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Abstract: Gastric cancer (GC) is one of the five most common cancers in the world and unfortunately
has a high mortality rate. To date, the pathogenesis and disease genes of GC are unclear, so the need
for new diagnostic and prognostic strategies for GC is undeniable. Despite particular findings in
this regard, a holistic approach encompassing molecular data from different biological levels for GC
has been lacking. To translate Big Data into system-level biomarkers, in this study, we integrated
three different GC gene expression data with three different biological networks for the first time
and captured biologically significant (i.e., reporter) transcripts, hub proteins, transcription factors,
and receptor molecules of GC. We analyzed the revealed biomolecules with independent RNA-
seq data for their diagnostic and prognostic capabilities. While this holistic approach uncovered
biomolecules already associated with GC, it also revealed novel system biomarker candidates for GC.
Classification performances of novel candidate biomarkers with machine learning approaches were
investigated. With this study, AES, CEBPZ, GRK6, HPGDS, SKIL, and SP3 were identified for the first
time as diagnostic and/or prognostic biomarker candidates for GC. Consequently, we have provided
valuable data for further experimental and clinical efforts that may be useful for the diagnosis and/or
prognosis of GC.

Keywords: gastric cancer; disease genes; diagnostic genes; prognostic genes; multi-omics; systems biology

1. Introduction

Gastric cancer (GC) is one of the leading causes of cancer deaths worldwide with a high
prevalence. According to recent reports, GC is responsible for one in 13 deaths worldwide
and was the fifth most common cancer worldwide in 2020 [1]. Helicobacter pylori infection
is the main risk factor for GC, but other factors such as genetic and environmental factors
also play a role [2]. Because GC is a heterogeneous disease, it is an attractive model
for studying carcinogenesis and tumorigenesis. The exact mechanisms underlying the
development of GC are still unknown despite significant progress in understanding the
molecular causes of GC. Malignant transformation of gastric mucosa during the multistep
process of GC pathogenesis is caused by a variety of genetic and molecular abnormalities
that occur in GC [3]. Since one of the major causes of treatment failure in GC is drug
resistance, a deeper knowledge of novel gene candidates is crucial to better understand the
molecular mechanism of pathogenesis, which could improve patient survival [4].

Integrating multi-omics data can reveal the entire physical and functional architecture
of cellular signaling and regulatory pathways. Moreover, it has been reported that a systems
medicine approach involving the integration of gene expression data with multi-omics data
reveals important and crucial genes in a pathological state [5]. Today, systems medicine is
being used in several studies to identify significant disease genes, for example, in papillary
thyroid cancer [6], acute myeloid leukemia [7], abdominal aortic aneurysm [8], ovarian
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cancer stem cells [9], rheumatoid arthritis [10], colorectal cancer [11], and three different
ovarian diseases [12].

The rapid development of cancer genomics has led to extensive information on crucial
genes in malignancies. Although many bioinformatics web servers and tools have been
developed to identify disease genes [13,14], there are still no clinically validated treatments
and their efficacy is controversial for the vast majority of cancer genes. Recently, key
genes [15], prognostic genes [16], and prognostic and diagnostic genes for GC [17] have
been reported. In another study conducted by our research group, we analyzed several
microarray datasets of GC and identified a prognostic differential co-expressed gene module
and offered drug candidates by repurposing analysis [18].

Although several studies have been performed to identify disease genes in GC, the
pathogenesis of GC is still unclear and new and efficient biomarker candidates are needed.
In parallel with the advances in high-throughput technologies and the increasing number
of omics data, the increasing use of systems biology approaches to understand diseases at
the systems level and provide biomarker candidates is becoming increasingly important.
In our study, we used an integrative multi-omics approach that differs from previous GC
studies. In the present study, we adopted a systems biology approach by integrating gene
expression data with comprehensive human biological networks to identify molecular
signatures that allow us to identify important biomolecules which can be considered as
biomarkers associated with GC. Accordingly, a meta-analysis of GC-associated transcrip-
tomic datasets was performed and common differentially expressed genes (DEGs) were
identified among the datasets. Gene set overrepresentation analysis was performed for the
common DEGs. The DEGs were integrated into various human biological networks, in-
cluding protein–protein interactions (PPI), transcriptional regulation, and protein–receptor
interaction networks to identify hub proteins, reporter transcription factors (TFs), and
reporter receptors. The diagnostic and prognostic value of reporter biomolecules was
assessed using an independent cohort study. Finally, the novel prognostic and diagnostic
biomarker candidates for GC were revealed and their classification power was evaluated
using machine learning approaches (Figure 1). Consequently, we believe that the novel
biomarker candidates presented here will be a crucial resource for understanding the patho-
genesis of GC and can be considered as powerful diagnostic and prognostic biomarkers for
further experimental and clinical studies for GC.
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Figure 1. The computational flow employed in the study. Figure 1. The computational flow employed in the study.
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2. Materials and Methods
2.1. Gene Expression Datasets of Gastric Carcinoma

Three microarray datasets, including GSE19826 [19], GSE54129 (unpublished), and
GSE79973 [20] from independent studies, were obtained from the Gene Expression Om-
nibus (NCBI-GEO) database [21] to meta-analyze transcriptome profiles in GC. Datasets
were selected based on the following criteria: (i) samples consisted of two different pheno-
types (i.e., cancerous vs. normal); (ii) each phenotype included at least 3 samples; (iii) the
microarray platforms used were from the same platform. A total of 179 samples were
analyzed, including 133 GC and 46 normal gastric tissue samples.

An independent adenocarcinoma dataset of the stomach (STAD) from The Cancer
Genome Atlas (TCGA) [22], comprising 375 GC and 32 normal stomach tissue samples,
was used as a validation dataset, for preclinical validation purposes (i.e., diagnostic and
prognostic analyses), and for implementing machine learning approaches.

2.2. Identification of Differentially Expressed Genes

In this study, a well-established statistical analysis procedure [23,24] was used to
identify DEGs. Briefly, the raw data (stored in CEL files) of each dataset were normalized by
calculating the Robust Multi-Array Average (RMA) expression measure [25] implemented
in the Affy package [26] of the R/Bioconductor platform (version 4.0.2) [27]. DEGs were
identified from normalized expression values using the Linear Models for Microarray Data
package (LIMMA) [28]. The Benjamini–Hochberg method was used to control for the
false discovery rate (FDR). The adjusted p-value < 0.05 was used as the cutoff value to
determine the statistical significance of the DEGs. To determine the regulatory patterns of
DEGs, the fold-change thresholds were used as 2-fold change. Each data set was analyzed
independently, and the results were comparatively analyzed to identify common signatures
from these independent studies, and common DEGs were used in further analyses.

2.3. Gene Set Overrepresentation Analyses

Overrepresentation analyses were performed using ConsensusPathDB [29] to deter-
mine the functional annotations (i.e., biological pathways) of the DEGs. In the analyses,
KEGG [30] and Reactome [31] were employed as the data sources for pathways The p-values
were determined using Fisher’s exact test, and a false discovery rate was applied to control
the p-values. An adjusted p-value < 0.01 was considered statistically significant.

2.4. Reconstruction of Protein–Protein Interaction Network and Identification of Hub Proteins

Physical PPIs among DEGs were extracted from the BioGRID database (MV-Physical-
4.2.191) [32], which contains 51,745 physical and experimentally detected PPIs among
10,177 human proteins. The PPI sub-network was reconstructed for common DEGs with
their first neighbors and visualized using Cytoscape (v3.5.0) [33]. To determine hub proteins
(i.e., central proteins), topological analyses were performed using the Cytohubba plugin [34].
The dual metric approach that considers degree and betweenness centrality metrics (i.e.,
degree as a local metric and betweenness centrality as a global metric) was simultaneously
used to identify hub proteins. The 10 proteins with the highest degree and betweenness
centrality values in the PPI subnetwork were determined as hub proteins.

2.5. Identification of Reporter Transcription Factors and Receptors

The reporter molecules were identified using the reporter features algorithm [35],
which was previously adapted for potential TFs and receptors [36]. Briefly, reporters were
identified by integrating common DEGs gene expression data with relevant human biologi-
cal networks (i.e., TF-target gene interactions and receptor–protein interactions). TF–target
gene interaction information was obtained from the TRRUST (transcriptional regulatory
relationships unraveled by sentence-based text-mining) database [37]. The proteins with
receptor activity (GO: 0004872) were extracted from DAVID [38], PANTHER [39], and
GeneCodis [40] databases, and the physical interactions of these receptors were extracted
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from the human PPI network [32]. The reporter features algorithm [35] was implemented in
MATLAB (R2016). The p-values of the calculated reporter molecules were controlled with
FDR, and the reporter molecules with adjusted p-value < 0.001 were considered significant.
Reporter TFs and receptors functions were analyzed using the PANTHER classification
system [39].

2.6. Pre-Clinical Diagnostic Validation of Reporter Biomolecules

To evaluate the diagnostic performance of reporter biomolecules (i.e., hub proteins,
TFs, and receptors), a receiver-operating characteristic curve (ROC) was used that utilized
the parameters of sensitivity and specificity to predict diagnostic ability. To determine
the overall diagnostic accuracy of diagnostic performance, the area under the roc curve
(AUC) was calculated. A reporter biomolecule with an AUC value ≥ 70% was considered
statistically significant [41] and accepted as a diagnostic biomolecule.

2.7. Pre-Clinical Prognostic Validation of Reporter Biomolecules

To evaluate the prognostic performance of the reporter biomolecules (i.e., hub proteins,
TFs, and receptors), we obtained clinical information from STAD samples of TCGA [22] and
used it in the prognostic performance analyses. To determine the prognostic performance of
each biomolecule, survival analyses were performed by dividing subjects into two groups
(high and low risk) according to their prognostic index (PI), which is the linear component
of the Cox model. The differences in gene expression values between the risk groups were
represented by box plots. Survival signatures of reporter biomolecules were evaluated by
Kaplan–Meier plots. The hazard ratio (HR = (O1/E1)/(O2/E2)) was calculated using the
ratio between the relative mortality rate in group 1 and the relative mortality rate in group 2,
where O and E are the observed and expected number of deaths, respectively. Reporter
biomolecules with a log-rank p-value < 0.05 were considered statistically significant and
accepted as prognostic biomolecules.

2.8. Screening the Association of Diagnostic and Prognostic Reporter Biomolecules with Gastric Cancer

Following the two preclinical validation analyses, an extensive search was performed
to determine whether the diagnostic or/and prognostic reporter biomolecules found in
the study had been previously associated with GC. The following databases and elec-
tronic search services were used throughout the association screening process: Malacards:
The Human Disease Database [42], DisGeNET: a comprehensive platform for integrating
information on genes and variants associated with human diseases [43], Comparative
Toxicogenomics Database (CTD) [44], PubMed, Science-Direct, Scopus, and Web of Science.
The reporter biomolecules, which have diagnostic or/and prognostic capabilities and were
not associated with GC according to previous studies, were considered as novel biomarker
candidates in this study.

2.9. Investigation of Classification Performances of Novel Candidate Biomarkers with Machine
Learning Approaches

To better interpret new biomarker candidates, we applied several classification meth-
ods, a well-known and useful machine learning technique in biomarker discovery, to
identify novel biomarker candidates. We implemented different classification algorithms,
including K-Neighbors, MLP, Decision Tree, Random Forest, Gradient Boosting, CatBoost,
LGBM, and XGB using the Python programming language [45]. The performance of these
techniques was estimated based on the predictive accuracy of the classifiers.

3. Results
3.1. The Transcriptomic Signatures of Gastric Cancer: Identification of Differentially Expressed Genes

The individual statistical analyses of three gene expression datasets (GSE19826, GSE54129,
and GSE79973) led to the identification of DEGs. The number of DEGs in each dataset
showed a wide range from 791 to 4358 genes, and the highest number of DEGs was
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identified in GSE54129. In all three datasets, no significant tendency toward a particular
regulatory pattern (up- or down-regulation) was detected in the culminated DEGs; in other
words, the difference between up- and down-regulation did not exceed 5%. Nevertheless,
in both datasets (i.e., GSE19826 and GSE79973), up-regulated DEGs predominated (51.4%
and 52.6%, respectively) compared with down-regulated DEGs. On the other hand, DEGs
in dataset GSE54129 showed a stronger pattern of down-regulation compared with up-
regulation (Figure 2A).
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Figure 2. Meta-analysis of the three transcriptome datasets associated with gastric cancer. (A) Pie
donut diagram shows the distribution of differentially expressed genes (DEGs) of the three transcrip-
tome datasets. (B) The Venn diagram shows the DEGs common to the datasets. (C) The gene set
overrepresentation analysis of the common DEGs.
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Excluding the regulatory patterns of DEGs, the comparative analysis of the result-
ing DEGs showed that a total of 444 DEGs were common in the three GEO datasets
(Figure 2B). To ensure consistency of the analysis, further analyses were performed using
these common DEGs.

Overrepresentation analyses indicated that the common DEGs were significantly asso-
ciated with cancer-associated molecular pathways, such as Hippo signaling, focal adhesion
extracellular matrix (ECM) receptor interaction. Several processes that were associated
with collagen synthesis or degradation were highlighted as pathways for common DEGs.
Moreover, gastric acid segregation and protein digestion and the absorption pathway,
which were highly associated with each other, come into prominence in overrepresentation
analysis (Figure 2C).

3.2. The Proteomic Signatures of Gastric Cancer: Identification of Hub Proteins

To identify hub proteins, a PPI subnetwork was reconstructed around proteins encoded
by the common DEGs of GC. The reconstructed network consisted of 974 proteins (i.e.,
444 common proteins and their physically interacting first neighbors) and 1025 links (i.e.,
physical PPIs between these proteins).

The PPI network showed a scale-free topology and indicated the presence of hub
proteins. Hub proteins, which play a central role in modular organization and information
flow within the network, were identified by topological analysis that included degree and
betweenness centrality metrics. The 10 proteins with the highest degree and betweenness
centrality values were combined together and determined as hub proteins. As a result, a
total of 15 hub proteins were determined, namely ACTN1, AGR2, BAG2, BMPR1A, DTL,
FLNA, FN1, LGALS1, MECOM, MUC1, NEDD4L, PDGFRB, PDLIM7, TP53, and TRIM29
(Figure 3A).

3.3. The Regulatory Signatures of Gastric Cancer: Identification of Reporter Transcription Factors

The regulatory elements (i.e., TFs) controlling key transcriptional changes in GC genes
were identified by integrating common DEGs with the transcriptional regulatory network
using the reporter features algorithm. Accordingly, 20 TFs emerged with a significance
level of p-value < 0.001 and were identified as reporter regulatory elements in the transcrip-
tional control of genes in GC (Figure 3B). These reporter TFs included two rel homology
transcription factors (NFKB1 and RELA), two zinc finger transcription factors (SP1 and
SP3), and two DNA-binding transcription factors (CEBPZ and GZF1).

3.4. The Signaling Signatures of Gastric Cancer: Identification of Reporter Receptors

Reporter receptors of GC were determined in a similar manner that was used to
determine reporter TFs. To identify reporter receptors, we integrated common DEGs
with the receptor–protein interaction network by using the reporter features algorithm.
According to the results, 23 proteins were identified as reporter receptors with a significance
level of p-value < 0.001 (Figure 3C). Among the 23 reporter receptors, seven proteins
belonged to the metalloprotease family (ECE1, MMP1, MMP14, MMP2, MMP3, MMP8,
and MMP9), three reporter receptors belonged to the transmembrane signaling receptors
(GRIK1, GRIK3, and TIE1), and three reporter receptors belonged to the G protein-coupled
receptors (DRD1, GRM7, and GRM8).

3.5. Diagnostic and Prognostic Power of Reporter Biomolecules of Gastric Cancer

To pre-clinically validate the diagnostic and prognostic capabilities of the discovered
reporter biomolecules, independent expression data from TCGA (TCGA-STAD) were used.
The diagnostic property of each module was evaluated using ROC curves, and a reporter
biomolecule with an AUC value ≥ 70% was considered statistically significant and accepted
as diagnostic. Subsequently, five hub proteins (33.3% of total hubs), 12 reporter TFs (60% of
total reporter TFs), and 14 reporter receptors (60.8% of total reporter receptors) were found
to be diagnostic reporter biomolecules (Figure 4A). Among the diagnostic biomolecules, a
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hub protein, DTL, with an AUC score of 95%, a reporter TF, HOXC8, with an AUC score of
93.1%, and a reporter receptor, BUB1, with an AUC score of 94.1% were the most important
diagnostic reporter biomolecules when statistical significance was considered (Figure 4B).
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shown in blue. (C) The reconstructed protein–receptor interaction network interaction network. The
statistically significant (p-value < 0.001) reporter receptors were shown in green.
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Figure 4. The diagnostic performance analyses of the reporter biomolecules. (A) The bubble plot
representing the AUC values of the reporter biomolecules. Only the AUC values that were considered
significant in the study were shown (AUC > 70%). Hub proteins are shown in orange, reporter tran-
scription factors (TFs) in blue, and reporter receptors in green. (B) The major reporter biomolecules: a
hub protein, a TF, and a reporter receptor according to their AUC values.
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Patient information on overall survival was extracted from data from TCGA-STAD and
used for prognostic performance analysis. Prognostic performance of reporter biomolecules
was assessed using Kaplan–Meier survival charts based on risk groups and days of survival.
The log-rank p-value and hazard ratios were considered to determine whether reporter
biomolecules had a high impact on overall patient survival. As a result, a total of three
hub proteins (i.e., PDGFRB, TP53, and TRIM29), four reporter TFs (i.e., AR, HOXA11,
NELFB, and SKIL), and one reporter receptor (GRK6) had a high impact on patients’ overall
survival (log-rank p-value < 0.05). In addition, the differences in the expression levels of
genes (encoding hub proteins, reporter TFs, or reporter receptors) between the risk groups
showed that up-regulation of the expression of PDGFRB, AR, and SKIL was associated with
a higher risk of GC, while down-regulation of the expression of TP53, TRIM29, HOXA11,
NELFB, and GRK6 was associated with a higher risk of GC (Figure 5). With the exception
of GRK6, all prognostic reporter biomolecules also showed high diagnostic performance.
Thus, seven reporter biomolecules, namely AR, HOXA11, NELFB, PDGFRB, SKIL, TP53,
and TRIM29 showed both statistically significant diagnostic and prognostic properties for
GC. The reporter biomolecules that exhibited diagnostic or/and prognostic properties were
considered as biomarker candidates for GC.

3.6. The Association of Diagnostic and Prognostic Reporter Biomolecules with Gastric Cancer

A total of 32 candidate biomarkers were identified by bioinformatics analysis. To deter-
mine whether the candidate biomarkers found were associated with GC from previous studies
or were discovered for the first time with our study, we primarily examined GC-associated
biomarkers and genes from three different publicly available databases. As a result, we ob-
tained 1224 different GC-related biomarkers/genes from data repositories [42–44], including
the 13 candidate biomarkers we proposed in this study. For the remaining 19 candidate
biomarkers, we manually reviewed electronic search services and found that 13 candidate
biomarkers had been previously associated with GC [46–58]. Consequently, we concluded
that, to our knowledge, six diagnostic or/and prognostic reporter biomolecules, including
AES, CEBPZ, GRK6, HPGDS, SKIL, and SP3, are proposed here for the first time as GC
biomarker candidates (Table 1).

3.7. Classification Powers of Novel Candidate Biomarkers

A machine learning technique, classification, can be used to evaluate the potential of
biomarkers identified by various statistical tests. Because an effective potential biomarker
should be able to distinguish the diseased cohort from controls, we used several classifi-
cation algorithms to determine the potential of our novel biomarkers. We evaluated the
novel biomarker candidates based on the predictive accuracy of the classifier and found
that the accuracy of the eight different classification methods ranged from 92.6% to 89.4%
(Figure 6A), suggesting that the novel GC biomarkers we have provided here can efficiently
discriminate the diseased samples from the controls. In addition, we used clinical data
from our validation dataset (i.e., STAD-TCGA) [22] to test whether our candidates were
informative in classifying alive and dead specimens. The accuracy of the classification
results showed that our proposed novel biomarkers were not as successful in evaluating
live and dead specimens compared with diseased and control specimens (accuracy ranged
from 64.6% to 47.7%) (Figure 6B).
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Figure 5. Analysis of prognostic performance of reporter biomolecules. Box plots showing expression
levels of reporter biomolecules between low and high-risk groups with p-values. Kaplan–Meier
plots estimating survival of patients with gastric cancer showing p-value and hazard ratio for each
curve. (A) Hub protein: PDGFRB. (B) Hub protein: TP53. (C) Hub protein: TRIM29. (D) Reporter
transcription factor (TF): AR. (E) Reporter TF: HOXA11. (F) Reporter TF: NELFB. (G) Reporter TF:
SKIL. (H) Reporter receptor: GRK6. The high-risk group was shown in red, while the low-risk group
was shown in blue.
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Table 1. The association of diagnostic and prognostic candidate biomarkers with gastric cancer.

Type Name Diagnostic? Prognostic? Association with Gastric Cancer

Hub Protein

DTL + − [46]
FN1 + − [42,43]

PDGFRB + + [42,43]
TP53 + + [42–44]

TRIM29 + + [47]

Reporter
Transcription

Factor

AES + − Novel
AR + + [42,43]

CEBPZ + − Novel
GZF1 + − [48]

HDAC2 + − [49]
HOXA11 + + [50]
HOXC8 + − [51]
NELFB + + [52]
NFKB1 + − [42,43]

SKIL + + Novel
SP1 + − [53]
SP3 + − Novel

Reporter
Receptor

ATP4A + − [42]
BUB1 + − [42]
GRIK3 + − [54]
GRK6 − + Novel
GRM8 + − [55]

HPGDS + − Novel
LIPG + − [56]

MMP1 + − [42,43]
MMP14 + − [42,43]
MMP3 + − [42,43]
MMP8 + − [57]
MMP9 + − [42,43]
NOS3 + − [42–44]

PANX1 + − [58]
SRC + − [42,43]
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(A) The accuracy, F1, and recall score plot of eight different classification algorithms for discriminating
between diseased samples and controls. (B) The accuracy, F1, and recall score plot of eight different
classification algorithms for discriminating between alive and dead samples.



Genes 2022, 13, 2233 13 of 18

4. Discussion

It is estimated that GC will be responsible for 770,000 deaths and 1.1 million new
cancer cases worldwide in 2020. Worse, it is predicted that by 2040, GC cases will result in
approximately 1.3 million deaths and approximately 1.8 million people will be diagnosed
with the disease [59]. Although many GC studies have accumulated in the scientific
community to date, recent cancer statistics estimate the global burden of GC and clearly
demonstrate the need for new diagnostic and prognostic strategies for GC. Despite these GC-
based studies, the intertwined structure of the cell has not been considered, which requires
the integration of biological data (i.e., expression data) with human biological networks. To
translate Big Data into system-level biomarkers, in this study, we integrated GC expression
data with three different biological networks for the first time and captured transcripts,
hub proteins, TFs, and receptor molecules of GC. In addition, to determine a reporter
biomolecule as a “biomarker,” we assessed its diagnostic and prognostic performance in an
independent cohort.

Based on individual analysis of three gene expression datasets, we found that hun-
dreds of genes were differentially expressed in each dataset. However, to increase the
reliability and robustness of the results, we combine information from multiple microarray
datasets and focus only on common 444 DEGs. Analysis of the overrepresentation of com-
mon DEGs revealed significant biological pathways. Interestingly, four pathways related
to collagen synthesis or degradation were found to be significant. It was known that the
restructuring of the collagen components of the tumor microenvironment had a remarkable
impact on cancer development and progression. For GC, it was reported that the collagen
components in the tumor microenvironment rearrange quantitatively and qualitatively,
and there was a significant correlation between the prognosis of GC and collagen. The
study even concluded that collagen width can be used as a prognostic indicator for GC [60].

Reconstruction and topological analysis of the PPI network around the proteins en-
coded by the 444 common DEGs led to the identification of hub proteins that play a central
role in the flow of information within the network. A total of 15 hub proteins appeared as
reporter signal mediators in GC. Among them, PDGFRB, TP53, and TRIM29 have shown
both high diagnostic and prognostic capacity, while DTL and FN1 have shown only high
diagnostic capacity. These diagnostic and/or prognostic biomarker candidates have already
been associated with GC (Table 1), so these results further strengthen our confidence in our
observations.

In this study, the reporter features algorithm was adapted to identify reporter TFs and
receptors. Transcriptional expression of the common transcripts of GC was controlled by
20 TFs, whereas 23 receptors played a central role in signal transduction. Of these reporters,
12 TFs and 15 reporter receptors showed significant diagnostic and/or prognostic results
when cross-validation analysis was performed with independent RNA-seq data. Accord-
ingly, eight TFs and 13 reporter receptors have already been shown to be associated with
GC (Table 1). However, to the best of our knowledge, AES, CEBPZ, GRK6, HPGDS, SKIL,
and SP3 have not yet been associated with GC and were considered as novel biomarker
candidates in this study. It was found that novel biomarker candidates efficiently discrimi-
nate the diseased samples from the controls compared to the performance of discriminating
in the live and dead specimens. Since, it may suggest that biomarker candidates have the
diagnostic capability of GC.

AES (also known as TLE5) is a transcriptional modulator and a transcriptional co-
repressor that represses associated proteins of the Groucho/TLE family. AES plays an
active role in the formation and development of organs or cells such as heart, pituitary, ear,
and blood cells [61]. AES has been associated with several types of cancer. Deficiency of
AES has been shown to lead to invasion and metastasis of prostate cancer [62]. Similarly,
it suppresses colon cancer invasion and metastasis by inhibiting the Notch signaling
pathway [63].

A TF, CEBPZ, acts as an activator or suppressor depending on the cell state, and its
expression is associated with cellular stress, cell cycle arrest, or programmed cell death [64].
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CEBPZ expression and methylation have been remarkably correlated with acute myeloid
leukemia [65]. In a recent study, its overexpression was also found in squamous cell
carcinoma of the esophagus [66].

GRK6 belongs to the family of G protein-coupled receptor kinases. It is overexpressed
in immune cells and is closely associated with inflammation-related processes [67]. Up-
regulation of GRK6 has been associated with colorectal cancer and is considered a potential
biomarker for predicting poor survival in colorectal cancer patients [68]. In contrast,
downregulation of GRK6 has been suggested as a potential biomarker for predicting overall
survival in patients with lung adenocarcinoma [69]. In addition, up- or down-regulation of
GRK6 expression has been observed in patients with hepatocellular carcinoma [70] and
medulloblastoma [71], respectively.

HPGDS belongs to the family of transferases and catalyzes the production of a
prostaglandin, prostaglandin D2, which is considered an essential lipid regulator that plays
a remarkable role in the immune system, for example, in the inflammatory response [72].
According to a genome-wide association study, HPGDS was significantly associated with
germ cell tumors in the testis [73]. Moreover, in a recent study, HPGDS was considered a
prognostic biomarker for lung adenocarcinomas, and it was suggested that HPGDS may
provide clues to the aggressiveness of the disease [74].

SKIL (also known as SnoN) is a transcriptional co-repressor that negatively regulates
TGF-β signaling. SKIL has been associated with many cancers. For example, upregula-
tion or amplification of SKIL has been associated with breast cancer [75], squamous cell
carcinoma of the esophagus [76], prostate cancer, squamous cell carcinoma of the head
and neck, and non-small cell lung cancer [77]. In addition, SKIL has been associated with
leukemia [78], ovarian cancer [79], and squamous cell carcinoma of the lung [80].

SP3, which has a highly conserved DNA-binding domain, can either promote or
repress the transcriptional activity of the corresponding target genes that play a role in the
cell cycle, differentiation, or carcinogenesis [81]. High expression of SP3 was observed in
hepatocellular carcinoma tissues compared with control tissues [82]. In another study, SP3
is described as a driving force for cancer metastasis in sarcomas [83].

In summary, we present here for the first time the molecular codes of GC at the different
system levels (i.e., hub proteins, receptor TFs, and receptors) based on an integrative
multi-omics approach and machine learning algorithms. The bioinformatics and machine
learning approach determined previously identified biomolecules associated with GC as
well as novel diagnostic and/or prognostic biomarker candidates such as AES, CEBPZ,
GRK6, HPGDS, SKIL, and SP3. We believe that these results will provide insights into
the underlying mechanisms of GC progression as well as some powerful novel biomarker
candidates for GC. Despite the tremendous significance of the results of this study, further
efforts are needed to experimentally and clinically validate the insights gained here.
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