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Abstract
An international consortium released the first draft sequence of the human genome 10 years ago. Although the
analysis of this data has suggested the genetic underpinnings of many diseases, we have not yet been able to fully
quantify the relationship between genotype and phenotype.Thus, a major current effort of the scientific community
focuses on evaluating individual predispositions to specific phenotypic traits given their genetic backgrounds. Many
resources aim to identify and annotate the specific genes responsible for the observed phenotypes. Some of these
use intra-species genetic variability as a means for better understanding this relationship. In addition, several online
resources are now dedicated to collecting single nucleotide variants and other types of variants, and annotating
their functional effects and associations with phenotypic traits.This information has enabled researchers to develop
bioinformatics tools to analyze the rapidly increasing amount of newly extracted variation data and to predict the
effect of uncharacterized variants. In this work, we review the most important developments in the fieldçthe
databases and bioinformatics tools that will be of utmost importance in our concerted effort to interpret the
human variome.
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INTRODUCTION
In 1990, the Human Genome Project was launched

and, almost 14 years later, the complete sequence of

the human genome (over 3 billion bp) was made

available [1] at an estimated cost of $2.7 billion.

Since then, genomic data has been collected at a con-

tinually increasing rate (Figure 1). The strategy for

relating a genotype to a phenotype experimentally

depends on the type of trait or disease being studied.

Re-sequencing the associated gene in affected indi-

viduals versus a control population can elucidate vari-

ants causing Mendelian pathologies. For analyzing

complex, multigenic diseases, sequencing all possible

disease-associated regions is necessary.

Although many types of genetic variations exist,

the Single Nucleotide Variants (SNVs; mutations
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affecting exactly 1 nt in the genomic sequence)

are most prevalent [4]. Many common Single

Nucleotide Polymorphisms (SNPs; SNVs that sub-

stitute a nucleotide by another one and occur in at

least 1% of the population) have been extensively

evaluated for disease associations. The International

HapMap Consortium was established in 2001 to

detect the patterns in human DNA sequence vari-

ation and to determine their frequencies in different

populations. One major goal of the effort was to

enable the discovery of disease-related SNPs [5].

In 2007, using linkage data from HapMap, a

genome-wide association study (GWAS) on 17 000

samples/�500 K SNVs was performed to detect

variants associated with seven common diseases [6].

To date, nearly 1000 GWAS, genotyping at least

100 K SNPs per individual, have been published

[7]. Although these studies are important for

identifying disease-associated variants, only a few

thousand common SNPs have been significantly

associated to specific phenotypic traits [8].

Moreover, a systematic analysis of lower frequency,

rare SNVs was not possible with GWAS [9].

With the advent of modern high-throughput

technology, the cost of sequencing whole genomes

has continued to decrease to reach �$3000 today.

These technological advances have also enabled the

sequencing of individual genomes [10, 11] and the

establishment of the 1000 Genomes Project

Consortium. In the publication of its pilot results,

the Consortium reported detecting over 16 million

SNVs [4]—data that now needs to be analyzed for its

association with various phenotypes. In addition,

direct to consumer (DTC) companies are offering

limited genotyping to provide insight into personal

traits and disease risks [12]. It is expected that in the

next few years, we will witness a second phase of the

personal genomics wave, where SNP genotyping

chips will be replaced by whole-genome sequencing.

Despite more comprehensive databases and better

methods for the analysis of genetic variants, the

problem of genome interpretation is still far from

being solved. Thus, the idea of a ‘$1000 genome,

$1 000 000 genome interpretation’ was expressed

by the president of the American College of

Medical Genetics, Bruce Korf. In this review, we

summarize the newly available genetic variation

resources, methods for gene prioritization and

algorithms for the prediction of variant effects for

use in interpreting personal genomes.

DATABASESANDRESOURCES
As next-generation sequencing technologies con-

tinue to decrease in cost and increase in throughput,

SNP chip-based genotyping will rapidly be replaced

Figure 1: Growth in the number of genetic variations in dbSNP and SwissVar. RefSNPs shows the number of
position-based clusters of variants from dbSNP [2]. Disease and Annotated show the numbers of disease-related
and total annotated (either disease-related or neutral) nonsynonymous SNVs from the SwissVar database [3].
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by whole-exome and whole-genome sequencing.

Once an individual’s genotype has been accurately

determined, the first step in genotype interpretation

is to identify each variant as known or novel, rare or

common, and to determine if it has been previously

associated with a disease. Identifying the structural

and functional context of each variant is also critical

for variant prioritization. A number of databases are

freely available to aid the variant annotation process.

Databases for short length and structural
variations
Several databases aid in the classification of variants as

either known or novel, and rare or common (Table 1).

The National Center for Biotechnology Information

(NCBI) dbSNP database [2] is the largest source of

short genetic variation data. dbSNP currently con-

tains over 40 million, both common and rare human

SNVs, short indels and microsatellites (Build 134,

August 2011). Where available, the database also

reports SNV clinical significance. The 1000

Genomes Project Consortium is a major contributor

of novel variants to dbSNP, aiming to catalog 95% of

human variants with an allele frequency of at least

1% in each of five major human population groups.

The Consortium is expanding on the work of the

International HapMap Project [5] to catalog genetic

variation shared within and between members of

various populations. So far, over 38 million variant

sites have been identified within the framework of

this effort (Phase 1 Low Coverage Data, May 2011).

In addition, the Consortium data includes inferred

genotypes for individual samples, useful for future

association studies utilizing genotype imputation.

The recently initiated UK10K Project (http://www

.uk10k.org) will have even greater power to discover

rare variants, identifying those with as little as 0.1%

allele frequency. The project will conduct low cover-

age, whole-genome sequencing for 4000 healthy in-

dividuals, and whole-exome sequencing for 6000

individuals with a variety of extreme disease pheno-

types to facilitate the discovery of rare variants asso-

ciated with these diseases. Although more exhaustive

in scope, the UK10K data is less accessible—access is

managed by a consortium and requires acceptance of

‘terms and conditions’ to protect the privacy and

interests of the study participants.

While databases like dbSNP and HapMap and

projects like 1000 Genomes and UK10K focus pri-

marily on short-length variants like missense, non-

sense and short insertion and deletion mutations

(indels), larger-scale structural rearrangements, copy

number variants (CNVs) and large indels can also

dramatically affect human phenotypes. NCBI’s data-

base of genomic structural variation (dbVar) [13] and

the collaborative effort Database of Genomic

Variants (DGV) [14] are two of the largest reposi-

tories for large-scale (typically >1 kb in length) struc-

tural variations. DGV only contains entries from

healthy human controls, while dbVar contains

entries from all species and includes variants with

associated phenotypes. The DGV archive (DGVa)

[13] is a new database maintained by the European

Bioinformatics Institute that also contains structural

variants from all species with associated phenotypes

when available.

Genotype/phenotype annotation
databases
Many specialized databases contain variant–disease

associations that are commonly used to identify

known deleterious mutations (Table 1). The

Online Mendelian Inheritance in Man (OMIM)

database [16] is a catalog of human genes and

diseases. OMIM is manually curated and contains

descriptions of over 13 000 genes and almost 7000

phenotypes (September 2011). Over 2600 genes in

OMIM contain listings of specific allelic variants

associated with disease. The SwissVar database [3] is

another manually curated source of variant–

phenotype association data. The database also

includes a number of variant features, e.g. physico-

chemical properties, affected functional features

and conservation profiles for amino-acid changing

variants in SwissProt proteins. SwissVar currently

contains information on over 24 000 deleterious

variants linked to over 3300 diseases (September

2011). The Human Gene Mutation Database

(HGMD) [15] is a large collection of variants asso-

ciated with human inherited diseases. HGMD is

available in two versions: a free version for academ-

ic/nonprofit users, and a more regularly updated,

paid professional version. The free version of

HGMD contains associations of approximately

82 000 variants of all kinds to approximately 3000

diseases (September 2011). NCBI’s ClinVar database,

currently in development, aims to provide a freely

available, comprehensive listing of variants associated

with phenotypes along with links to regularly

updated evidence for the associations. In addition

to OMIM, SwissProt and HGMD, which list vari-

ants in all disease-associated genes, locus specific
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Table 1: Databases and resources for personal genome interpretation

Database URL Description References

Short variationsçSNVs, short indels
1000 Genomes http://www.1000genomes.org Human short variants and inferred genotypes [4]
dbSNP http://www.ncbi.nlm.nih.gov/projects/SNP Short variants from all species [21]
HapMap http://www.hapmap.org Human short variants and population group haplotypes [5]

Structural variationsçstructural rearrangements, CNVs, large indels
dbVar http://www.ncbi.nlm.nih.gov/dbvar Structural variants from all species [13]
DGV http://projects.tcag.ca/variation Structural variants from healthy human controls [14]
DGVa http://www.ebi.ac.uk/dgva Structural variants from all species [13]

General variants associated with phenotypes
ClinVar http://www.ncbi.nlm.nih.gov/clinvar Human variant^ disease associations (in development)
HGMD http://www.hgmd.org Human variant^ disease associations (inherited diseases) [15]
OMIM http://www.omim.org Human variant^ disease associations (includes extensive

gene and phenotype descriptions)
[16]

SwissVar http://swissvar.expasy.org Human variant^ disease associations (non-synonymous
SNVs only)

[3]

GWAS and other association studies
dbGaP http://www.ncbi.nlm.nih.gov/gap Controlled access to individual genotype/phenotype

data from association studies
[17]

EGA http://www.ebi.ac.uk/ega Controlled access to individual genotype/phenotype data
from association studies

GAD http://geneticassociationdb.nih.gov Mainly complex disease SNVs from association studies [18]
NHGRI GWAS Catalog http://www.genome.gov/gwastudies Significant SNVs from GWAS [7]

Cancer genes and variants
ICGC http://www.icgc.org Somatic variants from tumor sequencing projects [19]
COSMIC http://sanger.ac.uk/genetics/CGP/cosmic Somatic variants from tumor sequencing and literature [20]
Cancer Gene Census http://sanger.ac.uk/genetics/CGP/Census Comprehensive list of cancer-related genes [21]
Cancer Gene Index http://ncicb.nci.nih.gov/NCICB/projects/cgdcp Comprehensive list of cancer-related genes, including

gene^disease and gene^drug relationships
TCGA http://cancergenome.nih.gov Somatic variants from tumor sequencing projects [22]

Pharmacogenomic genes and variants
DrugBank http://drugbank.ca Drug properties and protein amino acid target sequences [23]
PharmGKB http://www.pharmgkb.org Curated and text-mined variant^ drug response

associations
[24]

Crowdsourced genes and variants
Gene Wiki http://en.wikipedia.org/wiki/Portal:Gene_Wiki Human gene/protein annotations [25]
SNPedia http://www.snpedia.com Human SNV^disease associations
WikiGenes https://www.wikigenes.org Gene annotations from all species [26]

Viewers of the structural and functional impact of variants
DMDM http://bioinf.umbc.edu/dmdm Aggregates human protein mutations at individual

domain positions
[27]

LS-SNP/PDB http://ls-snp.icm.jhu.edu/ls-snp-pdb Variant/PDB structure viewer (includes multiple filters for
selection of variants)

[28]

MutDB http://mutdb.org Variant/PDB structure viewer (includes SIFT predictions
for nonsynonymous mutations)

[29]

SAAPdb http://bioinf.org.uk/saap/db Variant/PDB structure viewer (includes impact on
physico-chemical and functional features)

[30]

StSNP http://ilyinlab.org/StSNP Variant/PDB structure viewer (includes physico-chemical
impact for nonsynonymous mutations)

[31]

SNPeffect http://snpeffect.vib.be Variant/PDB structure viewer (includes predictions for
variants to cause protein aggregation)

[32]

TopoSNP http://gila-fw.bioengr.uic.edu/snp/toposnp Variant/PDB structure viewer (includes location of variant
on surface, in pocket or in core)

[33]
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databases (LSDBs) report variants in a single gene,

often related to a single disease. LSDBs are used as

a source of variant data for both SwissProt and

HGMD. A comprehensive list of links to LSDBs is

provided on the Human Genome Variation Society

website (http://www.hgvs.org/dblist/glsdb.html).

The number of LSDBs and the quality of data

contained therein has grown over recent years.

However, at least one comprehensive study shows

[34] that LSDBs would be better equipped to serve

the research (and treatment) community with stand-

ardization of reported results and improvement

of variant effect (and disease) annotation.

GWAS and other association study databases
As previously noted, large-scale GWAS have identi-

fied thousands of variants associated with disease. The

National Human Genome Research Institute Catalog

of Published Genome-Wide Association Studies

(NHGRI GWAS catalog) [35] conveniently lists sig-

nificantly associated marker SNPs from these studies in

a manually curated, online database. The catalog in-

cludes data on study designs, individual SNV P-values,

odds ratios and links to the published studies. The

Genetic Association Database (GAD) [18] predates

the NHGRI GWAS catalog, and contains curated

information on both positive and negative variant as-

sociations from GWAS and candidate gene association

studies primarily from studies of common, complex

diseases. In addition to the summary data in the

GWAS catalog and GAD, the database of Genotype

and Phenotype (dbGaP) [17] and the European

Genome-phenome Archive (EGA) provide controlled

access to individual-level genotype and phenotype

data from many large-scale association studies.

Cancer gene and variant databases
Given the significance of somatic mutations in

oncogenesis, several large-scale projects sequencing

multiple cancer types have emerged including the

Cancer Genome Atlas (TCGA) [22] and the Cancer

Genome Project (CGP) (http://www.sanger.ac.

uk/genetics/CGP). The International Cancer

Genome Consortium (ICGC) [19] was developed

to coordinate cancer sequencing projects around the

world, including TCGA and the CGP, for over 50

different cancer types and subtypes. Data portals for

ICGC and TCGA are available to retrieve open

access variant data, and individual level, controlled

access genotype data by application. Data from the

CGP and curated mutations from the literature for a

list of genes previously associated with cancer (the

Cancer Gene Census list [21]) are available from

COSMIC, the Catalog of Somatic Mutations in

Cancer [20]. COSMIC (Release 54) currently con-

tains data on over 177 000 mutations from almost

620 000 tumors. The NCI Cancer Gene Index is

another comprehensive source of genes related to

cancer, containing gene–disease and gene–drug rela-

tionships text-mined and manually validated from

over 20 million MEDLINE abstracts.

Pharmacogenomic genes and databases
Specialized databases also now exist to link genes and

genotypes with drug targets and drug response. The

Pharmacogenomics Knowledgebase (PharmGKB)

[36] contains both manually curated and automatic-

ally text-mined associations of human variations to

drug response. The database includes information for

variants in over 1500 genes related to approximately

375 drugs and almost 300 diseases (September 2011).

DrugBank [23] is a more drug-focused resource

containing structural, chemical and pharmacologic

properties for over 6800 drugs (September 2011).

DrugBank also contains the amino acid target

sequences for individual drugs, enabling the identi-

fication of variants falling in drug binding sites.

Other resources and tools for personal
genome interpretation
Crowdsourcing
Many annotation databases use automated searches

followed by expert human curation to identify and

validate variant–disease associations from literature. As

the pace of association studies continues to increase,

this process will become increasingly unsustainable.

To address this problem, several databases have

been developed to harness a crowdsourcing model

for gene and variant annotation including Gene

Wiki [25], WikiGenes [26] and SNPedia (http://

www.SNPedia.com). While all of these resources in-

clude some information automatically extracted from

public sources like PubMed, OMIM and dbSNP, the

community contribution and curation could poten-

tially provide more comprehensive and update-to-

date information as new studies are published.

Viewers
A variant’s structural/functional context is critical to

determining its likelihood of disease involvement.

Several web tools are available for viewing SNVs

superimposed onto the corresponding Protein Data

Bank (PDB) [37] protein structures. These tools
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highlight the changes in physico-chemical properties

and display proximity to structural features like

domain interfaces, binding sites, etc. LS-SNP/PDB

[38], MutDB [29], SAAPdb [30], StSNP [31],

SNPeffect [32] and TopoSNP [33] are just a few

resources that provide this type of structural and

functional annotation. By aggregating all SNPs

and disease mutations from dbSNP, OMIM and

SwissVar at the protein and domain levels, the

Domain Mapping of Disease Mutations (DMDM)

database [27] also adds the critical functional con-

text provided by protein domains for variant

characterization.

Epigenetics and transciptome Databases
Changes in gene regulation due to epigenetic mech-

anisms, other than variation in the DNA sequence,

can also be disease associated. Local patterns of

DNA methylation, chromatin structure and histone

modification states, and nonprotein-coding RNAs

(ncRNA), e.g. microRNAs, affect gene expression

levels. Thus, genome-wide studies to comprehen-

sively catalog the various structural and functional

elements of the genome, as well as studies to map

the epigenetic elements affecting gene expression

levels, are now being undertaken. These will lead

to a better understanding of genome complexity

and gene regulation. The ENCyclopedia of DNA

Elements Project (ENCODE) [39] includes studies

to catalog the full human transcriptome including

protein coding, noncoding and pseudogene tran-

scripts, in addition to local chromatin states and

methylation patterns. The National Institutes of

Health Roadmap Epigenomics Mapping Con-

sortium [40] was recently organized to map DNA

methylation, histone modifications, chromatin acces-

sibility and ncRNA transcripts in each human tissue

and cell type. The ENCODE Project and NIH

Roadmap Epigenome data are both available as an-

notation tracks viewable from the UCSC Genome

Browser at http://genome.cse.ucsc.edu/encode and

http://www.epigenomebrowser.org, respectively.

Interesting reviews about large-scale epigenomics

projects, association studies of epigenetic variation

and computational epigenetics analysis have been re-

cently published [41–43].

GENE PRIORITIZATION
Aberrations in normal gene function that result

in the development of a disease define a ‘disease

gene’. Proving a gene–disease relationship experi-

mentally is expensive and time-consuming.

Ranking candidate genes prior to experimental

testing reduces the associated costs. Computational

gene prioritization uses heterogeneous pieces of evi-

dence to associate each gene with a given disease.

Whereas experimental studies provide a lot of infor-

mation, incorporation of other sources of evidence

is necessary to narrow down the candidate search

space. Gene prioritization techniques effectively

translate heterogeneous experimental data into

legible disease–gene associations.

Making sense of available data
A functional module, or molecular pathway, is

generally defined as a series of interactions between

molecules in the cell leading to a specific end point in

cellular functionality. For the body to remain

disease-free, all normally occurring processes, molecu-

lar interactions and pathways should function without

major alterations. Moreover, since it is an oversimpli-

fication to view a single pathway as a discrete and

independent entity, it is increasingly evident that dif-

ferent diseases, resulting from aberrations in different

pathways, are also interdependent.

Identifying the pathways affected in the observed

disease is a major challenge. A given pathway can be

altered by gene expression changes, gene-product

malformation, introduction of new pathway

members, and/or environmental disruptions. Identi-

fication of gene–disease associations is complicated

by gene pleiotropy, multigenic nature of most

diseases, varied influence of environmental factors

and overlying genome variation; i.e. any one

source of information about a disease may or may

not be sufficient to identify its specifics. Moreover,

the available experimental data describing each of

the biological concepts involved is itself very hetero-

geneous. Thus, using a combination of resources

requires knowing how to meaningfully combine

the extracted information (Table 2).

The lines of evidence most robust in identifying

genes as prime suspects for disease involvement are:

GWAS or linkage analysis studies, similarity or link-

age to and co-regulation/-expression/-localization

with known disease genes, and participation in

disease-associated pathways/compartments. Five

notions commonly define these associations: (i) func-

tional association: participation in a common pathway

with other disease genes, (ii) cross-species association:

orthologues generating similar phenotypes in
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other organisms, (iii) disease association: gene-

product presence in disease pathways or associated

cellular compartments and/or localization to affected

tissues, (iv) mutant implication: candidate genes

harboring functionally deleterious mutations in

diseased individuals and (v) text implication:

co-occurrence of gene and disease terms within

scientific texts.

Functional association
Common pathway
Many gene prioritization tools use gene–gene

(protein–protein) interaction and/or pathway infor-

mation to prioritize candidates. Since diseases are re-

sults of pathway malfunction, disabling any of the

pathway members may lead to similar phenotypes.

Cancer-associated proteins, for example, are very

strongly interconnected [69]. In general, genes

responsible for generating similar diseases tend to

participate in the same protein–protein interaction

networks [70].

Regulatory information and genetic linkage
Co-regulated genes are often thought to be involved

in the same molecular pathways [71]. However,

co-regulated genes may reside in distinct pathways

[72]. Moreover, co-expressed nonparalogous genes

often demonstrate conservation of clustering across

species [73], suggesting that co-expression clusters are

evolutionarily advantageous and naturally selected

[74]. Some researchers [75] argue that these clusters

may represent groups of genes involved in high-level

cooperation beyond the canonical description of cel-

lular pathways. As such, deregulation of these clusters

may manifest in disease. Note that whereas genetic

linkage/co-regulation are valuable markers of disease

association, they are not specific; i.e. a given

disease-associated gene may be co-regulated with

Table 2: Available data sources and gene prioritization tools

Method URL Description References

CAESAR http://polaris.med.unc.edu/projects/caesar/ ESPNOML [44]
CANDID https://dsgweb.wustl.edu/hutz/candid.html ESPNL [45]
DADA http://compbio.case.edu/dada/ PL [46]
DomainRBF http://bioinfo.au.tsinghua.edu.cn/domainRBF/gene/ SOML [47]
ENDEAVOR http://www.esat.kuleuven.be/endeavour ESPNOL [48]
G2D http://www.ogic.ca/projects/g2d_2/ ESPOL [49, 50]
GeneDistiller http://www.genedistiller.org/ ESPNOL [51]
GeneProspector http://www.hugenavigator.net/HuGENavigator/geneProspectorStartPage.do SNML [52]
GeneWanderer http://compbio.charite.de/genewanderer/GeneWanderer PNML [53]
Genie http://cbdm.mdc-berlin.de/tools/genie/ ESPNL [54]
Gentrepid https://www.gentrepid.org/ ESPL [55]
MedSim http://www.funsimmat.de/ SPNOL [56]
MimMiner http://www.cmbi.ru.nl/MimMiner/ SL [57]
PGMapper http://www.genediscovery.org/pgmapper/ ESPL [58]
PhenoPred http://www.phenopred.org/ SPO [59]
PINTA http://www.esat.kuleuven.be/pinta/ EP [60]
PolySearch http://wishart.biology.ualberta.ca/polysearch/ L [61]
PROSPECTR http://www.genetics.med.ed.ac.uk/prospectr/ SNML [62]
SNPs3D http://www.snps3d.org/ SPNOML [63]
SUSPECTS http://www.genetics.med.ed.ac.uk/suspects/ ESPNML [64]
ToppGene http://toppgene.cchmc.org/ ESPNOL [65, 66]
VAAST http://www.yandell-lab.org/software/vaast.html EM [67]

Awide range of data sources can be used to formulate the associations and implications described herein. Existing tools try to take advantage of
many of them.This table summarizes current web-available, state of the art gene prioritization methods.Note, somemethods (e.g. PRINCE [68])
are not available online, but are downloadable for local installation. Letters in the Description column denote the data sources used:
(E) Experimental observation: Linkage, association, pedigree, relevant texts and other data. (S) Sequence, structure, meta-data: Sequence
conservation, exon number, coding region length, known structural domains and sequencemotifs, chromosomal location, protein localization and
other gene-centered information and predictions. (P) Pathway, protein^protein interaction, genetic linkage, expression: Disease ^gene
associations, pathways and gene^gene/protein^protein interactions/interaction predictions and gene expression data. (N) Non-human data:
Information about related genes and phenotypes in other species. (O) Ontologies: Gene, disease, phenotype and anatomic ontologies. (M)
Mutation associations and effects: information about existingmutations, their functional and structural effects and their associationwith diseases,
predictions of functional or structural effects for the mutations in the gene in question. (L) Literature: mixed information of all types extracted
from literature references (e.g. disease^gene correlation and nonontology based gene-function assignment).
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or linked to another disease-associated gene, where

the two diseases are not necessarily identical.

Similar function
It is common to observe reduced/absent phenotypic

effect in response to gene knockout/inactivation

[76, 77]. This phenomenon is largely explained by

functional compensation via partial interchangeabil-

ity of paralogous genes. When functional compensa-

tion is insufficient, inactivation of any of the paralogs

leads to same/similar disease. Thus, many tools use

functional similarity to establish disease–gene associ-

ation. Defining functional similarity is nontrivial.

When utilizing ontologies, like GO [78], the ques-

tion becomes a problem of assigning a ‘score’ to

the similarity of two ontology nodes/subtrees.

‘Functional distance’ [79–82] calculations for any

two genes within the context of the ontology sug-

gest a well-defined way of annotating functional

similarity.

Sequence/structure association
Sequence/structure homology is often used for

transferring functional annotations from character-

ized genes/proteins to new ones [83]. Since func-

tionally similar genes are likely to produce similar

disease phenotypes, homology is also important in

disease gene prioritization. Additionally, disease

genes are distinctly associated with specific canonical

features such as higher exon number, gene, protein

and 30-UTR length and distance to a neighboring

gene, as well as lower sequence divergence from

their orthologs [64, 84]. Proteins with signal peptides

are also more commonly disease associated [64],

whereas disordered proteins are often implicated in

cancer [85].

Cross-species association
A high number of orthologs suggests essential genes

prone to disease involvement. Orthologs also gener-

ally participate in similar molecular pathways across

species, although different levels of function may

be necessary for different organisms. Cross-species,

tissue-specific phenotypic differences due to slightly

varied sequences are thus useful for gene prioritiza-

tion. Note that phenotype ontologies are necessary

to facilitate [86] this comparison of organism

phenotypes.

A correlation of co-expression of genes in differ-

ent species is also a predictive measure for annotating

disease genes [87, 88]. As discussed above, there is

evidence for co-expression of genes that are not

related in any known functional manner [89–91].

These co-expressed clusters may be evolutionarily

advantageous [74, 75, 90], but are only evident as

such if conserved throughout other species.

Cross-species comparisons of protein co-expression

are therefore useful for validating disease–gene

co-expression associations (e.g. [87]).

Disease compartment association
Altered gene expression is expected in association

with many common complex diseases [92]. Genes

that are preferentially expressed in disease-affected

tissues are likely candidates for disease association.

Some proteins interact only in some tissues [93], so

tissue specificity is important for finding the right

protein–protein interaction networks. Similarly,

disease-association with cellular pathways (e.g. ion

channels) and compartments (e.g. plasma membrane)

may indicate that pathway/compartment-specific

gene-products are also disease associated.

Mutant implication
Every genetic disease is associated with some sort of

mutation that alters normal functionality. Selection

of candidates for further analysis is often based on

observations of variants in diseased individuals,

which are absent in healthy controls. Not all

observed variants are deleterious. Most observed

variations do not manifest phenotypically, and

some are weakly deleterious or even beneficial.

Many gene prioritization methods use mutation

effect predictions to make their own inferences.

Tools used to make these predictions are described

in the ‘Genetic variant interpretation’ section of this

article.

Text implication
Experimental findings of gene–disease associations

are often reported in the literature. Some of the

data is also machine accessible via various databases

described above such as dbSNP [11], GAD [18] and

COSMIC [20], or by depositing manually curated

knowledge into databases like GeneRIF [94] and

UniProt. However, a vast sea of data remains ‘hid-

den’ in the natural language text of scientific publi-

cations. Text mining tools have recently come of age

[94–97], allowing for the identification of possible

gene–gene and disease–gene correlations [98–100].

For example, the Information Hyperlinked Over

Proteins, IHOP method [101] extracts gene/protein
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names in scientific texts and links these via path-

ology, phenotype, physiology and interaction infor-

mation. Gene prioritization techniques also often

rely on term co-occurrence statistics (e.g. PosMed

[102], GeneDistiller [51]) and gene-function annota-

tions (e.g. ENDEAVOR [103], PolySearch [61]).

The inputs, outputs and processing
Gene prioritization methods vary based on the inputs

they require and the types of outputs they produce.

For an excellent summary of methods and their

inputs, see [48] and Table 3. Method inputs rely

on two distinct notions: previously known informa-

tion about the disease and the candidate search space.

The disease information may include a list of genes

known to be associated with the disease, the tissues

and pathways it afflicts and any relevant keywords.

The candidate search space may include the entire

genome, or may be defined by the suspect genomic

region, overexpression in the affected tissue, or other

experimental results. Not surprisingly, the accuracy

of the prioritization method often depends on

the accuracy and specificity of the input data.

Outputs of prioritization methods are generally

limited to ranked lists of genes, often associated

with test-performance values (e.g. P-values). Some

methods only rank/order the top genes they select,

while others manage the entire submitted list.

Selected input and output requirements are import-

ant for a tool’s acceptance by the biological commu-

nity. A given method’s ease of use often defines its

utility as strictly as do its speed and accuracy.

Finally, gene prioritization methods also differ in

the algorithms they use to make sense of the data.

Tools used include mathematical/statistical models

and scoring methods (e.g. SUSPECTS [64],

GeneProspector [52]), fuzzy logic (e.g. ToppGene

[65, 66]), artificial learning devices (e.g. decision

trees in PROSPECTR [62], neural networks

in PosMed [102]), network/topology analysis

Table 3: Tools for the interpretation of single nucleotide variants

Method URL Description References

Methods for the prediction of stability change upon mutation
AutoMUTE http://proteins.gmu.edu/automute/ Delaunay tessellation and combined machine

learning methods
[104]

CUPSAT http://cupsat.tu-bs.de/ Physics-based energy function [105]
D-Mutant http://sparks.informatics.iupui.edu/hzhou/

mutation.html
Statistical-based energy function [106]

Fold-X http://foldx.crg.es/ Physics-based energy function [107]
I-Mutant http://gpcr2.biocomp.unibo.it/I-Mutant.htm Sequence and Structure SVM-based method [108]
PoPMuSiC http://babylone.ulb.ac.be/popmusic Statistical-based energy function optimized by ANN [109]

Methods for the prediction of deleterious non-synonymous SNVs
PANTHER http://www.pantherdb.org/ Protein family HMM-based method [110]
PhD-SNP http://gpcr.biocomp.unibo.it/PhD-SNP.htm Sequence and profile-based SVM method [111]
PolyPhen http://genetics.bwh.harvard.edu/pph DecisionTree-based method [112]
MutPred http://mutdb.org/mutpred Random forest approach including multiple scores [113]
SIFT http://sift-dna.org Protein block alignment-based method [114]
SNAP http://rostlab.org/services/snap Sequence profile-based neural network [115]
SNPs3D http://www.snps3d.org Structure-based SVM predictor [63]
SNPs&GO http://snps-and-go.biocomp.unibo.it Sequence profile and functional-based SVM [116, 117]

Predictors of the impact of SNVs at DNA level
ANNOVAR http://www.openbioinformatics.org/annovar Scoring functional and evolutionary information [118],
binCons http://zoo.nhgri.nih.gov/binCons/index.cgi Evolutive analysis with window-based approach [119]
GERP http://mendel.stanford.edu/SidowLab/downloads/gerp/ Site-specific evolutive analysis [120]
Gunby http://pga.jgi-psf.org/gumby/ Statistical-based evolutive analysis [121]
Is-rSNP http://www.genomics.csse.unimelb.edu.au/is-rSNP/ Effect of variants in regulatory regions [122]
MutationTaster http://www.mutationtaster.org/ Evolutionary conservation, splicing site changes and loss

of protein features
[123]

PhastCONS http://compgen.bscb.cornell.edu/phast Phylogenetic HMM-based method [124]
SCONE http://genetics.bwh.harvard.edu/scone Site-specific evolutive analysis [125]
Skippy http://research.nhgri.nih.gov/skippy Predicts variants affecting splicing sites [126]
VISTA http://genome.lbl.gov/vista/index.shtm Integrated approach including scores from different

methods
[127]
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approaches (e.g. DiseaseNet [127]), and vector/pro-

file comparisons (e.g. CAESAR [44], MedSim [56])

among others. Most often, some combination of

the above methods is used, but there is no single

methodology that is objectively better than the

others for the compilation of data from all sources.

GENETIC VARIANT
INTERPRETATION
The interpretation of the functional impact of gen-

etic variation is one of the most important tasks in

personal genomics and personalized medicine [129].

Genomic variants have different effects depending

on whether they occur in coding or noncoding

regions. In coding regions, variants can change the

amino acid sequence of the coded protein. In

noncoding regions, they can affect transcription,

splicing and binding. The recent 1000 Genomes

Project Consortium work confirms that single

nucleotide variants (SNVs) are the most common

type of genetic variation [2]. Thus, understanding

the functional effect of SNVs is one of the main

goals of modern genetics/genomics studies [130].

Over the past 10 years, several methods have been

developed to predict the impact of SNVs [131–133].

Here, we describe the information used by these al-

gorithms, and present a selection of the most popular

web-available tools for genome interpretation.

Computational approaches for genome
interpretation
As noted, experimental studies to characterize the

impact of SNVs are still expensive and time consum-

ing. To partially overcome this limitation, several

algorithms have been implemented to predict the

effect of genetic variants (Table 3). All such methods

take input information derived from sequence

conservation, because it has been observed that

functionally important regions of the genome tend

to be more conserved through evolution than

nonfunctional ones [134, 135]. The detection of

functional and conserved sites depends on their

locations in the genome. We currently have a

better understanding of the relationship between

the DNA sequence and function for coding regions

than for noncoding ones [136]. Hence, the majority

of methods have been designed to predict the effect

of nonsynonymous SNVs (nsSNVs) and, only

recently, a few supervised methods have been

developed to evaluate the impact of genetic variants

in noncoding regions.

Predicting the effect of nsSNVs
Methods for predicting the effect of nsSNVs estimate

their probability of being disease-associated or func-

tionally deleterious. The catalog of the relationships

between molecular phenotypes and disease is far

from complete. However, it is believed that the

pathologic state results from amino acid substitutions

affecting functionally critical residues and/or causing

alterations in the structure of the folded protein,

structural instability or protein aggregation [137].

Several methods have been developed for predicting

the effects of amino acid substitutions. In particular,

we describe two (not fully separable) classes: (i) pre-

dictors of nsSNV functional effects; i.e. modifying

the catalytic site of an enzyme or affecting a residue

involved in crucial interactions with partner

molecules and (ii) those predicting the effect of

nsSNVs on protein stability (Table 3).

Methods for the prediction of protein stability changes
Incorrect protein folding mechanisms and decreased

stability are the major consequences of pathogenic

nsSNVs [138], as they can cause a reduction in

hydrophobic area, overpacking, backbone strain

and/or loss of electrostatic interactions [139].

Although different thermodynamics measures can

be used to assess the variation of stability upon

mutation, one of the most common is the difference

of the folding free energy change between the wild-

type and mutated proteins (��G). Several methods

have been developed to predict if a given nsSNV

changes the stability of the protein structure.

Some algorithms implement an energy function to

compute the ��G [106, 140–145], whereas others

are based on machine-learning approaches

[108, 146–148].

The methods relying on energy functions can be

subdivided into (i) physics-based approaches that use

a force field to describe the atomic interactions

involved in the folding process [142–144] and (ii)

statistical potential approaches that use an empirical

energy function derived from the statistical analysis

of the structural environment around the mutated

site [106, 140, 141, 145]. More recently, an increas-

ing amount of thermodynamic data, collected in

web-available databases such as ProTherm [149],

has allowed training machine learning methods to

predict both the value and sign of the difference
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between the folding free energy of the wild-type and

mutated proteins (��G). In 2010, the accuracy of

the most popular web-available algorithms was as-

sessed by reporting method performances on a set of

thermodynamic data not included in the training set

[150]. Although tested on data sets of different sizes,

Dmutant [106], FoldX [107] and I-Mutant3.0 [147]

scored the highest for predicting protein stability

changes. This assessment showed that current meth-

ods for the prediction of stability changes due to

nsSNVs reach a moderate level of accuracy

(�60%). Further improvements are therefore

necessary to provide more reliable predictions.

Methods for the prediction of functional effects
of nsSNVs
Efforts to design accurate algorithms for the predic-

tion of functionally deleterious nsSNVs have resulted

in a slew of available methods [130]. Considering

evolution as the ultimate mutagenesis experiment,

comparative sequence analysis is a powerful source

of information taken into account by all the

algorithms. A simple study performed on a dataset

of nsSNVs extracted from SwissVar database [3]

showed significant differences between the distribu-

tion of the frequencies of wild-type and mutant resi-

dues for the subsets of disease-related and neutral

variants (Figure 2A and B). The median values for

the frequencies of the wild-type residues in

disease-related and neutral variants (0.66 and 0.34,

respectively) confirm the idea that wild-type residues

are more conserved in disease-associated nsSNVs.

Analyzing the distributions of the frequencies of

the mutant residues, it was shown that in �60% of

the deleterious mutations, the mutant residue does

not appear in any sequence of the multiple sequence

alignment, whereas in �71% of the neutral muta-

tions, the mutant residue appears at least once. In

addition, the distribution of the difference between

the frequencies of the wild-type and mutant residues,

in Figure 2C, confirms the previous observations.

Similar results were obtained when calculating the

distributions of the conservation index as defined in

Ref. [151] (Figure 2D).

The discriminative power of evolutionary infor-

mation is used in all prediction methods, although in

different ways. For example, SIFT [114] uses blocks

of conserved regions in proteins, PhD-SNP [111]

and SNPs&GO [116] calculate the sequence profile

by running the BLAST algorithm [152] over a data-

base of sequences, PolyPhen [112] and SNAP [154]

also include position-specific independent count

(PSIC) scores, PANTHER [134] compares the

sequence against a library of hidden Markov models

from protein families and other methods perform the

analysis of the DNA sequence by evaluating the

selective pressure acting at the codon level

[155, 156]. Predictors also use features from

Figure 2: Distribution of the frequencies of wild-type (A) and mutant (B) residues, difference between the
frequencies of wild-type and mutant residues (C) and Conservation Index [151] (D) for disease-related and neutral
nsSNVs. Black and white bars show the distributions for disease-related and neutral nonsynonymous variants,
respectively, for a set of 54347 nsSNVs extracted from SwissVar database (October 2009). The data set was
composed of 20 089 disease-related and 34258 neutral mutations from 11657 proteins. Sequence profiles were
calculated from one run of the BLASTalgorithm [152] over the UniRef90 database [153] and selecting only sequences
with E-values lower than 10�9.
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predicted or experimentally determined protein

structures and available functional information [28,

112, 113, 117, 138, 154].

The algorithms for the detection of deleterious

nsSNVs also differ in their training sets and under-

lying classification methodologies. Most are trained

on an annotated set of nonsynonymous variants

from OMIM, HGMD and/or SwissVar. Others,

like SNAP, use mutations from the PMD database

[157], collecting functional (as opposed to disease

associated) data from mutagenesis experiments. In

a recent work, the performance of a pool of methods

was assessed on a curated set of nsSNVs [158].

This study showed that more sophisticated methods,

such as MutPred [113] and SNAP [154] which

include features from predicted structures and

SNPs&GO [116] which uses functional information

encoded in a Gene Ontology-based score, had

the best performance.

With the increasing number of annotated nsSNVs,

new algorithms can also be trained on a set of muta-

tions associated to a specific class of diseases and/or

proteins. Methods for the prediction of cancer-

causing nsSNVs [159–161] are an interesting example,

as is a new tool for predicting the effect of genetic

variants in voltage-gated potassium channels [162].

Predicting the impact of genomic
variants in noncoding regions
Until recently, the analysis of the effect of genetic

variations strongly focused on those altering the pro-

tein sequence. The interpretation of genetic variants

occurring in noncoding regions is also a challenging

task. Although variants in noncoding regions may

exhibit weaker effects than nsSNVs, it is evident

that they constitute the majority of human genetic

variations [4, 136], and are also likely to be disea-

se-associated; i.e. �88% of weakly trait-associated

variants from GWAS studies are noncoding [5].

Noncoding variants under purifying selection are

five times more common than those in coding

regions [163], and the detection of numerous regu-

latory variants with significant effect [15] has recently

spurred interest in their computational annotation.

Thus, a considerable number of methods are cur-

rently available to perform an evolutionary analysis

of the nucleotide sequence to determine conserved

regions across species. This approach, also applicable

to protein sequences, is more complex for

noncoding regions where there is no detectable con-

servation outside vertebrates [164]. The available

algorithms for the detection of deleterious

noncoding SNVs estimate the rate of evolution at

the mutated position or consider a sliding window

around the mutation site. Methods like binCons

[119] and phastCons [124] implement a context

dependent approach or a Hidden Markov model,

in contrast to other algorithms such as GERP

[120], SCONE [125] and Gumby [121] which cal-

culate a position-specific score. This class of methods

was also reviewed in a recent publication [165].

New approaches to predict the effect of mutations

in noncoding regions focus specifically on genetic

variations in regulatory regions and splicing sites.

For example, Is-rSNP [122] uses a transcription

factor position weight matrix and novel convolution

methods to evaluate the statistical significance of the

score. The RAVEN algorithm combines phylogen-

etic information and transcription factor binding

site prediction to detect variations in candidate

cis-regulatory elements [166]. Recently, a new

method including features associated with the

mutated site and its surrounding region and

gene-based features has been used for the identifica-

tion of functional, regulatory SNVs involved in

monogenic and complex diseases [167]. SNVs

affecting splicing sites and their surrounding regions

can be evaluated using Skippy [126]. In Table 3, we

listed a selection of methods for the prediction

of the effect of SNVs.

Integrated tools for variant annotation
The steps for interpreting the net effects of variants

from an individual genome or from a disease associ-

ation study have previously been performed one

at a time: filtering out common polymorphisms,

identifying known deleterious mutations, function-

ally annotating and predicting the effects of novel

variants and prioritizing variants for experimental

follow-up. A number of integrated tools are now

emerging to automate various portions of this pipe-

line including ANNOVAR [118], the Ensembl

Variant Effect Predictor [168], GAMES [169],

SeqAnt [170], Sequence Variant Analyzer (SVA)

[171] and MutationTaster [123]. Frameworks for

storing patient data along with associated analysis

tools like i2b2 [172] and caBIG [173], and workflow

management systems like Galaxy [174] and Taverna

[175] that can be installed and run ‘on the cloud’, are

also now available to automate and dramatically

speed up variant annotation pipelines.
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FUTUREOUTLOOK
Advances in high-throughput sequencing technol-

ogy are generating a large amount of genetic vari-

ation data, thereby creating more complete models

relating genotype to phenotype. The release of this

information to publicly available databases has stimu-

lated the development of several tools for genome

interpretation. Although these methods have reached

a promising level of accuracy, there are still many

challenges to overcome before they will be directly

applicable in a clinical setting. A number of recent

studies address this concern [176, 177]. To make

personal genome analysis a routine practice in the

diagnosis and treatment of genetically determined

phenotypes, the following challenges must be met:

(i) defining standard and unified protocols for

testing functional variation, (ii) designing integrated

and publicly available resources of annotated genetic

variants, (iii) developing holistic approaches to score

the effect of multiple genetic variants, (iv) imple-

menting user-friendly methods for the application

of personal genomics in the health care context.

The first challenge will require outlining easily

reproducible experimental procedures necessary for

data consistency. Curated data sets with standardized

nomenclatures for the functional effects of genetic

variants (easily parseable from the literature) will

also be necessary. These resources will be useful for

the development and benchmarking of new and

more accurate methods for genome interpretation.

One of the most challenging aims for personal

genomics will be the development of models able

to capture the full complexity of the human

genome. These models should take into account

the linkage disequilibrium between different genom-

ic regions and the possible effects of compensatory

mutations. Bioinformatics will be particularly im-

portant for this challenge, enabling the design of

heuristics to reduce the computational complexity

of the problem. Since one of the primary goals of

personal genomics is the development of computa-

tional methods for use in clinical diagnostics, an

important issue is the usability of these tools. New

clinical applications should be easily accessible, return

useful and comprehensible results and perform their

analyses in a reasonable run time. It will thus be

crucial to adopt open access policies that, avoiding

privacy/copyright issues, will allow the sharing of

large sets of data and developed analysis tools.

In particular these algorithms can be used to define

a set of markers important for genetic counseling.

In the near future we expect to have accurate

disease-specific protocols for estimating the disease

development and transmission risks inherent to a

personal variome. These will be useful in the

diagnosis of inherited disease, in preventative

management and/or in family planning.

Recently, the Critical Assessment for Genome

Interpretation (CAGI) experiments, assessing the

accuracy of computational methods for genome

interpretation over a blind set of data, and interna-

tional meetings, e.g. ISMB SNP-SIG, AIMM and

PSB, have drawn attention in the bioinformatics

community to the challenges of the analysis of a

personal genome. In the near future, these types of

initiatives will be essential for organizing the

necessarily interdisciplinary scientific environment

for cracking the code of the human genome.

Key Points

� Vast amounts of variation data from genome sequencing studies
need to be analyzed to understand its association with various
phenotypes.

� Well-curateddatabases, reliable tools for geneprioritization and
accurate methods for predicting the impact of variants will be
essential for the interpretation of personal genomes.

� Standard and unified protocols for testing the functional impact
of genetic variations are critical for their accurate annotation.

� Experimental studies and computational models describing the
gene/protein interaction networks and aiming at capturing the
full complexity of the human genome will be key to leveraging
personal genomic data for the precise diagnosis and effective
treatment of disease.
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