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Abstract

Fibroblast growth factor-2 (FGF-2) is a potent regulator of many cellular functions and phenomena, including cell proliferation,
differentiation, survival, adhesion, migration, motility and apoptosis, and processes such as limb formation, wound healing, tumorigenesis,
angiogenesis, vasculogenesis and blood vessel remodeling. In the adult myocardium, FGF-2 is expressed by various cell types, including
cardiomyocytes, fibroblasts and smooth muscle cells. The biological effects of FGF-2 in the myocardium are mediated by the high-affinity
tyrosine kinase receptor FGFR-1, the major FGF receptor in the heart. Here, we give an overview of current insights into the multiple
roles of FGF-2 in the myocardium, as they pertain to two basic phenomena: ischemia–reperfusion injury and cardiac hypertrophy. The
first category includes roles for FGF-2 in cardioprotection, the inflammatory response, angiogenesis and vascular remodeling, while the
second includes myocyte hypertrophy, fibrosis, and gap junction functioning (conduction). Given the strong evidence for FGF-2 as both a
cardioprotective and angiogenic agent, the therapeutic potential of FGF-2 in the ischemic myocardium is discussed.
   2002 European Society of Cardiology. Published by Elsevier Science B.V. All rights reserved.
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1 . Introduction: fibroblast growth factor-2 also considered a member of the larger heparin binding
growth factor family, which includes vascular endothelial

‘‘Only a handful of researchers paid much attention to growth factor (VEGF) and heparin-binding epidermal
the discovery of FGF at the time but it would turn out to growth factor-like growth factor [4–6]. FGF-2 is highly
be a big step in a landmark development for medicine’’ conserved amongst species [7,8]. FGF-2 exists in high
[1]. This statement, referring more specifically to the (HMW) and low molecular weight (LMW) forms due to
purification of fibroblast growth factor-2 (FGF-2) [2], alternative translation of the same messenger RNA from
appears in a recent biography of Dr Judah Folkman, upstream leucine (CUG) sites or a conventional down-
pioneer in the field of angiogenesis. Certainly research stream methionine (AUG) site [9]. This was shown to be
focused on FGF-2 has revealed an important place for this controlled by internal ribosomal entry sequences in the
protein in cardiac cells in health and disease. FGF-2, also 59-untranslated region in a cap-independent manner [10].
known as basic FGF because of itspI (.9.0), is one of 23 More recently, a larger 34-kDa HMW form of FGF-2 was
structurally related polypeptide growth factors (FGF-1 to identified in human cervical carcinoma HeLa cells arising
FGF-23) [3], but because of its high affinity for heparin is from translation initiation at a more distal CUG site,

involving a cap-dependent process [11].
Despite its name, FGF-2 is now known to modulate

numerous cellular functions in multiple cell types, includ-
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migration, motility and apoptosis, and processes such as2 . FGF-2 and ischemia–reperfusion injury
limb formation, vasculogenesis, wound healing, tumori-
genesis, angiogenesis and blood vessel remodeling [12]. When coronary perfusion is blocked partially or com-
FGF-2 is expressed by various cell types of the myocar- pletely, the myocardium is subjected to injury related to
dium, including cardiac myocytes and vascular cells at all the deprivation of oxygen and other components carried by
developmental stages [13,14]. In cardiac myocytes, FGF-2 the blood. There is an influx of calcium and hydrogen ions
was shown to be associated with the basement and cell in ischemic myocytes, and when flow is restored, the
membranes, intercalated discs, Z-lines, cytoplasm, as well extent of the injury is exacerbated because the myocytes
as the nucleus [14]. Both HMW and LMW FGF-2 species are forced to resume contractile function under conditions
are expressed by cardiac myocytes [14,15]. HMW FGF-2 of elevated calcium and acidic tissue pH, in addition to
is largely targeted to the nucleus whereas LMW FGF-2 is osmotic strain [39]. Much research effort has been devoted
predominantly cytoplasmic, although it can also be found to the discovery of factors and/or conditions which might
in the nucleus [16–18]. The distribution of FGF-2 implies protect the myocardium against such injury. Clearly,
participation in diverse functions. factors which preserve the viability of the ischemic

The biological functions of FGFs are mediated primarily myocardium (i.e. so-called ‘cardioprotective agents’) rep-
by specific cell surface receptors of the tyrosine kinase resent potential therapeutic agents for the treatment of
family [12]. The predominant FGF-2 receptor in the heart patients at high risk of myocardial infarction, or for the
is FGF receptor-1 (FGFR-1) [19–21]. The presence of prevention of lethal reperfusion injury caused by restora-
functional FGFR-1 appears to be essential for normal tion of coronary flow [40].
cardiac development [22]. Although at reduced levels, Early evidence that FGF-2 is cardioprotective came
FGFR-1 expression persists in the adult heart [20]. The from experiments by Kardami et al. [41] with neonatal rat
presence of cell surface receptors implies the presence of cardiac myocyte cultures treated with hydrogen peroxide
FGF-2, and thus its release to the extracellular milieu. or starved for serum. Addition of LMW FGF-2 improved
FGF-2 release occurs in spite of the absence of any cell survival and decreased cardiac myocyte injury as
‘classic’ hydrophobic export signal peptide [12]. This is evidenced by preservation of nuclear morphology and
supported further by the detection of FGF-2 protein in the myofibrillar structure. Subsequently, administration of
extracellular spaces/matrix surrounding various cells in- exogenous LMW FGF-2 before or during ischemic injury
cluding cardiac myocytes, as well as in serum at low levels in various heart ischemia/ reperfusion models was shown
[8,23–25]. FGF-2 release may occur through exocytosis to increase myocyte viability and/or functional recovery in

1 1involving the Na /K ATPase pump [26–28] and/or via the rat or mouse heart [42–46]. In vivo, exogenous
passive processes [23]. The latter would include FGF-2 addition of FGF-2 stimulated myocardial function and/or
released as a result of cell lysis during tissue injury and reduced infarct size in ischemic porcine and canine hearts
cell death [29,30], complement-mediated injury [31], ma- through increased angiogenesis and systolic function [47–
trix-associated release via heparin, heparan sulfate and 50]. Increased production of endogenous FGF-2 through
heparinase [32,33], as well as plasminogen activator-me- transgenic overexpression in the heart was also associated
diated proteolysis [34]. In the postnatal heart, there is also with a significant increase in myocyte viability following a
evidence to support a passive mechanism of FGF-2 release period of global ischemia [45]. In this model, increased
from adult cardiac myocytes on a beat-to-beat basis FGF-2 release in transgenic hearts overexpressing FGF-2
through contraction-induced transient remodeling or relative to wild-type hearts was observed [45]. This is
‘wounding’ of the plasma membrane under normal physio- consistent with the idea that endogenous FGF-2 is released
logical conditions [30,35]. FGF-2 is also released from during contractions under normal physiological conditions
endothelial and vascular smooth muscle cells through a [30,35] and can interact with functional cell surface
similar mechanism involving non-lethal plasma membrane receptors [20,46]. Under these conditions, FGF-2 may play
disruptions [36–38]. a role in the normal maintenance of a healthy myocardium,

The diverse functions of FGF-2 in the adult myocardium as well as possibly limiting the extent of injury. Further to
can be divided into two basic categories, related to the this, a recent study reported that transcoronary arterial gene
phenomena of: (1) ischemia–reperfusion injury and (2) transfer of a secreted form of FGF-2 was beneficial for
cardiac hypertrophy. The first category includes roles for recovery of left ventricular systolic function as well as for
FGF-2 in cardioprotection, the inflammatory response, the development of collaterals in the microembolized
angiogenesis and vascular remodeling, while within the rabbit heart [51].
second is contained myocyte hypertrophy, fibrosis and cell The therapeutic applications of a cardioprotective agent
conduction (gap junction functioning). In this review, we given prior to an ischemic insult are limited to the
will explore the current knowledge with respect to these relatively rare cases of patients which present with clear
two categories of function, and discuss the therapeutic risk of myocardial infarction, without having had an
potential of FGF-2 in this context. ischemic episode. Thus, it is desirable to seek out agents
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which may protect the myocardium against the exacerbat- ministered to ischemic myocytes were dependent on the
ing injury caused by reperfusing an ischemic area, since binding of FGF-2 to its major receptor in cardiac
the restoration of blood flow is considered to be essential myocytes, FGFR-1 [46]. Downstream, PKCe was demon-
for recovery in cases of coronary occlusion [40]. In a strated to play an integral role in ischemic preconditioning
Langendorff-perfused rat heart model, FGF-2 administered [56,61] and studies in the rat heart have also implicated
in the first 12 min of reperfusion following 30 min of PKCe as the cytoplasmic intermediate involved in FGF-2-
global ischemia significantly improved functional recovery mediated cardioprotection, both prior to ischemia [44] and
over a 60-min reperfusion period [46], an effect which was during reperfusion [46]. Activation of PKCe results in the

1fully reversed with the PKC inhibitor chelerythrine. On the opening of mitochondrial K /ATP channels [62], a pro-
other hand, administration of FGF-2 at the time of posed end-effector of ischemic preconditioning [58].

1reperfusion in isolated mouse hearts after stunning (causing Glibenclamide, a specific K /ATP channel blocker, could
severe ventricular dysfunction) did not improve myocardial block the cardioprotective effects of FGF-1 [63]. It remains

1recovery when compared to administration prior to stun- to be determined whether mitochondrial K /ATP channels
ning [52]. The amount of FGF-2 administered to isolated play a role in the cardioprotective effects of FGF-2,
hearts is different between the two studies (1mg [52] although this is a likely scenario. since both factors signal
versus 10mg [45,46]). Although this may reflect a dose through the same receptor (FGFR1) in the heart [19–
correction per kilogram body weight, experiments from 21,64]. Nitric oxide (NO) has also been proposed to be a
our laboratory with isolated mouse hearts demonstrated prime mediator of delayed ischemic preconditioning [65].
significant functional recovery after administration of 10 FGF-2 was also shown to induce NO release into the
mg FGF-2 [45], the same amount used in isolated rat hearts coronary milieu as part of the vasodilatory response [66].
[46]. Nevertheless, the difference more likely reflects the Collectively, these links suggest that FGF-2-induced car-
type and severity of injury to which the isolated hearts dioprotection is mediated by thee subtype of PKC. It is
were subjected. Stunning, a transient condition, is not possible that FGF-2 itself may play a role in ischemic
equivalent to the irreversible injury (necrosis and apop- preconditioning, though direct evidence to this end is not
tosis) incurred during extended ischemia followed by yet available.
reperfusion. Given that overexpression of FGF-2 in trans- An interesting link exists between FGF-2-mediated
genic mouse myocardium resulted in decreased lactate cardioprotection and myocardial gap junctions: FGF-2
dehydrogenase release but not improved function after decreased cardiomyocyte metabolic coupling by stimulat-
ischemia and reperfusion [45], it is possible that FGF-2 ing the phosphorylation of Cx43 on serine [67]. These
cardioprotection relates more to myocyte viability than to effects were mediated by direct interaction of PKCe with
contractile recovery, at least in the mouse. Thus, a model Cx43 at intercalated disks, while the erk1/2 pathway was
of myocardial stunning [52] would show less effect of not involved [66]. FGF-2 is likely to affect adult myocyte
FGF-2 than a model of more severe ischemic injury [46]. gap junction coupling in a manner similar to the neonatal

The mechanism of cardioprotection by FGF-2 is the counterparts: in both systems FGF-2 can stimulate PKCe

subject of ongoing investigation (Fig. 1). FGF-2 can act on and cause Cx43 phosphorylation [44,68] (also see our
most cardiac cells, including cardiomyocytes, endothelial unpublished data). It is, therefore, likely that FGF-2,
cells, smooth muscle cells, and fibroblasts. There is strong released after myocardial injury, decreases channel per-
evidence for a direct FGF-2 receptor-mediated shielding meability between myocytes. A similar effect is elicited by
effect on cardiac myocytes, independent of its effects on anesthetics and is considered to be protective overall, since
the vasculature [44,46]. Chelerythrine, a non-specific pro- it decreases the spreading of contracture (injurious stimuli)
tein kinase C (PKC) inhibitor, blocked the action of FGF-2 between myocytes [69,70]. Thus, FGF-2-induced, PKCe-
when administered both prior to ischemia [44] as well as to mediated cardioprotection is likely to include effects on
ischemic myocytes with or without reperfusion [46]. The gap junction channels.
involvement of PKC in cardioprotection is well estab- Aside from this direct signaling mechanism, FGF-2 may
lished, especially with respect to ischemic preconditioning trigger other cellular events leading more indirectly to a
[54–57]. In fact, several pieces of evidence suggest links cardioprotective response. Studies in the rat heart have
between the pathways which mediate ischemic precondi- demonstrated that FGF-2 administered to the non-ischemic
tioning and FGF-2-induced cardioprotection. The effects of heart can induce a negative ionotropic effect, which may
ischemic preconditioning include activation of G protein contribute to cardioprotection through the preservation of
coupled receptors as well as tyrosine kinases [55,58]. energy stores or the suppression of the energy requirement
Cross-talk between FGF-2 tyrosine kinase receptors and G for contraction [44]. A negative ionotropic effect of FGF-2
protein coupled receptors has been reported, since FGF-2 was also observed in isolated adult cardiac myocytes [71].
was able to induce PLCb isoforms in adult hearts and FGF-2 is reported to possess vasodilatory effects [49,66]
cardiac myocytes [59], as well as in the regulation of and vasodilators have been shown to be cardioprotective in
myogenic differentiation [60]. The effects of FGF-2 ad- ischemia–reperfusion injury [72,73]. There is also some
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Fig. 1. Overview of the major signaling pathways involved in FGF-2 mediated cardioprotection in myocytes. FGF-2 binds to its high affinity receptor,
FGFR1, and to cell-surface heparan sulfate proteoglycans (HSPG). Activation of FGFR-1 results in membrane translocation of protein kinase C (PKC)

1isoforms, possibly resulting in the opening of mitochondrial K /ATP channels, an end-effector of ischemic preconditioning. There has been a suggestion
of crosstalk between FGFR and G-protein coupled receptors (GPR), which may contribute to the cardioprotective effect. PKC activation (specificallythe e
isoform) also results in the phosphorylation of connexin43, which would decrease cell coupling and possibly slow the propagation of hypercontracture and

21other harmful effects of ischemia. Alternatively, the accumulation of IP in the cytoplasm results in the release of Ca ions from the sarcoplasmic3

reticulum; this in turn would lead to increased contraction and therefore increased FGF-2 release through transient disruption of the sarcolemma. FGF-2
release may also be invoked by other cardioprotective agents. The released FGF-2 could then act indirectly to elicit a cardioprotective effect through
negative inotropy, vasodilation or even autoregulation of its own signaling or production. Solid arrows indicate established relationships; dashed arrows
indicate proposed pathways. Adapted from Ref. [53]. Abbreviations: DAG, diacylglycerol; HSPG, heparan-sulfate proteoglycan; GPR, G-protein coupled
receptor; IP , inositol-1,4,5-triphosphate; PKC, protein kinase C; PLC, phospholipase C; TyrP, tyrosine-phosphate.3

evidence to suggest that other cardioprotective agents may mechanisms involving the chaperoning of intracellular
act by releasing FGF-2. For example, estrogen increases FGF-2 via heat-shock protein 27 [75]. It is not known
FGF-2 release from endothelial cells [74]. It was suggested whether estrogen increases the release of endogenous FGF-
that estrogen enhances endothelial cell-basement mem- 2 from cardiac myocytes. Regardless, FGF-2 released from
brane interactions that lead to the release of ‘trapped’ any cardiovascular cell type would theoretically be made
FGF-2 from the extracellular matrix [74] and/or by available to act on cardiac myocytes in an intracrine
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manner. In fact, an increase in the early growth response link between FGF-2 signaling and T cells. This raises the
protein (Egr)-1, a transcription factor associated with stress possibility that FGF-2 release at the time of injury contri-
response, was reported in neonatal cardiac myocytes butes to the ‘normal’ inflammatory process caused by T
following stimulation with estradiol [76]. This may be cell infiltration, and that in the presence of chronic excess
significant as overexpression of Egr-1 was shown to FGF-2, T-cell infiltration and cell injury is exacerbated.
increase rat FGF-2 promoter activity in neonatal rat cardiac FGF-2 might affect the recruitment and/or the expan-
myocytes [77], and Egr-1 was shown to be important for sion (i.e. proliferation) of T lymphocytes. FGF-2 is a
the autocrine regulation of FGF-2 expression in human known chemoattractant affecting cell attachment and mi-
glioma cells [78]. gration [23,87], and accumulates at sites of myocardial

1Finally, it is possible that FGF-2 may function along injury in vivo [88]. Many infiltrating cells, including CD4
with other members of the FGF family to exert a cardio- T lymphocytes, express FGFR-1 [86,89]. However, there is
protective effect. Specifically, FGF-1 (or acidic FGF) is no direct evidence to suggest that FGF-2 can stimulate the
also a well-established cardioprotective agent proliferation of these cells, especially since FGF-1 alone
[43,63,79,80]. Since FGF-1 also functions through FGFR-1 failed to act [89]. Further study will establish what role
in the myocardium [64], it is conceivable that the two FGF-2 may play in T-cell infiltration, and the relative
factors work along similar pathways. Recent work with importance of recruitment versus amplification in the
transgenic mice overexpressing FGF-1 linked the cardio- myocardial inflammatory response.
protective effect observed after coronary artery occlusion In addition to its action directly on myocytes, FGF-2
to ERK1/2 [80]. The role of PKC was not assessed in this plays a key role in the vascular response to myocardial
study. However, the ‘cardioprotective effect’ as it was ischemia and reperfusion. During development, the forma-
assessed in this study was simply delayed infarct develop- tion of the vasculature involves two separate but overlap-
ment, with no improvement in overall infarct size, and ping processes: (1) vasculogenesis, or the formation of
post-ligation cardiac function was not assessed. Work with major vessels through the proliferation and migration of
FGF-1 exogenously added to an in vivo rat model of smooth muscle cells, fibroblasts and endothelial cells, and
ischemia–reperfusion has focused largely on more down- (2) angiogenesis, a process specific to endothelial cells and

1stream targets, such as the mitochondrial K /ATP channel resulting in the formation of small vessels and capillaries
or nitric oxide synthase [63,81]. Thus, further work is [90]. Through the use of antisense strategies, FGF-2 was
necessary to establish whether FGF-1 and FGF-2 act demonstrated to be essential for embryonic mouse vascular
through overlapping (either cooperative or competitive) development [91]. FGF-2 can stimulate proliferation of all
mechanisms to induce their cardioprotective effects. three principal vascular cell types (endothelial cells, vascu-

A key event following myocardial reperfusion injury is lar smooth muscle cells and fibroblasts), and its role in
the rapid initiation of a cascade of events very similar to both developmental vasculogenesis and angiogenesis is
the inflammatory response [82]. The heart’s inflammatory well established [90,92,93].
reaction to injury may also include a ‘misguided’ attack There is evidence that collateral development does occur
mounted against host tissue, without the regular checks naturally to some extent in response to coronary artery
and balances to distinguish ‘self’ from ‘non-self’ [83]. The occlusion [94,95]. Within the last 5 years, therapeutic
cellular component of this response is mediated immedi- angiogenesis to enhance this process has been advocated as
ately and largely by neutrophils [84], but also includes the a promising treatment strategy for patients with advanced
participation of monocytes and T lymphocytes [84,85]. ischemic heart disease who are not candidates for standard
Specifically, neutrophils contribute to tissue injury through revascularization, since it results in the generation of a new
the release of oxidants and proteases that cause cell death blood supply in the diseased heart [95,96]. Unfortunately,
and, perhaps, by perpetuating the recruitment process [83]. progress in this area has been limited by, among other

Although a role for FGF-2 in the cardiac inflammatory things, a poor understanding of the mechanisms involved
response following injury remains to be defined, several in adult collateral development and angiogenesis, as op-
pieces of evidence suggest a possible link between FGF-2 posed to developmental processes [97]. However, the
signaling and infiltrating T cells. Studies from our labora- ability of FGF-2 to induce angiogenesis in mature ischemic
tory using transgenic mice, have demonstrated that chronic myocardium has been demonstrated in various injury
overexpression of FGF-2 in cardiac myocytes can ex- models, including porcine, canine and rabbit [47–51].
acerbate the cardiac inflammatory response following Although the mechanisms involved in FGF-2 mediated
isoproterenol-induced cardiac injury in vivo [86]. A com- angiogenesis have not been fully elucidated, the p38 MAP
ponent of isoproterenol-induced injury is T-cell dependent, kinase signaling pathway has been implicated [98]. FGF-2
since suppression of T cells with cyclosporin A or anti- induces VEGF expression in vascular endothelial cells via
CD3e antibodies greatly reduced the level of myocardial both paracrine and autocrine pathways to mediate angio-
injury observed [86]. Also in this study, cells positive for genesis [99]. In fact, the roles of FGF-2 and VEGF in
both CD4 and FGFR-1 were detected in FGF-2-over- angiogenesis are inextricably linked and dependent one
expressing as well as wild-type mouse hearts, suggesting a upon the other [100,101], a relationship which is believed
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to relate to the observed synergistic response when both well tolerated in patients with stable angina [113]. Clearly,
growth factors are used in combination [102,103]. these results suggest that FGF-2 delivery is well tolerated

A number of clinical trials, focused on exploiting the in the human myocardium producing functionally signifi-
angiogenic effects of FGF-2, have been recently published cant benefits in the ischemic myocardium [96]; however,
or are currently underway to assess the potential therapeu- adverse effects and toxicity are also issues which must be
tic effects of FGF-2 in the ischemic myocardium (Table addressed when considering long term therapies with FGF-
1). Several strategies have been used to deliver FGF-2 into 2. A recently published phase II clinical trial, FIRST [114],
the human heart. While gene therapy approaches using failed to show improved exercise tolerance or myocardial
adenoviral FGF-2 delivery vectors have been explored in perfusion with a single intracoronary infusion of recombi-
animal models with some success [104–106], human gene nant FGF-2. However, at the end of this study it was
therapy trials have focused mainly on VEGF [107,108]. concluded that further trials are warranted, given the
Clinical trials involving FGF-2 have instead utilized a favorable safety profile for FGF-2 from previous trials, and
number of methods to introduce the protein directly into the apparent improvement in groups of highly symptomatic
the myocardium. Initial studies used a heparin alginate patients compared to patients with less severe angina at
FGF-2 delivery system in patients with coronary disease baseline [114].
undergoing coronary artery bypass surgery [109,110]. Both It has been suggested that the usefulness of FGF-2 in
studies demonstrated the safety and feasibility of this mode human therapy is dependent upon our ability to selectively
of therapy and patients in the FGF-2 group were found to enhance its endothelial effects and minimize smooth
be symptom free (i.e. no angina) after 3 months of surgery muscle effects [115]. Indeed, vascular cell growth is a
[109,110], although these effects were shown to be dose- double-edged sword, as another phenomenon associated
dependent in a placebo-controlled group [110]. Intracoron- with this effect of FGF-2 is vascular remodeling. This is a
ary and intravenous FGF-2 deliveries were also found to response of blood vessels to physiological or
be feasible and tolerable in patients with severe coronary pathophysiological stimuli, resulting in either vessel en-
disease [111–113], although a dose-dependent hypotensive largement (positive or outward remodeling) or reduction
effect was reported in two studies [111,113], and this was (negative or inward remodeling). Inward remodeling is
dose-limiting in one instance [111]. Consistent with a associated with predisposition to cardiovascular diseases
favorable effect of angiogenesis, delivery of FGF-2 re- such as atherosclerosis and restenosis. Flow-induced
sulted in attenuation of stress-induced ischemia and an changes in arterial wall structure and vessel size are linked
improvement in resting myocardial perfusion up to 180 with increased FGF-2 expression [116], and the remodel-
days after treatment [112]. In addition, intracoronary ing associated with the formation of atherosclerotic
delivery of FGF-2 was also shown to significantly improve plaques is postulated to be flow-related [117,118]. Interest-
symptom assessment, as assessed by angina frequency and ingly, clinical trials using FGF-2 and other angiogenic
exertional capacity (i.e. exercise tolerance) [111]. In- factors, specifically VEGF, indicate no outstanding prob-
tracoronary FGF-2 injection was also demonstrated to be lems related to vascular remodeling [108]. Nevertheless, it

Table 1
Clinical trials using FGF-2 for the treatment of coronary artery disease

Trial name, date, Mode of delivery Number of Results
[Ref], type patients

Sellke et al., 1998 Heparin–alginate 8 Safety and technical
[109], Phase I slow release device feasibility demonstrated

Laham et al., 1999 Heparin–alginate slow 24 Safety and technical
[110], Phase I release microcapsules feasibility demonstrated

Unger et al., 2000 Bolus injection in main left 25 Acute hypotension, some sustained hypotension
[113], Phase I coronary artery; 3–100mg/kg (1–3 days); no long-term adverse effects

Udelson et al., 2000 Intracoronary or intravenous 59 ↓ stress-induced ischemia
[112], Phase I injection; 0.33–48mg/kg ↑ resting myocardial perfusion

Laham et al., 2000 Single 20-min intracoronary 52 Hypotension was dose-limiting (max. 36mg/kg)
[111], Phase I infusion; 0.33–48mg/kg Some evidence of improved quality of

life and exercise tolerance.
↑ regional wall thickening
↓ extent of ischemic area

Simons et al. 2002 Single intracoronary 337 No improvement in exercise tolerance
‘FIRST’, [114], infusion; 0–30mg/kg or myocardial perfusion; some symptomatic
Phase II improvement at 90 (but not 180) days.
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was demonstrated that neutralizing antibodies to FGF-2 cause re-expression of vimentin in cardiac myocytes
could inhibit lumen narrowing and negative remodeling in surrounding the fibrotic region subsequent to cardiac injury
the event of intimal lesion formation in a coronary ligation in vivo [88]. It was also demonstrated that paced adult
model in mice [119]. A recent study demonstrated that cardiac myocytes (i.e. increased FGF-2 release) but not
normal NO production is essential for the enhanced non-paced control myocytes exhibited a ‘hypertrophic’
vascular remodeling induced by FGF-2, along with another response (characterized by increased protein content and
angiogenic factor, in a rat model of experimental peripher- cell size) which could be mimicked by exogenously
al arterial insufficiency [120]. In addition, FGF-2 has been administered FGF-2 and blocked by neutralizing antibodies
suggested to be a survival factor for vascular smooth to FGF-2 [30]. Furthermore, both added FGF-2 and human
muscle cells and endothelial cells [121–125]. Adenoviral pericardial fluid containing high levels of FGF-2 were able
delivery of antisense FGF-2 in a rabbit model of arterial to induce adult cardiac myocyte hypertrophy in vitro [136].
injury reduced neointimal thickening [126–128], suggest- In a mouse model of pressure-overload hypertrophy in-
ing an application of antisense strategies to counter re- duced by aortic coarctation, mice deficient in FGF-2
stenosis following balloon angioplasty. Thus, both increas- exhibited a reduced hypertrophic response, resulting in
ing and decreasing FGF-2 levels in the vasculature could compensatory hypertrophy as indicated by a slight pre-
have potential therapeutic effects in the myocardium, servation of function relative to wild-type coarcted mice
either by promoting angiogenesis to re-perfuse ischemic [137]. Hypertrophy induced by coarctation occurs indepen-
myocardium through FGF-2 addition, or by reducing dently of the renin–angiotensin system. Subsequently, an
restenosis to prevent blockage of a vessel by inhibiting angiotensin-dependent model of cardiac hypertrophy was
FGF-2 activity. The mode of delivery chosen (i.e. local produced, also in FGF-2-deficient mice, by chronic hy-
versus systemic) will likely be crucial in reconciling the pertension due to renal artery banding [138]. In this case,
undesirable (remodeling) versus desirable (angiogenic) hypertensive mice deficient in FGF-2 showed no hyper-
vascular effects of FGF-2. trophy compared to wild-type controls. Therefore, FGF-2

appears to play a more central role in angiotensin II-
dependent hypertrophy, which is not surprising given the

3 . FGF-2 and the hypertrophic response direct activation of FGF-2 gene expression by angiotensin
II demonstrated previously, at least in vascular smooth

It is generally accepted that once damaged, the myocar- muscle cells [139].
dium retains only a very limited ability to regenerate An important and often detrimental result of scar
through the proliferation of myocytes [129,130]. Instead, formation and hypertrophy is arrythmias which can occur
highly proliferative fibroblasts will infiltrate the area and as the conduction system is compromised. Gap junction
form a scar [131]. FGF-2 has been shown to increase both channels, composed mostly of connexin-43 (Cx43) in
fibroblast and myofibroblast proliferation [24,132], which cardiomyocytes, are essential for the coordinated action of
could conceivably have an adverse effect in the heart the heart pump. In fact, loss of cardiac Cx43 in conditional
leading to increased scar formation or a ‘stiffer’ heart in knockout models causes lethal arrhythmias, providing a
the event of cardiac injury in vivo. On the other hand, direct link between gap junctions and cardiac function
studies have demonstrated that FGF-2 potently inhibits [134]. Factors affecting intercellular communication and
collagen fiber production by human smooth muscle cells connexins therefore have a direct impact on cardiac
[133]. It is thought that this represents a mechanism for performance. Evidence from in vitro studies indicated that
thinning the local collagen environment during vascular FGF-2 may play a role in regulating the function and/or
remodeling, which could in turn be important in intimal levels of Cx43 in the heart: when added to cardiac
accumulation of smooth muscle cells or destabilization of fibroblasts, FGF-2 stimulated Cx43 expression and ac-
an atherosclerotic plaque [134]. The role of FGF-2 and its cumulation, and intercellular communication [140]. Car-
potential to act as a therapeutic agent during cardiac diac fibroblasts can form gap junctions with car-
fibrosis remains to be determined. diomyocytes [141]; increased FGF-2 during cardiac injury

To compensate for the increased workload, the remain- would be expected to increase the connectivity of fi-
ing myocytes hypertrophy; that is, they increase in size broblasts, and these cells may compensate to some degree
rather than number. Evidence that FGF-2 may play an for the interruption of conduction (and resulting arrhyth-
important role in cardiac hypertrophy was obtained over a mias) that occur after infarction.
decade ago in cultured cells. Addition of (LMW) FGF-2 to
cultured neonatal cardiac myocytes alters the gene profile
of contractile proteins from an ‘adult’ to ‘fetal’ program 4 . Summary and conclusions
[135], which is characteristic of pressure overload-induced
cardiac hypertrophy in vivo. Indeed, FGF-2 was also Fig. 2 summarizes the key components of cardiovascular
shown to decrease overall myosin accumulation in em- pathophysiology we have discussed and the contributions
bryonic cardiac myocytes in vitro [14,16]; it may also made by FGF-2 to each. When all the data are considered
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Fig. 2. Schematic of the major roles for FGF-2 in the myocardium as they relate to pathophysiological processes. In addition to its proposed role for the
maintenance of a healthy myocardium as it is released into the extracellular space with normal contractile activity, the presence (or addition) of FGF-2 at
various stages of injury may affect, positively or negatively, the disease process. The usefulness of FGF-2 as a therapeutic agent is dependent on precise
targeting of FGF-2 activity in a dose- and time-dependent manner. Adapted from Ref. [53]. SMC, smooth muscle cell.
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