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Abstract. Bioinformatics is an emerging field of science emphasizing
the application of mathematics, statistics, and informatics to study
and analysis of very large molecular biological (mostly, genetic and
genomic) systems (data sets). In a comparatively broader setup of
large biological systems without necessarily having a predominant
genetic undercurrent, and having genesis in biometry to biostatistics,
biostochastics has evolved as the primary vehicle for the much needed
statistical reasoning. It is intended to point out the genuine need for
statistical reasoning in this evolving interdisciplinary field, and in
that way, to appraise the limitations of current (mostly, algorithm
based) statistical resolutions.
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1 Introduction

Computational biology, genomics, polygenic models, and in general,
molecular biology (genetics) have nurtured the ongoing evolution
of bioinformatics, though it is still not precisely known what re-
ally constitute the core of bioinformatics. The pharmaceutical re-
searchers, primarily interested in drug development as well as drug-
marketability, have their own way of looking into bioinformatics: bet-
ter understanding of the therapeutic, toxic and genetic undercurrents
in drug developments for properly unfolding the (biological as well
as genetic) intricacies of various diseases and providing better health
care. Molecular biologists and computer scientists, on the other hand,
aim to chalk out completely the intricacies of genomics through com-
putational sequence analyis (and computational biology in general)
while the biomathematicians and statisticians at large desparately
look for mathematical laws that might underlie such biological mys-
teries; there are genuine reasons to doubt about the existence of such
precise laws, even in a broad statistical perspective. At best, statis-
tical appraisal might separate the chaos from drifts in a meaningful
way. In this vein, Ewens and Grant (2001) have provocated a nice
introduction to bioinformatics that can be taken as a working rule:
We take bioinformatics to mean the emerging field of science grow-
ing from the application of mathematics, statistics, and information
technology, including computers and the theory surrounding them, to
study and analysis of very large biological, and in particular, genetic
data sets. The field has been fueled by the increase in the DNA data
generation. Waterman (1995) has a similar interpretation with more
emphasis on the computational biological perspectives. Lange (1997)
emphasized on the mathematical and statistical aspects of genetic
analysis with emphasis on bioinformatics. Durbin et al. (1998) at-
tempted to develop some probabilistic models for proteins and nucleic
acids incorporating the so termed hidden Markov models (HMM), al-
though the prime emphasis being on the computational algorithms.
The developments in the past four/five years have completely re-
shaped this interdisciplinary field, and thereby call for a deeper ap-
praisal of both methodologic and computational perspectives. The
very basic applicability of probabilistic reasoning in bioinformatics is
itself worthy of serious appraisal. Largely flanked by the spectacular
advent of information and biotechnology, Genome projects involving
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human as well as other organisms have been undertaken all over the
World, and two authentic scientific reoprts in 2001 (in Science, and
Nature), both cited here in the bibliography, relate to the current
state of art with these nearly completed omnibus projects. Their
generated data sets of exceedingly large dimensions have posed many
challenging problems in an interdisciplinary channel of research. It
has become clear that molecular biology might have stolen the lime-
light of the scientific developments, and yet there is ample room for
stochastics to comprehend the basic difference between mathematical
exactness and biological diversity / disparity (inexactness). At the
current stage, gene scientists can not scramble fast enough to keep up
with the genomics emerging at a furious rate and in astounding detail.
It’s a basic dilemma to look for any precise mathematical structure
or laws that underlie such mysteries. It’s equally dubious to let com-
puters alone dictate the basic (molecular or biologic) laws unless they
be substantiated by sound mathamtical and statistical modeling and
analysis. At least at this stage, bioinformatics, as a discipline, does
not aim to lay down fundamental mathematical laws that govern
biological systems parallel to those laid down for physics or engineer-
ing sciences. Bioinformatics is not encompassed by biomathematics.
There is, however, at the present, mathematical utility in the cre-
ation of tools (for example, computational schemes and algorithms)
that investigators can use to analyse enormously large data sets that
typically arise in bioinformatics (and more generally large biological
systems) studies. Biological diversity, and underlying stochastic evo-
lutionary forces make it equally appealing to comprehend appropriate
stochastic models and incorporate probabilistic as well as statistical
tools to undertake such tasks in an objective manner. However, such
probabilistic and statistical tools need to be sharpened in the light of
the underlying biological intricacies, and much of the difficulties lies
there. In this setup, knowledge discovery and data mining (KDDM)
or statistical learning tools are providing valuable computational al-
gorithms, and there is a vast scope for methodlogic advances to con-
nect them to statistical reasoning in a theoretical mold. We refer
to Hastie et al. (2001) for a nice account of statistical learning and
all the algorithms developed so far (including neural networks); even
so, there remains the basic question of statistical methodologic sup-
port for KDDM. With the rampage of biotechnology and information
technology, we are in a realm of interdisciplinary research where large
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biological systems have been focussed in a way that used to be im-
passing even a few years back. Neuronal spike-train models, brain
mapping, bioenvironmental models, polygenetic models, pharmacoki-
netics and pharmacodynamics, physiologically based pharmacokinetic
(PBPK) models, toxicodynamics and toxicokinetic (TDTK) models,
are just a few important areas under active research interest, and
in each of these areas, statistical reasoning, albeit in an interdisci-
plinary mold, is essential. Even cybernetics is not outside the realm
of biostochastics, although the emphasis on astrophysics and its im-
plications are to be appraised for biological systems (Sen, 2002a).
Should we therefore confine ourselves only to the realm of bioinfor-
matics? Motivated by this diversity, we comprehend biostochastics
in a broader framework (of interpretation) than bioinformatics. It
includes (large as well as small) biological models that are not not
necessarily genomic ones or the ones with persistent genetic under-
currents. As is the case with many macro-biological models, there are
some challenging high- dimensional statistical problems, and some of
these are similar to most of the ones arising in bioinformatics as well.
In order to comprehend this evolutionary field, it is better to trace
the origin, tracing the genesis to biometry to biostatistics to bios-
tochastics, with special emphasis on bioinformatics. For this reason,
it is desirable for us to trace the developments in three phases : (i)
Biometry to biostatistics, (ii) biostatistics to bioinformatics, and (iii)
bioinformatics to biostochastics. Sections 2, 3 and 4 are to deal with
these three aspects thoroughly. The concluding section is devoted to
a review of some of the outstanding statistical problems that have
been encountered in this evolving interdisciplinary field of research.
In this setup, limitations of standard statistical methodology as well
as the need for novel tools are appraised.

2 Biometry to Biostatistics

Biometry, and agricultural and industrial sciences formed the ba-
sis of applied statistics, and the basic idea was to develop suitable
statistical methodology that could be used as handy tools in the
respective fields of application. In this respect, some of the early
statistical works started with demography, anthropometry, genetics,
agronomy, and biological studies. Although, in this way, biological
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and agricultural sciences can claim a greater part of the genesis of
modern statistical science, in view of the motivational differences and
applicational emphasis, there has been a persistent undercurrent in
consolidating the mathematical abstraction as well as sophistication
solely under the jurisdiction of mathematical statistics while relegat-
ing the data analysis part to applied statistics. This trend continues
even today. The evolution of biometry goes back to more than 100
years ago. The terminiology was coined in Great Britain with the
appearance of the first issue of Biometrika in 1901. In the March
2001 issue of Biometrika, the highlights of the evolution of biomretry,
as captured in this journal, are reported. Biometry not only sparked
the need for looking into the intricacies of biological factors in sta-
tistical formulations, but also, nurtured much of the developments in
mathematical statistics at a time where there was practically no foun-
dation of statistics as a discipline. The salient points of diffenence
between agricultural and biological fields of research have led to a
divergence of biometry and agricultural statistics, and to a greater
extent this has led to the evolution of biostatistics with an annexa-
tion of clinical (biomedical), and environmental sciences along with
a broad field of public health disciplines. In this way, biostatistics
had to cater for a greater need for statistical reasoning in a wider in-
terdisciplinary field where controlled experimental setups are usually
not tenable. Naturally, the need for data analysis arose in a more
perceptible manner, and in course of this crusade, mathematical so-
phistications (that are characteristically associated with theoretical
statistics and probability theory) were diffused to a greater extent
to facilitate more effective modeling and analysis of acquired fdata
sets (often from observational studies, instead of experimental ones).
Admittedly, in either way, there is a persistent emphasis on analysis
of experimental or observational data sets cropping out of biological/
biomedical studies, and no wonder, countless statistical packages have
been developed to meet this goal. Yet there remains much to bridge
the gap between sound statistical methodology and superb statisti-
cal analysis in biosciences. Usually scientific experiments in physical
sciences are conducted in a controlled laboratory setup with precise
instruments to record the outcomes, and the conclusions can then be
advocated for more diverse setups. Generally, suitable mathemati-
cal laws underlie such studies, and conducted studies focus on their
formulations. In many biological studies, such a mathematical law,
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even if it exists, can be obscured due to more paramount diversity
existing in the experimental units, and hence, there is a greater need
of statistical considerations in unearthing such general laws as well
as reasons for possible divergence from the expected laws. A similar
phenomenon is observed in quantum physics and other large physical
studies admitting higher degrees of data obscurity. This led to the
formulation of statistical reasoning on a tripple-standing: (a) Plan-
ning, (b) Modeling, and (c) Statistical Analysis. This combination
enables one to draw conclusions from conducted studies in an objec-
tive manner. R. A. Fisher’s pioneering work on design of experiments
laid down the fundamentals of statistical planning - a prerequisite for
any objective statistical study. The three basic tools, namely, ran-
domisation, replication, and local control, provide the necessary access
to incorporate statistical methodology that has been well developed
during the past seven decades. However, these concepts have mostly
been developed for agricultural experiments dealing with blocks and
plots, manures and fertilizers (treatment) etc. Although such terms
have been adapted for biometric studies, there are some basic dif-
ferences that may call for alternative formulations. In simple bio-
metric studies, such adaptations have been made without much dif-
ficulties. However, in more complex biostatistics problems, without
a controlled study plan, most of these tools need considerable mod-
ifications. For example, randomisation, that provides the very basic
means for importing objective sampling schemes on which general
statistical methodology rests, may not be entirely asdoptable in ob-
servational studies or in clinical trials, and at best, some restricted
randomisation principles could be incorporated. In case-control stud-
ies, the design aspect may be quite different, and a different kind of
randomisation principle may be needed for statistical modeling and
analysis purposes. Replication in agricultural experiments is compar-
atively simpler; it needs additional plots or blocks to ensure that the
error variances could be estimated with enough precision, adding va-
lidity and reliability of statistical conclusions. Local control, achieved
either through blocking or confounding, attempts to eliminate further
assignable causes of variation and thereby enhance the efficacy of the
experiments. In simple biometric studies replication and local control
can be made in a manner similar to that in agricultural experiments
by adding additional subjects in the study and using suitable block-
ing by choosing the subjects in clusters of certain types. However, in
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relatively more complex biostatistical problems, typically, there are a
number of response variables not all of which may be continuous, and
this may require, in turn, more skillful choice of subjects. Moreover,
often the recruitment of an adequate number of subjects to meet the
need of local control and replication may not be possible. These fac-
tors, in turn, make (statistical) modeling more complex in genuine
biostatistics problems than in simple biometric ones. We shall discuss
these in the next section.

3 Biostatistics to Bioinformatics

In a variety of disciplines, ranging from public opinion survey to socio-
economic studies, to experimental sciences, to biomedical and clinical
studies, as well as, to environmental and public health studies, in or-
der to draw scientific conclusions in a quantitative norm, data are to
be collected, analysed and incorporated in the decision making pro-
cess. Because of inherent variability and uncertainty of the outcome
variables in some cases, such data based decisions may not always
be correct. Therefore, it is natural to plan data collection in such a
way that, subject to the available resources, experimental or observa-
tional conclusions can be made in an objective (scientific) way with
maximum possible precision or confidence. This objective is reach-
able if the bias due to possible experimental factors, measurement
protocols, or inestigators can be eliminated, and an assessment of
the margin of errors associated with the conclusions can be made.
Ideally, one would like to reduce the bias and margin of errors as
far as statistically possible. That, in turn, requires the tools ran-
domisation, replication and local control, explained in the preceding
section. Or, in other words, statistical planning is an essential task
for any biometric or biostatistics study. However, whereas in math-
emetical statistics, optimal designs have been developed on sound
theoretical basis, in biostatistics, such optimal disigns may not exist
mainly due to less precise setups that permit randomisation, repli-
cation and local controls only to a much limited extent. The use
of human subjects in biostatistics is becoming more common with
the adoption of safer conducts of experiments or observational stud-
ies involving them. Clinical trials have been gaining popularity in
drug research and public health studies. Clinical trial relate to re-



8 Sen

sponse variables ranging from survival times to drug-effects of various
types. Medical ethics prevent using human subjects on a discrimina-
tory basis, so that no subject is to alloted to a treatment which is
either known to be less effective or to have serious side-effects. This
results in a different class of statistical designs where too many sub-
jects might not be recruited on cost and time considerations, and
other restraints may apply in preserving randomisation to a reason-
able extent. We may refer to Sen (1999, 2001c) for some of these
technicalities in clinical trials with reference to statistical modeling
and analysis. Bioethics and public advocades have voiced concern
about clinical trial exploitation in Third World countries where the
cost-benefit factor may be the primary issue; the goal is to identify
effective as well as affordable regimens to suit the need of developing
countries. In this respect, the 1997 Helsinki declaration of the World
Medical Association , namely, in any medical study, every patient -
including those of control group - if any, should be assured of the
best proven diagnostic and therapeutic method, has raised a basic
queries: How far medical ethics can be implemented in clinical trials
with such diverse perspectives in mind? To what extent cost-benefit
aspects can overturn the basic medical prerequisites of a clinical trial
(especially, in developing countries)? It is therefore more pertinent
to assess how much statistical reasoning can be imparted in such a
broader set-up? There is another important issue (Temple and Ellen-
berg, 2000): Placebo- controlled trials (PCT) are extensively used in
developing new pharmaceuticals. There are allegations that PCT are
invariably unethical when known effective therapy is available for the
condition being treated or studied, regardless of the condition or the
consequences of deferring treatments. Based on the Helsinki declara-
tion, patients asked to participate in a PCT must be informed of the
existence of any effective therapy, must be able to explore the con-
sequences of deferring such therapy with the investigator, and must
provide fully informed consent. This would provide justification for
the PCT even when effective therapy exists. Another by-product of
this declaration is the formulation of active- control equivalence tri-
als (ACET) which may show that a new therapy is superior (or not
inferior) to an existing one - but may not have all the other character-
istics of a PCT. This, of course, calls for more innovative statistical
reasoning tools for ACET. The development of the field of clinical
epidemiology and controlled clinical trials has a significant biostatis-
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tics base, and as we shall see later on that pharmaceutical research
in this way has gained solid footing with effective intervention from
biostatistics. Case control studies are quite common in epidemiologic
investigations, and there too, the design aspects may be quite dif-
ferent from conventional biometric or agricultural experiments. As
biostatistics is moving more in large scale epidemiologic and clinical
studies, more challenging problems are cropping up with statistical
planning of such studies, as well as, related modeling and analysis
aspects. In data acquisition, incompleteness due to missing patterns
and / or censoring of various kinds is commonly encountered. In a
random censoring scheme, it is tacitly assumed that censoring oc-
currs randomly, independently of the primary response variable(s);
hence, it is also often called noninformative censoring. On the other
hand, in actual practice, usually the clause of random censoring may
not be tenable, and as a result, some of the conclusions based on a
noninformative censoring assumption may not be tenable. compet-
ing risk models are also very common in many clinical studies. It
is not uncommon to assume that such competing risk factors work
independently, whereas in reality, this could be quite different. Equal
probability sampling, as is classically taken for granted in mathemat-
ical statistics, sometimes appears to be unreasonable in clinical and
biomedical studies. Moreover, the independence assumption of a set
of observations may not be taken for granted in many biostatistics
models and analysis schemes. More and more scientific attention is
being fixed on large biological systems (with or without having per-
sistent genetic undercurrents). Although there are remarkable sim-
ilarities in such biological syatems in terms of molecular or cellular
structures, there is also an enormous variation in the associated re-
sponse variables that are to be statistically modeled and analysed.
The situation has turned out to be more complex due to various in-
fluencing environmental factors and toxicologic interventions. Take,
for example, the case of computational sequence analysis (CSA) re-
lating to genomic sequences. Most problems in CSA are essentially
statistical. Stochastic evolutionary forces act on genomes, Typically,
there is a large number (K) of positions or sites, and in each position,
there is a purely qualitative (nucleotides or amino acids) categorical
response with 4 to 20 categories depending on the DNA or Protein
sequence. The spatial (functional as well as stochastic) dependence
(or covariation) patterns of these sites may not be generally known,
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nor they can be taken to be stochastically independent. On the other
hand, the DNA have fairly regular and nearly identical structures, so
that statistical appraisals of such genomic sequence are to be based
on other variational properties which exhibit more statistical varia-
tion and possess more statistical information. If we take literally the
CSA as a multivariate statistical problem, then there are numerous
roadblocks. First, it is a very high-dimensional qualitative response
model, so that the conventional multinormal models are not that
appropriate in this setup. Even we take recourse to discrete multi-
variate analysis (Bishop et al., 1975) there are difficulties in model-
ing in a parametric framework (as the structure is not that precisely
known), and more due to the curse of dimensionality. Typically, the
number of parameters arising in conventional qualitative categorical
data models could become so large in CSA that standrad statistical
modeling and inference tools are not of much appeal. For this reason,
alternative procedures that attach less emphasis on the likelihood ap-
proach and more on alternative approaches that takes into account
the undelying (molecular) biological information to a greater exctent
are to be worked out. In this respect, if we consider the HIV/AIDS
case against not HIV positive case, we may apparently treat this as
a classical categorical analysis of covariance model in a two-sample
set-up. Howe3ver the curse of dimensionality may render a statisti-
cal test based on this modeling may be practically powerless. On the
other hand, we may note that like many other retroviruses, HIV has
the ability to reverse the flow of genetic information in the DNA se-
quence. As a result, genetic mutations are likely to be more frequent
in HIV positive people than those who do not have HIV positive sta-
tus. Thus, statistical modeling and analysis of HIV genomic sequence
center around the genetic variability. Parametric methods are not of
much use in this respect, and nonparametrics fares better. We refer
to Pinheiro et al. (2000, 2003) for some work in this direction. There
is a genuine need to have an easy access from biostatistics to bioin-
formatics wherein appropriate mehodologic bases can be developed
for drawing scientific conclusions in bioinformatics. At the present,
KDDM or statistical learning dominates the scenario. Though that
has generated a wealth of statistical packages and algorithms, there
is a pressing need for methodologic support with full statistical con-
siderations.
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4 Bioinformatics to Biostochastics

Whereas bioinformatics pays due importance to underlying molecular
biologic (and genetic) structures, there are many other large biologi-
cal systems where the genetic undercurrents might not be apparent or
dominant in that way. Biostochastics is primarily geared to provide
the desired statistical reasoning for modeling and analysing large bio-
logicaql systems which exhibit considerable stochastic or unassignable
variation. To illustrate this point, we consider the following example
of a large biological system which may not have that much genetic
undercurrent. This is the so called neuronal spatio-temporal models
(NSTM) relating to large neurobiological systems (viz., the cortex
(brain) in human as well as subhuman primates (Sen, 2002a)). In neu-
ronal firing phenomenon, firing times in nerve cells (neurons) interact
and form networks. Therefore, it might be tempting to incorporate
conventional point processes to model and analyse such NSTM’s. The
primary difficulty in a point process approach stems from the enor-
mously large number of nerve cells in the cortex, packed densely,
with diverse activities, their inhomogeneity and spatial dependence;
also the very experimental process of extracting the response (spike
trains) from these nerve cells may generally be destructive. Thus,
there is a need to address the following statistical perspectives: (1)
Reduction of a functional (or at best, huge dimensional) data space
(viz., the cortex manifold) into a manageable finite dimensional space
(viz., a handful number of neurons covering the cortext), (2) data
collection and monitoring(i.e., choosing the most relevant statistical
information from apparently a chaos of infinite dimension), and (3)
incorporation of possibly nonstandard statistical tools for modeling
and analysis of the entire complex (the cortex) based on the acquired
reduced dimensional data sets. The first aspect is known as the di-
mension reduction (DR) methodology, the second one comes more
under modern information technology, and knowledge discovery and
data mining (KDDM) tools are currently being used in this context.
The last aspect comes under image analysis (IA), all these being re-
lated to some neuronal simultaneous spike train models. The central
nervous system (CNS) occupies a focal point in this respect. Study
of intra- and inter-sector stochastic dependence and association (of
tens of thousands of neurons) in the cortex is indeed a challenging
statistical task. Such NSTM’s are typically different from the neu-
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ral network models, advocated for cognitive sciences ( artificial or
machine intelligence), especially due to the neurophysiological un-
dercurrents. Conventional statistical DR approaches are generally
not appropriate for NSTM’s (as the response variables are functional
point processes). Basic theoretical (neurobiological) and experimen-
tal considerations call for a somewhat different DR formulation for
statistical modeling and analysis of NSTM. We refer to Sen (2002a)
for a broad review of these statistical methods. The salient point of
distinction of the CSA and NSTM is the emphasis on the underlying
genetic factors, although both are related to large biological systems.
Consider a third illustration from environmental toxicity. Toxicity
abounds in nature, environment, and in our modern life-style. Tox-
icology relates to the study of the intake process of such toxins by
human being, their mode of propagation, biological reactions, molec-
ular level of penetration, xenobiotics and aftermaths. Because of the
latent nature of a large class of toxic substances, the extreme variabil-
ity of human metabolism as well as their exposure to toxic material,
yet unknown nature of many carcinogenic activities, and immense
difficulties in the assessment of effective toxicity levels (especially in
the environment), there is a need to have statistical appraisal at each
phase. Lack of experimental control, difficulties with standard dose-
response analysis, as well as, limitations of usual dosimetric studies
create impasses. Thus, we have a challenging statistical task that re-
lates to a large bioenvironmental setup, and thereby, it is more in line
with biostochastics that is advocated for development of statistical
methodology and modeling for such systems. In this setup, we have
both toxicologic and xenobiotic factors, and we need a somewhat
different appraisal of the much needed statistical task (Sen, 2003).
Basically, chemical or viral structure and in vivo biological activity
relationship information needs to be incorporated adequately to de-
pict the causal cum stochastic relationship between environmental
exposures (of toxins and virus) and specific health hazards; incorpo-
ration of this SARI (structure-activity relationship information) puts
dosimetry in a more comprehensive stand, albeit at the cost of more
complex statistical modeling and analysis. As a very notable case, let
me discuss the rampage of arsenites in many parts of the world, even
the most developed countries are not immune to the arsenic toxicity
in some form or otherwise. Arsenic contamination of groundwater is
due to a chemical process wherein arsenous acids (arsenic trioxide)
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from buried (mostly ferric) arsenates are produced. Besides arsenic
minerals, organic arsenic occurs, albeit to a lesser extent, in plants,
fish, crab, human body, and other organisms. With a high moisture
level and substandard hygienic or sanitation practice may magnify
the problem with microbeal contaminstion of human feces etc. the
use of treated water for drinking purposes may lessen the impact
(from ingestion toxicology point of view), but use of untreated con-
taminated water for household work can trigger skin cancer or other
absorption toxicologic outcomes. It is in this sense, the agricultural
use of land with arsenic contamination of groundwater can lead to
both ingestion and absorption toxics. Not only the picture may vary
considerably from one area or region (or country) to another but also
considerably from one socio-economic stratum to another. The poor
people without having much access to treated water in rural areas
are thereby expected to have a greater share of the bladder and liver
cancer (due to ingestion of contaminated water) as well as skin can-
cer (due to external use of such water). As such, if a scientific study
of the arsenic problem has to be made in an objective manner, the
following aspects need to be addressed properly:

(a) Identification of the arsenites and allied contaminants.
(b) Statistical modeling of their prevalence levels.
(c) Determination of the bioconcentration factor.
(d) Toxicokinetics : intake and reaction process.
(e) (Molecular) biological reaction and in vivo activity process.
(f) Incorporation of SARI in the response pattern.
(g) Demographics for the concerned population.
(h) Formulation of dose-response regression with SARI.
It is quite clear that at each step there is a genuine need for statis-

tical appraisal, and this can only be done with adequate conformity
to the bioenvironmental factors. While (a), (b) and (c) are more in
the quarters of environmetrics, biostochastics is equally relevant in
this assessment task. (d), (e) and (f) are more dependent on biologi-
cal undercurrents and can only be pursued with good understanding
of the inherent molecular biologic and genetic background. (g) and
(h) are more in line with statistical modeling and analysis; however,
in order to do it effectively, it is essential to pay adequate attention
to all the preceding steps. Bypassing (d), (e) and (f), and linking
directly (g) and (h) to (a), (b) and (c), as is often done in an envi-
ronmental epidemiologic study, could be rather misleading. In USA,
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primarily through the efforts of National Institutes of Health and its
sister organizations (e.g., National Cancer Institute, National Insti-
tutes of Environmental Health Sciences) considerable attention has
been paid to dosimetry or animal study where subhuman primates
are mostly used in a relatively more controlled laboratory setup to
explore the SARI in a quantitative form. This information is then
tried to be incorporated for human exposure and reaction to similar
toxics. Meta analysis has evolved as the principal statistical tool in
transmitting the statistical evidence acquired from animal studies to
human being. Yet, there are serious roadblocks for routine adoption
of meta analysis tools for this extrapolation task. A subhuman pri-
mate and a human being may differ drastically in their metabolism,
biological activities, exposure to toxics, and in many other factors.
Thus, in order to validate meta analysis, it is essential to appraise
all these factors thoroughly before using statistical packages to rou-
tinely transmit the statistical results across the species. Indeed, this
is a genuine biostochastic task. It would not be out of the way to
appraise the biostochastics undercurrents in bioenvironmental disas-
ters and phenomena. There could not be a better illustration of this
deleterious impact than the Persian Gulf War in 1991 and its revival
12 years later. Not only the burning oil fields are impounding at-
mospheric toxicants all over the surrounding countries but also the
shower of bombs and other arsenal aside killing people is bringing
in disastrous toxicity in groundwater, air and all over. The impact
of such toxics in the children born after 1991 in that area as well as
the population exposed during the war in 1991 strongly suggest that
genetic effects in a highly complex setup have permeated all over.
Conventional biostatistics tools are of very limited use in appraising
such a complex and catastrophic phenomenon. The Atomic explosion
aftermaths in Hiroshima and Nagasaki (Japan) have also revealed sig-
nificant genotoxicity effects over generation. In the same way, it was
in Vietnam, and it is likely to be the same in the present situation.
A complete statistical appraisal of this genocide is beyond the means
of our statistical knowledge. Nevertheless, it would be desirable to
keep track of the immense biological as well as xenobiotic impacts
and to grasp the aftermaths in a more objective manner (rather than
summaritative statements of mortality and morbidity associated with
such cruel acts).

Biostochastics plays a focal role in the evolving field of pharma-
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cogenomics, pharmacokinetics, pharmacodynamics and phharmaco-
genetics. This is indeed where bioinformatics and biostatistics have
merged to pave the way for biostochastics. It may be the microbial
universe against large molecular biological systems where thousands
of genes are at work. How these genes are expressed, how to find the
disease gene(s), how to study the gene-environment interaction? All
these are basic questions in the devlopment of new drugs and thera-
peutic means to better human health. Statistical considerations are
so overwhelming in this context, and yet they are so fundamentally
different from conventional statistical reasoning that it is indeed a
challenge to come up with appropriate biostochastic tools to have
satisfactory resolutions.

5 Biostochastics : The Task Ahead

It is quite clear that in bioinformatics, and large biological systems
in general, there is a genuine need for statistical reasoning in every
phase. Also, biostochastics should be the custodian of statistical
thinking in this broad area of interdisciplinary research. However,
because of deep molecular biological intricacies, biostochastics must
take into account the biological factors in its approach to statistical
resolutions. This delicate task in not simple or it can be accomplished
in a conventional or routine way. The impasses are mainly due to the
following factors:

• Hugh-dimensional, if not functional data models. For genomic
sequences, it is an enormously large dimensional data set, while
for the NSTM, it is actually a functional data set relating to
the cortex manifold as a whole.

• Significant spatio-temporal patterns. In the NSTM, the sector
of the corex and the advent of external stimulus give rise to
this phenomenon. In the arsenite problem, the spatio-temporal
pattern is quite evident.

• Lack of stationarity and homogeneity. This refers to both tem-
poral and spatial variations.

• Noncontinuous (discrete / count), and often, purely qualitative
categorical data models. For NSTM’s it’s a multidimensional
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point process, while for the genomic sequence, it’s purely quali-
tative data model. For the arsenite problem, the input variables
may be continuous, but the response variables are not.

• Spatial / temporal topolgy may not be properly defined or un-
derstood. In genomic sequence, for example, adjacent positions
may not have greater association in a statistical sense. In the
arsenic problem, the underground arsenite distribution may not
be known that well, and moreover, it might depend a lot on the
flow channels for underground water or moisture.

• Sans (multi-)normality assumption, standard multivariate sta-
tistical analysis and modeling may not be appropriate. Similar
criticisms may also be labeled for generalized linear mixed mod-
els (GLMM).

• Variogram, kriging, serial correlation etc. (Lawson and Cressie,
2000), resting on spatial homogeneity considerations and (al-
most) continuous variables, may not be generally suitable.

• In view of the high-dimensionality and biological intricacies,
parametric (statistical) models are hard to justify, and as a
result, classical likelihood approaches (and ramifications) may
have generally serious limitations.

• Detection and elimination of outliers could be a big problem,
especially with nonstandard response patterns. High-dimensionality
adds more complications in this respect.

• Change-point perspectives are quite imminent, although their
formulation could be much harder.

• Semiparametrics, though mathematically glittering, may have
severe limitations due to the complex biological undercurrents.

• Bayesian (empirical and hierarchical Bayesian) methods are of
good promise (Datta et al., 2000), although the priors should
be carefully chosen so as to match the biological intricacies and
to provide meaningful interpretations.

• Nonparametrics could provide a better resolution, though there
is a need to appraise the data-size requirements (as the dimen-
sion could be indefinitely large).
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• Stochastic partial differential equations (SPDE), as sometimes
advocated for TDTK or PBPK models, may have similar limi-
tations due to possibly inappropriate structural assumptions.

• Data mining approaches need more methodologic support, and
their inherent tendency for overfitting should be critically ap-
praised.

Let me conclude with an optimistic note. If we stick to the biological
undercurrents and direct biostochastics in that avenue, most of these
anomalies can be resolved to a satisfactory extent. Once this task is
sorted out properly, more progress can be made with sound computa-
tional facilities provided by the modern information technology. As
statisticians, we should not give up our base and migrate totally to the
wanderlands of KDDM. Rather, let us try to have the KDDM guiding
us in the right direction for the much needed statistical methodologic
supports.
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