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Abstract

Extracellular vesicles (EVs) in milk harbor a variety of compounds, including lipids, proteins, noncoding RNAs, and mRNAs.

Among the various classes of EVs, exosomes are of particular interest, because cargo sorting in exosomes is a regulated,

nonrandom process and exosomes play essential roles in cell-to-cell communication. Encapsulation in exosomes confers

protection against enzymatic and nonenzymatic degradation of cargos and provides a pathway for cellular uptake of cargos

by endocytosis of exosomes. Compelling evidence suggests that exosomes in bovine milk are transported by intestinal

cells, vascular endothelial cells, and macrophages in human and rodent cell cultures, and bovine-milk exosomes are

delivered to peripheral tissues in mice. Evidence also suggests that cargos in bovine-milk exosomes, in particular RNAs,

are delivered to circulating immune cells in humans. SomemicroRNAs andmRNAs in bovine-milk exosomesmay regulate

the expression of human genes and be translated into protein, respectively. Some exosome cargos are quantitatively

minor in the diet compared with endogenous synthesis. However, noncanonical pathways have been identified through

which low concentrations of dietary microRNAs may alter gene expression, such as the accumulation of exosomes in the

immune cell microenvironment and the binding of microRNAs to Toll-like receptors. Phenotypes observed in infant-

feeding studies include higher Mental Developmental Index, Psychomotor Development Index, and Preschool Language

Scale-3 scores in breastfed infants than in those fed various formulas. In mice, supplementation with plant-derived MIR-

2911 improved the antiviral response compared with controls. Porcine-milk exosomes promote the proliferation of

intestinal cells in mice. This article discusses the above-mentioned advances in research concerning milk exosomes and

their cargos in human nutrition. Implications for infant nutrition are emphasized, where permitted, but data in infants are

limited. J Nutr 2017;147:3–10.
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Introduction

The American Academy of Pediatrics recommends exclusive
breastfeeding for the first 6 mo of life (1), but no more than 20%
of parents in the United States follow this recommendation (2).
Rates of exclusive breastfeeding are higher outside the United

States where they may reach 39% (3). The majority of infants in
the United States are fed by using formulas based on bovine milk
or soy starting a few months into life (2, 4). Great efforts have
been made by formula manufacturers to optimize the nutrient
content in formulas through fortification. For example, infant
formulas may be fortified with essential FAs and milk oligosac-
charides, although the results of those efforts may be suboptimal
(5, 6).

Many current publications suggest that extracellular vesicles
(EVs)4 in foods, specifically bovine and human milk, harbor a
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heterogeneous array of compounds with biological activities—
for example, lipids, proteins, noncoding RNAs (ncRNAs), and
mRNAs (7–12). Exosomes are a particularly important class of
EVs because they protect labile cargos against degradation and
provide a vehicle for cargo uptake through endocytosis of exosomes
in virtually all tissues (7, 8, 13–15). This article reviews current
advances in our understanding of the biological activities of milk
EVs and their cargos, with an emphasis on infant nutrition
whenever supporting data are available for human milk, formu-
las, and infants.

Extracellular Vesicles

The definition and nomenclature of the various classes of EVs
are still somewhat in flux, but there is general consensus that
exosomes, microvesicles, and apoptotic bodies are distinguished
by size, biogenesis, and cargos (16). Among EVs, exosomes (size:
40–100 nm) (14) are of particular interest because their loading
with RNA cargos is not a random process but involves sorting
mechanisms that favor some cargos over others (17, 18). For
example, the abundance of microRNAs (miRNAs) in exosomes
secreted by immune cells have a pattern distinct from that in the
secreting cells (19). Biogenesis of exosomes is initiated through
the inward budding of vesicles (endocytosis) at the plasma
membrane and continues during cargo recognition, sorting, and
abscission events that involve the endosomal complex required
for transport (ESCRT) (Figure 1) (18, 20–25). These events lead
to the formation of multivesicular bodies (MVBs), which harbor
exosomes. During MVB biogenesis, additional cargos, such as
miRNAs, are sorted into the vesicles by mechanisms that are
incompletely understood. The exosomes inside an MVB can
either be secreted into the extracellular space or degraded in
lysosomes (26). In addition to ESCRT-dependent processes,
exosomes may also be generated in distinct, ESCRT-independent
pathways; these alternative pathways depend on ceramide and
neutral sphingomyelinase, the enzyme that converts sphingomyelin

to ceramide (27). The extravesicular domains of exosome proteins
are heavily glycosylated, and glycan features in exosome proteins
and receptor cells appear to play essential roles in exosome
endocytosis (13, 15, 28). Exosomes and their cargos are recog-
nized for their roles in cell-to-cell communication (14, 29–31). For
example, evidence suggests that miR-30d, secreted by the endo-
metrium, is taken up by the preimplantation embryo and might
modify its transcriptome in humans (32). However, the old
paradigm that exosomes and their RNA cargos are obtained
exclusively through endogenous synthesis has currently been
challenged by the demonstration that dietary exosomes and
RNAs may be bioavailable (15, 33–37).

Dietary Exosomes in Milk

Evidence suggests that exosomes in milk are bioavailable and
deliver their cargos to tissues in humans, pigs, and rodents. The
intestinal uptake of bovine-milk exosomes is facilitated by endocy-
tosis in human colon carcinoma Caco-2 cell and rat primary small
intestine IEC-6 cell cultures (15). Transport kinetics were modeled
by using theMichaelis-Menten equation. In Caco-2 cells, Michaelis
constant (Km) and maximal velocity (Vmax) were 55.5 6 48.6 mg
exosomal protein/200 mL medium and 0.08 6 0.06 ng exosomal
protein3 81,750 cells213 h21, respectively. In IEC-6 cells,Km and
Vmax were 152 6 39.5 mg/200 mL and 0.14 6 0.01 ng exosomal
protein 3 36,375 cells21 3 30 min21, respectively. Approxi-
mately 140 mg exosome protein can be obtained from 1 L bovine
milk; human-milk feeding studies suggest that the postprandial
concentrations of miRNAs have a linear dose-response relation at
volumes of bovine milk between 0.25 and 1.0 L (34). Glycosy-
lation of exosome proteins and intestinal surface proteins is
essential for intestinal uptake of milk exosomes, but the molecular
identity of the glycan features is currently unknown (15, 28).

The percentage of milk exosomes that is disassembled in the
intestinal mucosa for subsequent transfer of cargos to endogenous
exosomes (as opposed to the passage of intact exosomes) is
unknown, but it seems likely that both processes occur simulta-
neously, on the basis of the following observations. Studies in
trans-well plates suggest that the ratios of miRNAs in bovine-milk
exosomes change during passage in Caco-2 cells, consistent with
repackaging of exosome cargos (15). On the other hand, there is
also compelling evidence that suggests that a fraction of bovine-
milk exosomes escapes dismantling in the intestinal mucosa.
When bovine-milk exosomes were labeled with a cyanine-based
fluorophore, 1,1#-Dioctadecyl-3,3,3#,3#-tetramethylindotricarbo-
cyanine iodide (DiR), and administered orally to mice, absorption
was apparent. DiR-labeled exosomes were detectable in all tissues
examined, but the majority of exosomes accumulated in liver,
spleen, and kidneys in athymic nude mice (35). Although that
study constituted an important scientific advance, it failed to
include important negative controls (i.e., free DiR and unlabeled
exosomes). The accumulation of foreign (bovine) exosomes in
resident macrophages in the liver and spleen contributes impor-
tantly to the distribution of milk exosomes among tissues in mice
(38, 39). Importantly, human macrophages also take up bovine-
milk exosomes and their RNA cargos (40). The delivery of milk
exosomes to peripheral tissues is facilitated by their endocytosis in
human vascular endothelial cells (41).

Cargos in Milk Exosomes

As noted above, EVs and, in particular, exosomes harbor a variety
of cargos that play important roles in cell-to-cell communication,

FIGURE 1 Schematic of exosome biogenesis in donor cells and

delivery of exosomes and cargos to recipient cells. ESCRT, endosomal

complex required for transport; MVB, multivesicular body.
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metabolism, and gene regulation and might also play a role in nu-
trition. Whereas there appears to be consensus about the bioa-
vailability of milk exosomes, the biological activities and modes of
action of the cargos encapsulated in milk exosomes are somewhat
more controversial.

miRNAs. Genomic loci coding for miRNAs is usually tran-
scribed by RNA polymerase II to yield primary miRNAs (pri-
miRNAs) (Figure 2) (42). The RNase III enzymes, Drosha and
Dicer, are essential for the synthesis of mature, bioactive
miRNAs (43, 44). Drosha liberates hairpins from pri-miRNAs
in the cell nucleus. The hairpins are exported into the cytoplasm
for processing by Dicer, which removes the loop joining the
3# and 5# arms in pri-miRNAs to release an miRNA:miRNA
duplex. The canonical model of gene regulation by miRNAs
suggests that miRNA:miRNA (passenger:guide strand) duplexes
bind to Argonaute proteins, where the passenger strand is then
discarded and the guide strand is directed to complementary
mRNA targets in the RNA-induced silencing complex (45). Mature
miRNAs are ;22 nucleotides long, hybridize with complementary
sequences in the 3#-untranslated regions in mRNA, and silence

genes through destabilizing mRNA or preventing translation of
mRNA (46–48). The sequence complementarity in the ‘‘seed
region’’ (nucleotides 2–7) in miRNAs is of particular importance
for binding to target transcripts, whereas perfect complementarity
is not required in other regions.More than 60% of human protein-
coding genes have been under selective pressure to maintain
pairing tomiRNAs, and 1881 high-confidencemiRNAs are encoded
in the human genome (49, 50). miRNAs have been implicated in
virtually all physiologic (51) and pathologic (52) conditions.
Noncanonical pathways of signaling by (milk) miRNAs have
also been identified and are discussed below.

The vast majority of the >400 miRNAs identified to date in
bovine milk (7, 53, 54) have nucleotide sequences identical to
those in humans (50) and therefore have a strong potential to
regulate human genes. The expression of 14 miRNAs differed
significantly between cows infected with Staphylococcus aureus
and healthy controls (54). In addition, the expression of 8
miRNAs was distinct in grazing cattle compared with housed
cattle, but these data were collected in plasma as opposed to
milk, and the authors speculated that the effects might have been
caused by the greater physical activity in grazing cattle (55). The
binding of bovine miRNAs to human mRNAs might have
implications for human nutrition and for infant formulas, partic-
ularly when considering that the content of select miRNAs
in various infant formulas is <5% of that in mature human milk
(J Zempleni, unpublished observations, 2014). Similar to bovine
milk, 308 mature miRNAs and 639 precursor miRNAs have
been identified in human milk by next-generation sequencing; in
silico predictions suggest that these miRNAs target up to 9074
human genes (56, 57). Many of the miRNAs present in human
milk are implicated in immune function (57, 58). Porcine milk
also contains a large number of immune-related miRNAs, and
the abundance of 10 immune-related miRNAs was greater in
colostrum than in mature milk (8).

Traditionally, miRNAs have been considered endogenous
regulators of genes—that is, miRNAs synthesized by a given host
regulate the expression of genes in that host. An earlier report
that MIR168a in rice is bioavailable in mice and humans (33)
was initially dismissed because of concerns regarding ‘‘ineffec-
tive miRNA delivery’’ and sample contamination (59, 60). More
recently, momentum is building in support of the theory that
RNAs from plant sources are bioavailable (37, 61–70) and prevent
inflammation in humans (71). Note that some genetically modified
organisms utilize synthetic miRNA analogs, small interfering RNAs
(siRNAs), to achieve gene knockdown in pests (72) [e.g., DvSnf7
siRNA in Monsanto�s Smart Stax Pro corn (73)]. It is beyond
reasonable doubt that the siRNAs in these organisms are biolog-
ically active (i.e., kill pests upon absorption). One could argue that
insect digestive systems, unlike the human stomach, are not acidic
(74). The counterargument would be that there is compelling
evidence that miRNAs, encapsulated in EVs, survive harsh condi-
tions such as low pH (7) and that bovine milk miRNAs resist
digestion under simulated gastrointestinal tract conditions (75).

Importantly, our laboratory was the first, to our knowledge,
to provide evidence that 1) humans absorb biologically effective
amounts of miRNAs from nutritionally relevant doses of bovine
milk, 2) physiologic concentrations of milk miRNAs affect human
gene expression in vivo and in cell cultures, and 3) endogenous
synthesis of miRNAs does not compensate for dietary miRNA
deficiency in mice (34). The bovine-specific bos taurus (bta)-
miRs-143, -150, -378, 380-3p, and -1839were detected in human
plasma after a milkmeal by using next-generation sequencing (76),
which suggests that postprandial increases in plasma miRNA con-
centrations are caused by the absorption of miRNAs from bovine

FIGURE 2 Schematic of miRNA maturation. miRNA* denotes the

miRNA passenger strand that is typically degraded in miRNAmaturation.

AAAAA, poly adenine tail; miRNA, microRNA; pre-miRNA, premature

microRNA; pri-miRNA, primary microRNA; RISC, RNA-induced silencing

complex; 5#-cap, 5-prime cap.
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milk as opposed tomilk-induced endogenous synthesis ofmiRNAs.
This interpretation is consistent with the results from studies that
assessed the transport mechanisms, bioavailability, and distribution
of milk exosomes (see above), and with the detection of >50 plant-
specific miRNAs in human plasma and serum (61).

Two recent studies in transgenic mouse models raised
questions about the bioavailability of milk miRNAs and their
signaling mechanisms, but the robustness of the mouse models
that were used in these studies was questioned by an indepen-
dent laboratory (77). One study used a transgenic mouse model
that overexpresses miR-30b in mammary glands and secretes
large amounts of miR-30b in milk to assess the bioavailability of
miRNAs in mouse pups (78). The authors reported that the
elevated concentrations of miR-30b in milk and stomach
contents did not result in an increased concentration of miR-
30b in select tissues and blood in transgenic mice compared
with wild-type controls. However, the authors failed to assess
whether miR-30b was encapsulated in exosomes, which is
essential for their protection and transport (7, 15). The authors
reported a 75% loss of miR-30b in the stomach of the mice with
miR-30b overexpression (78), which is consistent with extra-
exosomal localization and degradation of miR-30b by low pH in
the stomach and enzymes in the intestine. In a second study,
miR-375 knockout mouse pups were fostered to wild-type dams
and only trace amounts of miR-375 were detected in the plasma
of pups after milk feeding (79). The authors of that study
acknowledged that ‘‘it remains possible that a small level of
[miRNA and exosome] uptake does occur’’ but cautioned that
‘‘it is unlikely that milk [mirRNAs] function through canonical
[miRNA] silencing.’’ Note that miR-375 lacks a miRNA
nucleotide sequence motif [(A/U)(C2–4)(A/U)] that is essential
for miRNA packaging into exosomes (80). The authors of the
miR-375 study proposed the enticing theory that noncanonical
pathways contribute to miRNA signaling (79), which might
explain how small changes in the concentrations of miRNAs
elicit major changes in gene expression and phenotypes. Path-
ways have been identified that explain how femtomolar concen-
trations of miRNAs elicit biological effects through binding to
Toll-like receptors (TLRs) or by surface antigen-mediated delivery
of exosomes to immune cells (30, 81). Note that TLRs are widely
appreciated for their ability to bind single-stranded (TLR3, TLR7,
TLR8) and double-stranded RNA (TLR3) as part of antiviral
response mechanisms (82–86), and that the majority of milk
exosomes are delivered to macrophages (35). These observations
are consistent with a recent report that suggests that MIR-2911 in
honeysuckle has antiviral activity (70). The encapsulation of milk
miRNAs in exosomes creates a scenario in which miRNAs are not
diluted in the extracellular space but specifically delivered to
receptor cells for local enrichment (30). Consistent with canonical
and noncanonical signaling pathways, when human cell cultures
were treated with synthetic miRNA:miRNA duplexes, human
exosomes, and bovine-milk exosomes to produce femtomolar to
nanomolar concentrations of miRNAs, reporter gene activities
decreased comparedwith vehicle controls (17, 34).More than 400
species of miRNA in milk might have an additive effect when
binding to TLRs.

Another enticing possibility for gene regulation by milk
miRNAs is the formation of miRNA:mRNA duplexes (87). Note
that it is unknownwhethermiRNAs are present inmilk asmiRNA:
miRNA duplexes, as single-stranded miRNAs, or as miRNA:
mRNA duplexes. The canonical pathway of gene regulation by
miRNAs suggests that regulation is initiated through the binding of
miRNA:miRNA duplexes to Argonaute proteins (see above). How-
ever, current evidence suggests that single-strandedmiRNAsmay also

initiate mRNA degradation through the formation and subsequent
binding of miRNA:mRNA duplexes to Argonaute 2, in addition
to targeting mRNAs through the formation of miRNA:miRNA
duplexes (87). The miRNA:mRNA duplex pathway is a transcript-
specific alternative to the regulation of gene expression by the
binding of single-stranded RNAs (miRNAs) to TLRs.

Our laboratory has produced initial evidence that apparently
minor changes in the dietary intake of milk exosomes and their
RNA cargos might cause major shifts in the gut microbiome,
which might facilitate changes in gene expression and pheno-
types, and constitutes another noncanonical miRNA signaling
pathway (see below). The observations with regard to the effects
of RNA cargos on the gut microbiome are preliminary and await
peer review by independent scientists before publication. Taken
together, observations with regard to TLRs and, perhaps, the gut
microbiome suggest that theoretical calculations of copies of
(dietary) miRNAs per cell (79) based on plasma concentrations
of individual miRNAs may be an oversimplification of signaling
by dietary miRNAs.

ncRNAs other than miRNAs. Bovine milk contains ncRNAs
other than miRNAs. A recent analysis by next-generation sequenc-
ing revealed the presence of mostly transfer RNAs, but also some
ribosomal RNAs, small nuclear RNAs (snRNAs), small nucleolar
RNAs, repetitive sequences, and nonannotated sequences (54).
Similar patterns were observed in porcine-milk exosomes (88). To
the best of our knowledge, no such information is available for
human milk. snRNAs play a role in the splicing of pre-mRNA in
the spliceosome (89), whereas small nucleolar RNAs primarily
guide modifications of ribosomal RNA, transfer RNA, and snRNA
(90). The functions of these ncRNAs in bovine milk and human
milk are unknown.

mRNAs. Approximately 19,000 and 2600mRNAswere detected
in bovine-milk whey exosomes and whey supernatant, respec-
tively, by using DNA microarrays (40). In our own studies, we
identified >3500 mRNAs in bovine-milk exosomes, ;100 of
which contained an ATG start codon (D Wu and J Zempleni,
unpublished observations, 2016). These observations are impor-
tant, becausemRNAs and expression plasmids in endogenous EVs
can be translated to protein in receptor cells (91, 92). Evidence
suggests that milk exosomes also deliver expression plasmids to
receptor cells for subsequent translation (41). The translation of
dietary mRNAs to proteins might have major implications for
immune tolerance and food allergies in humans (93, 94).Note that
the majority of mRNAs in endogenous exosomes are truncated
and enriched in the 3#-untranslated region in human cell cultures
and cannot be translated because they lack a start codon (95).
However, close to 14%of transcripts in human cells are secreted in
exosomes in nontruncated form. These observations in human cell
cultures showed patterns similar to those observed in bovine-milk
exosomes. Of the;3500 mRNAs in bovine-milk exosomes noted
above, ;4% contained a translation start codon and many were
truncated (D Wu and J Zempleni, unpublished observations). Note
that truncated mRNAs with a start codon may elicit an immune
response, despite not yielding full-length proteins. Preliminary studies
suggest that mRNAs in bovine-milk exosomes can be translated into
protein in vitro. Future studies will determine whether bovine
mRNAs can be translated to protein in human immune cells and in
mouse models. To the best of our knowledge, no data are available
for the content of mRNAs in human milk.

DNA. Exosomes also contain DNA (14). This observation is
somewhat surprising when considering that exosomes originate
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in MVBs in the cytoplasm. The biological function of exosomal
DNA is unknown.

Lipids and proteins. Two major public databases serve as cat-
alogs for the composition and cargos of EVs in various species,
ExoCarta and Vesiclepedia (9, 10). ExoCarta has a focus on pro-
teins, lipids, mRNAs, and miRNAs in exosomes, whereas Vesicle-
pedia includes entries for EVs other than exosomes. The ExoCarta
database has 81 entries for proteins in human milk (9), whereas it
is unclear howmany of the;1000 entries for lipids in exosomes in
the ExoCarta database trace back to the analysis of human milk.
A similar number of entries for proteins and lipids can be found
in Vesiclepedia (10). Note that glycoproteins on the surface of
exosomes play important roles in the homing of exosomes and
subsequent uptake by recipient cells (13, 15, 30). The biological
and nutritional importance of lipids and proteins in human-milk
exosomes remain to be discovered. Further exploration of the roles
of exosome lipids and proteins in the regulation of genes and
metabolism may prove to be an important line of research.

Stability of Milk Exosomes and Their

Cargos

Chemical stability. Encapsulation in milk exosomes protects
miRNAs against degradation by RNases and low pH (7, 8), but
meaningful losses of miRNA cargos may occur when exosomes
are sheared during homogenization of rawmilk (96). Shearing of
exosomes makes RNA cargos accessible for extraexosomal
enzymes, causing their degradation. Additional losses of miRNA
cargos have been reported during microwave heating of milk,
and the extent of degradation appears to depend on the nucleotide
sequence (96). No loss is observed during cold storage (96). In
previous feeding studies of exosome-defined diets, miRNA cargos in
milk exosomes were depleted through disruption of the exosome
membrane by sonication (34). As described for microwaving, the
extent of miRNA degradation depended on the nucleotide sequence
in miRNAs. The observed degradation bias is consistent with
previous studies, which reported that distinct miRNAs have distinct
stabilities (97). Sonication-dependent degradation is specific for
miRNAs in milk exosomes, because sonication of orange juice
caused very little degradation of the rather labile ascorbic acid
compared with the rather extensive degradation caused by pasteur-
ization (98). It has been proposed to use the content of miRNAs in
infant formula to assess the quality of the products (53).

Physiologic conditions. Various physiologic and pathologic
conditions have been identified that cause a change in the con-
centrations of exosome cargos in milk. To date, the majority
of studies used bovine milk as a model and focused on miRNA
cargos. For example, 14 miRNAs are differentially expressed
in milk from cows infected with S. aureus compared with un-
infected controls (54). Immune-related miRNAs are present at
higher concentrations in colostrum than in mature human milk,
and the same pattern was observed in porcine and bovine
colostrum and mature milk (8, 57, 58, 99).

Phenotypes of Milk Exosome and Cargo

Depletion

Little is known about the phenotypes caused by dietary exosome
and cargo depletion. The plasma concentrations of miR-29b and
miR-200c were 61% lower in C57BL/6 mice fed an AIN-93G diet
containing sonicated, miRNA-deficient milk exosomes compared

with mice fed a diet containing normal milk exosomes (34). This
observation suggests that endogenous miRNA synthesis does not
compensate for dietary miRNA depletion in wild-type mice. We
currently study the phenotypes of feeding sonicated, miRNA-
depleted diets in mice and have some promising preliminary leads
(J Zempleni, unpublished observations). These studies include the
role of the gut microbiome as a ‘‘transmitter’’ and ‘‘amplifier’’ of
dietary exosomes and cargo signals. It is widely accepted that
eukaryotic and prokaryotic micro-organisms communicate with
their environment through EVs (100). An uncertainty of the
ongoing studies is that phenotypes were caused by feeding
sonicated exosomes, and it is currently not possible to attribute
phenotypes to a particular class of exosome cargos or changes
in exosome morphology. The changes in exosome cargos and
morphology are an area of active investigation, but all that has
been established as of today is that sonication causes a near-
complete degradation of miR-29b and an ;80% degradation
of miR-200c (34). The administration of porcine milk–derived
exosomes by gavage in mice caused an increase in villus height
and crypt depth and a change in gene expression patterns com-
pared with controls. Consistent with these observations, porcine-
milk exosomes increased proliferation rates in porcine jejunum
IPEC-J2 cell cultures relative to controls (101).

Infant Nutrition

Little is known about the importance of exosomes and their
cargos in infant nutrition. As discussed above, a few studies
were conducted that cataloged exosome cargos in humanmilk and
reported low concentrations of miRNAs in infant formulas relative
to human milk. One longitudinal study compared 3 cohort of
infants fed humanmilk, milk formulas, or soy formulas with regard
to developmental endpoints (102), but it is not clear whether the
effects of feeding were caused by exosomes and their cargos or
other milk compounds. Breastfeeding was associated with a slightly
higher score in the Mental Developmental Index (MDI) at ages 6
and 12 mo compared with infants fed milk or soy formulas. In
addition, infants who were breastfed had higher Psychomotor
Development Index scores, a lower probability to score within the
lower MDI quartile, and a higher likelihood to score within the
upper quartile for the MDI and Psychomotor Development
Index, and a slightly higher Preschool Language Scale-3 score
than infants fed formulas at ages 3 and 6 mo. However, that
study was not controlled for the length of feeding and brand of
infant formula and did not assess dietary exosomes and their
cargos. In another study, a pathway-enrichment analysis was
performed on the basis of the most abundant miRNAs in
human-milk cells and fat portion (103). The analysis suggested
that miRNAs in human milk likely affect immunity, growth and
development, cell proliferation and apoptosis, lung epithelial
progenitor cell differentiation, and epithelial-to-mesenchymal
transition (103).

Future Outlook

Although evidence is mounting that exosomes and their cargos
in milk and other dietary sources are bioavailable and elicit
phenotypes in humans and animals, there are still voices of
caution questioning the theory that dietary exosomes and their
cargos are absorbed and alter gene expression through binding
to mRNA in hosts (59, 60, 78, 79, 104). What are the concepts
to be tested and the experiments to be conducted that would
provide convincing evidence that dietary exosomes and their

Extracellular vesicles and their cargos in milk 7

D
ow

nloaded from
 https://academ

ic.oup.com
/jn/article/147/1/3/4584714 by guest on 21 August 2022



cargos have biological activity? We argue that the following
studies need to be conducted and will yield compelling answers:

1. Exosome feeding studies should be conducted to deter-
mine whether dietary depletion elicits phenotypes.

2. Exosomes endogenously labeled with fluorescent proteins
are powerful tools to track the bioavailability of dietary
EVs in mouse feeding studies and should be further
studied. Such studies should keep in mind that dietary
exosomes may be absorbed, but a large fraction of their
cargos may be transferred to endogenous exosomes in the
intestinal mucosa. That said, dual labeling of exosomes
and their cargos would be of particular interest. Note that
motifs facilitating the repackaging of dietary exosomes
cargos are incompletely understood.

3. The field of dietary exosomes and their cargos still has a
strong focus on miRNA cargos, presumably because the
first studies that were published in this area focused on
miRNA cargos (33, 34). It may be prudent to assess the
biological activities of cargos other than miRNAs.

4. Nucleic acid sequencing studies need to continue that
unambiguously identify nonhuman sequences in human
exosome feeding studies.

5. More research is needed to identify noncanonical path-
ways of exosome and cargo signaling; some promising
leads have already emerged and are discussed above.
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