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Abstract
One of the major tasks in bioinformatics is the classification and prediction of biological data.

With the rapid increase in size of the biological databanks, it is essential to use computer

programs to automate the classification process. At present, the computer programs that give

the best prediction performance are support vector machines (SVMs). This is because SVMs

are designed to maximise the margin to separate two classes so that the trained model

generalises well on unseen data. Most other computer programs implement a classifier

through the minimisation of error occurred in training, which leads to poorer generalisation.

Because of this, SVMs have been widely applied to many areas of bioinformatics including

protein function prediction, protease functional site recognition, transcription initiation site

prediction and gene expression data classification. This paper will discuss the principles of

SVMs and the applications of SVMs to the analysis of biological data, mainly protein and DNA

sequences.

INTRODUCTION
With the rapid increase in size of the

biological databanks, understanding the

data has become critical. Such an

understanding could lead us to the

elucidation of the secrets of life or ways to

prevent certain currently non-curable

diseases such as HIV. Although laboratory

experiment is the most effective method

for investigating the data, it is very

financially and labour expensive.

Computational algorithms and tools have

therefore been widely used in the fields of

the classification, regression and cluster

analysis of biological data. The major

objective in classification analysis is to

train a classification model based on

labelled data. The trained model is then

used for classifying novel data. For

instance, a classifier can be trained on a set

of HIV peptides, some of which are

cleaved and some not.1 A classifier trained

on this set of labelled (ie cleaved or non-

cleaved) peptides can be used to classify

unlabelled HIV peptides and hence to

classify them as either cleaved or non-

cleaved. The information can be used by

pharmaceutical companies to design

suitable inhibitors to fight the disease.

Classification analysis requires two

descriptions of an object. One is the set of

features that will be used as inputs to train

the model. The other is referred to as the

class membership.

Classification analysis aims to find a

mapping function from the features to the

class label. There have been many

computational algorithms available for the

classification analysis of biological data.

For instance, decision trees,2 discriminant

analysis,3 neural networks and support

vector machines (SVMs).4 The essence in

classification is to minimise the

probability of error in using the trained

classifier. This is referred to as the

structural risk and it has been shown that

SVMs are able to minimise the structural

risk through finding a unique hyper-plane

with maximum margin to separate data

from two classes.4 Because of this, SVM

classifiers provide the best generalisation

ability on unseen data compared with the

other classifiers.

Many applications of SVMs to

biological data analysis are discussed here.

The next section briefly introduces

support vector machines. This is followed

by a discussion of the most important step
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in using SVMs for analysing protein or

DNA sequences, efficient coding of

biological information contained in

sequences. Then the applications of SVMs

to two classification problems in biology,

ie modelling whole sequences and

subsequences, are discussed. Finally,

possible future research directions in

applying SVMs to the analysis of

biological data are reviewed.

SUPPORT VECTOR
MACHINES
A classification algorithm aims to find a

mapping function between input features

x and a class membership t 2 {–1,1}:

y ¼ f (x, w)

where w is the parameter vector, f(x,w)

the mapping function and y the output.

With other classification algorithms, the

Euclidean distance (error) between y and t

is minimised to optimise w. This can lead

to a biased hyper-plane for discrimination.

In Figure 1, four open circles of class A

and four filled circles of the class B are

distributed in balance. With this data set,

the true hyper-plane separating two

classes of circles can be found as in Figure

1(a). Suppose a shaded circle belonging to

class B is included as seen in Figure 1(b),

the hyper-plane (the dashed line) will be

biased because the error (distance)

between the nine circles and the hyper-

plane has to be minimised. Suppose a

shaded circle belonging to class A is

included as seen in Figure 1(c), the hyper-

plane (the dashed line) will also be biased.

With these biased hyper-planes, the novel

data denoted by the triangles could be

misclassified.

In searching for the best hyper-plane,

SVMs find a set of data points that are the

most difficult training points to classify.

These data points are referred to as

support vectors.4 In constructing an SVM

classifier, the support vectors are closest to

the hyper-plane and are located on the

boundaries of the margin between two

classes. The advantage of using SVMs is

that the hyper-plane is searched through

maximising this margin. Because of this,

the SVM classifier is the most robust, and

hence has the best generalisation ability.

In Figure 1(d), two open circles on the

upper boundary and two filled circles on

the lower boundary are selected as

support vectors. Only the use of these

four circles can form the boundaries of

the maximum margin between two

classes. The trained SVM classifier is a

linear combination of the similarity

between an input and the support vectors.

The similarity between an input and the

support vectors is quantified by a kernel

function defined as:

Support vector

Kernel function

(a) (b) (c) (d)

Figure 1: (a) Hyper-plane formed using conventional classification algorithms for the data
with a balanced distribution. (b) and (c) Hyper-planes formed using conventional classification
algorithms. (d) Hyper-plane formed using SVMs. The open circles represent class A, the filled
circles class B and the shaded circle class A or B. The thick lines represent the correct hyper-
plane for discrimination and the broken thick lines the biased hyper-planes. The thin lines are
the margin boundaries. The triangles represent the novel patterns (see text). Gamma (ª)
means the distance between hyper-plane and the boundary formed by the support vectors.
The margin is 2ª
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ł(x, xi)

where xi is the ith support vector. The

decision is made using the following

equation:

y ¼ signf�Æi t ił(x, xi)g

where ti is the class label of the ith support

vector and Æi is the positive parameter of

the ith support vector determined by an

SVM algorithm. In SVMs, ł(xi)is referred

to as a feature and ł(x,xi) ¼ ł(x)ł(xi).

The most difficult part in SVMs is the

design of a proper kernel function that

corresponds to the selection of a proper

number of hidden neurons in neural

networks. There have been many kernel

functions designed for dealing with

numerical attributes. For instance, a dot

product function

ł(x, xi) ¼ (x, xi þ 1) p

(p is the order of this polynomial

function) or a radial basis function:

ł(x, xi) ¼ exp(�Æjx� xij2)

(Æ is a constant). However, when we deal

with a data set with non-numerical

attributes such as protein or DNA

sequences, the kernel function must be

specially designed. The successful design

of a proper kernel function for handling

protein or DNA sequences relies on the

efficient coding of the biological

information contained in sequences. The

next section will discuss this issue.

METHODS FOR CODING
BIOLOGICAL
INFORMATION IN
SEQUENCES
The objective of coding biological

information in sequences is to provide a

method for converting non-numerical

attributes in sequences to numerical

attributes. Before discussing this, we need

to know two types of the analyses of

biological sequences. The first is to

analyse whole sequences aiming to

annotate novel proteins or classify

proteins. The second is to recognise

functional sites within a sequence. The

latter normally deals with subsequences

which are obtained through moving a

sliding window with a fixed length from

the N-terminal to the C-terminal residue

by residue. The residues within a scan

form a subsequence. If there is a

functional site within a subsequence, the

subsequence is as labelled as functional,

otherwise it is labelled as non-functional.

There are three main methods for

coding a whole sequence – the

composition, profile and pairwise

homology alignment methods – and two

common methods for coding a

subsequence – the distributed encoding

and bio-basis function methods. The

composition, profile and distributed

encoding methods correspond to the

feature extraction methods in pattern

recognition. These three methods express

a sequence using a vector of numerical

attributes, xi. Each numerical vector is

then transformed into a feature vector

using a kernel function, ł(xi), in SVMs.

While the pairwise homology alignment

and bio-basis function methods do not

need to extract numerical attributes, they

use a specially designed kernel function,

ł(si), to transform each sequence, si,

directly into a feature vector in SVMs.

Composition method
With this method, we can express a

protein sequence using a vector of 20

numerical attributes and a DNA

sequence, a vector of 4 numerical

attributes. Each numerical attribute is the

occurrence of a specific amino acid or

nucleic acid in the sequence. As this

method does not consider any coupling

effect among the neighbouring residues,

other composition methods have been

used, for instance, dipeptides and motif

compositions and descriptors.

Profile method
With this method, each sequence is

expressed as a set of similarities

(probabilities) with a model or a family of

sequences. The construction of a profile is

normally limited to the use of positive

data (functional sequences) without the

Subsequence

Feature

Coding biological
information

Sequence similarity

Protein annotation

Functional site
recognition
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concern of discrimination. Figure 2 shows

such an example using hidden Markov

models (HMM).

Pairwise homology method
With the profile method, only positive

sequences (sequences from one family) are

used. The discrimination ability may not

be satisfied. In order to enable a classifier

to discriminate well, both positive and

negative sequences should be used for

learning. The homology alignment

method for SVMs has therefore been the

dominant area of research for analysing

whole sequences in recent years. Rather

than using nearest neighbour methods as

most homology alignment tools such as

BLAST5 and its variants do, the

prediction is based on a statistical model

built on the relationship between

sequences and support vectors selected

from training sequences. Each sequence

will be represented by a vector of features

and each feature represents the similarity

between the sequence and one of the

support vector using a kernel function

ł(s,si), where si is a support vector and s

a sequence. The similarity can be

calculated through aligning s with the

support vectors and the alignment

generates a similarity between them as a

feature. A collection of all the features

after aligning a sequence with all the

support vectors forms a feature vector. A

classifier is trained using such a set of

feature vectors. A feature vector will be

formed in the same way for a novel

sequence and is then input to the trained

classifier for prediction. Figure 3 shows

such an example.

Distributed encoding method
With the distributed encoding method,6

each amino acid is encoded by a 20-bit

binary vector with one bit setting as one

and the rest zeros. For nucleic acids, a

Homology alignment

Nearest neighbour
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Figure 2: Ten positive
sequences are used for
constructing an HMM
model. From this, both
positive and negative
sequences are input to
the trained HMM model
to obtain the profiles,
which are used to train a
classifier

Classifier

Positive feature j

Negative feature j

Positive support vector 1

Positive support vector 2

Positive support vector 3

Positive support vector 4

Positive support vector 5

Negative support vector 1

Negative support vector 2

Negative support vector 3

Negative support vector 4

Negative support vector 5

Postive sequence i

Negative sequence j

Figure 3: Pairwise
homology method. Five
positive and five negative
support vectors are
selected. Both positive
and negative sequences
are aligned with support
vectors to produce
feature vectors, which
are used to train a SVM
classifier
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4-bit binary vector is used. In some cases,

a 21-bit binary vector is used for

including an ‘unknown’ amino acid and a

5-bit binary vector is used for including

an ‘unknown’ nucleic acid.

Like the composition method, the

distributed encoding method encounters a

problem in that it is hard to code

biological content in sequences. This can

be seen from the fact that the distance

(dissimilarity) between any pair of

different amino acids or nucleic acids is

always ˇ2.7 However, the similarity

between any pair of amino acids varies

(see the Dayhoff matrix in Table 1, where

each entry shows a probability of

mutation from one amino acid to the

other).8,9

The other difficulty of the distributed

encoding method is the model size. The

number of input variables is enlarged 20

times for protein sequences, as shown in

Figure 4.

Bio-basis function method
The bio-basis function was developed in

2003 for implementing the bio-basis

function neural networks.7,10 The basic

principle of the bio-basis function is the

normalisation of non-gapped pairwise

homology alignment scores. Figure 5

shows how a query subsequence (IPRS)

will be aligned with two support vectors

(KPRT and YKAE) to produce two non-

gapped homology alignment scores a and

b respectively. Because a . b, it is

believed that the query subsequence

shares more functional similarity with the

first support vector.

In summary, the composition, profile

and distributed encoding methods convert

sequences to numerical vectors and then

Dayhoff matrix

Table 1: The Dayhoff mutation matrix is based on the concept of the point-accepted mutation (PAM). An evolutionary
distance of 1 PAM indicates the probability of a residue mutating during a distance in which 1 point mutation was accepted
per 100 residues. For instance, the mutation probability of alanine (A) to itself is 40 and the mutation probability of alanine
being substituted by cysteine (C) is 24

A C D E F G H I K L M N P Q R S T V W Y

A 40 24 32 32 16 36 28 28 28 24 28 32 36 32 24 36 36 32 8 20
C 24 80 12 12 16 20 20 24 12 8 12 16 20 12 16 32 24 24 0 32
D 32 12 48 44 8 36 36 24 32 16 20 40 28 40 28 32 32 24 4 16
E 32 12 44 48 12 32 36 24 32 20 24 36 28 40 28 32 32 24 4 16
F 16 16 8 12 68 12 24 36 12 40 32 16 12 12 16 20 20 28 32 60
G 36 20 36 32 12 52 24 20 24 16 20 32 28 28 20 36 32 28 4 12
H 28 20 36 36 24 24 56 24 32 24 24 40 32 44 40 28 28 24 20 32
I 28 24 24 24 36 20 24 52 24 40 40 24 24 24 24 28 32 48 12 28
K 28 12 32 32 12 24 32 24 52 20 32 36 28 36 44 32 32 24 20 16
L 24 8 16 20 40 16 24 40 20 56 48 20 20 24 20 20 24 40 24 28
M 28 12 20 24 32 20 24 40 32 48 56 24 24 28 32 24 28 40 16 24
N 32 16 40 36 16 32 40 24 36 20 24 40 28 36 32 36 32 24 16 24
P 36 20 28 28 12 28 32 24 28 20 24 28 56 32 32 36 32 28 8 12
Q 32 12 40 40 12 28 44 24 36 24 28 36 32 48 36 28 28 24 12 16
R 24 16 28 28 16 20 40 24 44 20 32 32 32 36 56 32 28 24 40 16
S 36 32 32 32 20 36 28 28 32 20 24 36 36 28 32 40 36 28 24 20
T 36 24 32 32 20 32 28 32 32 24 28 32 32 28 28 36 44 32 12 20
V 32 24 24 24 28 28 24 48 24 40 40 24 28 24 24 28 32 48 82 4
W 8 0 4 4 32 4 20 12 20 24 16 16 8 12 40 24 12 8 100 32
Y 20 32 16 16 60 12 32 28 16 28 24 24 12 16 16 20 20 24 32 72

Output

Support vectors

20 bits for one residue in a sequence

Figure 4: An example of using the
distributed encoding method, where each
residue is encoded using 20 inputs
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use a kernel function to transform these

numerical vectors to feature vectors.

However, the pairwise homology

alignment and bio-basis function methods

use a kernel function to transform

sequences to feature vectors directly for

the use of SVMs. In terms of this, the

latter is more efficient. Figure 6 gives a

comparison.

APPLICATIONS
Whole sequence
The composition method has been the

most popular method for analysing

whole protein sequences for many years.

For instance, the composition method

was used for the prediction of

membrane protein types,11 the

prediction of protein structural classes,12

subcellular location prediction13 and the

prediction of secondary structures.14

Dipeptides, gapped (up to two gaps)

transitions and the occurrence of some

motifs as additive numerical attributes

were used to enhance the prediction of

subcellular locations.15 In the simulation

it was shown that the inclusion of these

additive numerical attributes did enhance

the prediction accuracy. The same

method has also been used in gene

identification for functional RNAs in

genomic sequences.16 Instead of using

transition composition to enhance the

prediction performance, descriptors were

also used, for instance, to predict multi-

class protein folds,17 to classify proteins18

and to recognise rRNA-, RNA- and

DNA-binding proteins.19 SVMs also

accurately discriminated cytoplasmic

ribosomal protein genes from all other

genes of a known function in

Saccharomyces cerevisiae, Escherichia coli and

Mycobacterium tuberculosis using codon

composition, a fusion of codon usage

bias and amino acid composition sign.20

There are two ways to generate

profiles. First, a profile of a sequence can

be generated by subjecting it to a

homology alignment method like BLAST

(Basic Local Alignment Search Tool)

against a family of sequences in a

database.5 Second, a profile of a sequence

can be generated using HMMs.21,22 For

instance, HMMs were used to generate

profiles based on the positive sequences

only and a Fisher kernel was designed for

using SVMs to detect remote protein

homologies.21,22 The gradient vector of a

sequence is computed with respect to the

trained model. Each element of the

gradient vector corresponds to a

parameter of the HMMs. SVMs were

trained on both positive and negative

gradient vectors. Two methods

(generating profiles using HMMs and

homology alignment methods) have been

compared for classifying G-protein

coupled receptors.23 The simulation

showed that SVMs with HMM profiles

performed the best. The profile method

Chemical descriptor

Fisher kernel
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Figure 5: An illustration of the development of bio-basis (BB) function.
As IPRS is more similar to KPRT than YKAE, its similarity with KPRT is
larger that that with YKAE; see the right-hand figure

Numerical vector

Sequence

Classifier

Feature vector

Pairwise homology alignment, bio–basis function

Composition, profile, distributed encoding

Figure 6: A comparison between two types of coding mechanisms. It
can be seen that the pairwise homology alignment and bio-basis function
methods directly transform sequences to features, which reduces the
possibility of information loss when extracting numerical attributes
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was also used for the prediction of

secondary structures.24

Liao and Noble used pairwise

homology alignment scores as features for

training SVMs in protein homology

detection.25,26 An SVM classifier was then

trained on these features. The work

proved that this pairwise-SVM performed

better than Fisher-SVM.21,22 SVMs were

also used to classify proteins with remote

homology into functional and structural

families based on sequence homology.27

In that work, each feature is the

occurrence of a specific k-mer

(subsequence with k residues) in a

sequence. Recently, SVMs were used to

predict disordered regions in proteins,

where a profile was formulated using PSI-

BLAST (Protein Specific Iterated

BLAST) for each sequence against a non-

redundant sequence database.28

Moreover, SVMs were used to detect

remote homology between protein

sequences, which cannot be done

sufficiently when using conventional

methods such as BLAST or FastA (based

on the idea of identifying short ‘words’ or

k-tuples common to both sequences

under comparison).29

Subsequence
Since its invention in 1988,6 the

distributed encoding method has been

widely used for the analysis of biological

subsequences using SVMs. For instance, it

was used for the prediction of translation

initiation sites.30 Interestingly, the work

designed a novel kernel function which

simply counted the number of nucleotides

that coincide between two sequences.

The kernel function was further improved

based on the biological knowledge that

local correlation information is important

for translation initiation sites. It was also

used for the classification of proteins with

a selective kernel scaling method,31 the

prediction of the alpha and beta turns,32

the prediction of phosphorylation sites,33

T-cell receptor34 and the prediction of

protein–protein interactions.35

The bio-basis function was initially

developed for implementing the bio-basis

function neural network.7 The method

has been used for the prediction of trypsin

cleavage sites,7 HIV cleavage sites,10

hepatitis C virus protease cleavage sites,36

signal peptide cleavage sites,37 disordered

protein prediction,38 phosphorylation site

prediction39 and the prediction of the

O-linkage sites in glycoproteins.40 In all

cases, the bio-basis function neural

network was more successful than other

classification algorithms, such as decision

trees and neural network with the back-

propagation algorithm. In order to

improve the performance when using the

bio-basis function, bio-support vector

machine (bio-SVM) was developed for

the prediction of protease cleavage sites in

proteins.41 The difference between the

bio-basis function neural network and

bio-SVM is that the former searches for a

hyper-plane that minimises the distance

(error) between all the subsequences and

the hyper-plane, while the latter searches

for the hyper-plane that maximises the

margin for generalisation. Based on this,

the bio-SVM can improve the

generalisation performance in analysing

subsequence data.

Table 2 gives a summary of the

prediction accuracy when applying SVMs

to different applications as mentioned

above.

FUTURE RESEARCH
DIRECTIONS
Although SVMs have been widely applied

to the analysis of biological sequences,

some issues still need further research,

particularly kernel design and negative

data selection.

There are two types of kernel functions

currently, residue frequency-based kernel

functions and homology-based kernel

functions. With a residue frequency-based

kernel function, the frequency of the

matched or mismatched residues from

two sequences is calculated as the

similarity between two sequences. For

instance, a dot product kernel is a residue-

matching kernel function and was used in

analysing subsequences where the nucleic

acids were encoded using the distributed

Pairwise-SVM

Fisher-SVM

Bio-SVM
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encoding method.30 As the distributed

encoding method produces orthogonal

binary vectors, the output of this function

is exactly the number of the identical

nucleic acids in two subsequences. The

mismatch kernel function is another

residue-matching kernel function,27

where sequence similarity was measured

based on the shared occurrence of fixed-

length subsequences in data. With a

homology-based kernel function, the

homology alignment between two

sequences is calculated using a mutation

matrix as the similarity between two

sequences. The Fisher kernel function

used in Fisher-SVMs,21,22 the pairwise

kernel function in pairwise-SVM25,26 and

the bio-basis function in the bio-SVM41

are homology kernel functions. The

residue frequency-based kernel functions

do not need any prior knowledge of

selecting the best mutation matrix for use,

but the frequency may not be an accurate

method for coding biological information

in sequences. The homology-based kernel

functions are more biological sound, but

the determination of the best mutation

matrix is not an easy issue. An important

research direction is the study of a unified

method for designing kernel functions

which are both biological sound and less

dependent on the prior knowledge of

mutation matrix selection.

In both whole sequence and

subsequence analysis, positive (functional)

class has a much smaller proportion of

data. The use of data with unbalanced

distribution may result in a model with

poor performance. A recent study

suggested an alternative way to deal with

this issue, where the negative (non-

functional) sequences were divided into a

couple of subsets, each of which was

joined with the same positive sequence set

for modelling.16 Generally, many negative

sequences could be redundant. Including

the redundant negative sequences for

training is wasteful of resources. The

other commonly used method in data

engineering is random selection that

reduces the size of the negative sequences

to roughly the same size as the positive

sequences.45 However, this cannot avoid

the inclusion of redundant sequences in a

data set for modelling. Genetic algorithm

and mutual information have therefore

been used for selecting the most

appropriate training subsequences.10,39

However, the large diversity in negative

sequences prevents the successful use of

these methods. The use of the principle of

SVMs to learn the generalisation margin

Table 2: A summary of the prediction accuracy of applying SVMs

Reference ANN HMM BLAST SVM

12 n.a. n.a. n.a. 89.20%
13 66.00% 73.00% n.a. 79.40%
14 n.a. n.a. n.a. 74.00%
15 n.a. n.a. n.a. 72.40%
17 n.a. n.a. 0.74* 0.78*
18 n.a. n.a. n.a. 86.5–99.4%
19 n.a. n.a. n.a. 81.00–96.8%
20 n.a. n.a. n.a. 87.90–97.80%
23 51.00% 70% 75.50% 86.30%
24 77.00% n.a. n.a. 77.30%
28 74.70% n.a. n.a. 75.40%
29 n.a. n.a. n.a. 0.87*
30 84.60% n.a. n.a. 88.60%
34 n.a. n.a. n.a. 87.90%
41 90.0% n.a. n.a. 91.20%
42 n.a. n.a. n.a. 85.40%
43 n.a. n.a. n.a. 75.40%

*The area under the receiver operating characteristic (ROC) curve.44
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incrementally can be a future research

direction for this issue.

CONCLUSION
This review has discussed the applications

of support vector machines to the analysis

of biological data, mainly focusing on

biological sequences, ie protein and DNA

sequences. SVMs have also been applied

to many other biological data, such as

gene expression data.46,47 There is not

enough space here to discuss this

important area in detail. However,

dealing with sequence data with non-

numerical attributes is more of a challenge

as most existing coding methods have not

been able to code biological information

from sequences efficiently.

There are in general three stages in

using SVMs to analyse protein and DNA

sequences. In the first stage, the

composition and distributed encoding

methods are widely used. In the second

stage, HMMs are used to generate profiles

for families of sequences. From this,

profile features are generated. As the

profile method uses only positive data

leading to weakened prediction accuracy,

homology alignment has been used in the

third stage. As the homology alignment

method for SVMs still has some

difficulties in modelling, more advanced

methods, particularly advanced kernel

functions, are sought for further

improvement of the prediction

performance.
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