
This journal is©The Royal Society of Chemistry 2018 Mater. Horiz., 2018, 5, 939--945 | 939

Cite this:Mater. Horiz., 2018,

5, 939

Bioinspired hierarchical composite design using
machine learning: simulation, additive
manufacturing, and experiment†

Grace X. Gu,ab Chun-Teh Chen, a Deon J. Richmonda and Markus J. Buehler *a

Biomimicry, adapting and implementing nature’s designs provides

an adequate first-order solution to achieving superior mechanical

properties. However, the design space is too vast even using bio-

mimetic designs as prototypes for optimization. Here, we propose

a new approach to design hierarchical materials using machine

learning, trained with a database of hundreds of thousands of struc-

tures from finite element analysis, together with a self-learning

algorithm for discovering high-performing materials where inferior

designs are phased out for superior candidates. Results show that

our approach can create microstructural patterns that lead to

tougher and stronger materials, which are validated through additive

manufacturing and testing. We further show that machine learning

can be used as an alternative method of coarse-graining – analyzing

and designing materials without the use of full microstructural data.

This novel paradigm of smart additive manufacturing can aid in the

discovery and fabrication of new material designs boasting orders

of magnitude increase in computational efficacy over conventional

methods.

Introduction

The natural world contains an arsenal of materials with mechan-

ical properties ranging across a broad spectrum of toughness

and strength. Yet, virtually none of the basic building blocks

in nature are monolithically tough or strong. This surprising

insight is reconciled by examining the microscopic composition

of natural materials. These emergent superior properties are

encoded in the intricate and sophisticated hierarchical structures

of natural materials.1–3 Motivated by such insights from nature,

much research has been devoted to deconstructing the engineer-

ing rationales embedded in natural materials, aptly referred to as

biomimicry.3–5 Superior mechanical properties and hierarchy in

natural materials come at a cost, however, because the requisite

microstructures consist of assemblages of sophisticated geome-

tries. The progress of three-dimensional (3D)-printing enables

researchers to recreate and emulate complex structures, facilitat-

ing novel fabrication techniques boasting higher resolution and

more precise control when compared to traditional synthetic

engineering methods.6–13 Many research groups have harnessed

the power of 3D-printing to print hierarchical structures, such as

auxetic materials, characterized by negative Poisson’s ratio, and

lightweight cellular materials.14–17

Biomimicry offers a first-order, static approximation to replicat-

ing natural materials. Species, on the other hand, are constantly

evolving and optimizing the architectures of biomaterials that
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Conceptual insights

We demonstrate a new machine learning-based design approach for

hierarchical materials. The new designs created by our machine learning

model, which is trained with a database of hundreds of thousands of

geometries from finite element analysis, are validated using additive

manufacturing and experimentation. Whereas most of the previous work

applying machine learning in materials science is solely focused on

predicting material properties, we aim to go beyond property prediction

to optimize specific properties. This is achieved by further augmenting a

convolutional neural network model with our self-learning algorithm; the

goal being to learn patterns from sampled top-performing geometries to

create even better designs, phasing out inferior designs for superior

candidates. The result is a suite of new designs that outperform the

training set. Additionally, for the first time in literature, we show that

machine learning can be used as an alternative method for coarse-

graining – analyzing and designing materials without the use of full

microstructural data. The coarse-graining is realized by condensing a

collection of building blocks into a single unit cell – significantly reducing

the number of parameters needed in our machine learning model. Thus,

this new approach accelerates the search for high-performing hierarchical

materials by orders of magnitude and is widely applicable to other

material systems to optimize a variety of properties.
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constitute their anatomies, subject to their continued survival.

Of more practical interest is surpassing biomimetic prototypes, in

terms of mechanical properties, and more readily adapting these

structures for engineering applications over an extremely condensed

time horizon compared to the millennia of evolution in nature. This

is done in practice by augmenting biomimicry using optimization

with application-specific objective functions.18–22Optimization, how-

ever, does not come without high computational expense as the

necessary design space to be considered is vast. Specifically, there are

many potential structures that can be arranged in numerous ways

over various length scales, and so the number of possible configu-

rations rapidly approaches astronomical values.

Machine learning (ML), a branch of artificial intelligence for

discerning patterns from complex data sets, has proven to be

a valuable method in various fields of research over the past

few decades.23 ML algorithms have found great utility in several

applications including, but certainly not limited to, image and

speech recognition, spam detection, and drug discovery, as well as

search engines.24–30 Recently, ML techniques have been utilized in

the search for new materials, exploring different material proper-

ties such as elasticity, plasticity, fatigue life, wear performance,

and buckling.31–36 While these studies demonstrate possible

applications of using ML in materials design, they were mostly

focused on using ML models to predict properties of materials

or structures rather than designing new materials with desired

properties. Furthermore, very little validation of such ML

approaches has been done with experimental analysis.

In this work, we aim to study hierarchical structures like those

found in nature and to accelerate the evolutionary process occur-

ring in natural materials using ML. In a way, the natural process

of evolution is cast into a computational framework under the

guise of ML to study bioinspired hierarchical structures. Natural

materials, which must survive with the material constituents

available in their surroundings, instigate novel material response

without introducing new materials by leveraging hierarchical

assemblies. Nature makes do with what is at hand. Similarly, we

aim to create better materials by building hierarchical structures

made up of various symmetric and asymmetric unit cells. Con-

volutional neural networks (CNN) are employed to predict com-

posite material properties and show that our ML model can

generate high-performance designs with much better material

properties than those of the training data. CNN allows us to study

a hierarchical system without complete characterization of its

microstructure, accelerating the material property prediction pro-

cess. Our ML-predicted designs are validated through 3D-printing

and testing. Thus, we propose a newML-based paradigm of smart

additive manufacturing, while demonstrating its capabilities

of discovering new material designs with orders-of-magnitude

speedup compared to conventional methods.

Results and discussion
Hierarchical design of systems

The prototypical model used is a composite system with a

distinct set of unit cells. This composite structure departs from

the conventional fiber/ply arrangement since nature, at suffi-

ciently small length scales, is comprised of a limited set of soft

and stiff building blocks. A similarly constrained suite of unit

cell configurations is considered, as shown in Fig. 1a. The

building blocks of unit cells are made up of stiff (pink color) and

soft (black color) materials. The unit cells are constructed to

achieve symmetric and asymmetric mechanical behavior, which

is determined by their stiffness in the two in-plane directions (i.e.,

x and y-directions). For the unit cell 1 (U1), the stiffness in the

x-direction is lower than that in the y-direction (i.e., Exx o Eyy).

For the unit cell 2 (U2), the stiffness in the two in-plane directions

is the same (i.e., Eyy = Exx) due to the symmetric geometry. For the

unit cell 3 (U3), the geometry is 90-degrees rotated from that of

U1, and thus the stiffness in the x-direction is higher than that

in the y-direction (i.e., Exx 4 Eyy). The boundaries of all unit

cells satisfy continuity, by which each type (i.e., stiff and soft) of

element in one unit cell is connected to the same type of

elements in adjoining unit cells when they are assembled. This

continuity is satisfied by a specific design of interlocking edges,

which allows for smooth load transfer between the unit cells.

Additionally, each soft element is connected to nomore than two

stiff elements to prevent stress concentration. Fig. 1b depicts

the orthogonal stiffness ratios of each unit cell (composed of

324 building blocks) as a function of the modulus ratios of the

building blocks (soft to stiff) plotted on a log–log scale. The

three unit cells exhibit different responses due to their geo-

metrical configurations, as shown in Fig. 1a. Furthermore,

the degree of isotropy can be tuned by changing the stiffness

ratio of building blocks. These unit cells are assembled to

create the entire microstructure (Fig. 1c), where different colors

are used to signify the different unit cells (U1: blue, U2: orange,

U3: yellow).

Training and validation process

Inspired by biological neurons, the development of convolu-

tional neural networks (CNN) provides an alternative to the

stochastic process of evolution in a form that can be encapsu-

lated in a parallel computing environment. CNN is adopted in

our ML model to predict mechanical properties of a hierarchical

composites system where the data matrix of 1, 2, 3’s, enumerat-

ing the unit cells (Fig. 1c), is taken as an input to the ML model.

A total of 100000 random microstructures are generated as the

training data (80 000) and testing data (20 000), which corre-

spond to 5.4 � 10�9% of all the possible combinations of three

unit cells on an 8 by 8 lattice after taking symmetry into

consideration. Those microstructures are subjected to tension

in the x-direction and have an edge crack with initial length

equal to 25% of the sample edge length. Their mechanical

properties are calculated using finite element method (FEM)

and considered as the ground truth. We aim to optimize the

toughness of the hierarchical composite system, with details

defined in ESI.† Even with less than 10�8% of the entire design

space information available, the agreements between the FEM

results and the ML-predicted toughness (Fig. 1d), and the FEM

ranking and the ML-predicted ranking (Fig. 1e) are excellent.

Note that the toughness value in Fig. 1d is scaled within a range
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of 0 to 100 (unitless value). All points lie very close to the line of

y = x, as shown in Fig. 1e, signifying high accuracy in the ML

model. Additionally, the normalized root-mean-square devia-

tion (NRMSD) values of the training data and testing data for

the normalized toughness are very close (i.e., NRMSD = 0.2978

for the training data and NRMSD = 0.4926 for the testing data),

showing that the ML model has, indeed, learned the patterns

from the training data, and there is no overfitting problem.

Moreover, even with incomplete geometry information (i.e., only

the unit cell numbers), the ML model can accurately predict the

mechanical properties of the microstructures.

High performing designs predicted by ML model

Fig. 2a shows the comparison of the training data and the high-

performance designs identified by the ML model using a self-

learning-based sampling method (discussed in ESI†) in the

coordinate space of strength and toughness alone. To assess

the performance of the ML model as a function of training

time, we show two sets of designs: one is trained for 1000 loops

only and another one is trained for 1 000 000 loops. Most of the

training data reside in the lower toughness and strength range,

whereas most of the designs obtained by the ML models lie in

the higher toughness and strength range. The designs from the

ML model with a shorter training time (i.e., 1000 loops) have

some overlap with the training data, while the designs from the

ML model with a longer training time (i.e., 1 000 000 loops) do

not, showing that with more training loops, better designs can

be obtained. The fact that the ML outputs reside outside of the

range of the training data set indicates that the MLmodels have

indeed learned the patterns of the top performing designs, even

when only trained for 1000 loops. In this work, toughness ratio

and strength ratio are defined as the toughness and strength

values normalized by the highest toughness and strength

value in the training data, respectively. The mean value of

toughness ratio of the designs obtained from the ML model

with 1 000 000 loops is approximately 13 times higher than the

average value of the training data. Results for modulus ratio vs.

toughness ratio are shown in Fig. S1 (ESI†), where modulus

ratio is defined as the modulus normalized by the highest

modulus value in the training data.

Fig. 2b shows that the toughness ratio, which is a function of

training loops, starts to converge as training loops increase for

minimum, mean, and maximum values. Two partitions, A and B,

emerge as distinct regions in Fig. 2a and warrant further study

of the geometrical patterns in those regions. Partition A con-

tains the lowest performing designs from the training set and

partition B contains the highest performing designs from the

ML outputs. The partition A designs exhibit a strip of U1 unit

Fig. 1 Hierarchical design construction and ML applicability. (a) A family of three unit cells are considered with variable anisotropic properties. Pink and

black colors refer to stiff and soft building blocks, respectively. (b) The modulus ratio between stiff and soft building blocks affects the different unit cells’

degree of isotropy. (c) The microstructure consists of a detailed assemblage of unit cells that is then converted to a data matrix of building blocks

encoding the individual unit cells (blue = U1, orange = U2, yellow = U3). Data matrices encode the different unit cell arrangements for each

microstructure and are taken as inputs for the ML model. (d) A comparison between FEM results and ML predicted values for toughness. (e) Good

agreement between rankings of finite element simulation for the training and testing data designs with ML predicted rankings shows that the CNNmodel

can be used for proposed hierarchical design problems.
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cells (blue color in Fig. 2c) situated at the crack tip, which

indicates that low performing designs cannot sustain tension

load applied in the x-direction. Having U1 unit cells all along

the crack tip is equivalent to placing a strip of soft, compliant

material in that location, accounting for the weak performance of

the partition A designs. As for the partition B designs, there are

three key zones, [1 – at the crack tip]: there exists a band of U2 unit

cells (orange color in Fig. 2) for all the top three designs to spread

out the stress equally and have less preferred direction of damage,

[2 – in the wake of the crack]: there are many U1 unit cells (blue

color in Fig. 2c) which act to alleviate the stress around the crack

tip, and [3 – around the crack tip]: there are patches of U3 unit

cells (yellow color in Fig. 2c) to negate the loss of stiffness due to

the presence of the crack. The strain distributions for each

corresponding design from the partitions A and B are shown in

Fig. 2c. It can be noted that the strain concentration at the crack

tip for the lowest-performing designs is not evident in the highest-

performing designs. Thus, the ML-generated designs exhibit a

more disperse strain field, allowing for greater energy dissipation.

Patterns discovered from high-performing designs

Geometrical elemental representation of the probability of a

specific unit cell showing up in the top 100 designs identified

by the ML model is shown in Fig. 3. For U1, U2, and U3 unit

cells, there is an apparent pattern of locations where they have

the most positive effect on the top designs, which further

validates the patterns discussed in the previous paragraph.

A critical question is how important each type of unit cell is

and whether this constructed suite of U1, U2, and U3 unit cells

maximizes effective composite material properties. Fig. 3 shows

a plot counting the number of times each unit cell appears in

designs generated by the ML model as a function of effective

composite toughness modulus. It can be seen that all three types

of unit cells are equally important when it comes to designing

tougher materials, as there needs to be a collection of the three

unit cells with different isotropic or anisotropic properties and

that cannot be achieved using only one or two types of unit cells.

This is consistent with different natural materials whose micro-

structures consist of distinct unit cells. Neural networks can

mimic the evolutionary approach of nature using efficient

parallel computing, leading us in the direction of tougher micro-

structural patterns.

Additive manufacturing and tensile testing experiments

To evaluate the performance of the ML-generated designs, the

best design identified by the ML model (denoted as ML-opt) is

Fig. 2 Machine learning generated designs. (a) Strength and toughness ratios of designs computed from training data and ML output designs. Strength

ratio is the strength normalized by the highest training data strength value. Toughness ratio is the toughness normalized by the highest training data

toughness value. The ML output designs are shown from training loops of 1000 and 1000000. Envelopes show that ML material properties exceed those

of training data. (b) Effects of learning time on ML models for minimum, mean, and maximum toughness ratio start to converge as training loops increase.

(c) Microstructures from partitions A (lowest toughness designs in training data) and B (highest toughness designs from ML) in part (a) of the figure with

corresponding colors for unit cell blocks (blue = U1, orange = U2, yellow = U3). Also shown in the right-most columns for the designs A and B are the

strain distributions, which show lower strain concentration at the crack tip for the ML-generated designs.
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3D-printed and its performance is measured from the stress–

strain curve obtained from the tensile experiment (Fig. 4a). The

details of the additive manufacturing and testing component

are discussed in ESI.† The result is compared to homogeneous

samples of the soft and stiff materials and other benchmark

designs. One of the benchmark designs is the lowest-toughness

design generated by the ML model, denoted as ML-min.

The ML approach allows for optimizing with the objective to

minimize toughness. From this optimization, the ML-min

design can also shed some light on how to make a hierarchical

composite weak. The ML-min design shows that a strip of

compliant unit cells in the x-direction (U1) at the crack tip

will diminish toughness. Another benchmark design is the

best design in the training data, denoted as Train-max. The

3D-printed samples of ML-opt, ML-min, and Train-max are

shown in Fig. 4a. The strain fields of the ML-opt sample (top)

and the ML-min sample (bottom) obtained from digital image

correlation are shown in Fig. 4b. The strain field of the ML-opt

sample is more uniform and distributed compared to that of

the ML-min sample, which has a high strain concentration at

the crack tip. This shows that the optimized design can store

more elastic energy before it breaks and that the ML model has

learned the patterns that lead to high and low toughness scores,

respectively.

Fig. 3 Patterns observed from ML designs for U1, U2, U3. (a–c) Histograms of unit cell counts in designs output from the ML model as a function of

effective composite toughness ratio show that all types of unit cells are essential for designing tougher materials (left). Toughness ratio is the toughness

normalized by the highest training data toughness value. Geometrical elemental representation of the probability for a specific unit cell showing up in the

top 100 designs obtained from ML reveals patterns in designs (right). This shows the essential unit cell for each element position. For all unit cells, there

are probabilities close to 1, which signifies that almost all top designs had those specific unit cells in those element positions.
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In this work, toughness is defined as the area underneath

the stress–strain curve. Strength is defined as the failure stress

of the sample obtained from the stress–strain curve. Fig. 4c

shows the values with error bars for toughness and strength of

different designs. The results show that the ML-designed optimal

hierarchical composite is approximately 25 times tougher than

the stiff material and approximately 40 times tougher than the

soft material. Additionally, the ML-opt design is approximately

2 times stronger than the stiff material and greater than

100 times stronger than the soft material. The ML-opt design is

also approximately 4 times tougher than the Train-max design,

which shows that the ML model can learn from the training data

and generate better designs significantly stronger and tougher than

the training data. It can also be seen in Fig. 4c that the ML-min

design has the lowest toughness of all the other tested samples,

showing the efficacy in minimizing toughness using ML; the

ML approach can generate designs across a broad spectrum of

toughness. This approach demonstrates the merits of a machine

learning-driven design combined with additive manufacturing for

printing high-performance functional materials.

Discussion

In terms of computational cost, calculating the mechanical pro-

perties of the 100 000 microstructures using FEM took approxi-

mately 5 days. As for our ML approach, the training process

took from 30 seconds to 10 hours (for 1000 to 1 000 000 loops),

and the predictive phase took less than a minute to solve for the

same amount of data. Once the training process is finished, the

predictive phase is used to screen billions of designs in hours,

which for FEM would take years to solve. Furthermore, we show

that ML can be used as an alternative method of coarse-

graining in the context of materials design since the inputs to

the ML model do not consist of the full microstructural design,

but rather just the unit cell types. The coarse-graining is realized

by condensing a collection of building blocks into a single unit

cell – significantly reducing the number of weights needed in our

MLmodel. Thus, we propose a newML-based paradigm of smart

additive manufacturing, while demonstrating its capabilities in

discovering new material designs boasting orders-of-magnitude

increases in speed compared with conventional methods. We

want to make a note here that additive manufacturing and

testing is used as a proof-of-concept and not as a quantitative

comparison with our FEM results, but as a qualitative compar-

ison. This is due to the simplifications used in our simulations

(discussed in ESI†) to balance computational costs. Additionally,

instead of using the exact mechanical properties of the 3D-

printing materials in our FEM model, we aim to highlight a

simplified material model where one material is stiff and the

other material is soft. Future work can use more rigorous finite

element models to achieve quantitative comparisons. This method

of using ML and additive manufacturing to design and fabri-

cate materials can be applied to a broad range of materials to

Fig. 4 Additive manufacturing and testing of samples. (a) Comparison of stress–strain response of ML-generated 3D-printed sample (ML-opt) to its

(soft and stiff) building blocks, lowest toughness geometry obtained from ML (ML-min), and the maximum toughness geometry from the training set

(Train-max). 3D-printed designs for ML-opt, ML-min, and Train-max are shown as an inset in the figure. (b) Strain field plots obtained from digital image

correlation for ML-opt (top) and ML-min (bottom). (c) Toughness and strength values for the various designs.

Communication Materials Horizons

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 2

7
 J

u
ly

 2
0
1
8
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/2
7
/2

0
2
2
 2

:3
1
:1

1
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8mh00653a


This journal is©The Royal Society of Chemistry 2018 Mater. Horiz., 2018, 5, 939--945 | 945

study any property. For example, materials of interest can be

ceramics, metals, or polymers and the desired properties could

be thermal, electrical, or mechanical. This framework will find

applications in tissue engineering, drug delivery, and a multi-

tude of other new materials design search endeavors.

Conclusions

In this paper, a new approach to designing hierarchical materials

using machine learning and finite element analysis is proposed.

Results show that our model can accurately predict mechanical

properties of hierarchical systems and generate new microstruc-

tural patterns that lead to tougher and stronger materials. Further-

more, the optimal designs outputted from our machine learning

model are validated using additive manufacturing and experi-

mental tensile testing. Additionally, this work shows that machine

learning can be used as an alternative method of coarse-graining,

with the ability to analyze and design materials without the use

of full microstructural data. The coarse-graining is realized by

condensing a collection of building blocks into a single unit

cell – significantly reducing the number of weights needed in our

machine learning model. Thus, this new approach has orders of

magnitude speedup compared to conventional methods, making

the search for high-performing materials in a vast design space

possible. In addition to FEM, this ML approach can also be

incorporated with other simulation methods such as density

functional theory or molecular dynamics in order to capture

material properties at different length and time scales.
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