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Abstract
Technical advances such as the development of molecular cloning, Sanger sequencing, PCR and oligonucleotide
microarrays are key to our current capacity to sequence, annotate and study complete organismal genomes.
Recent years have seen the development of a variety of so-called ‘next-generation’ sequencing platforms, with
several others anticipated to become available shortly. The previously unimaginable scale and economy of these
methods, coupled with their enthusiastic uptake by the scientific community and the potential for further improve-
ments in accuracy and read length, suggest that these technologies are destined to make a huge and ongoing
impact upon genomic and post-genomic biology. However, like the analysis of microarray data and the assembly
and annotation of complete genome sequences from conventional sequencing data, the management and analysis
of next-generation sequencing data requires (and indeed has already driven) the development of informatics tools
able to assemble, map, and interpret huge quantities of relatively or extremely short nucleotide sequence data.
Here we provide a broad overview of bioinformatics approaches that have been introduced for several genomics
and functional genomics applications of next-generation sequencing.
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INTRODUCTION
The introduction of next-generation sequencing

(NGS) technologies has had a huge impact upon

genomics and functional genomics, indeed these

methods are rapidly supplanting the conventional

Sanger, or di-deoxy terminator, strategy [1] that

David StephenHorner is an assistant professor of Molecular Biology at the University of Milan (Italy). His research interests include

comparative genomics, non-coding RNA and molecular phylogenetics.

Giulio Pavesi is an assistant professor of Computer Science at the University of Milan (Italy). His research interests are mainly focused

on bioinformatics in general, and regulatory motif discovery in particular. He also works on discrete models of complex systems.

Tiziana Castrignano' is the leader of bioinformatics at CASPUR (Consorsio per le Aplicazioni di Supercalcolo per l’Universita’ e

Ricerca). She received her PhD in Biophysics in 1999 from the University of Rome ‘La Sapienza’. Her primary research interests are

the development of high performance bioinformatics services and databases. She has provided technological support in many national

and international bioinformatics research projects.

PaoloD’OnorioDeMeo got a Bachelors Degree in Computer Science at the University of Rome ‘La Sapienza’ in 2004. Since 2004

he is bioinformatics developer at CASPUR (Consorsio per le Aplicazioni di Supercalcolo per l’Universita’ e Ricerca).

Sabino Liuni is a senior technologist at the Institute of Biomedical Technology (National Research Council) in Bari (Italy). His

research interests in the field of bioinformatics regard computational methods for the analysis of next-generation sequencing data,

Michael Sammeth is a researcher in the Research Unit on Biomedical Informatics at the Centre of Genomics Regulation (CRG) and

University Pompeu Fabra, Barcelona (Spain). His research interests are in the field of Bioinformatics, and particularly in the analysis of

alternative splicing.

ErnestoPicardi is an assistant professor of Molecular Biology at the University of Bari (Italy). His research interests are mainly focused

on bioinformatics and molecular evolution.

GrazianoPesole is a full professor of Molecular Biology at the University of Bari (Italy) leading a research team in ‘Bioinformatics and

Comparative Genomics’ at the Institute of Biomedical Technology (National Research Council). His research interests include

bioinformatics, development of tools for genome annotation, comparative genomics and molecular evolution.

Corresponding author. Graziano Pesole. Tel: þ39-080-5443588; Fax: þ39-080-5443317; E-mail: graziano.pesole@biologia.uniba.it

BRIEFINGS IN BIOINFORMATICS. VOL 11. NO 2. 181^197 doi:10.1093/bib/bbp046
Advance Access published on 27 October 2009

� The Author 2009. Published by Oxford University Press. For Permissions, please email: journals.permissions@oxfordjournals.org

 at U
niversity of C

alifornia, S
anta C

ruz on M
ay 8, 2010 

http://bib.oxfordjournals.org
D

ow
nloaded from

 

http://bib.oxfordjournals.org


has, in various manifestations, been the principal

method of sequencing DNA since its inception in

the late 1970s.

The development of these new massively parallel

sequencing technologies has sprung from recent

advances in the field of nanotechnology, from the

availability of optical instruments capable of reliably

detecting and differentiating millions of sources of

light or fluorescence on the surface of a small glass

slide and from the ingenious application of classic

molecular biology principles to the sequencing

problem. Another important consideration is that,

in the context of an already available genome

sequence, many problems—such as the identification

of single nucleotide polymorphisms (SNPs)—need

not require the generation of ever longer sequence

reads, because most possible ‘words’ of length >25

or 30 only occur at most once even in relatively large

genomes—allowing, for the most part, unambiguous

assignment of even the shortest reads to a locus

of origin in a reference genome. Thus, available

NGS technologies produce large numbers of short

sequence reads and are typically used in ‘resequen-

cing’ applications, implying the availability of a

reference sequence identical, or highly similar,

to the source of the genetic material under

consideration.

In addition to the conventional objectives of

genome resequencing/SNP discovery, the character-

istics of these technologies permit them to be effi-

ciently applied to a number of other applications. For

example, NGS of cDNA can be used to provide

a comprehensive snapshot of the transcriptome, facili-

tating gene annotation and identification of splicing

variants. These novel technologies have also been

extensively applied to the characterization of small

RNA populations, the identification of microRNA

targets in plants, the characterization of genomic

regions bound by transcription factors (TFs) and

other DNA binding proteins, the identification of

genome methylation patterns, the characterization

of RNA editing patterns and metagenomics projects

[2–9]. It is likely that a series of other applications

for NGS methods will be unveiled within the next

years. Currently available next-generation sequen-

cers rely on a variety of different chemistries

to generate data and produce reads of differing

lengths, but all are massively parallel in nature and

present new challenges in terms of bioinformatics

support required to maximize their experimental

potential.

In this review, we will not attempt to provide a

detailed description of the sequencing technologies

themselves, interested readers are referred in partic-

ular to several excellent recent reviews [4,10,11].

Rather, we will touch upon some of the applications

for these technologies that have emerged in geno-

mics and functional genomics research [6, 12], focus-

ing particularly on bioinformatics tools that have

been developed for data management and analysis.

Given the rate of development in this field, we will

not attempt to mention every instrument that has

been presented, rather, we will try to provide a gen-

eral overview of trends and focus on tools with

which the authors of this review have first-hand

experience.

NGS PLATFORMS
Three distinct NGS platforms have already attained

wide diffusion and availability. Some characteristics

of their throughput, read-lengths and costs (at the

time of writing) are presented in Table 1. A

common thread for each of these technologies over

the last years has been continuous improvement

in performance (increased numbers and lengths of

reads and consequent reduction in costs per

base sequenced), it is therefore anticipated that

the figures provided will rapidly become outdated,

however, they serve to illustrate that the Roche 454

technology [13] already provides a realistic substitute

for many applications of conventional Sanger

sequencing at greatly reduced cost, while the

Illumina Genome Analyser [14] and ABI SOLiD

[15] platforms generate an order of magnitude

more reads of (relatively) reduced length, character-

istics that, as we will see, render them, for now, more

suitable for other applications.

The aforementioned methods all rely on a tem-

plate amplification phase prior to sequencing.

However, the available Helicos technology [16]

avoids the amplification step and provides sequence

data for individual template molecules, minimizing

the risk of introducing substitutions during amplifi-

cation. In principle bioinformatics approaches devel-

oped for the analysis of data generated by the

Illumina GA and ABI SOLiD platforms should also

be suitable for data generated by the Helicos method,

as all three platforms provide reads of comparable

lengths. Finally, other methods, based on either

nanopore technology or tunneling electron micros-

copy have been proposed (for reviews see [17–19]).
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Detailed information on the performance of such

approaches is not yet available, although it is hoped

that they could yield individual reads of lengths

measured in megabases. Given that such methods

remain broadly inaccessable at the present time,

and that the nature of data generated should be

fundamentally different from those provided by

available platforms, potential bioinformatics develop-

ments connected to these methods are considered

to be beyond the scope of the current review.

While both the Illumina Genome Analyser and

Roche 454 platforms use innovative techniques

to amplify and sequence template molecules, they

share the underlying principle of ‘sequencing by

extension’ used in the Sanger methodology. This

is to say that single bases, complementary to the

template molecule are sequentially added to a

nascent strand and their identity determined by

chemical means. However, the ABI-SOLiD sequen-

cing technology uses a unique chemistry whereby

oligonucleotides complementary to a series of bases

in the sequencing template are ligated to a nascent

molecule and the identity of the fist two bases of

the ligated oligonucleotide is specified by a degen-

erate four color code (each color specifies four

different dinucleotides). This approach provides

some benefits in terms of accuracy since each base

in the template is interrogated twice in independent

primer rounds. As a consequence, color reads can

be translated into base reads only if the first base of

the sequence—or more commonly the last base of

the primer used—is known (although see the section

on mapping tools). In resequencing applications,

careful consideration of SOLiD sequencing data

can allow differentiation between sequencing errors

and biological SNPs. Effectively, sequence errors

cause major changes in all downstream bases (while

variation between template and reference sequence

cause single mismatches in mapped reads).

Analogously to automated Sanger sequencing,

NGS platforms provide quality values or quality

scores describing the likelihood that a base call is

incorrect. The phred algorithm [20] assigns a quality

value for each base in a Sanger read in which larger

numbers designate smaller error probabilities. A Q20

value, for example, corresponds to a 1 in 100 error

probability, and a Q30 value to a 1 in 1000 error

rate. NGS platforms have different error profiles and,

thus, quality values need to be derived accordingly.

In Illumina GA, the meaning of the quality values

is relatively close to capillary sequencers. Moreover,

Illumina scores are asympotically identical at higher

quality values. Sanger phred quality scores range from

0 to 93 (using ASCII 33–126 in fastq), whereas

Illumina quality values range from �5 to 40 (using

ASCII 59–104 in fastq) or from 0 to 40 (using ASCII

64–104 in fastq) depending on Illumina GA version

(1.0 in the first case and 1.3 in the second case). In

the SOLiD system, quality scores are assigned to

each color and calculated using a phred like score

q¼�10� log 10(p), where p is the predicted prob-

ability that the color call is incorrect. SOLiD quality

values generally range from 0 to 45, although the

exact relationship between color scores and phred
values is not completely known. For 454 reads, qual-

ity values per base range from 0 to 40 and also in

this case they are calculated using a phred like algo-

rithm. However, the error probability in 454 reads

is mainly related to the probability that a base is an

overcall. Roche 454 reads are prone to insertion

and deletion errors rather than miscalling errors

more frequent in Sanger reads. Furthermore, a vari-

ety of relatively simple, text-based file formats are

used by different NGS platforms. For a discussion

of these formats and up-to-date discussions on the

implications of quality scores, readers are referred to

an excellent web based discussion forum (http://

seqanswers.com).

Mapping strategies
The first and arguably most crucial step of most

NGS analysis pipelines is to map reads to sequences

Table 1: Performances and features of the major next-generation sequencing platforms (single-end reads)

Technology Roche 454 Illumina ABI Solid

Platform GS 20 FLX Ti GA GA II 1 2 3

Reads (M) 0.5 0.5 1 28 100 40 115 400
Read length 100 200 350 35 75 25 35 50
Run time (d) 0.2 5 0.3 0.4 4.5 6 5 6^7
Images (TB) 0.01 0.01 0.03 0.5 1.7 1.8 2.5 3
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of origin. The occurrence of nucleotide polymorph-

isms between reference genome and sampled indivi-

duals, relatively high rates of sequencing errors,

RNA editing and epigenetic modifications all

require efficient mapping with limited numbers of

mismatches (typically two or three in a 35 base align-

ment) and potentially single-base insertions or dele-

tions. Specific strategies are needed for mapping

spliced transcript sequences to genome sequences.

Statistically speaking, reads of 30 bp should be

expected to yield unique matches on most genomes,

In practice, some reads do not map anywhere

on the genome—owing to DNA contamination

or sequencing artifacts, while some map exactly or

approximately at multiple positions, as a result of

the complex and repetitive nature of genome

sequences—potentially reducing the effective

output of NGS platforms.

Mapping of reads is a distinctive manifestation of

perhaps the oldest bioinformatics problem, sequence

alignment. However, classical methods such as pure

Smith–Waterman dynamic programming, or index-

ing of longer k-mers in the template sequence

(BLAT) [21], or combinations of the two (e.g.

BLAST) [22] are not well suited to the alignment

of very large numbers of short sequences to a refer-

ence sequence [23].

To avoid the need for expensive dedicated hard-

ware, the overall goal of short read mapping is

to obtain satisfactory results as efficiently (in terms

of time and memory requirements) as possible. As

a result, many methods are based on the similar prin-

ciples and algorithms, but differ in the ‘programming

tricks’ or ad hoc heuristics used to increase speed

at the price of minimal loss of accuracy. Research

in this field is booming and new, or modified map-

ping tools currently appear on an almost weekly

basis [24]. Thus, here we will confine ourselves to

a description of the general principles underlying

the most successful algorithms, and very brief

descriptions of a few—leaving to the interested

reader the task of keeping abreast with one of the

hottest and most rapidly growing fields of modern

bioinformatics.

The principle of creating an index of the positions

of all distinct k-mers in either the sequence reads

or the genome sequence underlies most short read

mapping tools. Applied to our problem, suppose that

we have to map a tag of length 32 with up to two

mismatches. The tag can be defined as the concate-

nation of four substrings of length 8 bp. Since at most

two mismatches are allowed, then at least two of

the substrings are guaranteed to match exactly the

genome. The matching substrings can be adjacent,

or separated by one or two mismatching substrings.

Thus, if we want to build an index for the genome,

we can index substrings of length 16 in three separate

ways, corresponding to (i) two adjacent substrings of

8 bp, or (ii) the concatenation of two substrings of

8 bp separated by 8 bp, or (iii) the concatenation

of two substrings of 8 bp spaced by 16 bp. These

combinations of substrings are used as seeds for

the initial exact matching stage, since in case of a

tag matching the genome with up to two substitu-

tions we will find an exact match for two 8 bp sub-

strings of the tag in one of the three indices.

Alternatively, in the same situation we can be certain

that at least a substring of length 11 will match

exactly. Hence, we can index substrings of length

11 and employ them as initial matching seed. In

both cases, once a seed has been matched, it can

be extended, allowing for mismatches and/or inser-

tion and deletions. The choice of which dataset

(reads or reference) is indexed can have significant

implications upon speed and memory requirements.

Essentially, indexing the larger dataset will require

more memory, but will accelerate the mapping

phase. While the size of a large eukaryotic genome

(such as those of mammals or many higher plants)

is measured in billions of base pairs, the overall size

of the set of tags to be mapped can now be of a

similar magnitude (20 billion bases per run for the

ABI SOLiD 3 system). Thus, building an index for

the genome and matching the tags against the index

can often present similar memory requirements

to the inverse operation (indexing the tags and

matching the genome against them). However, the

latter approach has the benefit of being trivially scal-

able: if the available memory is not sufficient to

hold the index of the whole set of tags to be pro-

cessed, then the tags can be split into subsets and

each subset can be processed separately (or in parallel,

if several computing cores are available). The final

result is obtained by merging of the results obtained

for each subset. While the computation time is

increased, tools of this kind can be used with stan-

dard personal computers.

The most fundamental differences between avail-

able mapping algorithms are, arguably, whether

the genome or the sequence reads are indexed, and

the indexing method applied. Additionally, different

methods may or may not allow the presence of indels
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in alignments, the reporting of only unique best

matches or of all matches within a defined maximum

Hamming—or edit—distance. As mentioned pre-

viously, various heuristics have also been introduced

to accelerate searches, for example ‘quality scores’

indicating the confidence of base calls can be used

to limit the search space. Thus, mismatches can

be confined only to those tag nucleotides that are

deemed to be ‘less reliable’, or reads containing

low-quality base calls can simply be excluded.

Alternatively, since less reliable base calls are often

located near the end of reads, one could require

exact matching for the beginning of the reads and

allow for mismatches in the rest. When entire tags

do not generate a satisfactory mapping, the last

bases (more likely to include sequence errors) can

be trimmed away and the matching can be repeated

for the shorter reads.

Many mapping tools have been reported, some of

them have been designed for a specific sequencing

platform and others are more general purpose

(Table 2). A commercial aligner called ELAND

was developed in parallel with the Solexa sequencing

technology, and it is provided for free for research

groups that buy the sequencer. Probably the first

tool introduced for this task, ELAND indexes the

tags, and is based on the aforementioned tag-splitting

strategy allowing mismatches. It is still one of the

fastest and less memory-greedy pieces of software

available. Likewise, SeqMap [25] builds an index

for the reads by using the longest substring guaran-

teed to match exactly, and scans the genome against

it. It allows the possibility of insertions and deletions

in alignments. ZOOM [26] is also based on the same

principles as ELAND, with the difference that

reads are indexed by using ‘spaced’ seeds that can

be denoted with a binary string. For example, in

the spaced seed 111010010100110111, 1’s mean

a match is required at that position, 0’s indicate

‘don’t care’ positions. Only positions with a ‘1’ in

the seed are indexed. The performance reported is

faster than ELAND, at the price of higher memory

requirements.

Short Oligonucleotide Alignment Program

(SOAP) [27] was one of the first methods published

for the mapping of short tags, in which both tags and

genome are first of all converted to numbers using

2-bits-per-base encoding. To admit two mismatches,

a read is split into fragments as in ELAND. Mapping

with either mismatches or indels is allowed. Since for

technical reasons reads always exhibit a much higher

number of sequencing errors at the 30-end, which

sometimes make them unalignable to the genome,

SOAP can iteratively trim several bases from the

30-end and redo the alignment until hits are

detected or the remaining sequence is too short for

specific alignment. The main drawback is the

memory requirement, reported to be >10 GB for

the human genome.

PASS [28] holds the hash table of the genomic

positions of seed substrings (typically 11 and 12 bases)

in RAM memory as well as an index of precom-

puted scores of short words (typically seven and

eight bases) aligned against each other. The program

matches each tag performing three steps: (i) it finds

matching seed words in the genome; (ii) for every

match checks the precomputed alignment of the

short flanking regions (thus including insertions

and deletions); and (iii) if step 2 is passed, it performs

an exact dynamic alignment of a narrow region

around the initial match. The performance is

reported to be much faster than SOAP, but once

again at the price of high memory requirements

(10’s of GB) for the genomic index.

The maximum oligonucleotide mapping (MOM)

[29] algorithm searches for exactly matching short

subsequences (seeds) between the genome and tag

sequences, and performs ungapped extension on

those seeds to find the longest possible matching

sequence with a user specified number of

mismatches. To search for matching seeds MOM

creates a hash table of subsequences of fixed

length k (k-mers) from either the genome or the

tag sequences, and then sequentially reads the

un-indexed sequences searching for matching

k-mers in the hash table. As in SOAP, tags which

cannot be matched entirely given a maximum

number of errors are automatically trimmed. The

performance reported is better than SOAP, in

terms of number of tags successfully matched.

Again, more than 10 GB of memory are needed

for typical applications.

The space requirements of building a genomic

index with a hash table can be reduced by using

more efficient strategies. A good (at least theoreti-

cally) performance is also obtained by vmatch [30],

which employs enhanced suffix arrays for a num-

ber of different genome-wide sequence analysis

applications.

Bowtie [31] (and a newer version of SOAP [32])

employ a Burrows–Wheeler index based on the full-

text minute-space (FM) index, which has a reported
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memory requirement of only �1.3 GB for the

human genome. In this way, Bowtie can run on a

typical desktop computer with 2 GB of RAM.

However, if one or more exact matches exist for

a tag, Bowtie always reports them, but if the best

match is an inexact one then Bowtie is not guaran-

teed in all cases to find it. BWA [33] is also based

on the Burrows–Wheeler transform.

Mapping and Assembly with Quality (MAQ

[34]), one of the most successful tools in this field,

is specifically devised to take advantage of the

nucleotide-by-nucleotide ‘quality scores’ that come

together with the Illumina reads. The idea is that

mismatches due to errors in sequencing should

mostly appear at those positions in the tags that

have a ‘low-quality’ score, while those due to

SNPs should always appear at the same position in

the genomic sequence. Mismatches are thus

‘weighted’ according to their respective quality

scores. By default, six hash tables are used, ensuring

that a sequence with two mismatches or fewer will

be hit in an ELAND-like fashion. The six hash tables

correspond to six spaced seeds analogous to that

used in ZOOM. By default, MAQ indexes the first

28 bp of the reads. While very fast, MAQ is based on

a number of heuristics that do not always guarantee

to find the best match for a read.

Sequence quality scores provided by Illumina are

also employed by RMAP [35] wherein positions in

reads are designated as either high- or low-quality.

Low-quality positions always induce a match (i.e. act

as wild-cards). To prevent the possibility of trivial

matches, a quality control step eliminates reads

with too many low-quality positions (a similar filter

has also been implemented in PASS see above).

CloudBurst [36] is a RMAP-like algorithm that sup-

ports cloud computation using the open-source

Hadoop implementation of MapReduce to parallel-

ize execution using multiple nodes.

Some mapping tools including MAQ [34], BWA

[33], PASS [28], SHRiMP [37] and AB Mapreads

(Zhang et al., unpublished) work within color

space—both for the reference sequence and reads.

In this way, it is possible to employ conventional

alignment algorithms that have been developed for

Illumina GA and Roche 454 short reads.

The performance of the different methods can

be measured according to different parameters:

time required, memory occupation, disk space and

in case of heuristic tools, the actual number of reads

that have been assigned correctly to their original

position on the genome. In turn, the choice of a

given method against another one depends on how

many tags have to be mapped, and quite naturally to

the specifics of the computing equipment available.

Mapping simulation
To illustrate variation in performance of different

short-read mapping tools and to highlight some

likely complications of the nature of NGS data—

we have performed two simple studies to simulate

the RNA-seq transcriptome sequencing approach.

We selected three programs (SOAP, BOWTIE and

PASS) that we have previously used in our group,

including PASS because it is one of the few mapping

tools supporting MS Windows. In all experiments,

parameters were adjusted such that each program

should find all equally best matches to the reference

sequence, with up to 2 mismatches. First, we per-

formed a naive experiment where we randomly

generated �4-million 35 base long reads from anno-

tated human transcripts dataset (RPM). PolyA tails

were not simulated [38]. These reads were mapped

to both the human transcriptome from which the

reads originated (and which should provide perfect

matches to each read) and to the human genome

sequence from which the transcriptome originated

(to which reads not covering splice junctions

should give perfect matches). Table 3 shows various

statistics regarding the speed, memory use and sensi-

tivity of each of these mapping tools in this first

simulation. We see clearly that SOAP provides the

fastest performance while Bowtie uses marginally

less RAM, with Bowtie correctly mapping 99.99%

of all reads and a marginally lower mapping rate

for SOAP. The apparently poor performance of

PASS is likely due to imperfect parameterization

and failure to identify all map positions for reads

matching on a large numbers of transcripts.

We next considered the accuracy of the same

instruments when mapping reads to the complete

human genome (anticipating that reads derived

from splice junctions will for the most part not

map to their correct loci of origin). In this case, all

methods map around 75% of the reads correctly. The

decay from the previous scenario is due principally

to the fact that reads spanning splice junctions (11.7%

of all reads) tend not to map correctly to the genome

sequence.

To provide a more realistic simulation, we

employed a modified version of the Flux Simulator

software (http://flux.sammeth.net/) which allows
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the simulation of NGS transcriptome data under

detailed models of cDNA synthesis, nebulization,

size fractionation, variation in transcription start and

polyadenylation sites and the introduction of sequen-

cing errors under user defined models, in this case

an empirically deduced model for Illumina sequen-

cing [39]. In total, 4 604 890 36-bp long reads were

simulated, of which 530 092 covered splice junctions

(dataset RER). Again all methods were used to

map reads to both the transcriptome and genomic

sequences of origin (Table 3). Here a more compli-

cated picture is observed. Against the transcriptome,

Bowtie and SOAP correctly mapped 86.6 and 83.3%

of reads, respectively, while PASS showed inferior

performance. In total, 11.5% of reads recovered

consisted at least partially of polyA tails and were

not mapped to the transcriptome dataset as polyA

tails were excluded from the transcripts for computa-

tional reasons. Thus in our simulation, sequence

errors, mis-priming and alternative polyadenylation

seem to have little effect on our capacity to correctly

map reads with Bowtie and SOAP. When the reads

were mapped to the genome, correct placements

fell to �75% for all methods, the decay correspond-

ing well to the known proportion of reads cover-

ing splices. Nevertheless, the differences observed

between methods illustrate that, particularly when

error prone short reads are mapped to genomic

sequences, a substantial number of artifactual place-

ments are generated (mostly due to the presence of

sequencing errors) and that the different heuristics

used by different algorithms can find different imper-

fectly matching map positions.

Metagenomics and the de novo assembly
of short sequence reads
Until now, we have considered applications that rely

on mapping next-generation sequence data to avail-

able reference genome sequences. However, at least

for smaller bacterial genomes, even the shortest

reads can be used to effectively assemble genome

sequences de novo, and even where complete closure

of the genome is not possible, large contigs can

be reliably constructed from such data provided

that repeated sequences are not overly abundant. It

should be noted that the continued increase in length

Table 3: Results of the mapping simulation using randomly generated perfect match (RPM) and
randomly-generated error-containing (RER) reads against the original transcriptome or the com-
plete genome (hg18)

Simulated data versus reference sequence Program

Bowtie PASS SOAP

RPM versusTranscriptome
(3995721 reads)

Reads mapped 3995190
(99.99%)

3995185
(99.99%)

3975 019
(99.48%)

Reads mapped correctly 3995190
(99.99%)

3562 888
(89.17%)

3966 646
(99.27%)

RAM required 160MB 2.08GB 1.40GB
Total processor time 244.87 s 346.76 s 86.11s

RPM versus Genome Reads mapped 32988 443
(82.55%)

3380343
(84.60%)

3300773
(82.61%)

(4 000 000 reads, 469577 spliced) Reads mapped correctly 3 034 232
(75.94%)

3 066 025
(76.73%)

2 991559
(74.87%)

RAM required 1.24 GB 12.96GB 2.56GB
Total processor time 255.9 s 1928.0 s 78.6 s

RER versusTranscriptome Reads mapped 4168549
(90.52%)

4183 679
(90.85%)

4 058196
(88.13%)

(4 604 890 reads) Reads mapped correctly 3987222
(86.59%)

3259 096
(70.77%)

3 833970
(83.26%)

RER versus Genome Reads mapped 3 607856
(78.35%)

3 812 898
(82.80)

3 608 220
(78.36%)

(4 604 890 reads, 530 092 spliced) Reads mapped correctly 3 497369
(75.95%)

3503184
(76.08%)

3359 094
(72.95%)

Incorrectly mapped spliced reads 15 050
(2.84%)

80 089
(15.11%)

14324
(2.70%)

Weused the programs Bowtie (v0.9.9.3), PASS (v 0.71) and SOAP (v 2.16) fixing parameters for allowing up to twomismatches.
The data used for the simulation can be found at http://mi.caspur.it/shortreads/download/.
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of reads obtained by NGS platforms suggest that

in the near future, ab initio sequencing of some eukar-

yotic genomes with technologies such as Illumina or

ABI SOLiD is likely to become a realistic prospect,

while near-complete drafts of many microbial

genomes can now be produced using the 454 tech-

nology [13,40,41].

Furthermore, the fields of metagenomics and

microbial community analysis are not immune to

the lure of NGS, although unsurprisingly, until

now, the 454 technology has been the most widely

used for these applications [42]. As with aligners,

progress in the development of de novo assemblers

has been rapid and is ongoing, and as with the afore-

mentioned tools, at least most of the available

de novo short read assemblers utilize a common

underlying technique. As with the mapping prob-

lem, different tools use different algorithms to

choose ‘optimal’ solutions and thus generate putative

contigs. In the context of metagenomics, after

contig assembly, high-throughput identification and

phylogenetics strategies are required for the recon-

struction of microbial communities, for a recent

review of this field, interested readers are directed

towards a review by Petrosino et al. [42].

Tools for whole-genome shotgun fragment

assembly of conventional sequence data such as

Atlas [43], ARACHNE [44], PCAP [45] and

Phusion [46] are not able to handle the larger num-

bers of reads produced by NGS platforms or the

higher error frequencies in these reads. However,

they have proved useful for the development of

de novo genome assemblers.

Currently available applications for de novo assem-

bly of NGS data include: QSRA [47], ALLPATHS

[48], Velvet [49], EDENA [50], VCAKE [51],

SHARCGS [52], EULER-SR [53], SSAKE [54].

VCAKE, SSAKE and Velvet use De Bruijn graphs

[55] to summarize the distribution of overlapping

reads, while EULER-SR employs an alternative

approach.

Such approaches tend to require a trade-off

between production of the fewer long contigs with

lower overall genomic coverage, or a higher number

of shorter contigs with a higher overall genomic

coverage.

Comparisons of QSRA with EDENA, Velvet,

SSAKE and VCAKE algorithms indicated that

QSRA was much faster than the other tools [47].

In these tests, EDENA and VELVET yielded the

longest contigs with lower genomic coverage,

while QSRA, SSAKE and VCAKE generally pro-

duce a higher number of shorter contigs, while

QSRA gave the highest genomic coverage.

The Short-read Assembler based on Robust

Contig extension for Genome Sequencing

(SHARCGS) algorithm is capable of assembling

millions of very short reads and manages sequencing

errors. The performance of this algorithm was

evaluated against SSAKE and EULER-SR [52]. It

seems that SSAKE is particularly vulnerable to

the presence of sequencing errors, while all contigs

generated by SHARCGS were identical to the

source sequences. EULER-SR is time-consuming,

particularly when many sequencing errors render

the graphs complex and EULER-SR runs into

performance problems. Finally, the ALLPATHS

algorithm allows the analysis of paired reads

and unpaired reads for de novo assembly of whole

genome shotgun microreads (25–50 bases). For a

detailed view of technical and algorithmic issues

in denovo assembly of short reads, readers are referred

to [56].

Detection of SNPs and editing sites by
NGS technologies
Single nucleotide polymorphisms (SNPs) are the

most common form of genetic variation in humans

and a resource for mapping complex genetic traits

[57] as they can alter DNA, RNA and protein

sequences at different levels [58]. SNPs are often

identified using data from high-throughput sequen-

cing projects and reads are typically aligned to the

corresponding genomic reference and sequencing

errors are discerned from genetic variations using

quality scores as additional guidance [59]. The prob-

ability that an inferred SNP should be real can be

assessed using Bayesian inference statistics imple-

mented in tools such as POLYBAYES [59]. NGS

platforms can improve the detection accuracy of

SNPs thanks to increased sequencing depth. To

date, all NGS technologies have been used to infer

SNPs in mammalian genomes although platforms

ensuring deep coverage (Illumina and SOLiD),

have been preferred. Recently, a study by Smith

and colleagues [60] showed that single mutations

could be reliably detected given at least 10–15-fold

nominal sequence coverage. Among high-

throughput strategies SOLiD seems preferable for

this purpose since its color-space system can discern

sequencing errors from genuine variations [37, 61],

while the Slider software uses an innovative
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approach whereby Illumina reads are considered

only as a series of quality scores and used to generate

the most probable sequence to be mapped onto

a reference [62]. After alignment, base positions

with a high probability to be SNPs are selected.

Slider also introduces an elegant Illumina base

caller. In contrast, Roche 454 reads provide lower

coverage per base but with high quality. However,

pyrosequencing can introduce biases in SNP detec-

tion when homopolymeric strings are present. Tools

like Pyrobayes can overcome such limitations in

454 data by improving the base calling and employ-

ing the Bayesian inference to identify SNPs after

an ad hoc read mapping that uses modified gap

costs to handle potential errors at homopolymeric

stretches [63].

The increased availability of paired end reads

with all of the NGS platforms considered here also

facilitates the identification of genome rearrange-

ments when relative mapping orientations or posi-

tions of reads do not correspond to those expected

from the reference genome (e.g. [7]).

Short sequencing reads can also be used to

identify potential nucleotide variations due to

RNA editing, a post-transcriptional mechanism for

which specific bases are substituted or inserted/

deleted [64]. RNA editing by base substitution is

the most frequent type of editing and has been

well investigated in mitochondria of land plants

[65]. RNA-Seq reads from Illumina and SOLiD

platforms have been successfully used to detect

the complete editing pattern in the mitochondrial

genome of grapevine, supporting the idea that

RNA editing in plant mitochondria is likely more

pervasive than expected (Picardi et al., submitted

for publication). In mammals, several known editing

events have been accurately detected using 454

sequencing technology [66].

Large-scale transcriptome analysis by
RNA-Seq
NGS platforms are ideally suited for the detailed

analysis of the transcriptome. Indeed, our current

knowledge of the transcriptome complexity in

different tissues, cell types, developmental stages

and physiological or pathological conditions is very

partial, even in widely studied organisms such as

human or mouse. Alternative splicing, a pervasive

phenomenon affecting in human virtually all multi-

exon genes [67–69] is a major determinant of tran-

scriptome complexity. Indeed, in human, a mean of

at least ten different variants are observed for each

gene—increasing the expression potential of the

genome by at least an order of magnitude. The

deep-sequencing coverage provided by NGS

platforms is expected to revolutionize the detec-

tion and quantification of expressed transcripts.

This novel technology, termed RNA-Seq, provides

sequence reads from one (single-end sequencing)

or both (paired-end sequencing) ends of cDNAs

generated by a population of total or polyA enriched

RNAs.

The nature of the sample is critical. Typically,

RNA-Seq analyses are carried out on the poly-A

enriched fraction to specifically detect protein

coding mRNAs. However, in this way a functionally

relevant part of the transcriptome, consisting of

non-polyadenylated ncRNAs, can be missed. To

obtain a more comprehensive overview of the

transcriptome the random amplification of total

RNA can be carried out, taking care to perform

a rRNA depletion step to prevent an unwanted

saturation of sequence reads from the rRNA fraction.

The read length, ranging from 30 bp for ABI

SOLiD and Illumina to over 400 bp for Roche

454 FLX, with the corresponding level of through-

put, defines the optimal range of applicability of

the three different NGS platforms.

The huge throughput and short read length of

Illumina and SOLiD (see Table 1) make these two

technologies more suitable for quantifying transcript

levels through tag profiling [8, 70] also termed digital

gene expression, and full-length transcript profiling

[71]. The latter methodology suitably applies to

the detection of transcribed regions in the genome,

refining known exon coordinates and discovering

novel ones. However, as such reads typically span

a single exon the relevant information about exon

connectivity is missing and makes problematic the

detection and relative quantification of expressed

full length isoforms. For this aim the longer reads

produced by Roche 454 FLX are much more infor-

mative although sophisticated model-based systems

[72] are intended to deconvolute the relative abun-

dance of different transcripts derived from the

same gene.

RNA-Seq may also be very effective for the dis-

covery of novel splice sites and splicing variants. The

discovery of novel splice sites can be carried out

either by searching contiguous mappings against

splice junction libraries derived from the concatena-

tion of all known 50 and 30 splice junctions [68]
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or performing de novo splice site discovery by using

mapping tools like QPALMA [73] or TopHat [74]

specifically designed for ab initio detection of reads

spanning exon junctions, thus able to perform split

alignments against the reference genome.

It should be noted that whenever RNA-Seq reads

span an exon boundary contiguous genome mapping

strategies are not expected to find correct matches.

For this reason it is advisable, when using a contig-

uous mapper (see Table 2) to carry out the mapping

not only against the genome but also against the full

set of known transcripts as derived from RefSeq [75]

and other databases such as ASPicDB [76] that also

collect alternative transcript variants not represented

in RefSeq.

Another issue to be considered is the strand

specificity of RNA-Seq data. cDNA sequences pro-

duced by Roche 454 FLX can be in either orienta-

tion and the discrimination of sense from antisense

transcripts is not necessarily trivial. On the other

hand SOLiD and more recently Illumina provide

kits for obtaining strand specific sequences.

As previously anticipated RNA-Seq data may

also allow the accurate quantification of transcript

levels. Mortazavi et al. [67] proposed the Reads Per

Kilobase of exon model per Million mapped mea-

sures (RPKM). RPKM is simply given by:

RPKM ¼ 109 �
C

N � L
,

where C is the number of mappable reads that fell

onto the gene’s exons, N is the total number of

mappable reads in the experiment and L is the total

length of the exons.

A new generation of bioinformatics tools attempt

transcriptome annotation using only RNA-Seq data

(e.g. [77]). However, several studies have shown

that various steps in sample preparation (mRNA

fragmentation, use of oligo-dT versus random pri-

mers for cDNA synthesis, size selection of fragments

for sequencing, etc.) can introduce substantial biases

into the distribution of reads along templates

[78–81]. Such phenomena can impact upon many

applications of NGS, but are particularly important

for RNA-seq and can complicate both transcript

annotation and quantification.

CHiP-Seq
Chromatin Immunoprecipitation (CHiP) [82] refers

to the isolation of genomic fragments bound to

proteins through the use of crosslinking agents and

specific antibodies to identify genomic regions

bound to histones or specifically by DNA binding

proteins such as TFs. This technology is rapidly

becoming the method of choice for the large-scale

identification of TF–DNA interactions, or, more

broadly, of the characterization of chromatin

packaging—how genomic DNA is packaged into

histones and in correspondence with which histone

modifications. Chip-Seq implies the characterization

of isolated DNA by NGS approaches (as opposed

to the search for specific sequences by PCR, or the

identification of isolated DNA through microarray-

based approaches). Genomic fragments may be sub-

jected to single or paired end sequencing strategies

and reads are mapped to the genome to identify

enriched regions—in principle those that contain

functional binding sites for the factors of interest.

Once reads have been mapped to the reference

sequence, it is necessary to determine which regions

are flanked by a sufficient number of reads to

discriminate them from ‘background’ noise due to

sequence errors, contamination of isolated protein–

DNA complexes, non-specific protein binding and

other stochastic factors.

One way to filter out noise is to use a negative

control to generate a pattern of noise to be compared

to the read map generated from the real data (either

using an antibody which does not recognize any

TF, or by using a cell type that does not express

the factor of interest). It is clear that genomic regions

enriched only in the positive experiment should

be those of interest.

In the absence of control experiments, back-

ground read levels must be estimated using stochastic

methods. If we assume that in a completely random

experiment each genomic region has the same prob-

ability of being extracted and sequenced, given t,
the overall number of tags, and g, the size of the

genome, then the probability of finding one tag

mapping in a given position is given by t/g. The

same idea can be applied by dividing the genome

into separate regions (for example, the chromosomes

or chromosome arms), since for experimental reasons

different regions can have different propensities

to produce reads. Thus, global or region-specific

‘local’ matching probability can be calculated, and

the expected number of tags falling into any genomic

region of defined size can be estimated for example

using Poisson or negative binomial distributions.

Finally, the significance of tag enrichment is com-

puted, by using sliding windows across the whole
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genome. If a ‘control’ experiment is available, the

number of tags it produced from a given region

can serve directly as ‘background’ model.

Several ‘peak-finding’ methods have been pub-

lished, including FindPeaks [83], F-Seq [84],

SISSRS [85], QuEST [86], MACS [87], the

ChipSeq Peak Finder used in [88], ChIPDiff [89]

and CisGenome [90], which encompasses a series

of tools for the different steps of the ChIP-seq

analysis pipeline. False discovery rates are estimated

by these tools by comparing the level of enrichment

(number of tags) at given sites, with the background

model used.

The reliability of ‘peak finding’ methods has

yet to be fully evaluated, since most of them

were devised for a single experiment, and their

portability to different organisms and/or experi-

mental conditions is often not clear. Moreover,

with current tools the choice of a significance or

enrichment threshold to discriminate real binding

sites from background is often not immediate and

left to users, based on calculated false discovery

rates and/or on the level of enrichment of the

expected binding motif and/or prior knowledge

about genomic regions bound by the TFs them-

selves. In fact, the first applications of ChIP-Seq

have been related to epigenetic regulation (see for

example [91, 92]), perhaps because the problem is

somewhat easier than for TFs. The analysis protocol

is the same, with the difference that TFs can bind

DNA with different affinities resulting in ‘grey areas’

of tag enrichment, while the detection of histone

modifications is more of a ‘yes or no’ decision,

making the separation between signal and noise in

peak detection much clearer. Primary analyses of

CHiP-seq data for TF–DNA binding are thus

invariably followed by further efforts to validate the

predictions and to identify the short motifs bound

by factors of interest at the genomic loci identified.

Such efforts vary from ChIP-PCR, to the recogni-

tion of known motifs, to the detection of sequences

overrepresented in isolated fragments. A detailed

description of such strategies is beyond the scope of

this review.

Small RNAs
Recent years have seen number of important discov-

eries relating to the regulated expression of small

(typically 18–25 base) RNAs in eukaryotic cells

and their important roles, principally as regulators

of stability or availability for translation of mRNAs,

with which they can interact by means of base com-

plementarity e.g. [93] but also as guides for genome

methylation [94] and potentially in other processes.

Deep sequencing of small RNAs has become the

method of choice for small RNA discovery and

expression analysis [95]. Unlike oligonucleotide

array studies, deep sequencing requires no a-priori

knowledge of the nature of small RNAs, is less sub-

ject to the lack of specificity of short probes some-

times associated with oligonucleotide arrays [96] and

expression levels can be followed over a wider range

with deep sequencing. Indeed, even the shortest

sequencing reads will yield the complete sequence

of a ‘small RNA’, making these molecules ideal tar-

gets for characterization by NGS technologies.

Given that typical sequencing runs will include

parts of adaptors used in preparation of cDNA, it is

critical that partial adaptor sequences are removed

before analysis. This can be achieved through

custom scripts, using the sequence file pre-processing

tool from the UEA plant sRNA toolkit [97], tools

from the Bioconductor open source package (http://

bioconductor.org/) or using the ‘vectorstrip’ or

‘fuzznuc’ programs from the EMBOSS package

[98]. It should also be born in mind that additional

bases, not derived from the genome sequence are

often added physiologically to the 30 ends of

mature microRNAs and these bases can also obscure

correct alignments to genomic sequences [99].

Many classes of small RNAs exist as families pres-

ent as multiple highly conserved copies within

a single genome and often conserved between

related organisms. Clustering of observed sequences

and comparison with databases of annotated small

RNAs (e.g. miRBase [100], piRNAbank [101] and

the Arabidopsis Small RNA Project [102]) allows

the identification of members of conserved families

and provides indications as to their relative expres-

sion levels. Analysis of the size distribution of

reads can also prove informative as to the nature of

small RNAs present. For example, microRNAs tend

to be �21 bases in length as are the transactivating

small RNAs tasi-RNAs) of plants, other siRNAs

in plants typically being 24 bases in length while

piRNAs of animals tend to be between 25 and

33 bases in length.

Several specific bioinformatics tools have been

developed to identify members of different classes

of small RNAs from deep sequencing data. Tools

such as mirDeep [103] and MirCat [97] exploit struc-

tural characteristics of miRNA precursors by
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mapping small RNA reads to the genome of origin

and searching for plausible hairpin structures encom-

passing regions where small RNAs map and identify-

ing cases where a single species, deriving from a stem

is over-represented with respect to a putative

miRNA� and reads derived from loop regions. For

a review dedicated to the discovery and expression

profiling of miRNA using deep sequencing, see

ref. [104].

Transactivating siRNAs (ta-siRNAs) are a class

of 21 base small interfering RNAs in plants that

show derive from longer double stranded RNA pre-

cursors [105]. The characteristic phasing of

ta-siRNAs derived from common precursors has

been exploited to develop an algorithm to identify

statistically significant phasing in alignments of small

RNAs to genomic sequences. This algorithm has

also been implemented as a web tool [97].

Piwi associated RNAs (piRNAs) are a class

of repeat associated small interfering RNAs

(ra-siRNAs) derived from large repeat containing

genomic loci such as the flamenco locus in

Drosophila, predominantly expressed in germline

cells, and thought to be principally involved in

the regulation of transposon expression through

complementary interactions leading to degradation

of transcripts [106]. piRNAs appear to use various

members of the PIWI subfamily of argonaute pro-

teins in a distinctive amplification loop mediated

by reciprocal cleavage of piRNA precursors and

target molecules [107]. A simple algorithm to

detect such complementary patterns has been pro-

posed [108].

Finally, several groups have recently proposed an

elegant strategy exploiting the fact that, in plants,

complementarity between miRNAs/ta-siRNAs

and their targets usually leads to precise cleavage of

target mRNAs [109,110]. These workers sequenced

the 50 ends of mRNA degradation products, assum-

ing that sites targeted by siRNAs would be over-

represented. A dedicated bioinformatics pipeline

for matching end-reads, datasets of known small

RNAs and a database of transcripts has been pre-

sented [111].

Epigenomics studies
50-Methylation of cytosine bases forms the basis of

important mechanisms of regulation of chromatin

state and gene expression [112]. It is becoming

increasingly clear that DNA methylation and

demethylation can be a dynamic process in both

animals [113] and plants [114]. One of the most

popular methods of characterizing the methylation

state of genomic DNA has been the targeted sequen-

cing of particular genomic regions after treatment

of isolated DNA with bisulfite which converts

unmethylated cytosines to uracil, but does not

modify 50 methylated cytosines. More recently, and

analogously to the situation with ChiP experiments,

specifically designed microarrays have allowed the

identification of methylated and non-methylated

regions though hybridization with bisulfite treated

genomic DNA. The development of NGS technol-

ogies has provided an alternative approach whereby

bisulfite treated DNA is directly sequenced and

mapping of reads to the genomic sequence allows

identification of methylated sites and quantification

of the frequency with which such sites are methy-

lated DNA (for a comprehensive review, see [115]).

Clearly, modification of non-methylated cyto-

sines will increase the level of mismatches in reads

derived from non-methylated regions and potentially

introduce artifactual matches to regions of the

genome other than the one from which reads were

derived. Amplification of genomic DNA fragments

adds additional complications (antisense reads derived

from modified or non-modified genomic regions).

The mapping of bisulfite reads is relatively straight-

forward for Roche 454 data where conventional

mapping tools can recover statistically significant

matches. Of the limited numbers of studies of this

type published until now using Illumina data, two

have used conventional short read mapping tools and

both native and computationally modified genome

sequences (where for each strand methylation modi-

fications have been performed) in order to identify

reads that map uniquely to a single genome locus

[116,117], while a third [87] developed a novel

probabilistic mapping procedure based on base call

scores and combinatorial substitution of cytosines

for thymines in reads. To minimize the computa-

tional cost of exhaustive genome scans for each

read, an efficient branch and bound algorithm was

applied to an appropriate genome index structure,

to exclude genomic regions that could not include

significant matches. While the use of NGS technol-

ogies in epigenomic studies is in its infancy,

the increasing awareness of the importance of epige-

netic marking in development and disease suggest

that this field will develop rapidly over the next

years, at both the experimental and bioinformatics

levels.
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CONCLUSIONS
We have attempted to provide a broad outline of

bioinformatics approaches for the analysis of NGS

data. The rapid rate of development in the field

means that it is likely that significant developments

will have occurred even by the time of publication

of this review. To this end we have avoided

detailed discussions of data formats and quality

scores. However, several dynamic and useful discus-

sion forums on the WWW may be of use to keep

up-to-date with recent developments (e.g. http://

seqanswers.com, http://groups.google.com/group/

solexa). Finally, it is fascinating to speculate as

to what questions will next be addressed using

these potent technologies. Metatranscriptomics for

example [118–121], promises to allow previously

unimaginable advances in our understanding of

large scale biological interactions in microbial com-

munities. In terms of ‘conventional’ genome sequen-

cing, either current or novel NGS technologies will

undoubtedly contribute to the goal of providing

plausible ‘personal genomics’ services whereby com-

plete genome sequences of individuals will contrib-

ute to improved diagnostics and therapeutic

programming while requiring novel tools for data

management and to ensure data privacy. In the

meantime many informed observers believe that

the goal of a $1000 human genome sequence [122]

is almost within reach and several technologies

are on the verge of meeting the X prize challenge

of sequencing 100 human genomes in 10 days at

a cost of no more than $10 000 per genome

(http://genomics.xprize.org/). Indeed, NGS tech-

nologies are already playing a key role in the 1000

genomes project [123] directed at the wide sampling

of human genome sequences. There cannot be any

doubt that NGS approaches are here to stay and

will provide major stimuli for bioinformatics

for many years to come, both at the level of algo-

rithm development and Laboratory Information

Management System (LIMS) development and

implementation (essential for the accurate manage-

ment and archiving of the volumes of data generated

in modern post-genomic research). Here we have

focused on the current generation of bioinformatics

tools for analysis of NGS data, which tend to

be command line driven and somewhat inaccessible

to many wet-bench researchers. There is undoubt-

edly a need for more intuitive, graphic user interface

instruments to render the power of these new tech-

nologies available to a wider audience within the

scientific community. All of these considerations

will further enhance the symbiotic relationship

between modern biology and computational

sciences, and ensure long and productive careers

for talented and committed bioinformaticians.

Key Points

� NGS technologies are revolutionizing the scale andperspectives
of research in the fields of genomics and functional genomics.

� The general features of the threemajor NGS platforms, namely
Roche 454, Illumina Solexa and AB SOLID, are illustrated.

� NGS data require ‘next-generation bioinformatics’ for the
handling and the analysis of the huge amount of data produced.

� A simulation carried out by using two benchmarks datasets
against the human genome and transcriptome illustrates
current limitations and open problems in genome mapping of
NGS data.

� The major bioinformatics applications for dealing with NGS
including genome mapping, de novo assembly, detection of SNPs
and editing sites, transcriptome analysis, ChIP-Seq, small RNA
characterization and epigenomic studies are briefly discussed.
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