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A platform to move gait analysis, which is normally restricted to a clinical environment in a well-equipped gait laboratory, into an ambulatory
system, potentially in non-clinical settings is introduced. This novel system can provide functional measurements to guide therapeutic
interventions for people requiring rehabilitation with limited access to such gait laboratories. BioKin system consists of three layers: a
low-cost wearable wireless motion capture sensor, data collection and storage engine, and the motion analysis and visualisation platform.
Moreover, a novel limb orientation estimation algorithm is implemented in the motion analysis platform. The performance of the
orientation estimation algorithm is validated against the orientation results from a commercial optical motion analysis system and an
instrumented treadmill. The study results demonstrate a root-mean-square error less than 4° and a correlation coefficient more than 0.95
when compared with the industry standard system. These results indicate that the proposed motion analysis platform is a potential addition
to existing gait laboratories in order to facilitate gait analysis in remote locations.
1. Introduction: Gait analysis is used to assess, plan and treat
individuals with conditions affecting their ability to walk and has
been described as ‘the systematic study of animal locomotion,
more specifically the study of human motion using the eye and
the brain of observers, augmented by instrumentation for
measuring body movements, body mechanics and the activity of
the muscles’ [1]. Gait analysis can be applied to monitoring gait
development, to planning therapeutic interventions and to
measuring the outcomes of interventions [2–4]. This form of
analysis typically occurs in special gait laboratories equipped
with gait capture and analysis systems [5–7].

A traditional gait analysis laboratory [8] comprises of kinematic
[5] and kinetic [6] analysis systems, using several measurement
technologies for data capture. In kinematic analysis, one common
approach is to use reflective marker-based optical systems such as
[9] to capture the three-dimensional (3D) locations of the markers
and produce the limb orientations during the walking cycle. On
the other hand, kinetic analysis measures the forces exerted
during the gait cycle, including muscle movements and ground
contact forces. For example, GAIT-Rite [7] measures ground reac-
tion force (GRF) and centres of pressure (CoP) using an array of
pressure sensors. Wearable EMG sensors [10] are used to
measure individual muscle activity during the gait cycle. Such
data is used to evaluate a patient’s progress. Although such com-
plete gait analysis systems provide accurate data, the capture
volume is restricted to a few gait cycles, usually in a straight line
depending on the configuration of the camera system. On the
other hand, instrumented treadmills [11] equipped with force
plates [12] provide a better alternative to capture virtually unlimited
gait cycles in a small space. However, they lack the ability to
capture non-straight line movements. In addition to that, the size,
cost and the complexity of gait analysis systems restrict the gait ana-
lysis to a clinical or laboratory-based exercise routine. To overcome
such restrictions, ambulatory gait capture and analysis systems were
developed to provide gait analysis in non-clinical settings and to
provide long-term monitoring capabilities [13, 14].

In this Letter, we introduce a wearable gait motion capture and
analysis suite designed to perform gait analysis in ambulatory set-
tings possibly in non-clinical environments. Remote physical activ-
ity monitoring systems [15, 16] are increasingly popular with recent
advancements in computer communications and micro-electronics
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device technologies. These can be in the forms of general activity
monitoring [16, 17] or disease focused monitoring methods [15]
and can potentially be used in many scenarios from medical to
sports to military, where the trainers/therapists can monitor and re-
motely interact with the subjects. In a traditional gait laboratory,
such non-clinical gait analysis systems can be adopted to perform
remote on-site gait analysis and data collection efforts to reduce
patient loading on the labs.

Shoe integrated sensors are a common technique to capture both
kinematic and kinetic data for gait analysis [18–22]. Miniature
force/pressure sensors and other resistive displacement sensors are
used to capture kinetic data, such as the GRF [22, 23] and CoP
[20] while inertial measurement units (IMUs) [18, 21, 24] are
employed for kinematic data capture in such wearable systems.
To overcome the inherent weaknesses of shoe-based systems in
capturing leg and thigh movements, multi-sensor wearable IMU
systems are adopted by some researchers to capture kinematics of
the full gait cycle. In such systems, typically the IMU sensors are
placed on the foot, leg (above ankle) and thigh [25, 26], similar
to the approach proposed in this Letter.

In clinical gait analysis systems, the gait cycle events are identi-
fied using the force-plate data [6, 12], whereas shoe mounted force
or pressure sensors are used to perform this in ambulatory settings
[22]. IMU-based systems, on the other hand, perform pattern ana-
lysis on acceleration and gyroscopic data [27] to detect gait
events using simple peak detection and threshold methods. Limb
orientation estimation from IMU data has been a challenging ques-
tion for many researchers across the world, primarily due to the
errors from the integration of gyroscopic and acceleration data.
Gait cycle patterns are used to reset the drift errors in the integration
process, while some researchers use high-pass filters to eliminate
drift. Many drift compensation methods are proposed for orienta-
tion estimation of IMUs [28, 29], not only in bio-mechanics re-
search, but in general in IMU sensor fusion.

Tong and Granat [26] compared a high-pass filtered gyroscopic
data integration method comprising of a gait analysis-based reset-
ting drift correction method with VICON data [30], which demon-
strated a significantly improved drift correction in limb orientation.
Among other IMU fusion algorithms, Madgwick et al. [31]
proposed a gradient-descent algorithm for fusing gyroscopic data
with accelerometer and magnetic field data to produce absolute
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orientation of an IMU. In this Letter, we propose a mixture of the
methods [26, 31] where we use a simplified version of a gradient-
descent algorithm in which only the angular rate and linear accel-
eration information is used to calculate the orientation in sagittal
and transverse planes of a bi-ped gait. In the proposed approach,
we are performing a selective fusion of gyroscopic and acceler-
ation data based on the gait cycle events and gyroscopic data
patterns.
The rest of the Letter is organised as follows. In Section 2, we

provide an overview of the BioKin motion capture and analyses
system. In Section 3, we introduce the gait feature detection ap-
proach and the limb orientation estimation algorithm that ultimately
produce the clinically usable data. In the results Section (Section 4),
we compare the BioKin gait analysis results with that of the ‘gold
standard’ VICON optical motion capture system. Finally, in
Section 5, we conclude this Letter outlining the significance of
the study and future work.

2. System overview: The proposed system consists of three layers:
the wearable motion sensor, data storage and analysis engine and
the visualisation layer. The first layer is implemented in the
BioKin-WMS wireless motion capture device; whereas the other
layers are distributed among the elements in the software suite:
BioKin-GA PC suite, the stand-alone gait analysis suite;
BioKin-Mobi, the mobile version (Android app) of the gait
analysis suite; and the BioKin-cloud, the data storage and the
analysis engine.

2.1. Electronic platform: The block diagram representation of the
gait motion capture system is illustrated in Fig. 1a and the
photograph of the prototype system is shown in Figs. 1b and c.
The motion capture system is based around a 9-axis inertial and
magnetic sensor (IMU) interfaced with a 32-bit ARM processor.
The system is equipped with wired (USB via external attachment)
and a built-in IEEE802.11b/g/n/ wireless communication
interface. The communication settings of the WiFi can be
configured via the USB configuration tool, packaged with the
device software suite, which enables this device to connect to any
compatible WiFi router or a wireless network infrastructure. The
data capture and wireless communications were tested with six
sensors capturing lower-limb motion, each sensor updating the
database at 140 Hz concurrently.

2.1.1 Gait analysis PC suite: This is the most versatile software
among the BioKin-GA family featuring full stand-alone operation.
BioKin PC suite is a cross-platform software developed in Java,
which includes sensor data collection, sensor management tools, in-
ternal/external database handling, patient management, data ana-
lysis and visualisation features. BioKin-WMS sensors can be
interfaced with the PC suite via WiFi (typically for data collection)
or USB for configuration via the sensor management tool. In the
motion capturing process, the software communicates with multiple
igure 1 BioKin-WMS wireless motion sensor
Block diagram representation of electronics of the motion capture device
Photograph of prototype F
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BioKin-WMS sensors (up to 10) via UDP packets over a WiFi
network and allows users to record time-stamped data up to
140 Hz update rate on an internal database or a database located
within a high speed LAN. Moreover, an external database transfer
facility is provided to update central clinical databases when gather-
ing patient data in remote locations. The gait analysis and visualisa-
tion tool provides the clinicians with kinematic data at key gait
cycle points in an easy to manipulate graphical representations to-
gether with playback capabilities.

2.1.2 BioKin cloud: A cross-platform server end application to
handle BioKin data. This accepts bulk transfer of patient data
from the PC suite and mobile versions of the software package.
The server can also act as a data analysis agent for mobile versions,
where it supplies information required to recreate the 3D motion of
the recorded data together with associated gait parameters.

2.1.3 BioKin-Mobi: BioKin-Mobi serves two purposes; a patient
data capture tool and a data visualisation tool for clinicians.
Unlike the PC suite, it does not have the data analysis capabilities
and internal database management system. Instead, BioKin-Mobi
stores the data temporarily until the recording is completed and
then transfer the time-stamped raw data to the ‘BioKin Cloud’.
Moreover, the clinician view of the mobile version requests the pre-
analysed gait movement information from the cloud and provides
the visual representation of the information in a similar format to
the PC suite.

3. Orientation estimation and gait parameter annotation
3.1. Gait feature detection and annotation: This system performs
automatic gait parameter annotation on the data stream while
allowing clinicians to perform manual annotations that can be used
in consecutive treatments. Automatic annotation is relied upon the
identification of key gait cycle points (see Fig. 2): heel-strike (HS),
flat-foot (FF), toe-off, swing-start, mid-swing (MS) and swing-end.
Then, each gait cycle can be processed for any pre-configured
abnormalities such as diplegic or neuropathic gait. Moreover, the
kinematic data (orientation and speed of motion in each plane) is
produced for each key gait cycle point and other annotated points
in the data stream. Fig. 3 illustrates the movement planes used in
this Letter and the IMU sensor locations (foot, shank and thigh)
and their local coordinate systems for gait capture.

Key gait cycle points are estimated from the pattern analysis of
raw gyroscopic data, combined with acceleration data. The typical
angular rate variation in the sagittal plane and the corresponding ac-
celeration along the Y-axis on a shank mounted IMU (see Fig. 3)
during a gait cycle is illustrated in Fig. 2. A publicly available
igure 2 Angular rate and linear acceleration variation in gait cycle to-
ether with key gait cycle points
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Figure 3 Movement planes and sensor locations for biped gait capture

Figure 4 Variation of Θ in (5) with gyroscopic data and key gait cycle
points
activity data set [32] was used to derive the normalised data pre-
sented in this graph. Key gait points directly correspond to the
peaks, dips and plateaus in the gyroscope data. Simple threshold
and pattern analysis techniques are used to capture such points in
the data stream. Note that in this figure, we used a publicly available
gait data set to illustrate the key gait points and to demonstrate the
similarity of existing data with the data collected with BioKin
sensors.

As seen in Fig. 2, the FF state can be identified as the gait event
with the least amount of movement in the sagittal plane. In such
instances, the acceleration measurements are used to correct any
drifts in the gyroscope integration process as well as used to calcu-
late the ‘true’ angles in sagittal and transverse planes. This is pre-
sented in the following Section.

3.2. Orientation estimation: The limb orientation is calculated from
the IMU data, together with the key-gait points to perform drift
correction in the IMU calculation process. Let sqω = [0 ωX ωY ωZ]
represent the raw gyroscope measurements around the respective
local coordinate axis (see Fig. 3) in quaternion notation. Note
that, in this Letter, we use⊗ to represent quaternion
multiplication and * to represent the conjugate of a quaternion.
The rate of change of the orientation quaternion s

eq is defined as [31]

s
eq̇(t) =

1

2

s

e
qopt(t − 1)⊗s qv (1)

and the quaternion is calculated using

s
eqg(t) =s

e q
opt(t − 1)+s

e q̇(t)Dt (2)

Here, s
eq

opt(t) is the optimal orientation quaternion, which is
calculated from the following steepest gradient method [31, 33]

s
eq

opt(t) = arg min
s
eq(t)[<4

f∇(
s
eqg(t)

s, + qa(t),
sqw) (3)

where f∇ is the objective function used in the gradient-descent
algorithm, which provides the deviation of the actual
42
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accelerometer measurement vector in the sensor-frame (sqa(t))
with the rotated gravitational vector EqG using the s

eqg(t)
orientation quaternion as follows

f∇ = (seqg(t)⊗E qG ⊗S
e q

∗
g(t)−s qa(t)) ∗Q (4)

Here

Q = Kgp(t)+ Q× Km(t) (5)

is the temporal weighting function in which 0 <Q < 1 is a weighing
factor that defines the dominant element among Kgp and Km. Here

Kgp(t) =
1

tTg
����
2p

√ e− ‖T (GF(g))−t‖2
( )/

2×tT2
g

( )( )
,

if t [ TF(k)
∀g = 1, . . . , Ng

0 else

⎧⎪⎨
⎪⎩

is the temporal weighting function derived from the key gait events
such that the function value peaks at FF locations as a Gaussian
function. Here, g denotes a gait cycle, Ng is the total number
of gait cycles in the data set, GF(g) represents the FF gait event of
gth gait cycle and T(GF(g)) represents the time of occurrence of
GF(g) event. TF(g), [T(GF(g))− 6 × thTgp,…,T(GF(g)) + 6 × thTgp]
represents the surrounding region of a FF gait event GF(g) and

tTg
is a constant that defines the smoothness and spread of the
Gaussian curve.

In (5), the movement-based weighing function

Km(t) =
1

mgth
����
2p

√ e− ‖sqv‖2
( )/

2×mg2th

( )( )

is used to incorporate accelerometer measurements into the orienta-
tion estimation when the normalised gyroscopic movement is less
than a pre-defined threshold, i.e., ‖sqv‖ ,m g2th, where threshold
mg2th defines the upper bound of the slow movement range.

While performing sensor fusion, this method uses pre-analysed
gait pattern information and gyro rate to select most appropriate
weighted temporal distribution of the optimisation function.
Fig. 4 illustrates the variation of Θ with gyro rate as used in the ana-
lysis of experimental data in Section 4. In Fig. 4, black dots repre-
sent the FF events in the gait cycle and green circles highlight the
activation of Θ at low activity regions in the IMU data. Note that
the effect of low-activity component is not visible in FF locations
due to the higher weighing on Kgp.
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Table 1 Abbreviations

GCO quaternion optimisation approach incorporating key gait cycle
points presented in Section 3.2

HPI integration of high-pass filtered angular rate data on a certain axis

RI integration of raw angular rate data on a certain axis

VD VICON derived orientation on the respective plane

F
a
b

Among other optimisation algorithms, we are using gradient-
descent algorithm because of its simplicity in implementation in a
real-world practical system. The following equation describes the
implementation of the gradient-descent algorithm

s
eqk+1 =s

e qk − m
∇f∇,k

||∇f∇,k ||
(6)

where

∇f∇,k = J (f∇)
T f∇ (7)

and 1 > μ > 0 is the step-size parameter.
Note that this Section presents an algorithm based on selective

fusion of acceleration and gyroscopic data to calculate limb orien-
tation using a gradient-descent algorithm. The selective fusion algo-
rithm initiates only in certain instances defined by the FF event or
low gyroscopic movements as defined in (5). Fusing the acceler-
ation data with the orientation calculation process essentially
re-initiate the integration of gyroscopic data at selected instances
where the acceleration data provides only the gravitational forces
acting upon the IMU sensor. This removes the errors accumulated
during the integration of gyroscopic data and converge the orienta-
tion to the tilt angle calculated using the gravitational forces acting
on different axes of the IMU. Moreover, this algorithm is quite dif-
ferent to other gradient-descent approaches such as [31], particular-
ly because the selective fusion approach eliminates the fusion of
acceleration data into the orientation calculation process where ac-
celeration is highly contaminated with movement noise, i.e., fast
moving instances and impacts, such as swing and HS events.

4. Experimental results and discussion: This Section provides the
experimental results to illustrate the gait event detection and the
orientation estimation approach presented in this Letter.
Moreover, these results are compared against the ‘gold standard’
VICON optical motion capture and force-plate results.

4.1. Motion capture: The experiment was performed with a male
subject without any history of orthopaedic or intramuscular
impairments. The walking experiments were performed on a
treadmill equipped with a force plate (BERTEC Instrumented
Treadmill) and the motion was simultaneously recorded using a
VICON optical motion capturing system (VICON T40S System)
and BioKin. Fig. 5a shows the lab space used for this experiment
and Fig. 5b shows the reflective markers attached to the subject’s
lower limbs. The BioKin-WMS sensors were attached to the
subject’s lower limb as illustrated in Fig. 5b and BioKin-GA PC
suite was used to capture and store IMU data. Note that, although
we have used six sensors during the data collection, only the
ankle mounted sensor data were used in the analysis presented in
F
d
N

igure 5 Experimental setup
Lab spaced used for experiment
Reflective markers attached to subject’s lower limbs
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this research. IMU data was sampled at 140 Hz, VICON
coordinates were sampled at 250 Hz, while the force-plate data
was recorded at 1000 Hz for the total duration of the experiment.
During the analysis, VICON and force-plate data were re-sampled
at 140 Hz for comparison purposes. To evaluate the performance
of the algorithm with different walking speeds, the experiment
was performed for three walking speeds 0.5, 1.0 and 1.5 m/s with
2 min of walking at each speed.

4.2. Gait feature detection: Peak detection threshold of 100°/s was
used to identify MS location and then pattern identification methods
were used to detect other gait events. Fig. 6 illustrates the
relationship between the detected points and the force-plate
patterns. In traditional gait analysis systems, peaks in vertical
force-plate data is used to identify HS points of the gait cycle
[27] and from Fig. 6, it is clear that the force-plate peaks directly
corresponds to the HS events detected by the proposed angular
rate-based gait feature detection system.

4.3. Orientation estimation: In this Section, we compare the sagittal
orientation calculated using GCO, HPI, RI and VD methods
(Table 1). Fig. 7 illustrates the angles computed using the above
methods for the entire walking data set and Fig. 8 shows the
zoomed section of the same data set. Since the RI and HPI
orientation values do not have the correct initial state, the initial
point was manually adjusted to suit the VICON angle while the
GCO automatically corrects the orientation during selective fusion.
Fig. 9 shows the root-mean-square error (RMSE) of the HPI and
GCO orientations compared with the VICON derived angle.

The iterative optimisation algorithm is terminated when the mag-
nitude of the kth iteration step

yk = ||∇f∇,k || , yth (8)

where υth is a threshold value or the maximum number of iterations
igure 6 Key gait cycle point detection and comparison with force-plate
ata for 0.5 m/s walking speed
ote that only the z-axis force-plate data is plotted here
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Figure 7 Comparing sagittal orientation of lower leg (shank) computed
using GCO, HPI and RI with VD orientation for 0.5 m/s walking speed

Figure 8 Zoomed in section of Fig. 7 to illustrate the variation of GCO and
HPI orientation compared to VD

Table 2 Experimental results

Speed 0.5 m/s 1.0 m/s 1.5 m/s

Method HPI GCO HPI GCO HPI GCO

RMSE1 2.33 1.15 3.32 3.24 3.78 3.56
CC 0.998 0.991 0.987 0.974 0.968 0.957

RMSE in degrees.
(kNmax) reached. In this experiment, the step-size parameter μ =
0.0001, υth = 0.1 and kNmax = 1000 were selected in order to
ensure smooth convergence of the iterative algorithm. The gravita-
tional vector EqG = [0 1 0] was selected to suit the sensor measure-
ment range and the normal orientation of the sensor (see Fig. 3).
The weighing factor Q in (5) and the threshold values tTg and
Figure 9 Error in GCO and HPI compared to the VD orientation in experi-
ment with 0.5 m/s walking speed
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mgth are selected as 0.1, 20 and 5, respectively. The cut-off fre-
quency for the high-pass filter was selected as 0.065 Hz.

It is clear from Figs. 7 and 8 that there is a significant divergence
of the RI orientation compared to the actual VD orientation because
of the inherent gyro drift. The high-pass filtered orientation pro-
vides a significant improvement in drift mitigation compared to
the RI orientation, closely tracking the VD orientation. However,
the HPI orientation deviates from the VD orientations in slow
moving instances (e.g. FF event), since the high-pass filter itself
eliminates the slow changes in the gyro-rate data, making it to
move to ‘zero’ angular rate at such events. On the other hand, the
GCO angles provide more accurate results at slow moving
instances, in fact, it corrects any errors at such instances by
fusing the acceleration data with the orientation algorithm. Fig. 8
illustrates this statement. The GCO algorithm fuses the acceleration
data only at certain instances defined by Θ function which takes at
least one gait cycle to initiate, thus having large errors at the begin-
ning of the walking data series. However, once the sensor fusion al-
gorithm initiates, the orientation corrects itself with respect to
gravity. This is illustrated in Fig. 9. Note that the error in Fig. 9
represented in log scale, such that all the variations are clearly illu-
strated. Particularly, the large deviations in the GCO orientation
during the first gait cycle.

The average RMSE values and the correlation coefficient (CC) of
GCO and HPI compared with VD orientation are shown in Table 2.
Note that since the HPIs initial state is manually created, in order to
maintain the generality, the results shown in Table 2 were calcu-
lated using data points after the first gait cycle, i.e., after the
GCO approach reached the initial sensor fusion point. With this
initial result for a single subject comparing the aforementioned
gait orientation algorithm with ‘gold standard’ provides evidence
that this approach can be used for assessment of gait kinematics
in non-clinical environments. Both GCO and HPI methods
provide strong correlation (>95%) for all three speed settings.
However, given that the results presented here were for a single
subject without a history of orthopaedic or intramuscular impair-
ments, no conclusion can be drawn at this stage as to whether
this approach is suitable for general patient assessment. Clinical
trials targeting specific medical conditions such as cerebral palsy,
stroke, Parkinson’s disease etc. with a larger patient group will
help one to understand the validity of this approach in clinical
assessment.
5. Concluding remarks: In this Letter, we presented an
ambulatory gait analysis platform, BioKin™, which includes:
low-cost wearable motion capture sensors and a software suite to
store, process and visualise gait kinematics. Moreover, we
introduced a selective sensor fusion algorithm to estimate limb
orientation by fusing gyroscopic and acceleration sensor data
from the IMU. The fusion algorithm effectively compensates the
drift accumulated during the angular rate integration using
acceleration data at selected instances. The proposed algorithm
was tested with experimental data against an industry standard
optical motion tracking system and the accuracy was verified.
BioKin™ is a potential platform for clinicians to collect data to
augment gait analysis in remote clinical locations, i.e., away from
Healthcare Technology Letters, 2015, Vol. 2, Iss. 1, pp. 40–45
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the well-equipped gait laboratories, particularly when the patients
require routine gait kinematic evaluation to plan and evaluate the
outcome of therapeutic interventions. Future studies will be
focused on the capture and analysis of gait patterns related to the
specific medical condition such as Parkinson’s disease, stroke,
cerebral palsy etc. and extending the motion analysis for
full-body kinematics.
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supported by Deakin University and National ICT Australia
(NICTA). Dr. Ekanayake reports personal fees from National ICT
Australia during the conduct of this study.
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