BIOLOGICAL APPLICATIONS OF NORMAL RANGE AND ASSOCIATED
SIGNIFICANCE TESTS IN IGNORANCE OF ORIGINAL
DISTRIBUTION FORMS*

By WiLLiam R. THOMPSON

The word normal has been used in many senses—commonly by statisticians
to designate a well-known distribution function. Another use familiar to bi-
ologists, particularly in experimental work and medicine, is to denote an
untreated or control part of a universe, or a part whose members are free from
specified characteristics such as evidence of past or present disease or malforma-
tion. Closely related to this last usage are attempts to delimit so-called normal
ranges of variation for a quantitative attribute of the members of part or all
of a universe in question. Interpretations are often vague, as when the interval
between the least and greatest values observed in either a large or a small
number of instances is taken to estimate a normal range. We shall consider
the problem of using ranked data for estimating normal ranges as defined in
the next paragraph.

If the instances have been drawn at random from a universe (U) of all
possible observations obtainable in a prescribed manner, and are enumerated
in ascending order of magnitude, {z;} for ¢ = 1, ... | n; then it is proposed to
show in the present communication how ranges of the type (zy, Zni1-x) may
be used to estimate normal ranges, Ry, where the subscript f is the theoretical
probability that a random value, z, drawn from U will lie within the range R,
g that it will lie above, and g that it will lie below (where 29 = 1 — f). Further-
more, it is proposed to show how these ranges may be used as the basis of
significance tests where altered conditions appear to lead to abnormal biological
variation. The form of frequency-distribution of U is supposed unknown,
and is without effect upon the analysis. Section 1 is a development of the
theory of range estimation, treated briefly in a previous paper [1] together with
illustrations of its application. Section 2 deals with significance tests.

1. The Method of Range Estimation. Let x be a real variate, a random
value drawn from an infinite universe or population U. Let f(x) be the fre-

quency function of z in U, supposed unknown; and f(x)dx = 1. Then

for any given « and B, where a < 8, and

8
)] Pla<z<p = / f(z) dx.
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To facilitate development, suppose that in any finite sampling under considera-
tion no two values of x may be exactly the same. Let 8 = {zx}, k=1, ... n,
denote a random sample from U, where the order of enumeration is arbitrary,
but temporarily taken as a random order (to fix the ideas, consider this the
order obtained in drawing). Let p; be defined by

Zk
(2) pr=Plx < zi) = f(x)dz from which dpir = f(zx) dzx.
Then p; is the probability that a random z from U shall be less than any number
zr . Then obviously if z; is drawn at random from U, p; is a random variable
whose distribution is the unit rectangle; i.e., P(p' < pr < ") = p”’ — p'.
Furthermore, the joint probability that z; will lie in the interval z , 2 + dzy
and that exactly r values in the sample S will be less than z is, to within terms

of order dpx, (n : 1).p;.(l — )" T dps .

Then, in repeated sampling as above, for the case where just r of the » random
values {z;} are less than the k-th drawn, let P,.(»’ < p: < p'’) denote the
probability that ps lies in the interval (p’, p’’). Then

(r+s+1)!.

rl-s! ” p’-¢"-dp,

6)) Po,(p' <pe <p") =
wheres =n — 1 — r,and ¢ = 1 — p. Obviously, the expression on the right
of (3) does not depend on k if this index is the order of draft or a random index,
but only upon the condition that exactly r of the » random values from U be
less than a value z; drawn at random from the sample of n values. Accord-
ingly, we obtain the same result if we enumerate the n values {z;} in ascending
order of magnitude (z; < z;, if ¢ < j). Then k¥ = r + 1, in the cases con-
sidered, and (3) may be written,

@ Polpt < <2 = G 1)!(n k)/ P dp,

for0 < p’ < p” = 1. Obviously, the result is the same if we deal instead with
the k-th value (z:) of every random sample S drawn. In passing it may be
noted that for p’ = 0 and p”’ = p in (4) we have

) Pu(pr < p) = Ik, n — k + 1),

which may be evaluated for k, » — k + 1 < 50 by means of the Tables of the
Incomplete Beta-Function [2].

Of course, P,(0 < pr < 1) = 1, and (4) gives pi, the mean value of p; in
repeated random sampling of n values from U, as

n' k _n—i k
© m/p-q k-dp=n_+__i
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. . . 2 . .
Similarly, the variance, o3, , of p is given by

kn —k + 1)
(n+1)*(n+2)°

Now suppose that we want to find a range (e, 8) such that, in random drafts
from U, the theoretical relative frequency of drawing x less than a is g, and
the same as that of drawing x greater than 8. (a, 8) may be called a central
confidence range with a confidence f = 1 — 2¢g that x drawn at random from U
will lie within the range. For ¢ = k/(n 4+ 1) we may take the range R; =
(zr, Tars1); and likewise with ¢ = 59, we may estimate, or approximate
by interpolation where 20k > n 4+ 1 > 20(k — 1), a range R, for normal bio-
logical variation of a specified character, and this may be called briefly the
estimated 909, central normal range.

Of course the probability of drawing r < ais f(z) dz, and that of drawing

(7) aﬁ,,, = El(px — )] =

0

z > Bis / S(z) dz; and these probabilities are unknown, as the frequency
]

function f(z) is unknown; but with @ = xzx and 8 = z,_41 the theoretical
relative frequency in each case is k/(n + 1) regardless of the universe.

It has been shown [1] also that if the sample S were drawn at random from
a finite ordered population of aggregate number N, denoted by Uy, and Np:
is the number of values in Uy that are less than the k-th member of the given
random sample in ascending order of magnitude; then, for S a sample of n
values as before, the mean value of p; in repeated sampling is

_ k 1 1
”"=m<l+ﬁ>"ﬁ' and

SRNLCELE DI (FEATOREY
T (n4 12 (n+ 2) N N/

An example is furnished by an analysis of data reported by Wadsworth and
Hyman [3] in a study of influences of antigenic treatment of horses upon their
plasma concentration of esterified cholesterol, free cholesterol, and phospho-
lipids. Asin chart 1 for normal horses, a graph has been constructed for each
horse studied, using time as abscissa and a logarithmic ordinate scale for ob-
served values of plasma concentration of the constituents:

1. Esterified Cholesterol,

2. Free Cholesterol, and

3. Phospholipids times one-tenth,
the respective successive points for each being joined to form three polygon
curves. As these are in all cases discrete and lie in the order of enumeration
from top to bottom of the graph, no special label seemed needed; but estimated
normal ranges for the central 909, of variation have been indicated in each
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case by two horizontal lines between brackets at the right, numbered to corre-
spond with the enumeration above. The ranges are based on observations on
62 plasma samples, each from a different presumably normal horse. The normal
horses in the chart show about the same individual variations; but, of course,
the ranges are not to be interpreted to indicate normal variation for an indi-
vidual animal.

Chart 2 presents in like manner the data obtained for horses under immuniza-~
tion against tetanus and the streptococcus. The tetanus immunization treat-
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CuaRrT 1. On each graph for a given normal horse, the number of which appears below,
the curves in descending order respectively represent (1) esterified cholesterol, (2) free
cholesterol, and (3) one-tenth phospholipid concentration in plasma (in mg. per 100 cc.).
Corresponding 90-per-cent normal range estimates are indicated.

ment appears to produce marked and sustained depression in all three curves
of at least five of the six animals observed.

That this is statistically significant seems obvious. A single observation
below the 909, normal range should be expected once in twenty random trials
if normal causes of variation may be assumed unaffected by the treatment in
question.  The expectation of obtaining 5 or more such values in six independent
trials is obviously much less, and may be accurately estimated by means of rela-
tions developed in the following section.



BIOLOGICAL APPLICATIONS OF NORMAL RANGE 285

2. Significance Tests. Now consider as in section 1 another sample S’ of n’

! ! T o
values; {zx'}, k' =1, ..., n’ (where z; < z;if ¢ < j), drawn at random from an
infinite universe U’ as was S from U; but where U and U are not necessarily
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CHART 2. On each graph for horses receiving the indicated antigenic treatment and one
untreated horse, the curves in descending order respectively represent (1) esterified cho-
lesterol, (2) free cholesterol, and (3) one-tenth phospholipid concentration in plasma (in
mg. per 100 cc.). Corresponding 90-per-cent normal range estimates are indicated.

the same universe. In like manner it may be shown that, if 2’ is drawn at ran-
dom from U’ and p;- denotes P(z’ < zi/), then

4w+ 1)!_/‘*"

v w
2Tl p-q-dp

®) Pa(¢' < pir <9¢") = Ny
whereq =1 —p,ov=k —1,w=n"—k,and0 2 ¢' < ¢" = L

The probabilities in (4) and (8) are independent, obviously, whether U is the
same as U or not. Accordingly, these relations make possible an evaluation
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of P(p. < pi) under the circumstances where repeated sampling is applied to
both the case of S and to that of S’. With this understanding, then

’ ! 1! !
9 Plp: < pi) = s+ Dl +w+ 1) [ pS'qﬁ'dpo-[ p’-q"-dp,
p

rl-slol-w! 0

where, as before,r =k — 1, s =n—ko=k—lw=n—F,¢g=1— P,
and Qp=1— Do .
In a previous paper [4] a ¥-function was defined as

i(r+r'—a)<s+s’+l+a)
(10) ¥(r, s, r,s) = =2 r 8
(+s+ﬂ+§+2
r+s+1 )

for any four rational integers r, s, ', s’ = 0; and it was shown in detail that the
right member of (9) is equal to ¥(r, s, v, w); whence we may write

(11) Ploe <pi) =¥k —1,n — b, k' — 1,0’ — k).

Obviously, if U and U’ are the same universe, then e < prr if and only if
2 < zx , and then we have

(12) Pae <aw) =¥k —1,n — kb, k — 1, n' — k)

in repeated random sampling applied to both sample types, Sand §’, respectively
of n and of n’ observations. In the paper just mentioned, and in another [5]
the ¥-function was further developed by extension of definition to include
¥(r,s, —1,s') = 0, and it was shown that

(13) W(r, s, 1, 8) =¥(r,r, s §) = V(s 18, r) =1~ ¥(s,r, ¢, ).

Further demonstrations [5] included the relation,

a%r'<r+r'+l><s+s/+l>
(14) \I,(r, s’ r/’ sl) = a=0 r+ 1 +¢¥ S —a ’
(7'+s+r/+s/+2
r+s+1

which offers another form for calculation. The identities in ( 13) are particularly
useful to facilitate calculation where one of the four arguments is small. A
system for forming a table has also been developed [4, 5] in an economical form,
but tabulation has been given only for the arguments not exceeding 5.

Now, in applying a test based on relation (12) or on that for the complemen-
tary probability, P(z;, < ;) which obviously, by (13), equals ¥(n — k, k — 1,
n' — k', k' — 1), we may wish to exclude from the normal set of observations
those values obtained from animals later given the treatment in question in the
statistical significance test. The purpose would be to avoid violation of the
condition of independent sampling required. In the case of the tetanus antigen
treatment, we have an experience wherein 5 or more of 6 horses treated yield
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values for a given plasma constituent less than the third in ascending order of
magnitude (namely x;) in our independent set of normal values. Here n’ = 6,
andn = 62 — 6 = 56. In accordance with the hypothesis that the treatment
in question does not affect normal causes of variation in the plasma constituent
under investigation we have P(zi. < ) is ¥(53, 2, 6 — k/, ¥’ — 1). Thisis
approximately 1.891(10)° for ¥’ = 5, and 4.555(10)™" for k' = 6. Obviously,
a rule for establishing the value of k to be used in such tests should be fixed in
advance without prejudice, as in the present case where we have taken
k=gn+1) >k — 1forg = 5%,

In the case of streptococcus immunization treatment, the corresponding test
would have n = 58, n’ = 4, k = 3, and k¥’ = 4, 3, or 2; which would yield ap-
proximately 2.689(10)7°, 1.031(10) °, or 1.817(10) %, respectively for P(z:. < zs).
Thus it appears that where such values are found (intuitively it would
appear a fortiori if we compare instead with ;3 of the entire normal set of 62
values), their low magnitude appears to discredit the hypothesis that such dis-
crepancies are ascribable to mere chance normal variation in the quantitative
attribute investigated.

The tests proposed are free from any assumption concerning the form of the
original distribution f(z). The illustrative material is only a part of that pre-
sented with similar statistical treatment in the paper of Wadsworth and Hyman
[3], which makes it apparent that the tests suggested here may be useful and
powerful in analysis of biological and other experimental data. From a similar
point of view, Hotelling and Pabst [6] developed tests of bi-variate correlation,
and Milton Friedman has elaborated a multi-variate rank analysis [7], the tests
being likewise free from any assumption about the form of the original distribu-
tions. In a previous paper [1] confidence ranges for the median are based
similarly, employing relation (5) for the special case p = 3.

DivisioN oF LABORATORIES AND RESEARCH
NEw YorK STATE DEPARTMENT OF HEALTH
Arsany, N. Y.
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