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ABSTRACT

The paper describes an investigation into the use of neural networks for the

direct classification of river water quality from biological data. The theoretical

basis of biological monitoring is briefly explained and the most commonly used

methods are discussed, together with some recently developed computer-based

methods. The biological basis of the study is iully described, while it is assumed

that the reader has a basic understanding of artificial neural networks. The

networks used were multi-layer perceptrons with a single hidden layer of eight

nodes and an output layer of five nodes, one for each of the five biological-based

water quality classes adopted for use in this study. Two different input sets were

tested: one based upon the states of existence, in field samples, of forty-one key

biological indicator organisms; and the other based upon twelve inputs derived

from principal component analysis of the field data. Fifty-three field samples,

previously classified by an expert river ecologist, were used for both the training

and the testing of the networks, but independence between the training and test

sets was maintained using one-fold cross validation. Despite the limitations of

the data set, the results show that neural networks have potential for use as

direct classifiers of river water quality from biological field data.

INTRODUCTION

Increasing importance is being placed on the use of riverine ecology as a means

of monitoring and classifying river quality, both in terms of its water quality and

its broader environmental quality. The various biological flora and fauna, such as

attached algae, macrophytes and benthic (or river bed) macro-invertebrates, are

seen as continuous monitors of the river's 'health', and field data on these are

used to classify the river. In the case of water quality monitoring and
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classification, the biological methods are used to complement the more

traditional chemical methods. This paper describes a new approach to the

interpretation of biological data, based on neural network techniques. It is

applied to the classification of river water quality, but could equally be applied to

the classification of environmental quality. For a fuller introduction to biological

monitoring theory and techniques the interested reader is referred to De Pauw

and Hawkes [5], Hawkes [6,7,8,9], Hawkes and Hughes [10], Hellawell [11]

and Metcalfe[15j.

At present the most suitable single group for monitoring purposes is

considered to be the benthic macro-invertebrates. These animals form part of the

community associated with the river bed and are relatively immobile, thus they

are representative of the sample location. They are present in all rivers, except in

cases of extreme pollution, and cover a range of life modes and trophic levels.

Taxonomic classification of these organisms to family or genus level is not

exacting, and qualitative identification can often be carried out at the river bank.

Also, the different species are known to have different sensitivities to pollutants,

thus the structure of the benthic macro-invertebrate community is affected by

both degradable organic matter (sewage) and toxic pollutants (pesticides and

heavy metals).

Present U.K. methods of interpreting samples of benthic macro-invertebrates

are based around score systems. The most commonly used systems in Europe

are based on the British Monitoring Working Party (BMWP) score (Department

of Environment [4]), the Average Score Per Taxon (ASPT), the Trent Biotic

Index (TBI) (Woodiwiss [23]) and the Saprobic Index (Sladecek [20]). The

BMWP system allocates a number to each family that is indicative of its

sensitivity to organic pollution. The overall BMWP score is then calculated from

the summation of these numbers for all the families present in the sample, and

the ASPT is derived by dividing the BMWP score by the number of scoring

families present. The TBI uses the most sensitive taxa present to determine the

base point on a classification table and then uses the total number of groups

present to pinpoint the final score. The BMWP and TBI systems do not take into

account the abundance of the taxa, only their presence or absence, but the

Saprobic Index and Chandler score (Chandler [3]) do incorporate abundance. In

addition, the Saprobic Index, being based upon the Saprobic System of

Kolkwitz and Marsson [13, 14], accommodates flora and fauna other than the

benthic macro-invertebrates. All of these systems are subjective since there is no

fundamental basis for the numbers they used. Consequently, widely different

view points are held by biologists on their relative merits.

A recent development is the River Invertebrate Prediction and Classification

System (RIVPACS) (Moss et. al. [17], Wright et al. [24]), which uses multi-

variate statistical techniques to predict the benthic community structure at any

site in the UK on the assumption that the river is unpolluted . From this structure

the expected number of taxa, BMWP score and ASPT are determined and then
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compared with their actual values derived from samples taken at the site. Ratios

of the actual to expected values, termed Environmental Quality Indices (EQ1),

are then used to represent the environmental stress at the site. The National

Rivers Authority [18] has proposed that this be incorporated into a new

classification system for the UK. In its present form however the RIVPACS

system is strictly only suitable for the classification of environmental quality, not

water quality. To be an effective classifier of water quality its development

process would have to be repeated using samples taken from a single biotope,

preferably riffles.

More recently, a team of researchers at Aston University has been

investigating the possibility of applying some of the techniques of Artificial

Intelligence (AI) to river water quality monitoring. In particular, they have been

examining the potential of two very different approaches (Walley [21]): a

knowledge-based systems approach based on methods of reasoning under

uncertainty; and a neural networks approach. The former has already produced

some encouraging results (Walley et at. [22], Boyd et al. [2]), and the first

results of the latter are presented here in this paper. The paper assumes that the

reader has a basic knowledge of neural networks, but for those who do not the

authors recommend the introductory text by Hertz el al. [12]

BIOLOGICAL FOUNDATIONS OF THE STUDY

The aim of this project was to develop a neural network capable of directly

interpreting benthic samples of macro-invertebrate into water quality terms. The

water quality classes used were designed to mirror the five chemical classes (la,

Ib, 2, 3 and 4) presently in use in the UK, and were designated Bla, Bib, B2,

B3 and B4 to distinguish them from the chemical classes. Forty-one taxa were

used to provide the input to the network. These were initially selected by the

team's domain expert, H. A. Hawkes - a leading biologist within this field, for

use in the knowledge-based systems as key indicators of river water quality. All

were commonly occurring benthic macro-invertebrates, having sensitivities

which collectively span the whole range of water quality. Different levels of

taxonomy are used for each taxon, some being identified to species level, like

Gammarus pule* and Asellus aquaticus, while others are only identified to

genus or family level. All were selected for their relative ease of identification.

The Hill list is given in Table 1.

The network attempts to provide a direct mapping from benthic sample data

to river water quality class in a form which mirrors the chemical classification.

This system and the knowledge-based systems mentioned earlier are the only

systems which aim to do this. All other biological systems produce scores or

indices which then have to be interpreted into water quality terms. In addition,

few of these systems make any allowance in their calculations for the abundance

levels of individual taxa in the sample.
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Table 1. List of Forty-One Taxa used as Indicator Species and Definitions of

Abundance Levels.

(Ranges: Rare = 1 to nj-1; Established = n] to n2-l; Abundant >= ni.)

Taxon

Polycelis nigra

Dendrocoelum lacteum

Potamopyrgus jenkinsi

Bithynia tentaculata

Lymnaea peregra

Planorbis spp.

Ancylusfluvtatilis

Sphaeriwn spp.

Pisidhtm spp.

TUBIFICIDAE

LUMBRICUL1DAE

Glossiphoma spp.

Hellobdella stagnalis

Erpobdella octoculata

HYDRACAR1NA

Asellus aquations

(jammarns pulex

Baetisrhodani

Rhithrogena spp.

Heptagenm spp.

Ecdyonurus spp.

nl n2 Taxon nl n2

2

2

3

3

3

2

3

3

3

5

5

2

2

3

3

3

3

3

3

2

3

10

10

50

20

50

10

20

20

20

200

100

10

10

20

20

50

50

50

20

10

20

Ephemerella ignita

Caenis spp.

Amphinemura sulcicollis

Leuctra spp.

Isoperla grammatica

HALIPIDAE

DYTISCIDAE

ELMINTH1DAE

Sialis lutaria

Rhyacophila spp.

Glossosoma spp.

Agapetus spp.

POLYCENTROPODIDAE

Hydropsyche angustipennis

Other HYDROPSYCHIDAE

HYDROPT1L1DAE

LIMNEPH1L1DAE

CERA TOPOGONJDAE

Chironomus riparius

Simulium ornatum

3

3

2

3

2

3

2

2

2

3

3

3

3

3

3

3

3

2

5

3

20

20

10

20

10

20

10

10

10

20

50

50

20

50

20

50

20

10

100

50

In a system based on neural networks it is possible to input the actual number

of individuals found in each taxon, but in practice abundance levels are recorded

on a banded scale because it is too time consuming to count the exact number of

each. For example, abundance levels may be classified as rare (1-2 individuals

present), common (3-10) , established (11-20), abundant (21-100), very

abundant (100 +). In this study four levels of abundance were used: absent, rare,

established and abundant, these being the same as those used by Walley et. ai

[22] and Boyd et ai [12] in the development of their knowledge based systems.

An interesting feature of this system is that the numerical values used to separate

the different levels vary from taxon to taxon. Thus, for example, the range over

which Tubificidae (sludge worms) are considered to be established is far greater

than that for the less numerous species, like the glossiphonid family of leeches.

The ranges for each taxon were selected by the domain expert in recognition of

their normal relative abundances. Details of the intervals used for each of the

forty-one taxa are given in Table 1.
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When classifying the 53 field samples the expert refined the Bla to B4 scale

into four sub-classes between each of the main classes. Thus a progressive

improvement in water quality from B3 to B2 would on his scale be represented

as B3, B3+, B3++, B2-, B2- B2, where a'+' represents an improvement and a'-'

represents a degradation of the quality class. Thus each of the expert's sub-

divisions represented 0.2 of a main class interval.

IMPLEMENTATION AND TESTING

The neural networks used for this study were multi-layer perceptrons, which

were trained using the standard back propagation algorithm (Rumeihart et al.

[19]). All networks had one hidden layer with 8 processing elements and an

output layer with five processing elements, each corresponding to one of the five

quality classes, as indicated in Figure 1.

( Bla ') i'mbj ( B2 ) ( B3 }
04 River Water Quality

Output - 5 Processing

Elements

Hidden Layer

8 Processing

Elements

Input layer - 41 units for ftill data set; 12 units for PC A data

Figure 1. The network topology used in this paper.

Two different approaches to data input were tried, one using ail forty-one

taxa as input to the networks and the other using twelve inputs derived from the

eigenvectors of a principal component analysis (PCA). The latter can be

considered as a pre-processing measure designed to reduce the noise in the data

and also the effect of over-parameterisation of the network.

Two different indicators were used to test the performance of the networks:

a) 77w percentage of correctly predicted whole-class classifications.

Ln this case the network's classification was taken as that indicated by the

output node with highest activation level..
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b) The root mean square of the error between the network's and expert's

classification indices.

The classification index (CI) is based on an interval scale varying from 0 for

Class Bla to 4 for Class B4. Since each of the expert's sub-division

represented 0.2 on this scale, Class B2+ is equivalent to a CI of 1.8 and Bib-

is equivalent to 1.2. The Classification Index was first defined by Walley et

al. [22] for the interpretation of the probabilistic output from their Bayesian

model into a single classification number. Thus, in keeping with their

definition, the networks' classification indices were calculated from the

normalised outputs of the five output nodes, as given by equation (1) below:

53

where Cl" is the network's Classification Index for the pih pattern; and

Y£ is the normalised activation of the /th output for the /7th pattern.

The root mean square of the errors (Erms) between the network's

classification CI% and the expert's classification Clf is then given by:

(2)

In view of the relatively limited amount of data available for the training of

the networks, a 1-fold cross validation scheme was used to test the performance

of the networks. This allows best use to be made of the available data whilst

maintaining independence between the training and the test sets, thus ensuring

that the tests were carried out on 'unseen' data. Cross-validation uses the "leave-

one-out philosophy" of the non-parametric jack-knife technique and uses the

left-out sample to test the estimator. Thus each network was trained using 52 of

the 53 samples and its predictive ability then tested against the remaining sample.

This process was then repeated for each and every sample.

The sigmoid activation function used within the processing elements, with the

inputs and outputs mapped between 0.1 and 0.9. The input values used to

represent the various states of existence, or abundance levels, of the taxa are

shown in Table 2. These were selected in the light of experience gained from the

expert systems studies and after carrying out a few pilot tests.

Table 2. Input Values used for the Abundance Levels.

State

Abundant

Established

Rare

Absent

Input Value

0.9

0.6

0.15

0.1
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RESULTS

Table 3 below shows the classification indices produced by the networks for

each of the fifty-three field samples set against the expert's classifications, also

expressed in CI terms. These are shown in graphical form in Figures 2a and 2b

overleaf. From the statistics shown on the graphs it is clear that the 41 raw data

input network performed better than the PC A-12 input network, the former

giving an Ê ns value of 0.43 of a class interval compared to 0.52 for the latter.

Table 4 shows the confusion matrix based on the results of the whole-class

classification tests, and on the basis of the %Correct performance indicator this

also shows that the 41 input net performed better than the 12 input net, albeit

very slightly (i.e. 67.9% compared to 66.0%).

Table 3. Results of performance tests showing the a networks predicted CI and

the expert classification.

Sample

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Expert's

CÎ

1.6

0.8

1.8

0.8

1.8

0.4

1.0

2.4

2.8

2.6

2.8

2.8

3.0

2.8

2.6

1.8

2.0

4.0

3.8

2.8

4.0

3.2

3.4

3.0

0.2
0.4

0.2

41 Input
Network's

CI

1.17

1.93

1.71

1.01

1.99

0.23

0.98

3.00

2.80

2.98

2.92

3.00

2.97

2.77

2.34

1.74

2.00

3.97

3.74

3.00

4.00

3.99

3.98

2.90

0.76

0.21

0.04

12 Input

Network's

CI

1.02

2.00

1.46

1.05

2.99

0.40

0.97

2.97

3.00

3.00

3.00

3.00

3.01

2.89

2.99

1.72

2.00

3.90

3.48

3.11

3.78

3.99

3.73

2.94

0.33

0.27

0.09

Sample

No.

28

29

30

31

32

33

34

35

36

37

38

39

40*

41

42

43

44

45

46

47

48

49

50

51

52

53

Expert's

cf

0.0

1.6

4.0

0.8

1.2

2.6

3.0

3.0

2.8

2.8

2.8

4.0

4.0

0.8

0.8

1.8

0.2

1.8

3.8

3.6

3.0

3.0

2.6

1.0

1.8

2.8

41 Input

Network's

CI

0.37

1.52

4.00

0.40

2.20

3.00

2.92

3.35

2.96

2.72

2.42

3.95

3.36

0.95

1.04

2.68

0.10

2.99

3.98

3.61

2.89

2.99

3.00

1.52

2.84

2.15

12 Input

Network's

CI

0.04

1.09

3.59

0.96

3.00

3.00

2.97

3.06

3.00

3.00

3.04

3.42

3.15

1.00

1.12

2.41

0.50

2.77

3.99

3.98

3.61

2.99

2.99

1.96
2.67

2.13
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4

3.5

0.5 1 1.5 2 2.5 3 3.5 4
Expert's Classification

0 0.5 1 1.5 2 2.5 3 3.5 4
Expert's Classification

Figure 2. Results of the performance tests showing the networks' classifications

plotted against the expert's for: (a) the network with inputs from all 41

taxa; and (b) the network with the 12 inputs derived from principal

component analysis.

Table 4. Confusion matrices showing the performance of the two individual

networks predicted classification and the expert's predicted class.

Expert's

Class

Predicted Class (41 Input Net) Predicted Class (12 Input Net)

Bla

Bib

B2

B3

B4

Bla

5

1

Bib

1

4

2

B2

9

4

3

B3

1

4

16

1

B4

o2.

7

% Correct = 67.9

Bla

6

Bib

5

4

B2

2

2

1

B3

1

4

17

3

B4

^
j

5

% Correct = 66.0

DISCUSSION

The results of the performance tests showed that about 67 percent of the neural

networks' classifications conformed with those of the expert on a whole-class

basis, and that 98 percent were within one class interval of the expert's

classification. The networks which used the 12 PCA inputs performed marginally

worse that those based upon the 41 raw data inputs, showing that little

information, apart from noise, was lost from the dimensionality reduction.

Examination of Figures 2a and 2b reveals that both networks tend to

underestimate the quality of good quality waters and slightly overestimate the

quality of poor quality waters. This was also found to be the case by Walley et
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al. [22] during the early stages of the development of the Bayesian inference

model, until it was realised that the importance of 'absence' evidence was being

under-valued. With this in mind, further work is being undertaken to establish a

better set of values for the abundance levels.

The performance of the networks as classifiers of river water quality was not

as good as that achieved using Bayesian inference (Walley et al. [22]) or

Dempster-Shafer reasoning (Boyd et at. [2]), but this was only to be expected

since these knowledge-based systems incorporated the results of an extensive

knowledge acquisition exercise. All three studies used the same set of field data

and were therefore comparable in that respect, but the neural networks

depended entirely upon the field data for their 'knowledge'. Given a larger set of

good quality training data it is confidently anticipated that the network's

performance will improve to a level comparable to that of the knowledge-based

systems. In fact, the performance of the BMW? score and ASPT on this same

set of data (Walley [21]) was similar to that of the networks. Thus the networks

have already achieved a level of performance similar to that of nationally

recognised systems in the UK.

When trained on relatively small training sets, as in this study, neural

networks suffer from over parameterisation and data over-fitting becomes far

more likely (Moody [16], Baum and Haussler [I]). Thus they lose much of their

inherent ability to generalise and are influenced far more by outliers in the

training set. One advantage of the Bayesian and Dempster-Shafer models is that

they are capable of identifying conflicting evidence in the field data (e.g. mis-

identified taxa) and offer the possibility of correcting for this prior to classifying

the sample. In the case of neural networks this can presently only be achieved by

pre-processing the data.

However, a current limitation of the knowledge-based systems is that they

rely on the samples being taken from riffle biotopes (i.e. fast flowing sections

with an eroding sub-stratum). It is within these areas that the water quality is

the major factor affecting community composition, and hence these sites are the

most reliable for the direct interpretation of the water quality. In fact, one

problem relating to the data set used throughout these studies has been that the

authors have not been certain as to what extent the samples were taken from

riffle biotopes, since they were derived from historic records. Consequently, this

may have contributed to the error in some of the classifications. Extension of the

knowledge-based systems to overcome this limitation would not necessarily

improve the classification of water quality, because sampling from mixed

biotopes introduces many more extraneous factors. However, interest in the

development of systems to classify environmental quality is growing, and these

must, by their very nature, be capable of interpreting composite samples from a

wide range of biotopes. Given an appropriate training set, with catchment,

climatic and site-specific geomorphic data in addition to nnxed-biotope

biological data, a neural network could classify environmental quality, and
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possibly water quality, taking into account the various physical and other factors

influencing the biology.

Despite the limitations of the data, this study has demonstrated that neural

networks offer a powerful new approach to the classification of river water

quality based on the direct interpretation of biological data. Consequently, the

authors are currently compiling a much larger and more reliable training set on

which to develop their future work. This work will centre around the encoding

of available a priori information into the network, and the use of neural models

with fewer parameters. Geomorphologic and seasonal factors will be included as

input to allow better representation of regional and seasonal variations in

community structures.

CONCLUSION

A simple neural network model has been applied to the problem of directly

interpreting benthic macro-invertebrate data into river water quality class. It has

been demonstrated that it is possible to produce a mapping from the sample data

to a biologically-based water quality classification system. This was achieved

despite the inadequacy of the training data and the subsequent limitation which

this placed on the complexity of the network used. The study has thus

demonstrated that neural networks have considerable potential for use as

classifiers of river water quality from biological data..
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