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ABSTRACT Type 2 diabetes (T2D) is a chronic metabolic disorder characterised by high blood sugar
and insulin insensitivity which greatly increases the risk of developing neurological diseases (NDs). The
co-existence of T2D and comorbidities such as NDs can complicate or even cause the failure of stan-
dard treatments for those diseases. Comorbidities can be both causally linked and influence each other’s
development through genetic, molecular, environmental or lifestyle-based risk factors that they share. For
T2D and NDs, such underlying common molecular mechanisms remain elusive but large amounts of
molecular data accumulated on these diseases enable analytical approaches to identify their interconnected
pathways. Here, we propose a framework to explore possible comorbidity interactions between a pair of
diseases using a bioinformatic examination of the cellular pathways involved and explore this framework
for T2D and NDs with analyses of a large number of publicly available gene expression datasets from
tissues affected by these diseases. We designed a bioinformatics pipeline to analyse, utilize and combine
gene expression, Gene Ontology (GO) and molecular pathway data by incorporating Gene Set Enrichment
Analysis and Semantic Similarity. Our bioinformatics methodology was implemented in R, available at
https://github.com/HabibUCAS/T2D_Comorbidity. We identified genes with altered expression shared by
T2D and NDs as well as GOs and molecular pathways these diseases share. We also computed the proximity
between T2D and neurological pathologies using these genes and GO term semantic similarity. Thus, our
method has generated new insights into disease mechanisms important for both T2D and NDs that may
mediate their interaction. Our bioinformatics pipeline could be applied to other co-morbidities to identify
possible interactions and causal relationships between them.

INDEX TERMS Bioinformatics, comorbidities, gene set enrichment analysis, gene ontology, neurological
disease, pathway, semantic similarity, Type 2 diabetes.

I. INTRODUCTION

Type 2 diabetes (T2D) is a complex, chronic disorder whose
causation is correspondingly multifactorial and heteroge-
neous. Many people developing T2D go through a stage of
obesity-associated insulin resistance prior to the development
of frank hyperglycemia [1]. The pancreatic islets respond to
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insulin resistance by increasing their cell mass and insulin
secretion but if this fails to compensate, chronic high levels
of blood sugar (i.e., frank T2D) persists. High blood sugar
levels result in glycation products that cause vascular inflam-
mation and blockages, resulting in long-term complications
and organ damage [1], [3], [24]. There are a number of
hypothesizedmechanisms (that are not mutually exclusive) to
explain how insulin resistance and islet beta-cell dysfunction
and T2D occurs and how it affects tissues. Glucotoxicity due
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to hyperglycaemia may impair insulin secretion [4], [5] and
cause beta-cell death or dysfunction [6]–[8]. Lipotoxicity due
to increased serum triglycerides may impair β-cell secretory
function [9], [10] or cause apoptosis [11], [12]. Oxidative
stress may lead to the generation of reactive oxygen species
to which beta cells are particularly vulnerable [13]–[15].
Endoplasmic reticulum (ER) stress may result from high
insulin production causing the elevated beta-cell flux of pro-
teins through the ER [16]–[18], and this may drive insulin
resistance [19]. Amyloid deposition in islets may also occur
which can also reduce insulin sensitivity [20]. The relative
contribution of these mechanisms is often unclear, but it is
evident that a range of cell pathways involving many genes
are involved in T2D development.
Genetic research has identified some genes associated

with the risk of developing T2D. Genetic linkage based
studies have identified two genes of particular importance,
namely CAPN10 and TCF7L2. Candidate gene-based stud-
ies revealed numerous other genes that include PPARG,
IRS1, IRS-2, KCNJ11, WFS1, HNF1A, HNF1B, HNF4A,
RAPGEF1 and TP53. Moreover, genome-wide association
studies show 38 genes associated with T2D [21]. One study
identified ten loci (MTNR1B, SLC30A8, THADA, TCF7L2,
KCNQ1, CAMK1D, CDKAL1, IGF2BP2, HNF1B, and
CENTD2) to be associated with reduced beta-cell function,
and three loci (PPARG, FTO and KLF14) associated with
reduced insulin sensitivity [22].
Thus, the intrinsic multifactorial nature of T2D marks

it a very complex disease to understand and treat effec-
tively [3], [23]–[27]. However, an important clinical issue is
that there are many diseases that commonly occur in asso-
ciation with T2D, notably NDs [28]–[36]; as comorbidities
of T2D, ND development may be caused or exacerbated by
the activation of molecular pathways and disease-causing
genes they share with T2D. This includes pathways and genes
involved in inflammation and response to high glycation
products or those involved in responses to glucose and lipid
toxicity, oxidative and ER stress and amyloid deposition. The
co-existence of two or more such serious diseases can greatly
complicate treatments for individual diseases and, indeed,
greatly elevate mortality [37].
As much multi-omics data has been released into the

public domain, analysing such data to identify common path-
ways shared by different diseases that can occur as comor-
bidities have become an important use of bioinformatics.
Nevertheless, the available data and information are usu-
ally deliberated in isolation and rarely combined due to
the lack of an appropriate bioinformatics approach. This
lack of combination studies results in overlooking important
disease-causing factors that act synergistically to cause the
complex comorbidity. The integration of different bioinfor-
matics tools can provide methodologies that extract more
discriminating information from the available data on disease
interactions.
As T2D results in an increased risk of NDs, it is likely

that these have shared molecular factors that enable their

interaction in the same individual. Since these underlying
common molecular mechanisms remain elusive, in this study
we designed and implemented a bioinformatic pipeline to
utilize and combine gene expression, gene ontology (GO) and
molecular pathway data by incorporating Gene Set Enrich-
ment Analysis and Semantic Similarity studies. In addition,
we have incorporated semantic similarity approaches to use
genes and GO terms to measure the proximity of the comor-
bidities to identify biological processes important to each dis-
ease. Moreover, we performed the verification of the results
with gold benchmark databases and literature.

II. METHODOLOGY

A. SURVEY OF AVAILABLE DATA

We retrieved gene expression microarray data for this
study from the public repository available at National
Center for Biotechnology Information (NCBI) (http://
www.ncbi.nlm.nih.gov/geo/) [38]. Queries for T2D initially
returned 1547 datasets from which most of the datasets
were discarded considering the following issues and finally
selected datasets with a minimum number of 6 samples to
exploit the maximum power of the study. We have employed
the following criteria for selecting the datasets for our study:

1) Studies in which samples from an earlier study were
re-analysed or investigated with the different processes
were not considered for our study.

2) Some datasets are related to T2D or NDs, but samples
used were of a type (e.g., type of cell extract) irrelevant
for our study were not considered.

3) Only data from human subjects were used.
4) We considered only those datasets whose differentially

expressed genes (DEGs) count is greater than 50 when
applying a threshold value of absolute 1 for log fold
change (logFC).

Gene expression datasets for T2D disease yielded the fol-
lowing datasets from GEO repositories: GSE20966, a study
of 10 control and 10 T2D subjects from pancreatic tissue [39];
GSE23343, a study of 7 control subject and 10 T2D subjects
using liver biopsies [40]; GSE25724, a study of 7 control and
6 T2D subjects using pancreatic islet tissue [41]; GSE29221,
an analysis of 3 control and 3 T2D subjects using skeletal
muscle cell samples [42]; GSE29226, a study of 3 control
and 3 T2D subjects using subcutaneous tissue samples [43];
GSE29231, a study of 3 control and 3 T2D subjects using
visceral adipose tissue [44]; and GSE55650, a study of con-
trol and T2D subjects from muscle cell samples. It should be
noted that for the last dataset, the data was divided into two
parts based on extraction and separate analysis of myoblasts
and myotubes; for myoblasts, there were 6 control and 6 T2D
subjects and for myotubes, 5 control and 6 T2D [45].

For the comorbidity interactions analysis, our selected
studies on neurological diseases used the following datasets.
For Alzheimer Disease (AD) we used dataset GSE1297,
a study of 9 control and 22 AD subjects using hippocampal
CA1 tissue [46]; GSE4226 and GSE4229, which included
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studies of peripheral blood cells using normal elderly con-
trol (NEC) and AD subjects [47], [48]; GSE12685, a study
of 8 control and 6 AD subjects using frontal cortex synap-
toneurosome samples [49]; and GSE28146, a study of 8 con-
trol and 22 AD subjects using laser captured CA1 tissue [50].
To study Parkinson’s Disease (PD)we used dataset GSE7621,
a study of 9 control and 16 PD subjects from substantia nigra
tissue from both male and female subjects [51]; GSE19587,
a study of 5 control and 6 PD subjects using post-mortem
brain tissue samples [52]; GSE20141, an analysis of 8 con-
trol and 10 PD subjects also using the post-mortem brain
tissue samples [53]; GSE20333, an analysis of 6 control
and 6 PD subjects using substantia nigra tissue samples;
GSE22491, an analysis of 8 control and 10 PD subjects
using peripheral blood samples [54]; GSE28894, a study of
tissue samples from four different brain regions with con-
trol and PD subjects; GSE42966, analysis of 6 control and
9 PD subjects using substantia nigra tissue samples; and
GSE54536, a study of 5 control and 5 PD subjects using
peripheral blood samples [55], [56]. For the case of Amy-
otrophic Lateral Sclerosis (ALS) we used dataset GSE833,
a study of 4 control and 7 sporadic and familial ALS subjects
using post mortem spinal cord [57]; GSE4595, an analysis
of 9 control and 11 sporadic ALS subjects using human
motor cortex tissue samples [58]; GSE19332, a study of 7
control and 3 sporadic ALS subjects using motor neuron
tissue samples [59]; GSE52672, an analysis of 10 control
and 10 sporadic ALS and familial ALS subjects using whole
spinal cord homogenate [60]; and GSE68605, a study of 3
control and 8 ALS subjects using motor neuron tissue sam-
ples [61]. To study Epileptic Diseases (ED) we used dataset
GSE22779, a study of 4 control and 12 ED subjects using
mononuclear blood cells [62]; and GSE32534, a study of 5
control and 5 ED subjects using peritumoral neocortex tis-
sue samples [63]. To study Huntington’s Disease (HD) we
used dataset GSE1751, a study of 14 control and 17 HD
subjects using human blood samples [64]; GSE1767, a study
of 14 control and 17 HD subjects using lymphocyte cells
extracted from blood samples [65]; GSE24250, a study of
whole blood samples using 6 control and 8 HD subjects [66];
and GSE77558, an analysis of 6 control and 6 HD subjects
from striatum-like tissue samples [67]. To study Cerebral
Palsy (CP) we used dataset GSE11686, a study of 4 con-
trol and 12 CP subjects using muscle biopsies [68]; and
GSE31243, a study of 20 control and 20 CP subjects using
skeletal muscle biopsies [69]. To study Multiple Sclero-
sis (MS) we used dataset GSE7102, a study of 6 control
and 6 treated MS subjects; GSE16461, a study of 8 con-
trol and 8 MS subjects using CD4+ T cells from blood
samples [70]; GSE17048, a study of 54 control and 99 MS
subjects using peripheral blood cell samples [71]; GSE21942,
a study of 15 control and 12 MS subjects using peripheral
blood samples [72]; GSE26484, a study of 4 control and 3MS
subjects using peripheral blood samples [73]; GSE32915,
a study of 4 control and 12 MS subjects using brain tis-
sue [74]; GSE37750, a study of 8 control, 9 before treatment

and 9 after treatment subjects using extracted plasmacytoid
dendritic cells (pDC) [75]; GSE52139, a study of 8 con-
trol and 8 MS subjects using spinal cord samples [76]; and
GSE103005, a study of 12 control and 8 MS subjects using
whole blood samples.

B. GENE SET ENRICHMENT ANALYSIS

Gene set enrichment analysis (GSEA) is an analytical method
based on statistical approaches that interpret gene expres-
sion data to identify a set of DEGs with altered expression
levels [77]. These genes may be interconnected with dis-
ease phenotypes. GSEA uses a set of previously grouped
genes having common biological pathway involvement or
chromosomal location. It compares genes obtained from two
cell categories through DNA microarray or next-generation
sequencing (NGS) by analysing their expression levels in
different conditions or disease states. The gene set that falls in
the extremes of this list: up-regulated and down-regulated are
considered to be associated with the phenotypic differences.

1) PATHWAYS

Molecular pathway comprised of a series of actions within
the molecules of the human cells that cause a certain product
or change in the cell. This kind of pathway triggers the
assembly of new molecules. Moreover, a pathway can also
turn genes on or off. To make insights into the molecular
pathways of T2D that overlapwith NDs, we employedKEGG
databases [78] to identifymolecular pathways enriched by the
DEGs.

2) ONTOLOGIES

Gene ontology (GO) is a conceptual model of gene product
functions that can give important information about those
systems or pathways that are significantly involved in a dis-
ease or biological function. GO datasets represent an ongo-
ing project aims to give and ever-more comprehensive and
updated structured information about biological systems [79].
GO has three domains: cellular component, molecular func-
tions and biological process (BP). We focused on BP in this
study.

3) SEMANTIC SIMILARITY

To measure the proximity of the genes and GO terms,
we incorporated the semantic similarity. Semantic similarity
is a method tomeasure proximity using ontologies to estimate
the closeness between terms/concepts by defining a topolog-
ical similarity [80]. This is a graph-based approach using
directed acyclic graphs (DAGs) of terms (genes, GO). The
semantics of these terms depends on its position in the DAG
and its semantic contribution factor with all of its ancestor
terms.

Formally, a GO term P can be represented as a graph
DAGP = (P,TP,EP), where TP is the set of all GO terms
in DAGP as ancestor terms of P together with term P itself in
the GO graph and EP is the set of corresponding edges that
connect the GO terms in DAGP. The semantic value of GO

183950 VOLUME 7, 2019



M. H. Rahman et al.: Bioinformatics Methodologies to Identify Interactions Between T2D and Neurological Comorbidities

term P is numerically calculated as,
{

SP(P) = 1 t=P

SP(t) = max
{

we ∗ ST (t ′)|t ′ ∈ children of(t)
}

t 6=T
(1)

where we is the semantic contribution multiplier for edge e
(e ∈ TP), generic term t with its child term t ′. The semantic
contribution is assigned between 0 and 1 according to the type
of association. The global semantic value for P is calculated
as

SV(P) =
∑

tǫTp

Sp(t) (2)

Now, ifDAGP = (P,TP,EP) andDAGQ = (Q,TQ,EQ) are
two terms P and Q respectively then the semantic similarity
between P and Q is

sim(P,Q) =

∑

t∈Tp∩TQ
(Sp(t) + SQ(t))

SV(P) + SV(Q)
(3)

Given two sets of terms P1 =
{

t11,t12,...t1k
}

and Q1 =
{

t21,t22,...t2n
}

, where the first set of terms length is k and
the second set of terms length is n. To calculate the semantic
similarity, we applied the best-match average (BMA) [81] for
two given sets as follows:

simBMA(P1,Q1)

=

∑k
i=1max1≤j≤n

{

t1i, t2j
}

+
∑n

j=1max1≤i≤k
{

t1i, t2j
}

k + n
· · ·

(4)

with i, j indices on P, Q terms.

C. THE PIPELINE OF THE PROPOSED METHODOLOGY

Figure 1 shows the steps of the pipeline of the proposed
methodology:

• DATA RETRIEVAL. At first, we downloaded the
selected GEO datasets along with their associated plat-
form and phenotype information and transformed this
into an expression set class object. We considered dis-
ease affected patients and healthy controls for T2D for
identifying DEGs;

• MODEL DESIGN. We reviewed the GSM records
manually, classified samples and created design models.
The design model was T2D vs control for T2D and
ND vs control or ND vs treated for the NDs were the
designed model;

• LINEAR and BAYESIAN MODEL for DIFFER-

ENTIAL EXPRESSION. A linear and a bayesian
method [82] are applied for filtering the design model
using three parameters p-value, adjusted p-value (False
Discovery Rate) and logFC. Using a threshold of at
most 0.05 and at least 1.0 absolute value for p-value
and logFC respectively, differentially expressed genes
are identified;

• GOTERMSTEST. In this stage, we build the class top-
GOdata by using selected significant genes and stipulat-
ing the GO domain along with specifying the annotation

Algorithm Pseodocode for Algorithm
Input: Microarray datasets of ‘S’ samples containing

three different conditions; case samples, control samples

and treated samples. So, notionally we have X (dataset

with S samples) = Xcase ∪ Xcontrol ∪ Xtreated .

Output: Differentially expressed gene set, GO terms

tree, semantic similarity matrix, Kegg enrichment graph.

1) For each dataset i = 1, 2, . . . ,N :

a) Load dataset
b) Design matrix model

– Convert GSE datasets into expression set class
– Create design matrix: case vs control or case vs

treated

c) Fit Linear and Bayesian model for filtering the
design model.

d) Calculate differentially expressed genes

– Assign P-value and logFC
– Apply False discovery rate (FDR)
– List significant genes
– Create and save statistical table

e) Gene Ontology annotation

– Create topGO class with annotation
– Perform Fisher’s exact test
– Create and save GO terms tree
– Create and save correspondence genes-GO

terms

2) Calculate Semantic similarity

– Load correspondence genes-GO terms files
– List genes and GO terms
– Select GO field and prepare annotation
– Compute semantic similarity:
• for i = 1 to k do
• for j = 1 to n do

• α =
∑k

1=1max1≤j≤n
{

t1i, t2j
}

• β =
∑n

j=1max1≤i≤k
{

t1i, t2j
}

• end for

• end for

• return (α + β)/(k + n)
– Create genes and GO semantic similarity matrix
– plot and save semantic similarity matrix

3) Cluster comparison

– Load GENE list
– Load KEGG pathway datasets
– Select enrichKEGG function
– Create Kegg Enrichment graph
– plot and save Kegg Enrichment graph

4) Results

– Differentially expressed genes list
– GO terms tree
– Semantic similarity matrix
– Kegg enrichment graph
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FIGURE 1. Block diagram of the proposed bioinformatics methodology.

for mapping. To obtain filtered GO terms and their
relationships with genes, we employed Fisher’s exact
test [83].

• SEMANTIC SIMILARITY. After carried out the
mapping, we performed the semantic similarity compar-
isons by means of genes and GO terms to measure the
proximity among all selected T2D and ND datasets;

• CLUSTER COMPARISON. In this stage, we also
carry out a KEGG pathway [78] enrichment test for the
differentially expressed genes to identify a significant
molecular pathway for T2D and its neurological comor-
bidities;

• RESULTS. The output of the pipeline of bioinformatics
methodology consists of statistical summary, correspon-
dences of genes-GO terms, DAG, gene semantic simi-
larity matrix (and dendrogram), GO semantic similarity
matrix (and dendrogram), and KEGG enrichment path-
ways/pathologies list. In addition, we have constructed
a gene network using significant DEGs that are common
to T2D and NDs along with the most prevalent pathway
related to the selected pathologies.

The proposed integrated pipeline of the bioinformatics
methodology is implemented in R language available at
the link: https://github.com/HabibUCAS/T2D_Comorbidity.
Following Bioconductor packages [84], we developed the
proposed methodology using GEOquery [85] for download-
ing GEO datasets and expression set class transformation;

limma [82] for differentially expressed gene identification
from microarray data; genefilter [86] for filtering genes;
topGO [83] for building the topology of DAG and identifying
the significant GO terms; GOSemSim [87] for measuring the
proximity among selected pathologies; clusterProfiler [88]
for the KEGG pathways enrichment analysis. Eventually,
the version of the used software and packages are: R
3.5.1, R Studio 1.0.136, Bioconductor 3.8, GEOquery 2.50.5,
limma 3.38.3, genefilter 1.64.0, topGO 2.34.0, GOSemSim
2.8.0, DOSE 3.8.2, clusterProfiler 3.10.1.

III. RESULTS

A. STATISTICS AND GENE COMPARISON

Since each dataset has two/three conditions such as control vs
case or control vs treated and after performing the statistical
test for these conditions applying limma [82], we get differ-
entially expressed genes. The statistical summary for all the
selected T2D studies is tabulated in Table 1.

Table 2 summarizes common neurological disease comor-
bidities for T2D. The dataset legend: Alzheimer’s Dis-
ease (AD): GSE1297, GSE4226, GSE4229, GSE12685,
GSE28146; Amyotrophic Lateral Sclerosis (ALS): GSE833,
GSE4595, GSE19332, GSE52672, GSE68605; Cerebral
Palsy (CP): GSE11686, GSE31243; Epilepsy Disease
(ED): GSE22779, GSE32534; Huntington Disease (HD):
GSE1751, GSE1767, GSE24250, GSE77558; Multiple Scle-
rosis (MS): GSE7102, GSE16461, GSE17048, GSE21942,
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TABLE 1. Statistical summary result for T2D disease.

TABLE 2. Type 2 diabetes-related neurological disease summary with the parameter value of 0.05 for p-value and an absolute value of 1 for logFC along
with raw GO terms and the filtered GO terms.

GSE26484, GSE32915, GSE37750a, GSE37750b,
GSE52139, GSE103005; Parkinson Disease (PD): GSE7621,
GSE20141, GSE20333, GSE22491, GSE42966, GSE19587,
GSE28894 and GSE54536.
In Table 1 and Table 2, P-values are the results of applying

a statistical test that takes into account the mean difference
and the variance and also the sample size. So, choosing a

cut off of 0.05 means there is a 5% chance that we make the
wrong decision. It implies that 5% of the tests found to be sta-
tistically significant that is false positives is accepted in this
study. The sixth column values of Table 1 and Table 2 indicate
the number of differentially expressed genes with the cut-off
p-value of 0.05. In the GSEA, the number of statistically
significant genes based on the cut-off p-value of 0.05 is found
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TABLE 3. The synopsis of DEGs from the different organ of the body through the proposed methodology.

with up and down-regulated expression levels. Log2 fold
change (logFC) is the log-ratio of a gene’s expression lev-
els in two different conditions such as control vs case or
control vs treated and it is used to measure the changes
in expression level. In the seventh column of Table 1 and
Table 2, we tabulated the number of differentially expressed
genes with the cut-off logFC value of 1. For GO enrichment
analysis, finding raw GSEA is the first stage of the GO
enrichment analysis. In this stage, we performed gene to gene
ontology mapping using differentially expressed genes from
the biological process (BP) domain of the gene ontology.
The eight column values in Table 1 and Table 2 indicates
the number of annotated gene ontology (GO) terms from the
differentially expressed genes. After mapping the gene to GO
terms, we applied ‘Fisher’s exact test’ [83] statistics to get
statistically significant GO terms. Fisher’s exact test is based
on gene counts.We performed a classical enrichment analysis
with Fisher’s exact test by testing the over-representation
of GO terms within the group of differentially expressed
genes. The ninth column is the Fisher GSEA and its values
in Table 1 and Table 2 indicate the number of significant GO
terms enriched from the Fisher exact test.
Table 3 narrates the summarised results of all the datasets

along with the number of analysed DEGs considering the top
50 genes for each dataset.
After identifying top the 50 DEGs for all datasets,

we compared the T2D and each ND. The comparison
of the differential expressed genes between the T2D data
sets and the neurological diseases shows that the fol-
lowing genes are held in common: RIN3, CR1, SORL1,
MEF2C, HS3ST1, RGS4, HLA-DRB4, STMN2, F2RL1,
BGN, PON2, APOE, HFE, ITPR2, SERPINA3, PTEN, SER-
PINB6, PCSK1, PNMA2, RTN1, NEFL, XCL11, PKP1,
TENM1, CCL2, CHL1, GNAS, GREM1, MYH1, IGFBP5,
TNC, GATA6, AKT3, UBE3A, GATM, SYN1, CNT-
NAP2, LYZ, COL6A3, MGP, UCHL1, MATR3, C9orf72,

TRPM7, CHMP2B, SS18L1, TBK1, SLC25A36, HLA-
DRB1, CD24, IL2RA, HLA-DQB1, IL4, CSMD1, RAB3IP,
MAFB, HLA-DRB5, S100A12, NFIB, CXCL8, IFI44L,
EBF2, PLA2G6, VPS13C, ATP6AP2, SCARB2, TMEM163,
DGKQ, MAOA, SREBF1, SYT11, RIT2, GSTZ1, SNCA,
BST1. A cluster network with this list of common
genes is constructed using the online tool GeneMa-
nia [89] considering co-expression, consolidated pathways,
co-localization, shared protein domain, predicted and phys-
ical interaction as shown in Figure 2. Figure 2 comprised
of seven networks with common DEGs between (a) T2D
and AD, (b) T2D and ALS, (c) T2D and CP, (d) T2D and
ED, (e) T2D and HD, (f) T2D and MS and (g) T2D and
PD. The most prevalent pathways related to the selected
pathologies and their percentile coverage found in the
seven networks are: mucopolysaccharidoses (0.77%), hep-
aran sulfate heparin (HS-GAG) (2.14%), hematopoietic cell
lineage (1.39%), glycosaminoglycan metabolism (0.77%),
SIG PIP3 SIGNALING IN B LYMPHOCYTES (2.96%),
phosphatidylinositol signaling system (1.28%), signaling by
FGFR (0.62%), SIG CHEMOTAXIS (2.22%), downstream
signaling of activated FGFR2 (0.68%), downstream signal
transduction (0.61%), SIG INSULIN RECEPTOR PATH-
WAY IN CARDIAC MYOCYTES (2.05%), BIOCARTA
CCR5 PATHWAY (4.55%), cell adhesion molecules (CAMs)
(0.89%), tuberculosis (0.64%), influenza A (0.66%), adaptive
immune system (0.57%), signaling by PDGF (0.71%),
costimulation by the CD28 (2.01%), innate immune sys-
tem (0.28%), BIOCARTA TH1TH2 PATHWAY (5.91%),
asthma (5.29%), hematopoietic cell lineage (4.70%), allo-
graft rejection (3.70%), translocation of ZAP-70 to immuno-
logical synapse (3.25%), intestinal immune network for
IgA production (3.08%), phosphorylation of CD3 and TCR
zeta chains (2.76%), autoimmune thyroid disease (2.63%),
leishmaniasis (2.13%), tyrosine metabolism (1.73%), PD-1
signaling (1.39%), toxoplasmosis (1.30%), generation of
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FIGURE 2. Cluster networks with common DEGs between (a) T2D and AD (b) T2D and ALS (c) T2D and CP (d) T2D and ED
(e) T2D and HD (f) T2D and MS (g) T2D and PD. The colour legends comprised of gray for consolidated pathways, pink for
physical interactions, light violet for co-expression, dark yellow for predicted interactions, indigo for co-localization, light
green for genetic interaction, beige for shared protein domain and light blue for the other pathways. The circle legends are
striated circles for common genes and normal circle for genes added after enrichment.
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FIGURE 2. (Continued.) Cluster networks with common DEGs between (a) T2D and AD (b) T2D and ALS (c) T2D and
CP (d) T2D and ED (e) T2D and HD (f) T2D and MS (g) T2D and PD. The colour legends comprised of gray for
consolidated pathways, pink for physical interactions, light violet for co-expression, dark yellow for predicted
interactions, indigo for co-localization, light green for genetic interaction, beige for shared protein domain and light
blue for the other pathways. The circle legends are striated circles for common genes and normal circle for genes
added after enrichment.
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FIGURE 2. (Continued.) Cluster networks with common DEGs between (a) T2D and AD (b) T2D and ALS (c) T2D
and CP (d) T2D and ED (e) T2D and HD (f) T2D and MS (g) T2D and PD. The colour legends comprised of gray for
consolidated pathways, pink for physical interactions, light violet for co-expression, dark yellow for predicted
interactions, indigo for co-localization, light green for genetic interaction, beige for shared protein domain and
light blue for the other pathways. The circle legends are striated circles for common genes and normal circle for
genes added after enrichment.
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FIGURE 2. (Continued.) Cluster networks with common DEGs between (a) T2D and AD (b) T2D and ALS (c) T2D and CP (d) T2D and ED (e) T2D and
HD (f) T2D and MS (g) T2D and PD. The colour legends comprised of gray for consolidated pathways, pink for physical interactions, light violet for
co-expression, dark yellow for predicted interactions, indigo for co-localization, light green for genetic interaction, beige for shared protein domain
and light blue for the other pathways. The circle legends are striated circles for common genes and normal circle for genes added after enrichment.

second messenger molecules (0.86%), alpha-synuclein sig-
naling (0.65%), downstream TCR signaling (0.62%), graft-
versus-host disease (0.61%).

B. PATHWAY ENRICHMENT

The pathway-based analysis is a recently developed approach
to understand how complex diseases may be related to
each other through their underlying molecular mechanisms.
After identifying DEGs, we performed KEGG pathway
enrichment analysis. The relationships between KEGG
pathways and all the selected datasets are represented
in Figure 3. Resulting pathways in common between T2D
and neurological pathologies with at least two evidence
include: Influenza A, NOD-like receptor signaling path-
way, Cytokine-cytokine receptor interaction, Chagas disease
(American trypanosomiasis), Toll-like receptor signaling
pathway, Human cytomegalovirus infection, Malaria,
Autoimmune thyroid disease, Tuberculosis, PI3K-Akt signal-
ing pathway, Melanoma, Human papillomavirus infection,
Neuroactive ligand-receptor interaction, Epstein-Barr virus
infection, Taste transduction, Focal adhesion, ECM-receptor

interaction, Protein digestion and absorption, Relaxin sig-
naling pathway, EGFR tyrosine kinase inhibitor resistance,
cAMP signaling pathway and Amoebiasis.

C. GO ENRICHMENT AND GO TERMS TREE

The suggested biological process involved in each dataset
using DEGs on type 2 diabetes disease is as follows:

• GSE20966: humoral immune response, humoral
immune response mediated by circulating immunog-
lobin, regulation of complement activation, complement
activation, cellular response to zinc ion, neuron projec-
tion extension involved in neuron projection guidance
and central nervous system neuron development;

• GSE23343: myofibril assembly, cell communication by
electrical coupling, astrocyte development, chemokine
secretion, cell aggregation, and G protein-coupled
receptor internalization;

• GSE25724: regulation of the cellular amino acid
metabolic process, posttranscriptional regulation of gene
expression, anaphase-promoting complex-dependent
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FIGURE 3. KEGG pathway enrichment analysis for differentially expressed genes. Each row represents a KEGG pathway associated with the diseases
shown in columns. The domination of genes in the pathway indicated by the dimension of the circles and the range of the circles represents the statistical
validation for p-value of 0.05.

catabolic process, regulation ofmRNA catabolic process
and cellular protein catabolic process;

• GSE29221: extracellular structure organization, extra-
cellular matrix organization, blood circulation, colla-
gen fibril organization, muscle system process and G
protein-coupled receptor signaling pathway;

• GSE29226: sensory perception of chemical stimulus,
neurological system process involved in the regula-
tion of systemic arterial blood pressure, regulation of
T-helper 2 cell cytokine production, nervous system pro-
cess, and complement activation, lectin pathway;

• GSE29231: trophoblast giant cell differentiation, regula-
tion of metanephros development, developmental induc-
tion, ERBB2 signaling pathway, regulation of ERBB
signaling pathway and cell proliferation;

• GSE55650a: regulation of cell migration, nuclear divi-
sion, regulation of cell motility, cell migration, cell
motility, and biological adhesion;

• GSE55650b: circulatory system development, extracel-
lular matrix organization, striated muscle cell differen-
tiation, extracellular structure organization, anatomical
structure morphogenesis and cellular response to type I
interferon.

Direct Acyclic Graphs (DAG) for each selected pathology
were constructed using a classic algorithm [83]. Figure 4
shows how the significant GO terms are distributed over the
GO graph hierarchy with the 5 most significant GO terms
(GO: 007087: cellular response to chemical stimulus, GO:
0010033: response to organic substance, GO: 0071310: cellu-
lar response to organic substance, GO: 0009653: anatomical
structure morphogenesis and GO: 0071294: cellular response
to zinc ion). Since the test statistic can return a p-value,
we can refer them as criteria to select statistically significant
GO terms. After mapping genes to GO terms, we applied
Fisher’s exact test statistics and classic algorithms to deal with
GO enrichment analysis and GO graph structure. Fisher’s
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FIGURE 4. The complete DAG by means of GSEA on GSE77558 where rectangles indicate the 5 most significant terms. Red rectangle colour nodes
represent the most significant terms and the remaining eliptical shaped nodes indicate least significant GO terms.
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FIGURE 5. The matrix of semantic similarity in terms of differential expressed genes from the top five GO terms.The dataset legend of the matrix is
comprised of disease acronym, order, and accession number.

exact test was applied to gene count. We identified the most
significant GO terms (top 5) based on p- values by classical
enrichment analysis. The DAG graph reveals that all the
GO terms are non-trivial and the most significant nodes are
represented as rectangles. For each node in the graph, the first
line is GO ID, the second line is GO name, third is p-value and
the last line is the ratio of the total number of significant genes
and the total number of annotated genes to the respective GO
term. Black arrows indicate is-a relationships.
However, after identifying the significant GO terms for

T2D and NDs, we compared the terms. The GO terms com-
parison between T2D disease and NDs highlights the follow-
ing in common:

• GO:0001502: cartilage condensation;
• GO:0098743: cell aggregation;
• GO:0006959: humoral immune response;
• GO:0002455: humoral immune response mediated by
circulating immunoglobulin;

• GO:0006958: complement activation, classical path-
way;

• GO:0007186: G protein-coupled receptor signaling
pathway;

• GO:0043062: extracellular structure organization;
• GO:0030198: extracellular matrix organization;
• GO:0030199: collagen fibril organization;
• GO:0016477: cell migration;
• GO:0048870: cell motility;

• GO:0002673: regulation of acute inflammatory
response;
item GO:0030199: collagen fibril organization;

• GO:0007059: chromosome segregation;
• GO:0022610: biological adhesion;
• GO:0071294: cellular response to zinc ion;
• GO:0007632: visual behavior;
• GO:0035459: cargo loading into vesicle;
• GO:0038128: ERBB2 signaling pathway;
• GO:0009653: anatomical structure morphogenesis;
• GO:1902284: neuron projection extension involved in
neuron projection guidance;

• GO:0007416: synapse assembly;
• GO:0048483: autonomic nervous system development;
• GO:0060337: type I interferon signaling pathway;
• GO:0071357: cellular response to type I interferon;
• GO:1903522: regulation of blood circulation;
• GO:0050906: detection of stimulus involved in sensory
perception;

• GO:0050877: nervous system process;
• GO:0007600: sensory perception;
• GO:0010469: regulation of signaling receptor activity.

D. SEMANTIC SIMILARITY

The result of semantic similarity in terms of DEGs
among pathologies is shown in Figure 5. Considering
semantic similarity value above 0.6, T2D4_GSE29221 and
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FIGURE 6. The network for representing the gene semantic similarity matrix shown in figure 5. The width of the edges is proportional to the semantic
score and the red colour hexagonal node represents the T2D and the light blue colour rectangular node represents T2D associated NDs.

T2D5_GSE29226 are associated with all the selected
neurological comorbidities except HD01_GSE1751 and
HD04_GSE77558. Similarly, T2D1_GSE20966 is associ-
ated with all the selected neurological comorbidities except
HD01_GSE1751 and ED01_GSE22779. T2D2_GSE23343
is associated with all the selected neurological comorbidi-
ties except HD04_GSE77558 whereas T2D8_GSE55650b
is associated with all the selected neurological comorbidi-
ties except HD04_GSE77558. With respect to other evi-
dence from T2D3_GSE25724, all neurological diseases are
associated with T2D. In addition, AD02_GSE4226 and
AD03_GSE4229 are outliers for all T2D datasets except
T2D3_GSE25724 with a threshold value of absolute logFC 1.
After representing the gene semantic similarity matrix

as shown in figure 5 into gene semantic similar-
ity network as shown in Figure 6 by considering
the semantic similarity threshold value of 0.77 using
Cytoscape [97] we found that T2D such as T2D1_GSE20966,
T2D2_GSE23343, T2D3_GSE25724, T2D4_GSE29221,
T2D5_GSE29226 T2D6_GSE29231, T2D7_GSE55650a
T2D8_GSE55650b are strongly associated with all the NDs
such as AD, ALS, CP, ED, HD, MS, and PD.
The semantic similarity matrix of GO terms is depicted

in Figure 7. Notably, T2D7_GSE55650a with AD03_
GSE4229, T2D5_GSE29226 with AD05_GSE28146 and
MS02_GSE16461, T2D6_GSE29231 with MS10_GSE1030
05 as well as T2D7_GSE55650a with PD02_GSE19587 have

semantic similarity value of 1. If we examine semantic
similarity value over 0.8, some of AD, ALS, CP, ED,
HD, MS, and PD have noteworthy similarity with some
of the T2D datasets. Moreover, inspecting semantic sim-
ilarity value over 0.7, T2D3_GSE25724 is well clustered
with all the neurological diseases except MS08_GSE37750b
and ALS4_GSE52672. In addition, MS08_GSE37750b,
ED02_GSE32534, ALS5_GSE68605 and AD04_GSE12685
have semantic similarity under 0.05 for T2D5_GSE29226 and
T2D1_GSE29231 whereas ALS5_GSE12685 has semantic
similarity under 0.05 for T2D6_GSE29231.

After representing the GO semantic similarity matrix
shown in figure 7 into gene semantic similarity network as
shown in Figure 8 by considering the semantic similarity
threshold value of 0.80 using Cytoscape [97] we found
that T2D such as T2D1_GSE20966, T2D2_GSE23343,
T2D3_GSE25724, T2D4_GSE29221, T2D5_GSE29226,
T2D6_GSE29231, T2D7_GSE55650a T2D8_GSE55650b
are strongly associated with all the selected NDs such as AD,
ALS, CP, ED, HD, MS, and PD.

We applied this proposed bioinformatics methodology to
identify T2D and its neurological comorbidities on microar-
ray gene expression datasets. Identifying the interactions
among a group of diseases at the molecular level can enhance
our insights into disease mechanisms. The use of seman-
tic similarity in terms of genes and GO terms to mea-
sure the disease comorbidity enhances the identification
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FIGURE 7. The matrix of semantic similarity is based on the top 5 GO terms. The dataset legend of the matrix is comprised of disease acronym, order, and
accession number.

and characterization beyond simply identifying novel bio-
logical processes involved in each disease and eventually
yields an opportunity for developing diagnosis and effective
treatment. Most previous methods were designed for dis-
ease comorbidity study by considering either single omics
or clinical dataset as for example comorbidity [90], [91],
comoR [93], POGO [94], Comorbidity4j [95], comoRbid-
ity [96] and CytoCom [97]. The R package ‘comorbidity’
is able to predict ICD-9-CM codes on the basis of comor-
bidity indices. This method measures the total comorbid-
ity count or the total Charlson score [90], [91]. In [92],
Hidalgo et al. identified comorbidity association using clin-
ical data. In [93], the R package comoR measures relative
risk and φ-correlation leveraging diagnosis, gene expression,
and clinical data and identified related genes and pathways
to predict comorbidity. This method considers only gene
expression and molecular data. Moni et. al developed [94]
an R software tool ‘‘POGO’’ to identify disease comor-
bidity by considering omics, phenotype, and ontological
data but this method did not take into account the genetic
effects on diseases. In [95], Ronzano et al. developed a
web-based open-source software tool Comorbidity4j to iden-
tify a set of comorbidity indices using clinical data. In [96],
Gutièrrez-Sacristán et al. have developed a method comoR-
bidity that performs analyses of disease comorbidity combin-
ing clinical data and genotype-phenotype based information
although this method did not take into account the genetic
effects on diseases. In [97], Moni et al. developed a tool

CytoCom for Cytoscape app to visualize disease comorbidity
network.

Compared to previous methods, most previously published
methods in this area were designed to identify the causal
relationship for disease comorbidities by considering either a
single omics or clinical datasets. We have in contrast applied
an integrated approach leveraging large numbers of publicly
available gene expression datasets with pathway information,
gene ontology data from microarray experiments which is a
highly effective means of identifying pathways relevant to
comorbidity interaction. The use of so many datasets from
different sources and cell types maximizes the power of this
approach by reducing biases of the datasets and improve the
information regarding other previous studies. Our pipeline
would thus be useful to reveal hidden pathological informa-
tion in many different types of published gene expression
datasets. As far we know, this is the first study for T2D
and NDs comorbidity analysis by incorporating Gene Set
Enrichment Analysis and Semantic Similarity and perhaps
there are no previous comorbidity analysis methods for T2D
and NDs incorporating Semantic Similarity. The methodol-
ogy ensures the possibility of reusing available data and may
identify disease-causing DEGs, gene function, GO terms and
molecular pathways. The findings documented in this result
section are likely to be improved by exploiting the maximum
power of datasets from different sources and cell types. Thus,
this methodology could be helpful to reveal new information
from previously published datasets.
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FIGURE 8. The network for representing GO semantic similarity matrix shown in figure 7. The width of the edges is proportional to the
semantic score and the red colour hexagonal node represents the T2D and the light blue colour rectangular node represents T2D
associated NDs.

E. POTENTIAL TARGETS VERIFICATION USING GOLD

BENCHMARK DATABASES AND LITERATURE

To verify our identified potential targets, we used gold
benchmark databases and an investigation of the literature.
OMIM, OMIM Expanded, and dbGaP databases are called
gold benchmark databases because these databases contain
curated and validated genes and disease association data
from the literature. In this study, we presented a combined
relation of OMIM, OMIM Expanded, and dbGaP databases.
For evaluating the validity of our work, we provided sta-
tistically significant differentially expressed genes of T2D
to the online tool EnrichR [98] and collected statistically
significant genes and their corresponding NDs from OMIM,
OMIM Expanded, and dbGaP databases by choosing p-value
of 0.05. The number of genes associated with each ND is
educed and summarized in fewer genes with their molecular
functions by checking the literature to find genes that have
been clinically used as biomarkers for any of the NDs.
Table 4 shows the verified potential targets and their cor-
responding diseases using gold benchmark databases and
literature. For the verification of AD, ALS, MS, and PD,
we utilized gold benchmark databases through online tool
EnrichR and genes are curated in fewer genes by checking
the literature. On the other hand, for the verification of CP,
ED, and HD, we used literature which found genes associated

TABLE 4. Potential targets verification using gold standard benchmark
databases and literatures.

with each ND.Munshi et al. [99] identified APP, SORL1 and
CR1, Cauwenberghe et al. [101], [102] identified MEF2C
genes associated with AD which consistent with our study.
Chen et al. [103]–[105] identified PON2, Eykens et. al [106]
identified APOE and Souza et al. [107], [108] identified
ITPR2 and VAPB genes associated with ALS which
consistent with our study. Fahey et al. [109] identified
the TENM1 gene associated with CP and consistent
with our study. Myers et al. [113] identified CHD2 and
PURA genes associated with ED and consistent with our
study. Arning and Epplen [114] reported the ITPR2 gene
associated with HD. Baranzini [115] identified HLA-
DQB1 and IL2RA genes, Fagerberg et al. [110] identified
HMGA2 and Gabriele et. al identified CD24 gene associ-
ated with MS. Arning and Epplen [114] identified UCHL1,
Fagerberg et. al reported TSHR, Myers et al. [113] identified
SNCA and Lin et. al identified MAPT gene associated with
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PD which consistent with our study. This verification pro-
cess generally confirms that significant genes that we have
identified in NDs have some known disease associations.
The molecular basis of the verified potential targets are

as follows: Amyloid precursor protein (APP) gene encodes
a cell surface receptor and transmembrane protein that is
cleaved by β- and γ - secretase in a sequential manner to yield
Aβ-peptides (including Aβ40 and Aβ42). The Aβ peptides
are involved in the pathogenesis of AD [99]. SORL1 (Sor-
tilin related receptor 1) also known as SORLA and LR11 is
involved in regulating protein movements through the cell
and identified as biomarkers for AD [99]. Complement
C3b/C4b receptor 1 (CR1) gene mediates cellular binding to
particles and immune complexes that have activated comple-
ment and associated with AD [99], [100]. Myocyte enhancer
factor 2C (MEF2C) plays a role in myogenesis. Mutations of
this gene associated with immune response, neuronal devel-
opment and synaptic function for developing AD [48], [101].
Paraoxonase 2 (PON2) is involved in the hydrolysis of lac-
tones and the detoxification of organophosphate pesticides,
neurotoxins, and aromatic esters. The mutations of PON gene
polymorphisms are associated with ALS [103]. Apolipopro-
tein E (apoE denotes protein, APOE denotes gene) is a lipid
transport protein in the brain. The mutations APOE results
in a major risk of ALS [106]. Inositol 1, 4, 5-trisphosphate
receptor type 2 (ITPR2) is involved inmany processes includ-
ing cell migration, cell division, smooth muscle contraction,
and neuronal signaling. A mutation in this gene has been
associated with ALS and HD [107]. Vesicle-associated mem-
brane protein-associated protein B (VAPB) is an integral
endoplasmic reticulum membrane protein, which has vari-
ous functions such as intracellular vesicle trafficking, lipid
transport, and the unfolded protein response and associated
with ALS [107]. Teneurin transmembrane protein 1(TENM1)
functions as a cellular signal transducer. Its mutation involved
in neural development, regulating the establishment of proper
connectivity within the nervous system causes CP [109].
C-C Motif Chemokine Ligand 2 (CCL2) is superfamily of
secreted proteins involved in immunoregulatory and inflam-
matory processes and associatedwith CP [110]. Cell adhesion
molecule L1-like (CHL1) plays a role in neuronal positioning
of pyramidal neurons and in the regulation of both the number
of interneurons and the efficacy of GABAergic synapses and
associated with CP [111]. Gremlin 1 (GREM1) plays a role in
regulating organogenesis, body patterning, and tissue differ-
entiation associated with CP [110]. GATM glycine amidino-
transferase (GATM) is involved in creatine biosynthesis.
Mutations in this gene cause arginine: glycine amidino-
transferase deficiency, an inborn error of creatine synthesis
characterized by cognitive disability, language impairment,
and behavioral disorders associated with ED [112]. Ubiq-
uitin protein ligase E3A (UBE3A) is maternally expressed
in the brain and bi-allelically expressed in other tissues.
Maternally inherited deletion of this gene causes Angelman
syndrome, characterized by severe motor and intellectual
retardation, ataxia, hypotonia, epilepsy, absence of speech,

and characteristic facies [112]. CHD2 (Chromodomain Heli-
case DNA Binding Protein 2) is a protein-coding gene. Its
function may be regulation of chromatin structure, and dis-
eases associated with CHD2 include epileptic encephalopa-
thy [113]. Purine rich element binding protein A(PURA) is
involved in the formation or maturation of myelin, the protec-
tive substance that covers nerves and promotes the efficient
transmission of nerve impulses and associated with ED [113].
Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a
de-ubiquitinating enzyme with important functions in the
recycling of ubiquitin expressed in the neurons and cells
of the diffuse neuroendocrine system and associated with
HD [114]. The protein encoded by MATR3 (Matrin 3) gene
is localized in the nuclear matrix plays a role in transcription
or may interact with other nuclear matrix proteins to form
the internal fibro granular network and is associated with
HD [110]. C9orf72-SMCR8 complex subunit (C9orf72) gene
provides instructions for making a protein that is abundant in
nerve cells (neurons) in the outer layers of the brain (cerebral
cortex) and in specialized neurons in the brain and spinal cord
that control movement (motor neurons) and associated with
HD [110]. HLA-DQB1 major histocompatibility complex,
class II, DQ beta 1(HLA-DQB1) belongs to the HLA class II
beta chain paralogs and plays a central role in the immune
system by presenting peptides derived from extracellular pro-
teins and associated with MS [115]. High mobility group
AT-hook 2 (HMGA2) functions as a transcriptional regulator
and associated with MS [110]. Interleukin 2 receptor sub-
unit alpha (IL2RA) is involved in the regulation of immune
tolerance by controlling regulatory T cells (TREGs) activity
and associated with MS [115]. The protein encoded by signal
transducer CD24 also known as cluster of differentiation
24 or heat-stable antigen CD24 (HSA) contributes to a wide
range of downstream signaling networks and is crucial for
neural development and associated with MS [116], [117].
Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) gene is
a de-ubiquitinating enzyme with important functions in the
recycling of ubiquitin and is specifically expressed in the
neurons and in cells of the diffuse neuroendocrine system
associated with PD [114]. Alpha-synuclein (SNCA) protein
encoded by SNCA (Alpha-synuclein) is present at high levels
in neurons and regulates dopamine neurotransmission, and
its aberrant expression is associated with PD [118]. The
protein encoded by the thyroid-stimulating hormone recep-
tor (TSHR) gene is amembrane protein and amajor controller
of thyroid cell metabolism. Defects in this gene are also seen
in PD [110]. Microtubule-associated protein tau (MAPT)
encodes a microtubule-associated protein tau, which has a
role in stabilizing microtubules in the neurons and its muta-
tions are associated with PD [119].

IV. DISCUSSION

The goal of this research is to establish the ability
of an integrated pipeline of bioinformatics methodology
to extract discriminative information from public data
repositories and identifying the relationships of complex
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diseases such as T2D and its neurological comorbidities.
We applied this proposed bioinformatics methodology to
identify T2D and its neurological comorbidities on microar-
ray data from Gene Expression Omnibus (GEO) repository:
(https://www.ncbi.nlm.nih.gov/geo).
We employed GSEA to study T2D with regard to DEGs,

molecular pathways, and interrelationship among omics data
such as Gene Ontology. A particular feature of our pro-
posed methodology is computing the proximity (in terms of
semantic similarity) among different datasets based on their
selected ontology. Although we applied our proposed inte-
grated bioinformatics pipeline for T2D and its neurological
disease comorbidities, it is methodically universal and can
be applied for other diseases and their comorbidities along
withmore complex pathologies. Our proposed pipeline shows
a novel use of freely available research data in exploring
disease comorbidity from a bioinformatics point of view.
The only manual task needed to be was that rather than the
automatic selection of GEO samples, we reviewed the GSM
records manually and classified samples into sick, healthy or
treated and created design models.
At least 3 disease-affected and 3 healthy control sam-

ples were considered in our study for each disease case to
exploit the maximum power of the study. We began from
the set of DEGs and carried out GSEA on them to identify
the top 5 GO terms. A comparison among all the selected
pathologies in terms of genes and GO terms were computed
by applying the method of semantic similarity. The use of
semantic similarity in terms of genes and GO terms to mea-
sure the disease comorbidity enhances the identification and
characterization beyond simply identifying novel biological
processes involved in each disease. Our proposed integrated
bioinformatics methodology is implemented in programming
language R by incorporating several Bioconductor packages.
Using the threshold p-value of 0.05 and absolute logFC value
of 1, we identified discriminative sets of DEGs and GO terms
which improve on current approaches to finding common
DEGs and biological pathways among a group of diseases of
interest. We have applied the process on microarray datasets
for the selected pathologies that are publicly available and
also suit our approach.
The proposed methodology is data-driven and it should

be noted that the choice of the dataset would have quali-
tative and quantitative impacts on the results, and the use
of a larger number of microarray datasets may enrich the
evidence. We observe that taking into account data from
different sources and cell types could strengthen the evidence
obtained. Our proposed methodology used here for T2D and
neurological comorbidities could be widely used, and it has
two particular uses to uncover possible mechanisms of T2D-
associated activities that drive the development of neurolog-
ical diseases, and as a means to identify possible significant
comorbidities.
The development of bioinformatics methodology by utiliz-

ing omics and molecular data is providing new opportunities
for medical practitioners to enhance clinical decision-making

such as disease risk evaluation, disease diagnosis, and subtyp-
ing, drug therapy, and dose selection [120] and represent a
step toward the development of truly personalized medicine.
Thus, ourmethodology can provide fundamental new insights
into disease mechanisms, and such identified disease mech-
anisms could be useful for further investigations to develop
novel therapeutic targets.

V. CONCLUSION

In this study, we have considered transcriptomics, omics
and molecular level data to investigate how the proposed
methodology can be used to identify neurological disease
comorbidities with T2D. We found that these neurological
diseases are highly connected with T2D in terms of com-
mon biological processes, pathways and omics data as for
example GO. Our findings indicate that the progression of
complex diseases could be identified and studied using bioin-
formatics methodology as it offers the potential to enhance
our understanding of complex human diseases. Identification
of comorbidity interactions has a clinical interest because it
may reveal new information about disease-causing factors as
well as new therapeutic targets. This study demonstrates the
worth of an integrated bioinformatics methodology in reveal-
ing possible disease relationships and opportunities for drug
repositioning. Thus, we can say that this kind of approach
will be helpful for making evidence-based recommendations
about disease comorbidities. Our proposed approach could be
extended as a comorbidity map by integrating other disease
data besides neurological diseases. Our methodology is also
likely to be useful not only for T2D research but also for the
study of other complex diseases. Researchers and medical
practitioners may use it as an important tool to uncover
details of underlying disease mechanisms that underpin the
biology and etiology of disease comorbidity and for the
establishment of more effective and efficient treatments, per-
haps within the context of an individualized and personalized
pharmacotherapy.
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