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Inorganic nanocrystals have attracted much attention for therapeutic and diagnostic
applications due to their unique optical, magnetic, and fluorescent properties.[1] Among these
various nanocrystals, colloidal superparamagnetic iron oxide (e.g., γ-Fe2O3 and Fe3O4) have
been extensively highlighted for many biomedical applications such as contrast agents for
magnetic-resonance (MR) imaging, therapeutic gene carriers, protein purification, and sensors
for nucleic-acid and virus detection.[2] In principle, it is of utmost importance to prepare highly
stable magnetic nanocrystals in aqueous solutions to maximize in vivo half-life and tissue-
specificity. However, the fabrication of such stable, bioactive magnetic nanocolloids has
proven to be nontrivial.

Methods for hydrophilic surface modification include addition of surface-active small
molecules or polymeric stabilizers[3] and synthesis of magneto-composites via encapsulation.
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[4] The encapsulation approaches involve laborious multistep reactions, and the additional
nonmagnetic coatings result in adverse effects on the magnetic properties of the resultant
nanoparticles. On the other hand, nanocrystals coated with surface stabilizers often show only
short-term stability, and are easily aggregated by slight disruptions in the chemical
environments. Thus, the development of simple, robust routes for surface immobilization of
bioactive or bioinert molecules onto iron oxide nanocrystals can be useful tools of practical
utility in nanomedicine.

Inspired by adhesive proteins secreted by marine mussels (Mytilus edulis), we herein report
the facile, biomimetic functionalization of hyaluronic acid (HA) with dopamine for stable
immobilization onto magnetite-nanocrystal surfaces (HA-DN/MNC). 3,4-dihydroxy-L-
phenylalanine (DOPA) is found in mussel specialized adhesive proteins, and is particularly
abundant in the proteins found at the interface between adhesive pads and opposing surfaces.
[5] A key feature of DOPA and its analog dopamine is the ortho-dihydroxyphenyl (catechol)
functional group, which forms strong bonds with various inorganic/organic surfaces that were
shown to be stronger than biotin-streptavidin interactions.[6] Recently, dopamine self-
polymerization was discovered as a powerful approach to applying multifunctional coatings
onto many surfaces, including noble metals, metal oxides, ceramics, and polymers.[6b]
Although the dopamine moiety has been previously utilized for surface modification of various
nanoparticles with PEG and other ligands,[7] bioactive targeting macromolecules such as HA
have never been immobilized on the surface of magnetite nanocrystals for cancer-cell imaging.

HA, one of the major components of vertebrate tissue and body fluid, has been known to interact
with the hyaluronan receptor, CD44. HA-CD44 binding triggers intracellular signals that
influence cellular proliferation, differentiation, and migration. It is also known that CD44
overexpression is associated with cancerous angiogenesis and other types of tumor progression.
[8] As a result, HA has been utilized as a targeting ligand in various nanomedicine studies
directed to cancer cells. Thus, the surface immobilization of HA onto iron oxide nanocrystals
is a promising method to target tumor cells. At the same time, the superparamagnetic property
of these particles allows for tumor-tissue imaging.

Monodisperse magnetite nanocrystals with an average size of 12 nm were synthesized using
thermal decomposition of iron oleate complex, as previously reported.[9] For HA surface
immobilization, the nanocrystals were transferred to an aqueous phase using
cetyltrimethylammonium bromide (CTAB), which provided cationic properties to the surface,
facilitating electrostatic interactions with negatively charged HA, as described in Scheme 1.
[10] CTAB is known to form an interdigitated bilayer structure on alkane-terminated metallic-
nanocrystal surfaces.[10b] HA-dopamine conjugates (HA-DN) were prepared using
conventional 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC)/1-
hydoxybenzotriazole (HOBT) chemistry in pH 5.5 solution to avoid irreversible oxidation of
dopamine.[6b] The degree of dopamine substitution in HA determined by 1H-NMR was 41.4%.
The homogeneous coating with HA-DN was achieved by adding a solution of nanocrystals
into the HA-DN solution with vortexing for 1 min. As shown in Scheme 1, fast electrostatic
interactions between positive-charged MNC surface and negative-charged HA-DN might
induce such an instantaneous surface coating in aqueous solution. Unbound CTAB and HA-
DN molecules were removed by centrifugation of the HA-DN/MNC complexes (see
Supporting Information for the detailed procedure).

Atomic force microscopy (AFM) images clearly show the homogeneous coating of HA-DN
on the surface of the magnetite nanocrystals (Fig. 1a and b). Particles dispersed on a mica
surface revealed that the average height ((15.2 ± 0.4) nm) was increased by 1.6 nm compared
to the diameter of uncoated nanocrystals ((12 ± 0.1) nm) (Fig. 1c). High-resolution X-ray
photoelectron spectra (N 1s orbital) confirmed the presence of HA-DN; the binding energy of
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the quaternary nitrogen in CTAB (403.2 eV) was different from that of nitrogens in N-acetyl
and amide groups in HA-DN (Scheme 1, 401.2 eV and 399.8 eV, respectively), indicating the
replacement of CTAB with HA-DN (see Fig. S1 in Supporting Information). Transmission
electron microscopy (TEM) analysis along with control experiments using SDS-modified
nanocrystals revealed that the surface charge of the nanocrystals is crucial for good colloidal
dispersion. For example, SDS-modified (e.g., negatively charged) nanocrystals tend to
aggregate along the contour length of the HA-DN chain (see Fig. S2 in Supporting
Information), whereas interactions between CTAB-modified nanocrystals and HA-DN
consistently yielded well-dispersed HA-DN-coated nanoparticles (Fig. 1d). These TEM results
(individual vs. aggregate) suggest that HA-DN molecules were initially attracted by
electrostatic interactions, with the catechol groups subsequently forming stable chemical bonds
on the nanocrystal surface, resulting in the formation of HA-DN/MNC complexes.

To investigate the effect of coatings on their magnetic properties, as-prepared and HA-DN-
modified nanocrystals were analyzed using a superconducting quantum interference device
(SQUID) at 260 K. Both magnetite nanocrystals exhibited superparamagnetic properties, as
indicated by the absence of a hysteresis loop (Fig. 1e), and the reduction of the saturation
magnetization value (Ms) was marginal (∼33%, Msγ-Fe2o3 = 12 emu g-1, MsHA-DN/MNC = 8
emu g-1), indicating that noncollinear spins were only slightly influenced by the surface coat
of HA-DN (∼1.6 nm in thickness).[11] Such a small reduction in magnetization is also
promising for biomedical applications such as magnetofection and magnetic drug delivery.
[10a]

Long-term stability in water and high-concentration salt buffer solutions was observed, for
potential in vivo imaging applications. As shown in Figure 1f, HA-DN/MNCs exhibited
excellent stability in aqueous solutions, showing no apparent precipitation for 4 days. In
contrast, CTAB-stabilized nanocrystals transferred to distilled water or HA solution were
agglomerated and entirely precipitated after a short period of time (1 h and 3 h, respectively,
Fig. 1f). These results may be attributed to desorption of CTAB molecules from the nanocrystal
surface resulting in aggregation, as shown in AFM images (Fig. S3). In addition, the degree
of dopamine conjugation in the HA chain dictated the colloidal stability of HA-DN/MNC
complexes, as shown in Figure 1f columns 3 (HA-DN-L, ∼17.0%: 7 mol DN/mol HA) and 4
(HA-DN, 41.4%: ∼17 mol DN/mol HA). HA-DN with greater dopamine substitution resulted
in greatly enhanced stability compared to HA-DN-L. HA-DN/MNCs also showed great
stability under physiological conditions (pH 7.4 Phosphate buffered saline (PBS) solution),
suggesting promise for in vivo applications.

To test the diagnostic effectiveness of HA-DN/MNCs, T2-weighted gradient-echo MR imaging
(3 tesla) was performed using CD44+ cells (HCT116, human colon carcinoma cell line), and
CD44-fibroblast cells (NIH3T3, mouse fibroblast) as a control. The MR imaging revealed that
the cellular uptake of HA-DN/MNC was greatly enhanced in HCT116 by specific CD44-HA
receptor-ligand interactions (Fig. 2a). The difference in relative relaxation rates, R2, (= ΔR2/
R2cont.; R2 = T2

-1) between HA-DN/MNC-treated and nontreated cells was 26% for HCT116
and 7% for NIH3T3 cells (Fig. 2b).

The increased cellular uptake to HCT116 cells (3.7 times) was further verified using Prussian
blue assay, which detected the amount of iron oxide nanocrystals. It was observed that MNCs
coated with HA molecules that were not conjugated with dopamine (HA/MNC) exhibited a
low degree of cellular uptake, regardless of tested cell lines, presumably because of HA
desorption (left, Fig. 2c). In contrast, the cellular uptake of HA-DN/MNCs within HCT116
cells was greatly enhanced compared to that observed in NIH3T3 (right, Fig. 2c). Furthermore,
the ligand competition experiment performed in the presence of excess HA in the culture
medium demonstrated effective suppression of HA-DN/MNC cellular uptake to the level of
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NIH3T3 cells, revealing that the mechanism for intracellular delivery of HA-DN/MNCs was
a CD44-mediated, receptor-mediated endocytosis. Thus, the conjugation of dopamine to the
HA chain and the subsequent anchoring of HA-DN on the surface of MNCs via bioinspired
adhesion played a pivotal role in target-specific enhanced MR imaging and cellular uptake for
tumor cells. The present surface-immobilization technique provides a facile route for systemic
delivery of MR contrast agents for tumor targeting.

In conclusion, we reported a mussel-inspired method for homogeneous and robust coating of
HA on monodisperse magnetite nanocrystals in aqueous solution with a cancer targeting
capability via CD44-HA receptor-ligand interactions.

Experimental
See Supporting Information for the detailed experimental procedure.
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Figure 1.
a), b) AFM images of HA-DN/MNCs. (Inset: cross-sectional view of HA-DN/MNC through
black line). c) Histogram of AFM height distribution of HA-DN/MNCs and as-prepared MNCs.
d) TEM images of as-prepared HA-DN/MNC, showing well-dispersed nanoparticles. The scale
bar is 100 nm. e) Field-dependent magnetization of CTAB-stabilized magnetic nanocrystals
(black dots) and HA-DN/MNC (hollow dots) using SQUID. f) Photographic images showing
time-course stability of HA-DN/MNCs: CTAB-stabilized MNCs in water (1), in HA solution
(2), in HA-DN-L solution (HA-DN1/MNC) (3), and in HA-DN solution (HA-DN2/MNC)
(4).
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Figure 2.
a) T2-weighted MR images and their color map for HCT116 and NIH3T3 cells. (HCT116+:
HA-DN/MNC treated cells, HCT116-: control HCT116 cells, NIH3T3+: HA-DN/MNC
treated cells, NIH3T3-: control NIH3T3 cells). b) Relative relaxation rates (R2) (ΔR2/R2cont,
R2 = T2

-1) of cells. R2cont is R2 of PBS. c) Competition assays for cellular uptake of HA-DN/
MNC using Prussian blue method.
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Scheme 1.
Synthetic procedure for homogeneous immobilization of HA-DN on a monodisperse magnetite
nanocrystal (HA-DN/MNC).
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