolic, and other metabolic
processes, while proteins gathered from KEGG were identified as being involved in a lipid
metabolic pathway. Experimental methods used in identifying these proteins included

Subramaniam et al. Page 13

Chem Rev. Author manuscript; available in PMC 2012 October 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



various enzyme assays, high performance liquid chromatography (HPLC), polyacrylamide
gel electrophoresis, and mass spectrometry. All protein lists generated by these automated
methods were then manually curated, erroneous entries were deleted, known lipid-related
proteins not identified by the methods above were added and corresponding Entrez Gene
ID’s and annotations were generated for all Uniprot records. This process is illustrated in
Figure 12.

The Signaling Gateway Molecule Pages (SGMP) database, another database containing
states of proteins involving lipids, is a repository derived from a comprehensive signaling
protein ontology that covers functional states of a protein, the transitions between those
states and the defined functions of a protein in a given cellular context.51 The SGMP data
are exported to the Biological Pathway Exchange (BioPAX)52 and Systems Biology Markup
Language (SBML).53 The SGMP database contains information on several lipid binding and
modifying proteins (Table 3).

3.2.2. Searching the Proteome Database—Multiple LMPD query interfaces are
available, enabling users to search LMPD by database ID or keyword; by KEGG pathway;
or by GO term. From the search results, one can access annotations relevant to each protein
of interest, cross-linked to external databases. Annotations are organized by record
overview, Gene/GO/KEGG information, protein domain information, SwissProt/UniProt
annotations, and related proteins and LIPID MAPS experimental data (if any). The record
overview contains LMPD ID, species, description, gene symbols, lipid categories, enzyme
code (EC) number, molecular weight, sequence length and protein sequence. Gene
information includes Entrez Gene ID, chromosome, map location, primary name, primary
symbol and alternate names and symbols; GO IDs and descriptions; and KEGG pathway IDs
and descriptions. UniProt annotations include primary accession number, entry name and
comments such as catalytic activity, enzyme regulation, function and similarity.

4. Lipid Experimental Protocols and Meta Data Management
The post-genome sequencing era has heralded the beginning of a new phase of scientific
discovery that is based on massive volumes of data generated by high throughput
technologies.54 This exploratory, data-driven approach represents a paradigm shift from the
traditional scientific discovery where an individual laboratory’s effort is focused on a
particular gene-product and the pathway in which the gene-product participates, i.e., a
hypothesis-driven approach. Efforts to understand the detailed functioning of all the
elements of the cellular machinery at the molecular level pose a major challenge that would
require a large collective effort from a multidisciplinary organized team of scientists. If
people working in academia were to engage in such an effort, the organization of the effort
may perhaps require a consortium approach with laboratories having expertise in different
areas such as cell biology, molecular biology, proteomics, functional genomics, and
bioinformatics, contributing to a joint and well-integrated effort.

Each high-throughput technique generates a large body of data to be recorded. It brings two
data management issues to the fore: first, how the sheer amount of data from heterogeneous
but related experiments from various laboratories will be handled, secondly, how data will
be shared and analyzed collectively among them and made available to the public at large.
The laboratory notebook concept is insufficient to deal with the issues of data handling,
structuring, and sharing.55 For such a research endeavor, utilization of high-throughput
techniques to explore complex biological systems is the norm rather than an exception. In a
high-throughput setup the output from one experiment is the input of another. Situations like
these create another set of issues to be dealt with, since samples will be passed from one
laboratory to another in bulk quantities for subsequent handling and analysis. The samples
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are all necessarily coded such that the recipient laboratory could recover the information
about the history of each received sample. Laboratory notebooks could be replaced by a
relational database, which would facilitate data deposition from various laboratories to a
common repository and at the same time data could also be viewed by authorized personnel.
The data structuring could be achieved by an appropriate database schema design, which
could also enforce linking of the data from heterogeneous biological experiments, thus
offering easy access to the data analysis en masse. The role of the pen will be replaced by
graphical user interfaces (GUIs) and a keyboard; the GUI would enable the experiment to
document the samples and their handling and directly deposit data to the database. There
will be a separate GUI for each type of experiment, so the use can be guided as to what
needs to be done. The GUI should be designed to check data validity prior to deposition into
the database; this will minimize the manual data entry errors inherent in a notebook system.
Data should be regularly backed up to guard against any kind of system failure. This scheme
essentially represents a paper-free and scalable structured electronic notebook for data
cataloging, and automated incorporation of timestamps to record the data entry. After
successful deposition of the experimental parameters to the database through a GUI, the user
must be provided with a label to identify the sample container, which in biological
experiments is often a tube or flask. The label should uniquely identify each experiment and
contain meaningful information to facilitate deciphering its contents.

The data structuring, handling, and data management requirements could be met by the use a
laboratory information management system (LIMS). Use of LIMS is widespread in diverse
industrial settings; they are used in pharmaceutical companies, forensic laboratories,
environmental agencies, and food and beverage industries that have to follow strict quality
assurance (QA)/quality control (QC) standards. Dozens of LIMS are available in the market
from commercial vendors; they are generally expensive and may not meet the specific needs
of a particular project.

Apart from organizing data, a more important reason for laboratory information
management systems in lipidomics is to minimize inherent variability in experimental data,
as procedures, time, and personnel can all cause significant variation in results. A LIMS
should be organized in such a way as to minimize this variability and properly annotate the
specific reagents and procedures utilized in a given experiment for future reference.

A LIMS must be usable by lab technicians and other personnel with limited bioinformatics
experience. As much as possible, user interfaces must be engineered to provide important
informational and contextual pointers for how they are intended to be used. Constraints on
entries and readily understandable feedback messages should be provided in meaningful
ways. In some cases, there may be no substitute for person-to-person interaction in
providing assistance, and a person may be dedicated to providing help to other personnel.
These features can foster the goal of achieving widespread user acceptance.

The LIPID MAPS project modified an earlier, highly developed LIMS system that had been
constructed for the Alliance for Cell Signaling (AfCS).56 The principles of lipidomics
involve many of the same concepts as those associated with the broader category of
metabolomics. That is, metabolomics studies often involve inducing perturbations to the
ongoing state of living systems and subsequently monitoring changes at specific time
points.1b The various lipid species are measured at different time points and quantities are
systematically determined. This may be performed within a single laboratory, or a number
of laboratories may collaborate in the endeavor. In support of these aims, agreement must be
reached among the persons performing the work on the experimental protocols at each step,
and protocols and documents must be stored and made available to all. To accomplish
transfer, centralized storage, and sharing of data among LIPID MAPS member laboratories,
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we have developed a LIMS to submit data to a central database and to obtain data from the
same source.57 To handle the large amounts of data, a relational database is an essential
requirement. The information entered into the system is best entered by individual users or
laboratories. A 2- or 3-tier platform may be deployed and data entry forms may be presented
in the form of a dedicated program or website.

The user interface of the LIPID MAPS LIMS consists of a number of discrete GUIs
representing modules of functionality that are accessed from a single main window interface
(Figure 13). The entire application is downloaded from a web site as a Java Web Start
application at the time of each use. These individual modules allow users to enter
information and browse the LIMS database. After entering information, the user clicks a
button to send information to a central Oracle database. The LIMS also allows tracking of
laboratory materials and protocols via printed labels that may be scanned into modules using
barcode readers, thus minimizing typing errors.

The LIPID MAPS LIMS is organized around cellular treatments and mass spectrometry
(MS) experiments. The LIMS enforces adherence to process controls in the form of exact
control of experiments using strict solution and procedural protocols. A protocol ID is
required by the majority of modules. The protocol ID refers to a document in the LIMS
database that describes a laboratory procedure or solution composition. The user may use
one of the protocol documents that are already within the LIMS for this purpose. In addition,
any of the participating LIPID MAPS laboratories may upload a new protocol and generate
a new protocol ID.

The Treatment module provides the essential lipidomics functionality of the LIMS (Figure
14). Into this form, details of treatment conditions are entered. These include reagent or
solution IDs, concentrations, and the start time, end time, and durations of both current
treatment and pre-treatment during an experiment with a particular cell preparation. These
data are vital for studies of stimulus- and time-dependent alterations to lipid composition.
Individual sample IDs are associated with cells receiving different treatments within an
experiment.

A significant contribution to the functionality in the LIMS arises from close integration of
modules. Each module has search functions that search database tables for information
entered by that module. Another implementation of searching and user interaction occurs in
the case of the Reporter, or the LIMS Reports, module. The Reporter module allows the user
to construct high-level reports summarizing overall database content using certain key
parameters as search terms. For example, the user may obtain a summary table of cell vessel
IDs that originate in a thaw of a particular vial of frozen cells used by a laboratory, along
with the protocol ID that was used for thawing and passaging and the ID of any experiment
in which a cell passage deriving from that vial was used (Figure 15). The history of a cell
line from freezer to experiment is thus obtained.

The modules of the LIPID MAPS LIMS were intended to be used sequentially, with
database identifiers from previous modules in list format made available to users for
insertion into later modules. A flow chart published previously illustrates one potential
usage sequence that begins with the Reagent module and ends with the Mass spec module.57

While most of these modules are generic in nature, others have been engineered that are
specific for the needs of LIPID MAPS. For example, the Avanti reagent module allows the
user to tracks reagents provided by our supplier of molecular standards with the aim of
ensuring that materials used for quantitation purposes remained within quality
specifications. Among other actions, users can download a current, updated certificate of
quality for any lot of material previously shipped to a consortium laboratory. This can be an
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important consideration when using standards that may possess abbreviated shelf lives. In
LIPID MAPS, only Avanti Polar Lipids can input such information, while all laboratories
have access to downloading from this module.

On occasion, users may not have time to properly access all modules in succession. For
example, the Solution module requires prior use of the Reagent module, along with the
Protocol module to insert a protocol on solution composition. This step is of particular
importance in mixing internal standards used in mass spectrometry. The New solution
module allows bypassing both these modules, with only a brief sketch of solution content
required. During later data analysis, performed after the conclusion of an experiment,
acceptance or rejection of a questionable datum may hinge on whether the information trail
that includes the information entered by either of these modules provides sufficient detail
that its reliability can be affirmed. Consequently, the New solution module typically plays a
role only in investigations that limited in scope to a specific laboratory.

Analysis and mining of the metadata and associated data obtained with the assistance of this
LIMS is conducted off-line at the Bioinformatics core. LIMS metadata and the experimental
data described by the metadata are available on the internet for browsing, and are directly
linked to a public database of lipid structures that is curated by experts,10 and to a database
of proteins known to be involved in lipid metabolism in mice and in humans.47 Both are
available from the Lipidomics Gateway website.5 The availability of solution and procedure
protocols as well as tools allowing searching and drawing of lipid structures are also
featured at this site.

A widely publicized effort to standardize the content of metabolomics experiment
informational resources to allow computerized searching has been proposed.58 However,
such standardization efforts seem not to have been widely pursued in metabolomics projects,
at least partly because of difficulties in adequately comparing experiments performed using
disparate technologies, such as NMR spectroscopy and mass spectrometry.59

5. Analysis and Presentation of Lipid Mass Spectrometric Data
With the availability of sensitive analytical instrumentation such as mass spectrometry, it is
now possible to obtain quantitative data on large numbers of lipid species under a variety of
experimental conditions. MS methods for the characterization of lipid mixtures have also
been published in recent years, most of them centered on the use of electrospray ionization
(ESI) MS, atmospheric pressure chemical ionization (APCI) MS and matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) MS.60 Currently, mass spectrometric
analysis of lipids is mainly comprised of two complimentary approaches which employ
either direct infusion (shotgun lipidomics)61 or use liquid chromatographic separations prior
to mass spectrometric analysis (LC-MS). An advantage of shotgun lipidomics is that a mass
spectrum displaying molecular ions of individual molecular species of a class of interest can
be acquired at a constant concentration of the lipid solution during direct infusion. This
unique feature of shotgun lipidomics allows researchers to perform precursor-ion scans of
the particular fragment ions and/or neutral loss scans of the interested neutrally lost
fragments for identification and quantitation of the individual molecular species of a lipid
class or a category of lipid. On the other hand, customized LC-MS techniques tailored to a
particular lipid class of interest have the ability to resolve complex lipid mixtures during the
LC step, allowing for more reliable identification during the MS step. From a bioinformatics
standpoint, MS data analysis can be divided into a number of distinct phases: (a) processing
of raw data files which may involve peak averaging, normalization, integration, isotope
correction and display of processed spectra; (b) peak identification using algorithms to
match lipid ions against databases of known or computationally derived structures; (c)
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statistical analysis of MS data to quantify significant changes between different samples
(lipidomic profiling), between different lipid species in the same sample (correlation
analysis) or within the same species over time (temporal analysis); (d) modeling of lipid data
onto biological pathways as part of a systems-biology approach.

5.1. MS Analysis Software
In recent years there has been an urgent need for informatics solutions to efficiently process
the large amounts of MS data generated by lipidomics experiments and deal with the unique
complexities of lipid structures. The number of software packages has expanded
considerably over the last 5 years and include a number of freely available applications that
are capable of handling multiple tasks in the analysis pipeline (see Table 4). The Java-based
MZmine62 provides users with a modular framework for processing, visualizing, and
analyzing mass spectrometry-based molecular profile data and is particularly useful for
analyzing LC-MS experiments. Another recently released Java application is the Lipid Data
Analyzer (LDA)63 in which the authors have developed new algorithms for detection and
quantification of minor lipid analytes from LC-MS data. Examples of lipidomics software
implemented as Microsoft Excel add-ons are the Fatty Acid Analysis Tool (FAAT)64 and
LIpid Mass Spectrum Analysis (LIMSA).65 FAAT has been optimized for analysis of high-
resolution MS data generated by Fourier Transform-Ion Cyclotron Resonance (FT-ICR)
mass spectra. The LIMSA tool is capable of performing isotopic correction and peak
integration as well as mass matching to a user-supplied list of expected lipids. Commercial
MS instrument vendors such as AB-SCIEX (www.absciex.com) are developing their own
platform-specific lipid analysis approaches such as Lipid Profiler and LipidView66 but
suffer from the drawback that they must be used in conjunction with their proprietary
Analyst software. A new open source Python programming language67 application called
LipidXplorer68 is tailored toward the analysis of data from shotgun lipidomics experiments.
LipidXplorer does not have a database of lipid masses for peak identification but instead
enables the user to compose queries and constraints for lipid classes of interest using the
novel concept of a Molecular Fragmentation Query Language (MFQL). The LIPID MAPS
MS analysis tools (http://www.lipidmaps.org/tools/index.html) are a freely-available set of
online resources and focus on the simpler task of matching peak lists of precursor ions to
predicted structures under a variety of experimental conditions. Certain classes of lipids such
as acylglycerols and glycerophospholipids composed of an invariant core (glycerol and head
groups) and one or more acyl/alkyl substituents are good candidates for MS computational
analysis. These molecules tend to fragment in a predictable fashion in collision-induced
experiments leading to loss of acyl side-chains, neutral loss of fatty acids, and loss of water
and other diagnostic ions69 depending on the nature of the head group. It is possible to
create a virtual database of permutations of the more common side-chains for glycerolipids
and glycerophospholipids and calculate “high-probability” product ion candidates in order to
compare the experimental data with predicted spectra. The LIPID MAPS group has
developed a suite of search tools13 that allows a user to enter an m/z value of interest and
view a list of matching structure candidates, along with a list of calculated of neutral-loss
ions and other “high-probability” product ions. The MS prediction tools are currently
available for a number of different categories of lipids: glycerolipids, glycerophospholipids,
cardiolipins, and sphingolipids. In each case, all possible structures corresponding to a list of
likely head groups and acyl, alkyl-ether and vinyl-ether chains have been expanded and
enumerated by computational methods to generate a table containing the nominal and exact
mass for each discrete structure as well as additional ontological information such as
formula, abbreviation and numbers of chain carbons and double bonds. This tabular data is
then uploaded into category-specific database tables, making it amenable for online
querying The MS prediction tools for glycerolipids and glycerophospholipids have been
extended by computing production ion masses for commonly observed fragments
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corresponding to acyl chain ions, neutral loss of acyl chains, loss of water, head group-
specific fragmentations and combinations of the above.

The MS prediction tools for glycerolipids, cardiolipins and glycerophospholipids accept an
m/z value from the user for the precursor ion and have a menu to allow selection of the ion
mode ([M+H]+, [M+NH4]+, [M-H]−, etc.). In addition, a mass tolerance window and a head
group (in the case of glycerophospholipids) may be specified to limit the number of
matches. The list of matches may also be filtered by specifying a particular set of radyl
chains (for example, only chains with even numbers of carbon atoms). On completion of a
search, the output format (Figure 16) contains a list of structures that (a) satisfy the input
criteria and (b) whose side-chains belong to the list of radyl chains used to populate the
database. The predicted masses of the fragment ions are computed at run-time by the online
application. All entries in the result set are hyperlinked to the structure-drawing application,
enabling “on-demand” visualization of the molecular structures. Isotopic distribution
profiles for each structure may also be viewed online. The online tools allow batch-mode
searches of lists of precursor ions and intensity values which may be copied and pasted into
the user interface. Users may perform searches where the matched ions are displayed in
“bulk” format (e.g. PE(34:1), TG(54:2)) or as discrete molecular species (e.g.
PE(16:0/18:1(9Z)), TG(18:0/18:1(9Z)/ 18:1(9Z))). Additionally, in the case of experimental
samples where the relative amounts of the acyl groups of glycerolipids and
glycerophospholipids are already known (e.g. from fatty acid methyl ester (FAME) analysis
by GC), these data may be entered and a scoring algorithm then ranks the matched species
based on the relative abundance of those acyl chains in each lipid. As mentioned above, the
current versions of the LIPID MAPS MS prediction tools employ databases of mass
permutations for the lipid classes of interest, but it is certainly possible to replace the
database with user-specified lists of chains/head groups and perform all mass matching
calculations in “real time”. This type of option would be useful in cases where the sample of
interest contains lipids with rare or unusual side-chains such as those encountered in bacteria
or invertebrates.

A standalone Windows® application has also been developed (Figure 17) for predicting
possible molecular species for a given MS ion. In contrast to the online tools which query a
database table of masses corresponding to structural permutations for each lipid category,
the standalone application (http://www.lipidmaps.org/tools/index.html) first computes these
masses from first principles using a list of commonly occurring side-chains and head groups
typically found in mammalian versions of glycerolipids, glycerophospholipids (including
cardiolipins) and sphingolipids. This application enables a user to enter the m/z value of an
unknown lipid ion and predict the most likely molecular species. There are separate user
interfaces for: glycerolipids, glycerophospholipids, cardiolipins, sphingolipids, fatty acids
and cholesteryl esters. There is also a user interface to calculate the exact mass of
glycerophospholipid and glycerolipid ions with defined side-chains and head groups, along
with a display of the isotopic distribution profile.

5.2. Presentation of MS data
The LIPID MAPS consortium has placed an emphasis on online presentation of MS data in
order to maximize the level of interactivity with other web-based resources such as lipid/
gene databases and experimental protocols. Recent studies by the LIPID MAPS consortium.
have quantified over 550 different lipids from mouse macrophage cells2 and almost 600
lipids from human plasma70 using MS and statistical bioinformatics techniques. This ability
to simultaneously assess the metabolic dynamics of hundreds of lipid species reveals a
wealth of information regarding the cellular lipidome. On a more general scale, the LIPID
MAPS consortium has embarked on a time–dependent study of a wide range of lipid classes
in mouse macrophage cells, in response to stimulation by a number of agonists such as
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Kdo2-lipid A (KLA), Adenosine TriPhosphate (ATP) and 25-hydroxy-cholesterol. Large-
scale integrated studies have been carried out on both cultured cells such as the RAW264.7
cell-line and on primary cells such as Thioglycolate-Elicited Peritoneal Macrophages
(TGEM) and Bone-Marrow Derived Macrophages (BMDM). Quantitative data from these
experiments are being used to validate existing lipid networks and elucidate novel
interactions. MS quantitative measurements from time course experiments on the various
categories of lipids are obtained from the individual LIPID MAPS cores in Microsoft Excel
or text format. These heterogeneous formats are then imported into a common data format
prior to processing and conversion into Oracle database tables. Data on different cell
samples (biological replicates), and/or different MS runs (technical replicates) for each lipid
species is consolidated. A middleware layer composed of a web server and PHP/Perl
scripting has been deployed used to create a web-based user interface with the MS data
stored in an Oracle database. All calculations used to display averages of technical and
biological replicates, as well as all Standard Error of Mean (SEM) and standard deviation
calculations are performed via Structured Query Language (SQL) code. All online data
displays were integrated with the LIMS system (via sample barcodes) and the LIPID MAPS
structure database (via LM_ID identifiers where applicable), allowing seamless navigation
across both data and metadata. A software drawing component called dynamic graphics
(GD, http://www.boutell.com/gd/) was used to generate online graphs “on-the-fly”, in
response to user input. The database schema design was optimized for access speed and high
data integrity. A set of online query and display tools was developed to allow the end-user to
view MS time course data in a number of different formats (Figure 18). These include
tabular and graphical displays of data as averages of technical and biological replicates, as
well as “drill-down” links to the corresponding LIMS metadata (cell samples) and structure/
classification information (analytes). All lipidomic and gene-array data generated by the
LIPID MAPS consortium is available in the ‘Resources/Data’ section of the website.5 With
a view to enabling lipidomics researchers to identify discrete lipid species, an online library
of lipid standards, including tandem mass spectral data generated by the LIPID MAPS core
facilities, has been made available on the LIPID MAPS website. This database currently
consists of over 550 analytes spanning the 8 major lipid categories with annotated diagnostic
product ion identifications and with links to molecular structures and MS acquisition
protocols used to generate the raw spectra
(http://www.lipidmaps.org/data/standards/index.html).

6. Models of Lipid Metabolism and Pathways
Pathways may be broadly described as models that characterize movement of material
through a network of molecular species and processing steps. They serve as the basis upon
which much of the new field of systems biology must build. Many tools have become
available over the last 10 years for enabling biological pathway construction.71 Their
construction has been stimulated by the growth in information resulting from adoption of
new laboratory tools accompanying high-throughput data acquisition, such as mass
spectrometry.1b,72 The process of constructing pathways requires ready access to
information in the form of experimental data of a quantitative nature. The use of reference
model pathways as starting points for new work, as well as inclusion of well-characterized
compounds in pathway schemes, are also of great importance.

Lipids play central roles in energy storage, cell membrane structure, cellular communication
and regulation of biological processes such as inflammatory response, neuronal signal
transmission and carbohydrate metabolism. Organizing these processes into useful,
interactive pathways and networks represents a great bioinformatics challenge. The KEGG
consortium maintains a collection of manually drawn pathway maps73 representing current
knowledge on the molecular interaction and reaction networks, several of which pertain to
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lipids including fatty acid biosynthesis and degradation, sterol metabolism and
phospholipids pathways. Additionally, the KEGG Brite74 collection of hierarchical
classifications includes a section devoted to lipids where the user can select a lipid of
interest and view reactions and pathways involving that molecule. A number of category-
specific lipid pathways have been constructed, notably the SphinGOMAP,75 a pathway map
of approximately 400 different sphingolipid and glycosphingolipid species.

In general, the field of metabolomics involves inducing perturbations to the ongoing state of
living systems and subsequently monitoring changes to compounds at specific time points.
The interactions among components of a pathway are then inferred by a variety of
techniques, including metabolite fingerprinting and profiling, and by comparison between
organisms that have been genetically perturbed or subjected to altered nutritional states.71c,d

A recent review of pathway editing tools76 points out that a major function of pathway
visualization tools is to enable new insights into biology. The choice of a program depends
upon the task to be accomplished. For example, a tool may be selected based upon the
nature of the data to be examined, or whether mathematical modeling or statistical analysis
is to be performed.

An important function of pathway editor programs, in general, is to permit exchange of
pathways. Different file format standards exist for this purpose. They include KEGG
Markup Language (KGML),77 SBML,53b BioPAX,52 and CellML.78

To construct pathways, the LIPID MAPS Bioinformatics core is using two pathway editing
tools: VANTED79 and the LIPID MAPS Pathway Editor, which is based upon a toolkit
referred to as the BioPathways Workbench.53a,80 These tools read data from files and/or
directly from databases and enable viewing of experimental data in the drawing panel. Most
importantly, they enable setting node appearance on an individual basis, thus providing
important visual clues as to the roles of the molecular species in the pathway. The Pathway
Editor presents measurement data according to experiment and enables detailed viewing of
data that may be selected based upon the treatment, reproducibility of the measurements,
and other, more qualitative aspects, in the judgment of the user. Both Pathway Editor
(Figure 19) and VANTED (Figure 20) have Java-based GUIs providing a comprehensive
range of viewing and import/export formats.

Various methods are employed when constructing pathways. For example, a user may
position a node in a pathway on the basis of whether the measured data that is presented
meets with expectations according to domain knowledge, including early or late
responsiveness to a stimulus, and the magnitude of the response. Automated selection and
layout, including filtering nodes based on quantitative or qualitative features, are also
commonly used. The LIPID MAPS project has manually adapted mouse and human
pathways relating to lipid metabolism from various sources and made them available for
downloading through the Pathway Editor for viewing and modification.

7. Statistical Analysis, Correlations and Integration of Genomic and
Lipidomic Data in Macrophages

From a systems perspective, the genome, metabolome and proteome provide the complete
parts-list which can be used to reconstruct networks. However, in a given context, the entire
parts-list may not be of relevance. Hence, context-specific data, such as gene-microarray or
other types of genomic data, metabolomic data and proteomic data obtained from specific
experiments, can be used to obtain a refined (sub)-parts-list using various statistical analyses
such as identification of significantly regulated genes and analysis of variance (ANOVA).
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Such a refined parts-list serves as the starting-point for network reconstruction by
integration of experimental data and legacy knowledge.81 The tools for network
reconstruction include pathway enrichment analysis for studying pathway-level sub-global
changes, motif-discovery for co-regulated genes and correlation analysis for comparing
different gene, proteins or metabolites. Nextgen sequencing methods are now beginning to
provide very accurate transcript measurements and will no doubt be used in gene expression
studies. Once the transcriptomic changes are deciphered from the mapping of sequence tags,
strategies as the ones described for analog microarray experiments can be used.82 In this
section, various bioinformatics tools used for analyzing different types of data and their
integration are discussed. Where appropriate, the data and studies from mouse macrophage
RAW264.7 cells in LIPID MAPS have been used for illustrative purposes.

7.1. Identification of Significantly Regulated Genes
Gene microarray experiments provide a cost-effective way of studying the whole-genome
level response of the cell or tissue system. While there are about 30,000 genes in mouse and
human, in any experimental/treatment condition, only a small fraction of these genes show
significant changes as compared to the normal (un-treated) condition. The naïve approach to
identify which genes are significantly regulated would be to use a cut-off on the ratio of the
intensities for treatment versus control conditions. However, due to the differences in the
hybridization efficiency of different probes for the genes, a wide-range of image intensity
values are obtained across the whole genome. Coupled with the measurement noise and
other effects, the large intensity range makes it difficult to use a single threshold for
different genes on the ratio of the intensities between the treatment and control conditions.
Hence, in the last fifteen years, several approaches have been developed for the analysis of
transcriptomic data to account for the wide intensity range across the gene-chip. Variance
modeling with prior exponentials (VAMPIRE),83 CyberT,84 and LInear Models for
MicroArray data (LIMMA)85 techniques are commonly used to identify the significantly
regulated genes. VAMPIRE involves modeling the global variance structure of array data in
the context of a Bayesian framework. CyberT employs statistical analyses based on
regularized t-tests that use a Bayesian estimate of the local variance among gene
measurements. Both VAMPIRE and CyberT are available as web application. LIMMA uses
linear models for the analysis of differentially expressed gene and is available as a part of
Bioconductor project (http://www.bioconductor.org/) in R programming language
(http://www.r-project.org/). These methods are able to detect gene expression changes with
only two array replicates. In the analysis of LIPID MAPS microarray data in RAW264.7
cells upon KLA and Compactin (a HMG-CoA reductase inhibitor86) treatment, CyberT was
applied.2 Figure 21 shows the number of significantly regulated (up - or down-regulated)
genes at various time-points. In this analysis, a gene is identified as significantly regulated if
its p-value is less than 0.01. Generally, multiple testing correction methods such as false
discovery rate and Bonferroni correction are used for further refinement87. In this dataset,
compactin showed mild transcriptomic response. Bonferroni and FDR corrections were too
stringent for this dataset and resulted in no significantly regulated genes. Thus to find the top
significantly regulated genes, no further correction was applied. For further analysis, one
may also use a cut-off of 2.0 on the fold-change to generate a refined list of significantly
regulated genes.

Ultimately, the utility of any combination of microarray platform and analytical method is
determined by how well statistical predictions are matched by experimental validation. For
expression analysis, Quantitative - Polymerase Chain Reaction (QT-PCR) assays are
performed. LIPID MAPS investigators have several hundred validated PCR primers for
genes that are of particular interest to them. These primers are used to validate results of
microarray experiments. While not comprehensive, sufficient probes are available to
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determine whether different analysis methods provide reliable results. Validation of
microarray experiments in RAW264.7 cells for several genes using QT-PCR is discussed in
a recent study.2

7.2. Analysis of Variance (ANOVA)
T-test is sufficient to compare between two conditions, namely, control or untreated samples
and stimulated or treated samples. Hence, methods such as VAMPIRE, CyberT and LIMMA
can identify the differentially regulated genes between two conditions corresponding to a
single treatment. However, in the case of multiple treatment experiments or experiments at
several time points, the above approaches cannot delineate the effect of different treatments
on a particular gene or other measurements. It is necessary to separate the effect of different
treatments or the time-component to draw rational conclusions from the data. This task is
accomplished by the analysis of variance (ANOVA) approach which has been widely used
to deconvolute the effect of different treatments. In ANOVA, the observed variance in the
measured data is partitioned into the effect of individual factors or treatments.88 If
necessary, terms corresponding to the interactions among different factors can also be
included in the variance partitioning model. Similar to statistical tests such as t-test (used by
VAMPIRE, CyberT, etc.), in ANOVA, a p-value is assigned to the effect of different factors
included in the model. ANOVA can be used to factor out the significance of different
treatments or time-effects on any experimental measurements such as genes,89 proteins90

and metabolites.2 ANOVA can also be used for the identification of significantly regulated
genes as well89 because for the case of one-factor with only two possible values for the
factor (e.g., control vs. single treatment), ANOVA (called 1-way ANOVA) and unpaired t-
test are equivalent although this cannot account for the effect of intensity range on the
measure of variance, a hall-mark of techniques such as CyberT and VAMPIRE. In LIPID
MAPS studies, ANOVA was applied to transcriptomic and lipidomic data from RAW264.7
cells upon KLA and Compactin treatment to separate the effect of KLA and Compactin on
the genes or lipids.2 In a previous study relating to network reconstruction, ANOVA was
applied on the measurement of phosphorylation states of signaling proteins and cytokines to
find putative lumped connections from the stimuli to the signaling pathways or cytokine
regulation.90 Another study suggests that there is potential for further analysis of the
ANOVA results by performing multivariate analyses such as principal component analysis
(PCA) on the interaction terms for different factors91 to find out if such interactions may be
significant under certain conditions. Bi-plots from PCA may also aid in visualization and
interpretation of results. More recently, the combined approach of ANOVA-PCA has gained
considerable attention from the statisticians, especially when three or more factors need to
be analyzed.92 Their utility for analyzing data with only two treatments may be limited.

7.3. Gene Ontology and Pathway Enrichment Analysis
The differentially-regulated features obtained from any statistical test must be interpreted
biologically. In this direction, gene ontology (GO) and pathway enrichment analysis is
prevailing significantly. These analyses identify which processes and pathways are affected
significantly as compared to what would be expected by chance in the experiment. There are
many tools available as software or web applications. For example, AmiGO,93 Goby (part of
VAMPIRE suit)83a and Database for Annotation, Visualization and Integrated Discovery
(DAVID)94 are available as web application. SubpathwayMiner is available as a part of
Bioconductor project in R programming language.95 This database-driven application stores
annotation data from several sources, namely, GO, KEGG, TRANSFAC96 and Biocarta.97

In addition, it can be easily updated with user-defined annotation lists.83a Most of these
applications use hypergeometric distribution or Fisher exact test to compute the enrichment
likelihoods.

Subramaniam et al. Page 23

Chem Rev. Author manuscript; available in PMC 2012 October 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Goby was used extensively in the analysis of gene expression data in RAW264.7
macrophages.2 Some of the results for the microarray data from RAW264.7 cells in the
KLA/Compactin study are listed in Table 5 which shows that majority of the genes from the
KEGG Toll-like Receptor (TLR) pathway are upregulated. Other pathways relevant to
inflammation, such as Jak-Stat, NF- κB and cytokine-cytokine receptor interaction KEGG
pathways are also significantly enriched.

7.4. Sequence Motif Discovery
Identification of transcription factor binding sites (TFBSs) or motifs has been a challenge in
the area of bioinformatics. The de novo discovery of the motifs requires the availability of
TFBS databases and state of the art software tools. JASPAR98 and TRANSFAC96 have been
good resources for obtaining the Position Weight Matrices (PWMs) for several hundreds of
transcription factors (TFs). There have been two approaches in the use of alignment for
motif discovery. The first approach compares the TFBSs alignment on the promoter
sequence with the alignment on random sequence based on Adenine(A), Thymine (T),
Cytosine (C) and Guanine (G) composition of the genome.99 The second approach compares
the enrichment of TFBSs alignment in target set with background set.100

Based on the second approach, a novel computational method to identify regulatory motifs
in co-regulated genes was developed. The method builds on previous efforts to find DNA
motifs that discriminate between the foreground (i.e., co-regulated) and background
promoter sequences, allowing to harness both positive and negative binding information.
The algorithm attempts to find a motif that has maximal enrichment in foreground sequences
relative to background sequences. Enrichment is found by considering the overlap of genes
in the foreground with genes that contain the motif, using the hypergeometric distribution to
calculate the probability of this overlap by chance. The algorithm works by exhaustively
checking short motifs of a given length for enrichment between foreground and background
promoter sequences, keeping the highest scoring motifs. The highest scoring motifs are then
used as seeds to a greedy optimization algorithm that creates degenerate probability matrices
that maximize the enrichment of the motif in the positive set of sequences. This formulation
requires surprisingly few assumptions, offering a natural description of motif quality that is
applicable to a variety of problems such as finding binding sites that are associated with
changes in gene expression or Chromatin immunoprecipitation (ChIP)-chip results. An
application of this method to identify enriched motifs in the promoters of genes induced by
KLA in RAW264.7 cells from the time course experiment is shown in Figure 22.

Three of the most highly enriched motifs identified by this method correspond to binding
sites for transcription factors that were previously established to mediate responses to TLR4
activation; NF-κB, Interferon Response Factors (IRFs), and Activator Protein (AP)-1/
Activating TF (ATF)/cAMP response element-binding (CREB) family members.
Furthermore, many of the genes identified as having NF-κB, interferon-responsive sequence
element (IRSE), or AP-1/CREB sites were shown to be direct targets of these TFs by
conventional assays, providing one line of validation for this method. In contrast,
conventional motif discovery methods failed to identify NF-κB or AP-1/ATF-1/CREB
binding sites in transcriptionally activated genes. One of the interesting features of the
enrichment plot illustrated in Figure 22 is the temporal windows in which IRF3/ISRE motifs
and AP-1/ATF/CREB motifs appeared. These data have implications for understanding how
the complex transcriptional response to TLR4 activation is regulated in a time-dependent
manner. Several other sequence motifs are identified by this motif method in the set of
Lipopolysaccharide (LPS) responsive genes, and provide the basis for a series of new
studies to identify roles of other classes of transcription factors in regulating the genome-
wide response to TLR4 signaling.

Subramaniam et al. Page 24

Chem Rev. Author manuscript; available in PMC 2012 October 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7.5. Processing and Analysis of Proteomic Data
A novel, MS-based approach for the relative quantification of proteins, relying on the
derivatization of primary amino groups in intact proteins using isobaric Tags for Relative
and Absolute Quantitation (iTRAQ) was used to measure relative protein intensities in
RAW264.7 cells in the presence or absence of KLA. The technique is based on chemically
tagging the N-terminus of peptides generated from protein digests that were isolated from
different samples, e.g., KLA-treated cells and control cells101. The two labeled samples are
then combined, fractionated by nanoLC, and analyzed by tandem mass spectrometry.
Database searching of the peptide fragmentation data allows identification of the labeled
peptides and hence the corresponding proteins. Due to the isobaric mass design of the
iTRAQ reagents, differentially labeled proteins do not differ in mass; accordingly, their
corresponding proteolytic peptides appear as single peaks in MS scans. Fragmentation of the
tag attached to the peptides generates a low molecular mass reporter ion that is unique to the
tag used to label each of the digests. Measurement of the intensity of these reporter ions
enables relative quantification of the peptides in each digest and hence the proteins from
which they originate. The iTRAQ method was used to measure relative protein levels in
three samples of RAW264.7 cells treated with KLA for 24 hours and three corresponding
control cell samples. Protein KLA/Control ratios were then compared to messenger
ribonucleic Acid (mRNA) ratios generated from gene array experiments on RAW264.7
cells. Statistical analyses using covariance plots of the 24-hour protein ratio data with
mRNA ratios at multiple time points established a maximal correlation at 18 hours, as would
be expected when one considers the time-lag between transcription and translation (Figure
23).

A high correlation between mRNA and protein KLA/Control ratios was observed for those
proteins whose ratios were increased or decreased 2-fold or more. A disadvantage of the
“shotgun” LC-MS approach used in these iTRAQ experiments is the lack of sensitivity for
detection of low abundance proteins. A tagged tryptic digest of the entire cell extract is
applied to the LC column and, due to sample complexity and a large range in protein
concentrations, only about 25% of proteins (as compared to gene array experiments) are
detected. A consequence is that many enzymes involved in lipid metabolism are not detected
by the iTRAQ method. This disadvantage could be overcome by employing additional
purification steps prior to LC-MS, such as subcellular fractionation and affinity
chromatography. In addition, this methodology is capable of detecting proteins with post-
translational modifications, providing another level of information with regard to function
and activity.

7.6. Correlation Analysis
Pearson correlation is widely used to find which variables show similar changes across
different experiments or time-points.102 Pearson correlation coefficients can also be used to
perform hierarchical clustering103 and generate correlation networks.104 Such networks may
capture some aspects of the causality among variables or factors. A more elaborate
discussion on the issue of correlation versus causality is presented elsewhere.105 Pearson
correlation has also been used, at least conceptually, in various ways in data-driven network
reconstruction106 using approach such as least-squares or principal component regression90

and partial least-squares.107 Correlation analysis has been applied to various biological
system to elucidate how different molecular components function in a network and to
understand their phenotypic similarities and differences. Some examples are succinctly
described below.

Fiehn and Weckwerth108 have presented an interesting review on how the data on gene,
protein and metabolite measurements are correlated resulting in complex networks. A
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related min-review is presented by Steuer et al.109 They have also used metabolite-
metabolite correlation analysis-based clustering and principal component analysis (PCA) to
develop and visualize data-derived metabolic networks.110 The visualization approach also
includes a clique finding algorithm for improved interpretation. Recently, they have used
PCA and partial least squares analysis for feature extraction to differentiate between the
responses of different metabolites in rice to a bacterial pathogen.111 Schmitt et al.112 have
used correlation between time-lagged data on genes to develop gene interaction networks.
They have used gene expression time-course data under different light conditions and were
able to find several gene groups containing light-stimulated gene clusters, such as
Synechocystis sp. photosystems I and II and carbon dioxide fixation pathways. Numata et
al.113 have used mutual information as a non-linear correlation metric. They have shown
that the mutual information-based analysis was able to uncover some non-linear
relationships undetectable by the Pearson coefficient-based analysis in a data set from
Arabidopsis thaliana. Fukushima et al.104a have also used correlation networks and a graph-
clustering approach to find modules using data from 3 Arabidopsis genotypes, namely,
Col-0 wild-type, methionine over-accumulation 1, and transparent testa4 in samples of roots
and aerial parts.

To analyze the LIPID MAPS data, Pearson correlation was used to find the similarity
between two time-courses.102 In RAW264.7 cell experiments, the time-course for gene data
or lipid data consisted of 8 time points (including the value at t = 0 hr). Correlation value can
be thought of as the cosine of the angle between the normalized time-course curves (z-
scores). Some details previously used in such analyses are presented below.

Gene and lipid data—For the genes, the ratio of the value under the treatment condition
to the value for the control condition was used at each time point. In order to compute the
correlation between the time course for the lipids and the time courses for the genes in the
same pathway (curated list of genes for each lipid pathway as listed on the LIPID MAPS
website (http://www.lipidmaps.org/pathways/vanted.html) or the list of genes from KEGG
pathways) the ratios to control values were used for the lipids as well. The time points for
the lipids and the genes were [0 0.5 1 2 4 8 12 24] hr.

Consideration of time-delay—Since it is the enzyme or the protein level that may affect
the time course of the lipid, in the absence of specific knowledge for individual genes, a
time-delay of 4 hrs corresponding to the time taken for mRNA translation, post-translational
modification and protein translocation was used for gene data.

Weighted correlation—Since the measurements are taken at non-uniform time-intervals
(more frequently at the beginning and less frequently at the later time-points), a weighted
correlation in which the time-points were weighted proportional to the time-interval is more
appropriate than the raw correlation described above. Assuming a weight vector, W = [w1,
w2, w3, w4, w5, w6, w7, w8,], the weighted correlation was computed as follows:2

First the weighted mean, weighted standard deviation and weighted z-score (n = 8, the
number of time-points) were computed, and then the weighted dot-product was computed:
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(1)

In the above, for convenience, the weight-vector W was normalized to unit sum as

 at the beginning so that the division by  is not explicitly required in the
above expressions.

The above equations are easily extended for two data matrices X and Y with several rows in
each where rows correspond to different gene or lipids and the columns correspond to
different time points as in the above equations.

The data values to be used with the weighted correlation—Linear interpolation of
data in each time interval was used as an approximation to the scenario where data was
measured at equal time intervals. Hence the mean value of the data in the time interval (i.e.,
(xk + xk+1))/2 for the kth time-interval) was used.

Lipid and Gene categories—Lipid-gene correlation was performed for five different
lipid pathways, namely eicosanoids in the media, sphingolipids, sterols, glycerolipids,
glyrecophospholipids and unsaturated fatty acids inside the cells. For the LIPID MAPS
specific curated gene list, the pathways, used included: eicosanoid biosynthesis, sphingolipid
biosynthesis, cholesterol biosynthesis, glycerolipid/glycerophospholipid biosynthesis and
fatty acid biosynthesis. In each selected pathway, only those genes which show significant
regulation (differential expression) at one or more time points, computed using CyberT 84

were used. More details can be found elsewhere.2

Display of the Data and Correlations—For the display of the data and the correlation,
correlation-based hierarchical clustering 103 was used to layout the variables (lipids and/or
genes) so that the rows corresponding to the variables with high correlation were displayed
near each other in the heat map for the data. The Statistics/Bioinformatics toolbox of
Matlab®114 was used to perform the computations. Using the hierarchical clustering tools,
clusters were identified (distance-method = user-specified weighted correlation (Eq. 1),
linkage-method = average, cut-off criterion = distance; cut-off = 0.75). It can be noted that a
correlation range of [−11] corresponds to the equivalent distance range of [2 0] (d = 1-r). So,
the cut-off of 0.75 on the distance corresponds to a cut-off of 0.25 on the correlation. When
applied on the lipid-gene data sets, each cluster may have one or more of genes and lipids.
Some clusters may include no genes or no lipids (but not empty).

The interesting clusters are those which have at least one gene and one lipid since they
indicate that such genes and lipids are changing together and serve as a target for
investigating causal relationships. In the case of lipid-gene correlations, the information flow
was from the genes (proteins/enzymes) to the lipids (after accounting for the time-delay).
Using this strategy it would be possible to generate correlation-based directed graphs. The
links between two lipids or two genes would then be bidirectional.
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For illustrative purposes, the heat map for the data for the eicosanoids (measured in the
media) is shown in Figure 24. The prostaglandin lipids (e.g., prostaglandin (PG) E2 (PGE2),
PGJ2 and PGF2α) and the prostaglandin synthase genes (Ptgs2, Ptges) changed in a similar
manner resulting in strong correlation between them. The mechanistic relationship between
these genes/enzymes and their corresponding products is shown in the pathway diagram of
Figure 20; e.g., production of PGE2 was catalyzed by the enzyme corresponding to the gene
prostaglandin E synthase (Ptges). Similarly, the correlation analysis between various sterols
and the genes for cholesterol biosynthesis suggested that its precursors and its several
derivatives co-vary with the mRNA of HMG CoA reductase (Hmgcr) and cholesterol 25-
hydroxylase (Ch25h). Correlation analysis between the sphingolipids and related genes has
shown that several sphingolipids are co-clustered with the important genes in the pathway
including serine palmitoyltransferase (Sptlc1, Sptlc2) and ceramide synthases (CerS) Lass4
and Lass62. At a semi-systemic level, these results had suggested that the joint-correlation
analysis can potentially uncover such underlying physical mechanisms.

8. Quantitative Kinetic Models of Lipid Metabolism
All biological processes are inherently dynamical systems. Thus the use of systems biology
approaches is becoming common in the study of metabolic and other networks to elucidate
their functions and roles in human health and diseases. Towards this end, several software
have been developed which allow various types of modeling and analysis, such as steady
state analysis, kinetic modeling, parameter estimation, sensitivity analysis, metabolic control
analysis, stochastic simulation and consideration of spatial variation (partial differential-
equation-based modeling). An extensive list of such software is available at the SBML
website.53 Some of them are: CellML (http://www.cellml.org/,115 JSim
(http://nsr.bioeng.washington.edu/jsim/docs/overview.html), VCell
(http://www.nrcam.uchc.edu/;116), Systems Biology Workbench (http://sys-bio.org/;117),
COPASI (http://www.copasi.org/;118) and MCEll (http://www.mcell.cnl.salk.edu/;119).
Their salient features are summarized in Table 6. All these software have some capability to
plot and visualize the results of simulation. This comparison, although simple and concise,
can help the modeler choose the appropriate software application. Majority of the software
allow the modeling of signaling and metabolic pathways as a biochemical reaction system.
Most of them have SBML import/export capability although the information related to
pathway/network visualization may be lost during SBML export, a common problem
relating to the interoperability of most such software applications.

Among many metabolic pathways, there has been tremendous progress in modeling of
glucose metabolic networks. Several researchers have developed genome-scale metabolic
networks for different organisms such as Saccharomyces cerevisiae, Escherichia coli and
human.120 There have been efforts in the modeling of signaling pathways as well. Some of
the examples include modeling of Mitogen Activated Protein (MAP) kinase pathway,121

regulation of cell-cycle122 and calcium signaling.123 Some of the above approaches are also
being used to study plant metabolism. Fiehn et al. have worked extensively on metabolite
profiling and their analysis for Arabidopsis thaliana.124

Due to the complexity of lipid metabolism, and the paucity of data for its many metabolites,
there are only a few models of lipid metabolism available in the literature. For example,
Callender et al. have developed a model of diacylglycerol dynamics in the RAW264.7
macrophage.125 Yang et al. have developed a model of arachidonic acid (AA) metabolism in
human polymorphonuclear leukocytes.126 Only two models of sphingolipid metabolism are
found in the literature, one by Alvarez-Vasquez et al.127 for yeast and one by Henning et
al.128 (cell system was not specified). All of these models suffer from the unavailability of
sufficiently large datasets. Though there are several enzymes for which activity data is/are
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available (Table 7), their number is still significantly smaller than numbers of enzymes in
the pathways.

Towards a comprehensive study of lipid metabolism, the LIPID MAPS consortium69 has
quantified the global changes in lipid metabolites ("lipidomics"). Using LIPID MAPS data,
context specific pathway models were developed for several lipid categories by integrating
the legacy knowledge and experimental data on lipid changes in macrophages upon KLA
stimulation.4a,129 A central question that can be addressed through quantitative
measurements of lipids as a function of time is the flux of metabolites through the cellular
network. This is possible as the rate of change of the metabolite concentrations, which can
be computed directly from the time-course data, is related to its fluxes corresponding to the
different reactions. This enables the development of kinetic models for several lipid
pathways. Once the kinetic model is developed and the rate-parameters are estimated, the
reaction fluxes (and their relative distribution in different branches of the network) can be
computed. It is useful to note that in most kinetic modeling studies on biochemical
pathways, generic values for the rate parameters are used because system- and context-
specific values are lacking. As we have illustrated in a previous review,105 lack of such
specific rate-parameter values is a major challenge in computational systems biology.
However, in the LIPID MAPS study, due to the availability of a large amount of data (about
5-data points per unknown rate-constant), the rate-constants were estimated with good
accuracy129. A matrix-based approach and optimization was used to estimate the rate
constants using experimental data and known network topology from the literature while
ensuring that the rate constants are positive. Modeling of the eicosanoid pathway is
presented as an example. More details can be found elsewhere.129 The network model used,
which includes only the measured metabolites, is presented in Figure 25.

8.1. Kinetic Model and Parameter Estimation
A kinetic model was developed for the simplified lipid network involving AA
metabolism.129 The reaction rates were described by linear or law of mass action kinetics.
Thus, the flux expressions obtained from this scheme were linear in rate parameters and
nonlinear in metabolite concentrations. The matrix-based approach to estimate the rate
constants is described below in terms of the reaction numbers labeled in Figure 25 and listed
in Table 8. The metabolite concentrations were known and the rate parameters were
unknown. Hence, the ordinary differential equations (ODEs) describing the rate of change of
concentrations of metabolites can be rearranged in a matrix format as shown in Eq. 2 for
[PGH2] and [PGD2].

where the rate constants ki (i = 10, 11, 12, 13, 15, 17, 18, 19) are as defined in Table 8.
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(2)

X is completely known. The left hand side of the equations (matrix Y) was computed using
discretization and the experimental data. To avoid singularity during matrix inversion and to
require positive values of the rate parameters, a constrained least-squares approach was used
(Matlab®114 function lsqlin). The parameter values thus obtained were used as good initial
values for further refinement by using generalized constrained nonlinear optimization
(Matlab® function fmincon). The objective function for use with fmincon was:

(3)

where, nt is the number of time-points and nsp is the number of species. The first-term
represents the fit-error between the experimental and predicted concentrations and the
second term represents the fit-error between their experimental and predicted derivatives.
Different weights (wi) can be assigned to these two terms to improve the fit. The initial
concentrations of the metabolites were also optimized in a narrow range around the
experimental values. When data on more than one condition was available, then all the data
was used to compute the fit-error by simulating the model several times individually and
minimizing the objective function collectively.

Table 8 lists the reactions and the corresponding estimated reaction-rate parameters included
in the model. Figure 26 shows the simulation results.129 For most time points, the difference
between the predicted and experimental data was within the standard-error of the mean
(SEM) (Figure 26). Thus, good fit to the data from both treatment and control conditions
suggested that the topology of the simplified network was correct and captured the important
metabolic and signaling effects. The model was validated by excluding the data on one of
the intermediate metabolites from objective function minimization. The rate-parameters
were estimated and the predictions were compared with the actual experimental data. There
are two intermediate metabolites present in the network: PGD2 and PGJ2. The validation
was performed on both of the metabolites and satisfactory results were obtained. Parametric
sensitivity analysis was also performed.129 In short, for each parameter and each metabolite,
monotonic increase, decrease or no change was observed depending upon the respective
location of parameter and the metabolite chosen in the network. The change in the
parameters belonging to the upper part of the network produced a larger change in almost all
metabolites as compared to those for the parameters belonging to lower part of the network.
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8.2. Time-Scale Analysis
Time-scale characterization is important to understand the metabolite dynamics and its
response time.129 The analysis for the AA metabolism model was performed by computing
eigen-values and eigen-vectors of the Jacobian matrix of ordinary differential equations at
the steady-state conditions. Time-scale analysis has been used previously to find the slow
and fast modes in nonlinear dynamical systems.130 Characteristic time-constants (time-
scales) are the inverse of the eigen-values since the dynamic response of the system for
small perturbation from the steady state consists of exponential terms such as exp(−λt), λ
being an eigen-value.131 As a consequence, if all the eigen-values have negative real-part
then the dynamic system would be stable and also, if some of the eigen-values are complex
then the system would exhibit sustained or un-sustained oscillatory response for small
perturbations. In the time-scale analysis of the AA metabolism, the eigen-values were split
into three broad ranges. For each eigen-value, the metabolites with substantial contribution
to the corresponding eigen-vector were identified. Depending upon the eigen-values and
metabolites significantly contributing to the corresponding eigen-vectors, these metabolites
were divided into three categories as listed in Table 9. Medium time scale metabolites go up
and return to the basal levels in 24 hr time; however the slow time scale metabolites show
monotonic increases up to 24 hr (Figure 26).

8.3. Comparison of Rate Parameters for the Enzymes
The values for the rate constant for the enzymes Cyclooxygenase (COX) reported in the
literature were based on in-vitro measurements with partially purified proteins.132 Thus, it
was assumed that the literature values represented its basal activity and compared these
activities (flux through the enzyme) with predicted activities of these enzymes in the
“control” simulation. The computed value (10−13 µM/min/cell) and reported value (10−14

µM/min/cell) for COX are within one order-of-magnitude.133

8.4. Stable Isotope Labeling for Improved Characterization of Fluxes
Stable isotope labeling of one key metabolite in a given metabolic pathway introduces point
(species)-wise perturbation in the network. For system identification purposes, labeling is
equivalent to exciting the system which helps decipher the network topology. Stable isotope
labeling can be used to differentiate, in the production of metabolites in the downstream
parts of the above network (Figure 25), the contribution of the metabolite that is labeled
from the contribution by other metabolites. The propagation network of the labeled
metabolite is less complex than the original propagation network. Thus, using labeled data,
the reaction rate parameters can be estimated with better accuracy. Labeled data helps
identify alternate/new pathways.134 Further, it provides a more direct approach of
computing fluxes and estimating the split ratios at branch points. Mass balance can be used
to detect the leakage through unmodeled pathways and potential connections between two
different parts of the pathway can be detected. Deconvoluting the spectra in the context of
lipid metabolites to identify peaks has been discussed previously.134a The main source of
complexity in modeling labeled data is the presence of feedback loops.135 When reactions
result in elongation or breakdown of one or more chains of labeled carbon atoms or result in
other structural changes then labeling of multiple carbon atoms changes even if all the
carbon atoms in the original labeled metabolite were 13C. These complexities need to be
taken into account in using labeled data in kinetic modeling studies.

9. Perspective and Future of Lipidomics
Although the field of lipidomics is relatively young, quantitative estimation of lipids over a
wide dynamic range is already possible and comparative analysis of lipid compositions and
concentrations between normal and pathological tissues is beginning to yield rich insights
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into lipid-associated mechanisms of pathology. With next generation mass spectrometers,
methods for quantitative identification of lipid molecular species and context-specific
association of lipid species with proteins involved in biosynthesis and metabolism and the
concomitant genes encoding these proteins, several lipid specific pathways will be
reconstructed in the future. These pathways will help delineate physiological function of
cells and tissues, in conjunction with associated cellular signaling and transcriptional
changes, in normal and pathological conditions. The early efforts serve as a harbinger for the
integration of lipids as important molecular players in physiology and pathophysiology
leading to integrative systems biology approaches to describing function.

The challenges for lipidome bioinformatics and systems biology are manifold. With
increasing ability to catalog lipids, the number and diversity of lipid species will increase
dramatically. The classification of these lipids, their organization and most importantly
characterizing their functional role will form a significant part of the lipidomics future. Most
importantly, the quantification of lipids in a contextual manner, i.e. identifying small
differences between lipids under two different conditions, normal and pathological or
untreated and treated tissues, will form a significant challenge even with the availability of
standards. Characterization of lipids in vivo is a daunting task and despite advances in
imaging mass spectrometry, image and data analysis to quantify specific lipids will require
novel methods.

To study differences between normal and pathological samples it is not adequate to merely
measure and quantitate lipid species. It will be important to decipher and study the
biochemical pathways associated biosynthesis and metabolism of lipids and to study the
fluxes associated with lipid changes with disease or treatment. The fluxes will also reveal
hitherto uncharacterized pathways. Isotopomer experiments are one route to deciphering the
unknown pathways. Using labeled data, the reaction rate parameters can be estimated with
better accuracy. Labeled data helps identify alternate/new pathways.134 Further, it provides a
more direct approach of computing fluxes and estimating the split ratios at branch points.

Proteins, genes and lipids act in combination in pathways to create biological function. The
key challenge for systems biology lies in the integration of proteomics, genomics, regulatory
genomics and metabolomics data to provide a context-specific systems-level perspective on
phenotypic responses of living systems to stimuli. Identifying all the parts lists, such as the
cell or tissue-wide lipidome, is only a first step and needs to be significantly extended to
identify interactions, mechanisms, and pathways. While traditional statistical methods can
be applied to each type of data, e.g. gene expression, proteomics or lipidomics, the
integration across these data to provide mechanistically meaningful models continues to be a
difficult challenge. Correlation methods and analyses suggest mechanistic connections, but
have no foundation for causal relationships. Use of prior knowledge can provide useful
constraints in developing network models, but also has the potential to bias the analyses of
data to yield false connections and pathways. Dynamic measurements, when analyzed in
context, can provide causal links, but for these to be accurate the density of measurements
across time needs to be very high. Synergistic measurements of all components and “ome-
integrated” reconstruction of pathways is essential for providing a mechanistic model. Even
then, this model needs to have the dynamic element, which can only be obtained by time-
varying measurements at necessary and sufficient granularity. Once such a dynamic model
is created, the scope exists for quantitative modeling using physical principles to obtain
predictive input-response relationships.

In developing computational models of biological processes, there is a growing realization
that given the enormous complexity of biochemical interactions and paucity of data (as
compared to how much data is required to uniquely identify the networks and parameters),
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unique networks would be seldom obtained in data-driven network identification. When
manageable, this degeneracy in network reconstruction is not necessarily bad because it
provides new and alternate hypotheses that can be further tested by knockout and pathway
inhibition (intervention) studies, thus leading to the refinement of the network models. To
date, most approaches to incorporate prior knowledge into network modeling are based on
Bayesian network or its variants. Can prior knowledge be systematically included in
deterministic approaches (e.g. state-space formulation) as well? In all likelihood, the answer
is yes. Such a framework must be able to operate on the network topology and the
parameters simultaneously. It will require the ability to manipulate the topology, the
complex expressions for the postulated cause-effect relationships and the corresponding
model parameters simultaneously. It is imperative that such an approach will require
nonlinear optimization methods. Given the complexity of nonlinear optimization, stochastic-
search based approaches are expected to be more practical for such an application. 105

It is anticipated that in the coming decades several models of lipid metabolic and signaling
networks will be developed and systems biology approaches will provide predictive
approaches to input-response relationships in cellular function. The tools of informatics and
systems biology will be valuable in this research landscape.
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Figure 1.
Overview of the process of performing a quantitative lipid analysis of macrophage cell
sample (in this example, a time-course experiment using bone marrow derived
macrophages). Extraction methods, LC/GC purification methods, MS acquisition strategies
and quantitative standard approaches are optimized for each lipid class.2,70,72
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Figure 2.
Mechanisms of lipid biosynthesis. Biosynthesis of ketoacyl- and isoprene-containing lipids
proceeds by carbanion and carbocation-mediated chain extension, respectively.8
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Figure 3.
Representative structures from each lipid category shown with LM ID, category name,
category abbreviation, and systematic name (Reprinted with permission from Reference 10.
Copyright 2007 Oxford University Press).
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Figure 4.
Overview of LIPID MAPS structure data generation methodology. Starting from specified
abbreviations for lipids corresponding to LIPID MAPS format, the structure generation tools
select an appropriate lipid structure template internally stored in MDL MOL file format,
attach appropriate radyl chains, enumerate appropriate lipid structures and generate a MDL
MOL structure file or SDF file containing structural data along with name and other
ontology data (Reprinted with permission from Reference 13. Copyright 2007 Oxford
University Press).
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Figure 5.
A montage of screen shots showing LIPID MAPS structure drawing tools. The top left box
shows structure drawing tools available on the LIPID MAPS website. The top right box
shows options available for generating a fatty acyl structure starting from either a complete
abbreviation or individual specification of chain and substituent from a with its position and
stereochemistry. The middle box shows an example of structure generation using acyl chains
and head groups for glycerophospholipids. A comprehensive list of commonly occurring
acyl chains and head groups is provided as a pull down list. The button box shows an
example of a structure generated for a glycerophospholipid along with other ontological
information.
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Figure 6.
Overview of LIPID MAPS ontology data generation methodology from structure data.

Subramaniam et al. Page 48

Chem Rev. Author manuscript; available in PMC 2012 October 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Overview of LIPID MAPS Structure Database (LMSD) generation methodology.
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Figure 8.
Description of the LIPID MAPS LM ID.
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Figure 9.
Entity relationship diagram for LMSD showing the Oracle database tables containing
structural and classification information as well as annotations and ontological data. The
unique LM_ID identifier plays a central role as a primary key in this relational schema.
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Figure 10.
A selection of screen shots showing various options for searching the LIPID MAPS
Structure Database (LMSD) and result summary for a specific LM ID.
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Figure 11.
Entity relationship diagram for LMPD showing the Oracle database tables containing
information pertaining to lipid-related genes and proteins for human and mouse species.
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Figure 12.
Overview of the bioinformatics process for creating the LIPID MAPS Proteome Database
(LMPD).
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Figure 13.
Main user interface of LIPID MAPS LIMS (Reprinted with permission from Reference 57.
Copyright 2007 Elsevier Limited).
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Figure 14.
Treatment module of LIMS (Reprinted with permission from Reference 57. Copyright 2007
Elsevier Limited).
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Figure 15.
LIMS reporter (reporting tool) module (Reprinted with permission from Reference 57.
Copyright 2007 Elsevier Limited).
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Figure 16.
A montage of screen shots showing LIPID MAPS mass spectroscopy tools.
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Figure 17.
A standalone Windows application, LIPID MAPS MS Prediction Tools, for predicting
possible molecular species for a given MS ion. The application enables a user to enter the m/
z value of an unknown lipid ion and predict the most likely molecular species. It is available
for download at: www.lipidmaps.org/tools/index.html.
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Figure 18.
Schema for online data display of timecourse results.

Subramaniam et al. Page 60

Chem Rev. Author manuscript; available in PMC 2012 October 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 19.
The Pathway Editor showing the mouse arachidonate pathway and timecourse data mapped
in heatmap format displayed under the lipid and enzyme (gene) nodes. Samples of
RAW264.7 cells (a tissue cell line derived from mouse macrophages) were treated with
KLA for times ranging from 0 to 24 hr. Shown are ratios in pmol/ug DNA for metabolites
and ratios of normalized intensity for RNA spots with respect to untreated control cells.2,80
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Figure 20.
VANTED application showing the mouse arachidonate pathway and timecourse data
mapped in heatmap format displayed under the lipid and enzyme (gene) nodes.
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Figure 21.
Time course of the number of regulated genes in RAW264.7 cells stimulated with KLA,
Compactin and KLA+Compactin.
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Figure 22.
Identification of NF-κB, ISRE and AP-1/ATF/CREB binding sites in KLA-stimulated genes
in RAW macrophages. Blue color indicates significant enrichment of the motif in promoters
of positively regulated genes for each time point.
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Figure 23.
Covariance plot between 24 hour protein data from iTRAQ measurements and gene array
data at various time points (only proteins with K/C ratio >1.5 were chosen).
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Figure 24.
Heat map for the data for eicosanoids (measured in the media) and eicosanoid biosynthesis
related genes (Reprinted with permission from Reference 2. Copyright 2010 American
Society for Biochemistry and Molecular Biology). The four panels correspond to: (1) Data
based on ratio of values for treatment with KLA to the values for control experiments, (2)
ratio of compactin treatment to control, (3) ratio of treatment with both KLA and compactin
to control, and (4) ratio data from (1)–(3) combined. The data in each row is scaled and
offset by the t = 0 value. The names of the lipids/genes displayed on the y- and/or x-axis are
listed in different colors to indicate the clusters.
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Figure 25.
LPS/ KLA stimulated eicosanoid metabolism and signaling pathway. The numbers above
the arrows are reaction numbers (Table 8) and default degradation reactions are not labeled.
Black lines represent lipid metabolism and red lines indicate signaling pathways.
Metabolites and enzymes are represented as rectangular and ovals boxes, respectively. The
measured and unmeasured metabolites are differentiated by thick and thin borders,
respectively. Purple color is used for eicosanoids and green for glycerolipids and
glycerophospholipids (Reprinted with permission from Reference 129. Copyright 2009
Elsevier Limited).
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Figure 26.
Simulation of kinetic modeling of simplified lipid network: fit of the predicted response
(control and treatment with KLA) to the corresponding experimental data. In the legend,
‘Ctrl’ refers to control and ‘Trt’ refers to KLA treatment of RAW264.7 cells. The error-bars
shown on the experimental data are standard-error of mean (Reprinted with permission from
Reference 129. Copyright 2009 Elsevier Limited).
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Table 1

Publicly available LIPID MAPS tools and resources discussed in this review.

Name URL

Pathway Editor www.lipidmaps.org/pathways/pathwayeditor.html

Structure Database (LMSD) www.lipidmaps.org/data/structure/

Proteome Database (LMPD) www.lipidmaps.org/data/proteome/index.cgi

On-line structure drawing tools www.lipidmaps.org/tools/

On-line mass spectrometry (MS) tools www.lipidmaps.org/tools/

Command line structure drawing tools package www.lipidmaps.org/downloads/

Command line ontology generation www.lipidmaps.org/downloads/

package Standalone windows MS prediction tool www.lipidmaps.org/downloads/

LMSD and LMPD data download www.lipidmaps.org/downloads/

Lipidomic and microarray data download www.lipidmaps.org/data/index.html

Lipidomic Pathways download www.lipidmaps.org/pathways/

Experimental protocols www.lipidmaps.org/protocols/
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Table 2

Resources and databases containing information about lipids.

Name URL Comments/Description

LMSD www.lipidmaps.org LIPID MAPS lipids structure database

LIPID BANK www.lipidbank.jp/ Database of Japanese Conference on the Biochemistry of lipids

LIPIDAT www.lipidat.tcd.ie Database of thermodynamic and associated information on lipids

Lipid Library www.lipidlibrary.org Information about lipid chemistry, biology, technology and analysis

Cyberlipids www.cyberlipid.org Resource for lipid studies

HMDB www.hmdb.ca Human metabololome database

DrugBank www.drugbank.ca Drug data with target and action information

TTD xin.cz3.nus.edu.sg/group/ttd/ttd.asp Therapeutic target database along with drug information

ChEBI www.ebi.ac.uk/chebi Database and ontology for chemical entities of biological interest

ChemBank chembank.broad.harvard.edu Small molecule screening and cheminformatics resource database

PubChem pubchem.nci.nih.gov Public repository for biological properties of small molecules including assay and
screening data

ZINC zinc.docking.org Commercially available compounds for virtual screening

ChemSpider www.chemspider.com Chemical information resource

CAS www.cas.org Small molecule databases and associated information

eMolecules www.emolecules.com Commercially available small molecules

Beilstein www.reaxys.com/ Small molecules structures and other information

KEGG LIGAND www.genome.jp/kegg/ligand.html Database of chemical compounds and reactions in biological pathways
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Table 3

A representative list of lipid-related signaling proteins as Molecule Pages.

SGMP ID GenBank Accession Molecule Page Name Molecule Page Category

A001757 AAH05636.1 Phosphodiesterase 6D, cGMP-specific rod delta Lipid binding protein

A003319 NP_898977.2 DFCP1 Lipid binding protein

A000010 NP_032892.1 Acyl protein thioesterase 1 Lipid modification, protein

A000095 NP_032733.1 Protein N-myristoyltransferase 1 Lipid modification, protein

A001778 NP_780565.1 Phosphatidylinositol-4-kinase type III beta Kinase, lipid

A002220 NP_064395.2 Sphingosine kinase 2 Kinase, lipid

A001749 AAC37702.1 Phosphodiesterase 1C, calmodulin dependent Phosphodiesterase

A001750 NP_001008548.1 Phosphodiesterase 2A, cGMP stimulated Phosphodiesterase

A000046 BAC00906.1 Phospholipase C epsilon Phospholipase

A001789 AAH45156.1 Phospholipase A2, group IIA Phospholipase
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Table 4

Examples of software for performing lipid MS analysis.

Application Platform Comments/URL

Mzmine Java Comprehensive package for lipidomics profiling.
http://mzmine.sourceforge.net/

LDA Java Novel algorithms for detection of minor lipid species.
http://genome.tugraz.at/lda

LipidXplorer Python Designed for shotgun lipidomics data. Uses novel query language
http://sourceforge.net/projects/lipidxplorer/

LIMSA Excel add-on Performs mass matching to a user-supplied list of expected lipids
http://www.helsinki.fi/science/lipids/software.html

FAAT Excel add-on Designed for analysis of FT-ICR data.
http://www.genomecenter.ucdavis.edu/leary

LipidView Windows Proprietary AB-SCIEX package used in conjunction with Analyst software.
http://www.absciex.com/products/software

LIPID MAPS Web interface Set of online MS prediction tools tailored to different lipid classes.
http://www.lipidmaps.org/tools/index.html
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Table 7

A representative list of lipid metabolism related enzymes for which kinetic data is available in BRENDA
database.136

KEGG Pathway Enzyme Name (EC Number) Specific Activity
(µmol/min/mg)

Arachidonic acid prostaglandin-D synthase (5.3.99.2) 14.9–434.0

metabolism leukotriene-A4 hydrolase (3.3.2.6) 0.185-0.49

Sphingolipid 3-dehydrosphinganine reductase (1.1.1.102) 0.000121

metabolism serine C-palmitoyltransferase (2.3.1.50) 0.000044

ceramide glucosyltransferase (2.4.1.80) 0.0000082

sphinganine kinase (2.7.1.91) 2.0E-6-2.4E-4

ceramide kinase (2.7.1.138) 4.0E-9-1.41E-6

Steroid biosynthesis sterol O-acyltransferase (2.3.1.26) 2.22E-5-1.56E-4

Glycerolipid metabolism glycerol-3-phosphate O-acyltransferase (2.3.1.15) 1.3E-4-0.192

diacylglycerol O-acyltransferase (2.3.1.20) 3.0E-4-0.169

Glycerophospholipid choline kinase (2.7.1.32) 0.000139

metabolism acetylcholinesterase (3.1.1.7) 7700
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Table 8

The estimated parameter values for eicosanoids model (Reprinted with permission from Reference 129.
Copyright 2009 Elsevier Limited).

No. Reactions Parameter
Names

Values

1 a[LPS] FA → AA k1 355.637

2 FA→ AA k2 10−15

3 DG → AA k3 10−15

4 b,cAA → k4 10−15

5 a[DG] GPCho → AA k5 10−15

6 a,d[LPS] GPCho → AA k6 0.330

7 GPCho → AA k7 10−15

8 AA → HETE k8 0.007

9 HETE → k9 0.187

10 e[DG] AA → PGH2 k10 0.024

11 [LPS] AA → PGH2 k11 0.111

12 AA → PGH2 k12 0.098

13 PGH2 → PGE2 k13 0.204

14 PGE2 → k14 10−15

15 PGH2 → PGF2a k15 0.061

16 PGF2a → k16 10−15

17 PGH2 → PGD2 k17 3.116

18 PGD2 → PGJ2 k18 0.054

19 PGD2 → dPGD2 k19 0.029

20 dPGD2 → k20 0.014

21 PGJ2 → dPGJ2 k21 0.034

22 dPGJ2 → k22 0.116

a
[DG] and [LPS] indicates the effect of signaling (molecules) in the reaction.

b
X → means default degradation of the metabolite X.

c
Unit of first order reaction is 1/hr.

d
Unit of second order reaction is 1/hr when it involves either FA or LPS as one of the metabolites as we have used scaled profile for these

variables.

e
Unit of second order reaction is µg DNA/(Ratio Int * hr) when it involves DG as one of the metabolites.
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Table 9

Results of Eigen-value based time-scale analysis of the metabolites (Reprinted with permission from
Reference 129. Copyright 2009 Elsevier Limited).

Fast (~1 hr) Medium (~10 hr) Slow (~50 hr)

PGH2 AA PGE2

PGD2 PGF2α

HETE PGJ2

dPGD2

dPGJ2
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