A biological dosimetry system for measuring solar UV－B light was established using bacteriophage T1 with the UV spectral region related to inactivation of phage $T 1$ ．

Phage T 1 is very stable in liquid suspension and it has adequate sensitivity to measure the intensity of solar UV－B．In addition，the survival of phage T1 responded linearly to UV fluences when plotted semi－logarithmic

A novel physical dosimeter which responds faithfully to UV－B light under atmospheric conditions on the ground was developed as well．The spectral response was very close to that of biological materials．Readings of this UV－B dosimeter could be converted into the efficiency of sunlight upon biological materials．This instrument
is compact；it can also be used as an erythemal dosimeter．

INTRODUCTION

 －C radiation from the sun and protects living organisms on the earth from severe UV damage． In order to protect the ozone layer，the Montreal Protocol ${ }^{4}$ ）which is based on scientific criteria ${ }^{5)}$ has been accepted at the United Nations Environment Program International Convention．The

[^0]mprove evaluation of health risks and to establish appropriate protective measures and guidelines. Because of the increasing risk of skin cancer due to increasing exposure to sunlight, a reasonable standard for biological effects by solar UV radiation should be established. So far, harmful effects of UV radiation on the human skin have mostly been evaluated on the basis of erythemal action. Recently a reference action spectrum of erythema ${ }^{77}$ and spectral biological effectiveness for exposure limits ${ }^{8)}$ of UV radiation were reported by the International Commission on Illumination and the World Health Organization, respectively.
Seasonal variation of inactivation efficiency of sunlight was measured with Bacillus subtilis spores by Munakata ${ }^{9)}$ and Tyrrell ${ }^{10)}$ at Tokyo, Japan and Rio de Janeiro, Brazil, respectively. Also, minimum erythema time of patients with xeroderma pigmentosum was estimated ${ }^{117}$ based on readings of $305 / 365$ UV Radiometer (Eisai, Tokyo) and the data of solar spectral irradiance. In order to reasonably evaluate the biological effects of sunlight, it is necessary to measure the intensity of the UV-B region taking its spectral characteristics into account. However, existing
 ччถ̊!!

 action spectrum is needed. A newly developed dosimeter which is reported here was developed
 easily carried anywhere.
In parallel with the development of the dosimeter, we examined the capability of bacteriophage T1 as a biological dosimeter for solar UV light by annual measurement of survival at a definite
 biological dosimeter: (1) It was stable for rather a long time in liquid suspension or in dry state. (2) Measurable fractions were killed by exposure to natural sunlight in a daytime. (3) Survival
 (4) Survival could be determined in a short time and without any difficulty. In addition, the cost
of survival measurements is very low.
The data showed seasonal changes of the amount of T1-killing sunlight which was assumed to be related to the thickness of the ozone layer through which the light passed.

Preparation of bacteriophage T1

Escherichia coli B cells were grown overnight in Nutrient Broth (NB) medium (8 g Difco Nutrient Broth, 5 g NaCl and $1 \mathrm{ml} 1 \mathrm{~N}-\mathrm{NaOH}$ per litre of distilled water). Eight milliliters of

 $000^{\circ} 0$ L) pəsิnנب!

 swing rotor). The layer between densities of 1.50 and 1.45 was collected by puncturing the side of the tube and then dialyzed against T1 buffer.

Light source and its performances

The Okazaki Large Spectrograph (OLS) ${ }^{12,13)}$ at the National Institute for Basic Biology,

 cm grating (1200 grooves $/ \mathrm{mm}$, doubly blazed at 250 nm and 500 nm) in OLS and 5 kW Xe short

 in CRM-FM was $0.35 \mathrm{~W} / \mathrm{m}^{2}$ with 1 mm entrance slit and 1 mm exit slit.

Measurements of solar irradiance

 peak response at 340 nm . Both meters have a hemispherical cosine angular response. Solar irradiance ($300-3000 \mathrm{~nm}$) was calculated by the sum of readings of these two meters. UV-B

irradiation. Characteristics of the R-B meter were reported in detail by Berger ${ }^{15}$.

Stock suspension of phage Tl was diluted to about 10^{7} p.f.u./ml with T 1 buffer. When it was exposed in OLS, 200μ l of suspension was put into a small plastic cup ($7 \mathrm{~mm}^{\phi}, 10 \mathrm{~mm}^{\mathrm{h}}$). When it was exposed in CRM-FM, 3 ml of suspension was placed into a quartz cell having a light path of 10 mm . Outdoor exposure to natural sunlight was performed in a four-wall quartz cell (10 $\mathrm{mm})$. During exposure, one surface of the cell wall was faced against the sun and followed the sun's projection. Exposure time and readings of R-B meter were recorded and used for the calculation of survival fractions. In every case, sample suspension was cooled by ice-water during irradiation. Portions of the phage suspension were withdrawn at intervals and kept in the dark at $0^{\circ} \mathrm{C}$ until phage survival measurements were performed. Phage survivals were determined by the agar layer method (final concentration of 1.5% and 0.75% agar was added into the NB medium for agar plates and soft agar, respectively). A repair deficient strain, E. coli Bs-1, was used as indicator cells.

HGLAWISOG TVDISAHD SO NDISGO

The main optical system consists of the components shown in Figure 1 and Figure 2:

(A) An integration dome made of Teflon to collect solar UV-B covering whole solid angles, (B) a Kougaku Co., Hadano, Japan) with an air-gap which enables adjustment of the overall spectral response, (D) a fluorescence layer (SPD-2, Toshiba) to convert UV-B to visible light which is coated on the surface of a band pass filter composed of a blue filter (B480, Hoya) and a sharp cut filter (L-42, Hoya) to block contaminating light, and (E) a photo-electric transducer (photodiode, S1226-8BK, Hamamatsu Photonics). The components of the dosimeter described above were assembled in a compact body (\mathbf{F} in Figure 2). The size of detecting probe of a prototype was 3 cm in diameter, 7 cm in length and 250 g in weight.
The sunlight collected by the angular integration dome is scattered by the diffuser. Angular distribution of the scattered light passing through the interference filter then collected by the fluorescence layer can be controlled by adjusting the distance (air-gap) between the diffuser and the fluorescence layer. The UV-B light which has passed through the interference filter excites the fluorescence layer and the latter emits visible fluorescence having an emission peak at 475 nm with a high quantum yield. The emitted visible light which passes through the band pass filter and the sharp cut filter is detected by a silicone-photodiode.
Adjustable spectral sensitivity
The property ${ }^{16}$ of thin layer interference filter is that the peak transmitting wavelength shifts
to shorter wavelengths with increasing incident angle: thus, transmittance at wavelengths shorter
than the normal transmitting wavelength increases with decreasing incident angles. The ratio
of light flux coming at low incident angles $\left(<90^{\circ}\right)$ to that of normal incident angle $\left(=90^{\circ}\right)$ will
increase when a diffuser is interposed above the interference filter, so that the scattered light
passes through the interference filter with incident angles covering geometrically available solid
angles, and then arriving at the fluorescence layer. Moreover, the ratio of the light passing through
the interference filter can be controlled by changing the air-gap between the diffuser and the
fluorescence layer. The range of the incident angle of the light which passed through the interference
filter then arrived at the fluorescence layer decreased with increasing distance of air-gap.

Fig. 3. Change of overall spectral response of the meter by alternation of air-gap. The spectral response was normalized to the value at 305 nm , and the distance between the diffuser and the fluorescen liting wavelength of the interference filter KUVB-298.

Therefore the air-gap can control the shape of the overall transmittance spectrum of the system. When an interference filter KUVB-298 was inserted into the dosimeter, the air-gap could be altered from 2 mm to 35 mm . The change in overall spectral response of the UV-B dosimeter by alternating the distance of the air-gap is shown in Figure 3. The relative spectral responses of the dosimeter in the wavelength range longer than 305 nm is not affected by changing the air-gap, whereas the response is increased greatly by decreasing the air-gap especially in the wavelength range shorter than the main transmitting wavelength of the interference filter (298 nm).

Moreover, the diffuser keeps the angular distribution of light to the interference filter constant even if the incident angle of light coming to the detecting probe head is changed. Thus the overall response of the system is not affected by the change of geometrical condition between light source and diffuser.

For monitoring components of sunlight which are harmful to biological materials, it is necessary to measure the light flux covering both direct solar-radiation and diffused sky-radiation, because, at wavelengths around 300 nm , the major part of incident light ${ }^{17}$) is composed of sky-

 should improve this defect, because it collects UV radiation equally from the whole solid angles

 dosimeter is controlled by neck length of the dome. When neck length was adjusted at 6 mm , error of the angular response (i.e. response without cosine function) was within 15% from the ideal response for incident angle between 0° to 90°

NOISSODSIC UNV SLTOSAY

Inactivation action spectrum of bacteriophage T1

 were linear with a small shoulder at every wavelength. In all experimental curves, the extrapolation number was two in accordance with the hit theory. Mean lethal doses D_{0} (the dose required

 the UV-B region are illustrated in Figure 4-a (closed circle). A spectral biological effectiveness for exposure limits reported by $\mathrm{WHO}^{8)}$ (solid line), an erythemal action spectrum informed by CIE 7 (dotted line) and spectral solar irradiance ${ }^{18)}$ which is affected by the ozone thickness (solid

FURUSAWA, SUZUKI AND SASAKI
Table 1. Mean lethal doses and inactivation rate constants of
bacteriophage T1. Phage samples were exposed to
monochromatic ultraviolet light wavelength range from
225 nm to 400 nm obtained from a Spectro-irradiator
CRM-FM and the Okazaki Large Spectrograph (OLS),
E. coli Bs-1 was used as host cells. Extrapolation numbers
according to the hit theory were 2.0 for each experiment.
§
 other biological effects if fitted with an appropriate UV filter.

Seasonal change of killing efficiency of sunlight on phage T1

 Tokyo. In every experiment, survival versus exposure time gave a linear survival curve on semilogarithmic scale plot with an extrapolation number $m=2.0$, as in the case of exposure to

yglawisod g-an ybios
Table 2. Seasonal change of phage survival exposed to natural sunlight during one year (1983-84). The m numbers and mean lethal doses $\left(\mathrm{D}_{0}\right)$ calculated from the reading of the
R-B meter in sunburn unit (SU) and exposure time in hour R-B meter in sunburn unit (SU) and exposure time in hour
unit (hr) based on the hit theory, and killing efficiencies nit (hr) based on the hit theory, and killing efficiencies
of sunlight $\left(1 / D_{0}\right)$.

No	Date M D		m**	$\mathrm{D}_{0}{ }^{* *}$		$\begin{array}{r} \text { Kill } \\ \text { Effici } \end{array}$	$\begin{aligned} & \text { ing } \\ & \text { ency } \end{aligned}$
			(SU)	(hr)	$\left(S^{-1}\right)$	$\left(\mathrm{hr}^{-1}\right)$	

 		꾼	N	
	N		$\stackrel{\sim}{\infty}$	
		$\begin{aligned} & \text { 숭 } \\ & 0 \\ & \hline 0 \end{aligned}$	$\stackrel{\sim}{\circ} \underset{\sim}{\underset{\sim}{\sim}}$	
 －－－－－－－－-0		灾	埌	
	¢	®	ה\％	
	$\begin{aligned} & \text { z } \\ & \sum_{\mathbf{M}}^{(1)} \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \text { 要 } \end{aligned}$		
TNuNNNTNmmmmm			$\stackrel{8}{8}$	
が号	ほ	遜	莒	＊＊＊

 as products of the averaged data of total ozone（column density of $\left.\mathrm{O}_{3}\right)^{24)}$ at geographic latitude $35^{\circ} \mathrm{N}$ and the air mass which is given by the solar altitude at noon．Seasonal change of the effective
 a good inverse correlation：the killing efficiencies were high in summer（Apr．to Oct．）when the
 thick in winter（Dec．to Feb．of the next year）．Therefore，it is clear that the ozone layer must protect phages from killing by sunlight．The variation of the killing efficiencies in short term may be caused by daily variation of total ozone and other atmospheric conditions such as clouds or aerosols which absorb and／or scatter the UV－B light．

Evaluation of the UV－B dosimeter

The spectral response of the dosimeter which fits to the inactivation action spectrum of phage T 1 is shown in Figure $4-\mathrm{a}$（triangles）．The spectral response of the dosimeter at wavelengths range below 300 nm are insufficient for accurate measurement of efficiency of sunlight on phage T 1 ． Still，sunlight in this wavelength range takes only a small part of the total efficiency upon phage
$\bar{\sim}$

T1 when ozone thickness is ordinary. It may be preferable than the dosimeter should be hypersensitive in wavelengths longer than 310 nm , in which the solar irradiance is strong but biological effect is very small. So that small change of UV intensity caused by ozone in shorter wavelengths of light may not be masked by the sensitivity of the longer wavelengths.
The intensity of UV relative to the total irradiance was measured on both a cloudy (Figure 6 -a) and a fine day (Figure 6-b) in June using the novel UV-B dosimeter at Isehara. The output of the UV-B dosimeter generated by natural sunlight was about 1.0 V at noon on a fine day. Under the same conditions, solar irradiance ($300-3000 \mathrm{~nm}$) and solar UV-irradiance ($300-400$ nm) were about $900 \mathrm{~W} / \mathrm{m}^{2}$ and $40 \mathrm{~W} / \mathrm{m}^{2}$, respectively. The results show that the UV-B dosimeter

 a fact which was not observed by MS-140 UV-radiometer. This UV-B dosimeter followed atmospheric conditions very faithfully, because it was designed to detect the shortest wavelength edge of sunlight on the ground which is greatly affected by the ozone layer, aerosols, clouds
 the new UV-B dosimeter ($\left.1 \times[\mathrm{mV}] /\left[\mathrm{W} / \mathrm{m}^{2}\right], \longrightarrow\right)$ and MS-140 UV-radiometer ($10 \times$ $\left[\mathrm{W} / \mathrm{m}^{2}\right] /\left[\mathrm{W} / \mathrm{m}^{2}\right]$, 一), where solar irradiances were measured by MS-140 and MS-801 actinometer. Change of reciprocal value of air mass (-) caused by the solar altitude.
(a); On a cloud day, (\downarrow) : An unexpected increase of cloud occurred here. (b); On a fine day.

\bullet

 the mean lethal dose $\left(D_{0}\right)$ was calculated from the output of the dosimeter, and it was $0.24 \mathrm{~V} \cdot \mathrm{hr}$.
 mean lethal dose was 0.26 hr or 0.45 SU when it was expressed in exposure time or in sunburn units, respectively. According to the results, exposure of 1 hour at an intensity of 1.0 V by the UV-B dosimeter, 4 lethal events were induced in phage, giving 8 lethal damages since the extrapolation number was found to be 2.0 .

Simulation of responses to sunlight

Responses of dosimeters and biological efficiencies of sunlight were simulated with the data of spectral irradiance and action spectrum or spectral responses, and the results are shown in Figure 7. In this simulation, the index of overall response I was calculated from the following formula,
where, I_{λ} is the spectral irradiance and E_{λ} is the spectral response of each instrument or biological system. The wavelength ranges λ were integrated from 290 nm to 400 nm . The spectral responses of phage T1, erythema ${ }^{7}$ and new UV-B dosimeter were used and calculated with the data of the spectral irradiance. The data of spectral irradiance on a horizontal plane was

 the data, then divided into three groups and averaged. One group included measurements made within one year (annual), the second group, the summer (S) group included 12 measurements
 әадм 6L6I' 9 чэле

 ұЧ®̊! on phage T 1 within an 8% error at every simulated condition.
On the other hand, when phage T1 covered with UV-30 filter and/or new UV-B dosimeter tuned for erythemal dosimeter, the error of the index value from the ideal response of erythema (erythemal action spectrum of CIE is thought to give the ideal erythemal index) is less than 4%
 are very good indices of erythema by sunlight, and also, that the physical dosimeter can be calibrated by the phage-filter system without any absolute spectral measurement of sunlight and dosimeter.

 Ltd. for their advices. The authors also acknowledge Mr. F. Meguro, Mr. K. Nakajima, Mr.
 Co. for gift of fluorescence powder SPD-2. We wish to thank Mrs. Nadia El Borai (M.Sc.) for correcting the English text. This study was supported in part by the National Institute of Basic Biology Cooperative Research Program of the Okazaki Large Spectrograph Laboratory (86-532,
 the Japan Private School Promotion Foundation.

1. Chubachi, S. (1984) Preliminary result of ozone observations at Showa station from February 1982 to January 1983. In "Proceedings of the Sixth Symposium on Polar Meteorology and Glaciology", Ed. K Kusunoki, pp. 13-19, National Institute of Polar Research, Tokyo.
Farman, C.J., Gardinar, B.G. and Shanklin, J.D. (1985) Large losses
2. Farman, C.J., Gardinar, B.G. and Shanklin, J.D. (1985) Large losses of total ozone in Antarctica reveal seasonal $\mathrm{ClO}_{x} / \mathrm{NO}_{\mathrm{x}}$ interaction. Nature 315: 207-210.
Solomon, S., Garcia, R.R., Rowland, F.S. and Waebbles,
Solomon, S., Garcia, R.R., Rowland, F.S. and Waebbles, D.J. (1986) On the depletion of Antarctic ozone. Nature 321: 755-758.
3. UNEP (1987) Montreal Protocol on Substances That Deplete the Ozone Layer, Final Act, United Nations Environment Program.
WMO Global Ozone Research and Monitoring Project (1986) Atmospheric Ozone 1985, Vol. I, II, III, Report No. 16, World Meteorological Organization, Geneva. v
Ceneva. (1987) A reference action spectrum for ultraviolet induced erythema in human skin. CIE Journal 6: 17-22.
WHO (1982) Environmental health criteria 23: Lasers and optical radiation. pp. 90-113, World Health Organization, Geneva.

Munakata, N. (1989) Genotoxic action of sunlight upon Bacillus subtilis spore: Monitoring studies at Tokyo,
Japan. J. Radiat. Res. 30: 338-351.
Tyrrell, R.M. (1978) Solar dosimetry with repair deficient bacterial spores: Action spectra, photoproduct Sato, K., Sano, S., Ikenaga, M. and Aoki, T. (1984) Estimation of minimum erythema time of patients with xeroderma pigmentosum based on measurement of solar radiation. Skin Res. 26: 501-509. (in Japanese).
 performance of The Okazaki Large Spectrograph for photobiological research. Photochem. Photobiol. 36:

Watanabe, M. (1985) The Okazaki Large Spectrograph and its application to action spectroscopy. In

FURUSAWA, SUZUKI AND SASAKI
15. Berger, D.S. (1976) The sunburning ultraviolet meter: Design and performance. Photochem. Photobiol.

Hadley, L.N. and Dennison, D.M. (1947 and 1948) Reflection and transmission interference filters. Part
I. Theory., Part II. Experimental, comparison with theory, results. J. Opt. Soc. Amer. 37: 451-465 and
CIE (1972) Recommendations for the integrated irradiance and the spectral distribution of simulated solar radiation for testing purposes, Publication CIE No. 20 (TC-2.2), pp. 1-54, International Commission on Illumination, Paris.
18. WMO Global Ozone Research and Monitoring Project (1977) Report of the meeting of experts on UV-B monitoring and research. pp. 1-9, World Meteorological Organization, Geneva.
Peak, M.J., Peak, J.G., Moehring, M.P. and Webb, R.B. (1984) Ultraviolet action spectra for DNA dimer
induction, lethality, and mutagenesis in Escherichia coli with emphasis on the UVB region. Photochem.
Photobio. (1985) Mid-UV actions. In "Solar-UV Actions on Living Cells", pp. 103-112, Praeger, New York. Sutherland, J.C. and Griffin, K.P. (1981) Absorption spectrum of DNA for wavelengths greater than 300 m. Radiat. Res. 86: 399-410.
Setlow, R.B. (1974) The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis.
Proc. Natl. Acad. Sci. USA 71: $3363-3366$.
normal human skin. Photochem. Photobiol. 36: 187-191.
Dutsch, H.U. (1980) Ozone in the atmosphere. Does strato
Habu, M., Suzuki, M. and Nagasaki, T. (1981) Measurement of the solar spectral irradiance at Tanashi, Tokyo (I, II and III). Researches of the Electrotechnical Laboratory No. 812, 813 and 830, Electrotechnical Laboratory, Ibaraki, Japan. (in Japanese)

[^0]: 古沢佳也，鈴木緊之：東海大学医学部，神奈川県伊勢原市望星台 〒259－11
 筑

