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ABSTRACT

Classical biological control, i.e. the introduction and release of exotic insects,
mites, or pathogens to give permanent control, is the predominant method in weed
biocontrol. Inundative releases of predators and integrated pest management are
less widely used. The United States, Australia, South Africa, Canada, and New
Zealand use biocontrol the most. Weeds in natural ecosystems are increasingly
becoming targets for biocontrol. Discussion continues on agent selection, but
host-specificity testing is well developed and reliable. Post-release evaluation of
impact is increasing, both on the target weed and on non-target plants. Control
of aquatic weeds has been a notable success. Alien plant problems are increasing
worldwide, and biocontrol offers the only safe, economic, and environmentally
sustainable solution.

OVERVIEW

Biological control (biocontrol) of weeds has a long history and a good success
rate (94). Biocontrol of weeds has followed a somewhat different track from
biocontrol of arthropod pests: With weeds, host-testing is given greater im-
portance, and classical biocontrol dominates over integrated pest management
(IPM). Since earlier reviews of weed biocontrol appeared (25, 73, 169), tech-
niques for assessing and evaluating risks have improved, but challenges to use
of the approach have increased (88, 157).

Weeds are the most significant of the economic and environmental pests,
and they are the target of much of the pesticides applied throughout the world.
For example, herbicides comprise 47% of the world agrochemical sales, and
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insecticides 29% (172). Weeding, usually by hand, accounts for up to 60%
of total pre-harvest labor input in the developing world (170). Invasive weeds
cause enormous environmental damage, which is only now beginning to be
recognized (see later section).

The literature on biological control of weeds is relatively compact. A com-
plete list of all agents used worldwide is available (94), and an updated fourth
edition will be published early in 1998 (95). The catalog is based on informa-
tion supplied by weed biocontrol researchers; consequently, it is more complete
than any compilation of published records, which are grossly inadequate in this
field, as in many other areas of applied entomology.

Reports on current projects in the biocontrol of weeds are presented at the
International Symposia on the Biological Control of Weeds, now held every
three to four years. Julien (94) and the proceedings of the last three symposia
(38, 39, 124) indicate who is active in biocontrol of weeds. For this reason,
I do not list all programs of biological control of weeds worldwide; rather I
concentrate in this review on issues and ideas of importance in the field.

Definitions
Nordlund (131) reviewed the different concepts of biocontrol as applied to
weeds and insects and, in particular, the different “conceptual models” of bio-
control used by entomologists and plant pathologists. Following him, I use
DeBach’s 1964 definition of biological control as “the actions of parasites,
predators, and pathogens in maintaining another organism’s density at a lower
average than would occur in their absence.” This definition contains three
different techniques for applied biocontrol: (a) “conservation”—protection or
maintenance of existing populations of biocontrol agents; (b) “augmentation”—
regular action to increase populations of biocontrol agents, either by periodic
releases or by environmental manipulation; and (c) “classical biocontrol”—the
importation and release of exotic biocontrol agents, with the expectation that
the agents will become established and further releases will not be necessary.
Classical biocontrol is the mainstay of weed biological control; conservation is
hardly used (74). Augmentation is used with mycoherbicides and some insects,
as well as by the deliberate use of grazing animals for weed control (143).

Augmentation Using Pathogens
An extensive literature on potential bioherbicides exists, almost entirely about
fungi, but there is little actual use of these as commercial or practical meth-
ods in the field (125). Particularly in the United States, weed scientists of-
ten use the term biocontrol to refer solely to the use of pathogens as myco-
herbicides, ignoring the existence of classical biocontrol (7, 145). However,
only three mycoherbicides have ever been registered and used commercially—
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DeVine (Phytophthora palmivora), Collego (Colletotrichum gloeosporioides
f. sp. aeschynomenee), and BioMal (Colletotrichum gloeosporioidesf. sp.
malvae). All were subsequently withdrawn for commercial reasons (79, 125).
A Japanese company is launching three new mycoherbicides against rice weeds
and for golf course turf [Biocontrol News Inf.17(4):62N, unpublished data];
it remains to be seen if these will be commercially viable. Research continues
on many potential bioherbicides, but problems with mass-production, formula-
tion, and commercialization continue to prevent their use (4, 125). As practical,
economically viable alternatives to chemical or mechanical weed control, bio-
herbicides are still unproven.

Augmentation Using Insects
Few examples exist where native insects are artificially increased or otherwise
manipulated for the control of native weeds (86, 94, 142). Manipulation of
introduced biocontrol agents is more widely used, when the agent dispersal
capacity is poor and the weed occurs in discrete scattered areas. Cacti in
Australia and South Africa are controlled through the regular redistribution of
mealybugs into isolated infestations (87, 123). In Australia, the floating fern
salvinia (Salvinia molesta) is controlled in ponds and other water bodies by
the release of the weevilCyrtobagous salviniaesupplied in bags of infested
salvinia (R Wood, personal communication). The management of water weeds
in the United States relies heavily on the manipulative use of biocontrol agents,
and special information packages have been developed to train operational
personnel in the procedures (66).

CLASSICAL BIOLOGICAL CONTROL

Legislation
Classical biocontrol depends on the introduction of exotic insects and pathogens
and as such is subject to legislative control. The current system in Australia was
well reviewed by Paton (137). Two acts apply: the Quarantine Act, designed
to keep out diseases and agricultural pests, and the Wildlife Protection Act, de-
signed to control trade in endangered wildlife. Issue of permits is administered
by the Australian Quarantine Inspection Service (AQIS), following protocols
developed over the years, and with applications reviewed by scientists in each
of the eight Australian states and territories. The Biological Control Act of
1984, designed to deal with conflicts of interest such as that over Paterson’s
curse,Echium plantagineum, provides a legal basis for introduction of control
agents (34, 74). Unfortunately, review procedures under the act are protracted
and onerous, and the act was not invoked until the introduction of calicivirus to
control rabbits in 1996 (137; G Maynard, personal communication).
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Legislation in Canada and the United States was reviewed by Harris (74).
Introduction of biocontrol agents is controlled by the Federal Plant Pest Act
of 1957 in the United States and the Plant Protection Act of 1990 in Canada.
Both acts were designed to prevent introduction of insect pests of plants, with
the interesting result that weed biocontrol agents became “beneficial pests”!
As in Australia, the legislation was written in broad terms, and therefore the
regulations and guidelines applied by the US Department of Agriculture and
by Agriculture Canada are important in practice.

In countries where weed biocontrol is infrequently practiced, the lack of any
agreed protocols for introductions or any defined authority to grant permits
can be a major problem, particularly where classical biocontrol of arthropods
is also rare. Usually weed biocontrol can follow the procedure existing for
insect biocontrol, as in Indonesia (S Tjitrosoedirdjo, personal communication).
In Britain, determination of who could authorize the release of agents against
bracken was a problem (SV Fowler, personal communication). The United
Nations Food and Agricultural Organization (FAO) has developed the Interna-
tional Code for the Import and Release of Exotic Biological Control Agents
(101). By clarifying procedures and responsibilities, the code, approved by
member states in 1995, is particularly helpful for countries without a tradition
of biocontrol.

Countries Actively Involved
The five most active countries, rated by numbers of weed species targeted
and agents released, are the United States, Australia, South Africa, Canada,
and New Zealand, with the United States and Australia nearly twice as ac-
tive as the others (Table 1). All these countries have a long history of suc-
cessful weed biocontrol. Programs have been reviewed by Goeden (59) for
the United States, Harris (74) for Canada, Bruzzese & Cullen (14) for some
projects in Australia, and Hoffmann (81, 82) for South Africa. Significant

Table 1 Number of agent species released and weed
species targeted by 1990 in the five most active countries
[adapted from Hoffmann (82)]

Agent species Weed species
Country released targeted

United States, 130 54
including Hawaii

Australia 123 45
South Africa 61 28
Canada 53 18
New Zealand 24 15
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cooperation occurs between the United States and Canada and between South
Africa, Australia, and New Zealand in addressing common weed problems. For
foreign exploration, all countries have used the International Institute of Bio-
logical Control (IIBC) (58, 94, 114), and all except Canada also undertake their
own exploration programs, with scientists based overseas for varying periods
(5, 10, 62, 71, 114, 153). Pathogens as well as insects are increasingly used by
all major countries (13, 48, 56, 85).

Other countries involved in classical biocontrol are Malaysia (134), Thai-
land, India (78), Indonesia, Vietnam, Papua New Guinea, and China. Active
biocontrol projects occur in Africa (Uganda, Zambia, Tanzania, Kenya, Ghana,
Côte d’Ivoire, and Benin) and in South America (Argentina and Chile) (95, 97).

Apart from unsuccessful releases of the chrysomelidAltica carduorumagainst
Canada thistle,Cirsium arvense, in the United Kingdom, the only releases of
biocontrol agents against weeds in Europe were in the former USSR (94, 148).
No agents were released in the biological control program against bracken in
Britain (50; SV Fowler, personal communication). Recent initiatives have been
made towards biocontrol of some crop weeds in Europe (127).

CHOICE OF TARGET WEEDS

Probability of Success
Decisions on whether weeds are suitable targets for biocontrol programs are
based on the benefits to be achieved plus estimates of the probability of suc-
cess (139, 169). The more widespread and damaging the weed, the greater the
potential benefits, but these may be hard to quantify for environmental weeds
(10, 52, 71). Estimating the probability of success in a biocontrol program de-
pends on a number of difficult-to-predict factors. Successful biocontrol depends
on three main variables: the damage each individual agent can do to the plant;
the ecology of the agent, which determines the population density achieved in
the new environment; and the ecology of the weed, which determines whether
that total damage is significant in reducing its population (33). The first is
relatively easy to determine; the problem is predicting the other two. Untested
theories may become established dogma and adversely affect the decisions
made (17). Biocontrol of trees has been believed to be particularly difficult, yet
there are several examples of tree populations controlled by insects (42, 107).
Classical biocontrol has been seen as unsuitable for weeds of annual crops or
other frequently disturbed environments (46, 148), yet there are examples of
successful control of crop weeds (19, 110, 126). Plants that reproduce sexually
were judged hard to control because of their genetic variation (16), but further
analysis showed this to be untrue (17).

All authors agree that successful biocontrol in one country greatly increases
the chances of success in another (139), though there are examples of successful
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control in one country and failure to control the same weed using the same
agents in other countries (27, 98, 99, 173). Prior use elsewhere also reduces the
cost of a biocontrol program, as the expensive overseas surveying and testing
are already completed (20, 45). Probability of success may be reduced where
the weed has close relatives of economic or conservation value because agents
that are selected must be monophagous, which is comparatively rare (132).
However, pathogens are often specific to a single plant species or even strain
(48, 76).

Conflicts of Interest
Serious conflicts of interest that arise from consideration of a plant as a weed
in one situation and a valued plant in another may prevent the use of biocontrol
(56, 73, 74). Special legislation may be required to remove the right of the
damaged party to sue and to provide for compensation for financial loss from
control of the plant (34). Where a plant is a serious weed in natural ecosystems
but is valuable in other contexts, payment of compensation may be an acceptable
solution if the economic value of the plant is minor, for example, strawberry
guava,Psidium cattleianum, and ginger,Hedychium gardnerianum, in Hawaii
(56). Where the economic value is great, biocontrol may be inappropriate [for
example, thePinusspp. used for forestry are considered major environmental
weeds in several countries (149)]. Restricting programs to the use of seed
predators to reduce spread may be an acceptable alternative (42).

Another conflict of interest involves native plants that are of conservation
value but may be serious weeds of agriculture or grazing land (40, 74). A
program to control bracken,Pterididium aquilinum, in the United Kingdom
(50) was abandoned after extensive agent testing because of requirements for
costly field cage tests and doubts over the wisdom of biocontrol of a native weed
(SV Fowler, personal communication). On the other hand, insects from South
America have been released in the United States to control the native snakeweed
Gutierreziaspp. (40), and introduced insects were used against nativeOpuntia
spp. in both the United States (60) and the West Indies (158).

Conflict over biocontrol of alien weeds in natural ecosystems may arise
from concern with maintaining or reestablishing the indigenous ecosystem.
Replacement of native vegetation by alien plants may favor some native animals,
and biocontrol may be opposed for fear that it will leave the native animals
without essential resources. Black cockatoos in the wheat belt of Western
Australia are now dependent on seed of the introduced weedEmex australis,
and concern over this delayed the release of biocontrol agents (J Scott, personal
communication). Where salt cedarTamarixspp. has replaced nativeSalixspp.
in the United States, endangered birds use the salt cedar for nesting; biocontrol
permits were refused for fear that the birds would be left with nowhere to nest
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or feed (41). In practice, successful biocontrol never eradicates the target weed
and usually takes 10 or more years, during which time native vegetation can
gradually replace the alien plant (161).

PROCEDURES

The steps involved in a weed biocontrol program (70, 169), after the initial
decision that classical biocontrol is appropriate, are overseas exploration (58);
selection and testing of agents (168); rearing and release; and evaluation. Over-
seas exploration requires correct identification of the weed and its country of
origin, which is not always straightforward (58, 169). Genetic analysis, based
on specific plant chemicals (85), isozymes (102), and DNA (122, 130), is being
used to identify and characterize the different strains of a weed and to facilitate
the collection of agents from the same strain and place of origin as the target
weed. This is particularly important for pathogens that are often strain-specific
(48, 76).

Agent Selection
Agent selection is the critical step, and the choice of the best agent is the “holy
grail” of weed biocontrol. On average, each agent tested and introduced requires
three scientist-years (73, 152), which, with technical support and facilities, cost
about $460,000 in 1997. Because the investment in each agent released is
substantial, there is economic pressure to choose the most appropriate agents.
Also of importance is assurance that the risk involved in introducing any new
agent (see later section) is justified by its potential contribution to successful
control (32).

Many theories or protocols have been proposed for choosing the best agent,
based on either post-hoc analyses of reported results or on pre-release studies of
agent impact in its native range (8, 33). Post-hoc analyses, often from Julien’s
catalog (94), suffer from the lack of objective criteria regarding “success” in
control achieved, or even in agent establishment (26, 27, 32, 33, 168). The the-
ory of “new associations” claimed that the success rate was higher for agents
collected from plants other than the target weed than for agents that had “co-
evolved” with the plant (84); however, this was disputed (61), and the theory
is now generally abandoned. Another theory proposed that the introduction
of several agents could lead to reduced control through competition (47); this
has been disproved, in practice as well as in theory (8, 10, 67). Protocols for
agent selection, although useful discussion points, are of little or no predictive
value (152), partly because success does not depend on the biology of the insect
as much as on its interaction with environmental factors such as climate and
parasites or predators (8, 58). Sometimes the “best” agent proves to be not as
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good as predicted (98, 173), whereas in other cases agents perform better than
expected (83, 117).

Predictions based on pre-release studies of agent impact in their native range
(8) may prove equally useless, chiefly because predicting the factors affecting
agent populations in the new country is impossible (98, 117). Predictions based
on climatic analysis need to be treated with caution (118) because the best
climatic match is no guarantee of success, whereas some agents have thrived
outside their “normal” climatic range (58, 116). In extreme climates such as
Canada, however, climate matching may be of greater importance (113).

Host-Specificity Testing
The necessity for detailed host-specificity testing of all agents before field
release has been an accepted doctrine since the biocontrol of prickly pear (44).
This approach is quite different from that generally used in arthropod biocontrol,
in which host testing of parasites or predators before release only began in
Australia in the 1980s and is still not customary in many countries, including the
United States (88). Tests of feeding preference are commonly performed on all
mobile stages (adults and mobile larvae or nymphs). Where larvae cannot move
between plants, adult oviposition choice is tested instead. Because oviposition
in itself does not usually cause significant damage, the critical factor is the
ability to feed and develop on the test plants (9, 31, 112, 167). Test results for
acceptable agents are published, but, with some exceptions (120, 135), results
for rejected agents are often not published, giving the impression that potential
agents are never rejected.

Host-specificity test lists have progressed from long lists of crop plants unre-
lated to the normal host to targeted lists of plants closely related to the weed and
including native species (49, 119, 120, 167). The aim is no longer to demon-
strate that a group of valued plants will not be attacked, but rather to determine
the potential host range of the agent and therefore which plants if any will be at
risk in the field (9, 31, 112, 167). An understanding of host specificity is greatly
improved when the insects attacking a complete taxonomic group of plants are
known (11, 62, 114, 155) or where the host relationships of a taxonomic group
of insects is studied (2, 54). Developing theories on the evolution of host speci-
ficity are having an impact on the understanding of host range. Evolution in
phytophagous insects is now generally agreed to have been from generalists to
specialists, with a progressive loss of genetic variation in ability to use different
host plants for oviposition or feeding (54). Thus, highly host-specific insects
introduced into a new country are most unlikely to become selected for ability
to use novel plants as hosts (108).

Interpretation of results of host-specificity tests poses some problems, which
are discussed in detail by Cullen (31). So long as the insects tested are from
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the same population as that to be released, are healthy and physiologically
ready to feed (e.g. not in diapause), and are provided with suitable plants, then
negative results, i.e. failure to feed on the test plants, are conclusive (31).
The major problem encountered by biocontrol researchers is the interpretation
of results in which feeding on non-target plants occurs in tests but not in the
wild. Such feeding may be an artifact of confinement, whereby restriction in
cages prevents normal host-finding behavior (5, 75). Use of larger cages and
more natural conditions may result in more normal behavior and more genuine
results (31, 119). However, sometimes it is the field data that is inadequate
(135). If extensive development or feeding occurs in laboratory tests on plants
that are not attacked in the country of origin, very careful analysis is needed
to determine whether other factors, such as specialized pupation requirements
(5) or aggregation responses to chemicals from the damaged plant (166), might
prevent attack on these plants under field conditions. If no such limiting factors
exist, then it must be assumed that attack will take place (119).

Open-field testing in the country of origin allows the insect to show its full
range of behavior (12, 21). The weakness of the method is that agent popula-
tions, and hence feeding pressure, are typically low and may be much lower
than potential populations in the new country (58). Testing must take into
account the possibility that very high population levels developing on the host
weed may result in starving insects dispersing onto adjacent crop or other plants
(31), causing significant damage even if development or long-term survival is
not possible (see below). For this reason, non-choice tests on closely related
at-risk plants must be part of the testing schedule (167).

Host testing can never give absolute answers, i.e. guarantee the agent will
never attack other plants, but it provides the information required for a pro-
cess of risk assessment (9, 112). When test results indicate attack will occur
on desirable native or crop plants, the decision whether or not to release the
agent is ultimately political, based on weighing the risks of release against the
consequences of alternative control methods. Agents have been released with
the knowledge that they would attack non-target plants, where the relative value
of the non-target plant was significantly lower than the damage (economic or
environmental) caused by the weed (119, 132). In such cases, resources must
be allocated for careful evaluation of the ultimate impact on both weed and
non-target plants.

Evaluation
Evaluation of biocontrol programs is essential to justify continued expendi-
ture (10). In the past, there has been little follow-up evaluation of biocontrol
programs (8), chiefly because financial sponsors took the view that it was un-
necessary. As a result, the criticism by opponents of biocontrol, that there has
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been little evaluation of the impact of biocontrol agents on nontarget organisms
(88), is unanswerable—there has also been little evaluation of the impact on
the target weed itself!

The first step in evaluation of the impact of biocontrol is pre-release stud-
ies of the weed in the target country (140), but too often these are not done
(117). Examples of good pre-release studies are those onMimosa pigrain
Australia (106),Cynoglossumspp. in Canada (36), andChrysanthemoidesspp.
in Australia and South Africa (153).

Most evaluation is undertaken after agent release and establishment, but it
may be limited to monitoring the presence and spread of the agents, without
evaluation of impact on the weed and its population dynamics (111). Laboratory
experiments may demonstrate that insect feeding significantly affects the plant,
but the relevance to weed population dynamics may not be established (26, 159).

Impact of biocontrol can be determined experimentally in the field by exclud-
ing the agent(s) artificially by insecticide or exclusion cages. Such experiments
have been few (26), mainly because of the requirement for long-term treatment
with insecticides or maintenance of cages, but increasing numbers of experi-
mental studies are now published (105, 115, 154). Long-term experiments are
the most valuable but are difficult and expensive. For example, because of
residue problems, farmers are unwilling to graze cattle on plots treated with
residual insecticides, and cages exclude cattle as well as insects. Grazing ef-
fects then have to be artificially reproduced. Nevertheless, these difficulties
can be overcome, especially where universities incorporate evaluation studies
into their post-graduate research program (128). A major evaluation project
on scotch broom (Cytisus scoparius), financed by the Leverhulme Unit, United
Kingdom, involves large-scale field experiments and surveys in its native range
(United Kingdom and France) and in New Zealand and Australia where it is a
weed; the project will determine the factors affecting the population ecology
and invasiveness of the weed in the two areas (52).

Post-establishment analyses to determine reasons for success or failure may
help develop our understanding of biological control (126) but do not neces-
sarily lead to improved practical biocontrol. Evaluation of the unsuccessful
control of the thistleCarduus nutansin New Zealand, 20 years after releases,
demonstrated that a high level of seed destruction by the biocontrol agent has
minimal impact on the population dynamics of the weed in New Zealand, in
contrast to Canada and the United States (99). However, still no clear under-
standing of the reason for these differences exists, and the only prospect for
improved biocontrol remains the introduction of new agents attacking other
life stages of the plant. Models, validated against experimental results, are
increasingly under development to test the theoretical framework of biocontrol
and to predict field impact of damage from biocontrol agents (80, 105). Simple
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models that exclude effects such as pasture competition and density-dependent
intraspecific competition may, however, be of limited value (128).

RESULTS ACHIEVED

Successes and Failures
Consideration of successes is bedevilled by the problem of assessment—when
is control “successful”? A major weakness in Julien’s catalog (94), and thus
in all analyses based on it (25, 33), is that the degree of success claimed is
subjective and varies between sources. I propose that we adopt Hoffmann’s
(82) definitions for success: (a) “complete,” when no other control method
is required or used, at least in areas where the agent(s) is established; (b)
“substantial,” where other methods are needed but the effort required is reduced
(e.g. less herbicide or less frequent application); and (c) “negligible,” where
despite damage inflicted by agents, control of the weed is still dependent on
other control measures. Complete control does not mean the weed is eradicated
or is no longer an important component of the weed flora, but it indicates that
control measures are no longer required solely against the target weed and that
crop or pasture yield losses can no longer be chiefly attributed to this weed
(19, 115). Substantial control includes cases where control may be complete in
some seasons and/or over part of the weed’s range.

Post-hoc analyses of success suffer from the inclusion of data from recent
programs before equilibrium has been reached. Because agent establishment
may take many years (REC McFadyen, unpublished data; 165) and control up
to 10 years after that (82), analyses of success rates should be based only on
programs in which 10–20 years have elapsed since the last introduction.

In many published analyses, confusion exists between success rates of indi-
vidual agents and success for programs as a whole. Rates are generally quoted
as successful establishment of 60% of agents introduced, with 33% of these
resulting in control (25, 27, 171). More important is the proportion of programs
that achieve successful control. In South Africa, 6 weeds out of 23 targeted are
under complete control, and a further 13 are under substantial control, which
gives a success rate of 83% (82). In Hawaii, 7 weeds out of 21 are under
complete control, and substantial control has been achieved for 3 more, giving
a success rate of nearly 50% (56, 109). Expectations that the weed must be
completely controlled cause partial successes to be counted as failures, so that
the very real savings achieved are not measured or recognized (82). Similar
analyses are not available for Australia, the United States, and Canada, but
success rates are probably in the same range.

In early programs, very small releases of control agents were often made, and
establishment rates were consequently poor. Agents are now released in larger
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numbers, often with the initial use of field cages, and there is more redistribution
of established agents (10). Establishment rates are approaching 100% for some
programs (71), and the increased effort devoted to agent distribution may also
reduce the lag time between establishment and successful control. There is
always a conflict between making many small releases to “spread the risk”
and making fewer larger releases to increase the viability of initial populations.
Ecological theory can help determine the optimum release size for establishment
with different agents (65). Analysis of past releases can improve understanding
of the factors involved in successful establishment (77).

For a complete list of successes and failures, the reader should turn to Julien
(94, 95), with due caution regarding the results of recent programs. Major suc-
cesses in the last two decades include tansy ragwort (Senecio jacobaea) in the
United States (115) and nodding thistleC. nutansin Canada and the United
States (53, 72). Biocontrol of aquatic weeds has been a series of major suc-
cesses: water hyacinth,Eichhornia crassipes(67, 97); the floating fern salvinia
(150, 162); and water lettuce,Pistia stratiotes(18, 69). Control of the sub-
merged weedHydrilla verticillata in Florida shows every indication of success
(22). Alligator weed (Alternanthera philoxeroides) has been successfully con-
trolled in most countries in its aquatic phase though not when growing on land
(96).

Less well-known examples are the successful control of the following:Cordia
curassavicain Malaysia after the earlier success in Mauritius (134); the annual
weed Noogoora burr,Xanthium occidentale, in Australia (19, 126); Harrisia
cactus,Eriocereus martinii, in Australia (117); andMimosa invisain Australia
and Papua New Guinea (1, 100). The perennial shrubChromolaena odor-
ata has been successfully controlled in the Marianas (156) and now in large
areas of northern Sumatra (R Desmier de Chenon & A Sipayung, unpub-
lished data). The perennial shrubs Hamakua pamakani,Ageratina riparia,
and Klamath weed,Hypericum perforatum, are now under complete control in
Hawaii (56, 109).

A notable continuing failure, where well-resourced programs have failed to
achieve sufficient control, has been lantana (Lantana camara) over most of the
tropics except Hawaii. Using the criterion of agent establishment, lantana was
rated as successfully controlled on 21 occasions (25), yet in many countries
it remains a major weed (160), and the biocontrol programs in most countries
must be regarded as failures.

Economic Benefits
Economic evaluations of weed biocontrol programs serve two purposes: Eco-
nomic evaluations undertaken prior to the program can be used to determine al-
location of funds to biocontrol programs (35, 64), and analyses after the program
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is complete are undertaken to demonstrate the value of the method. Despite the
obvious problems associated with prior estimates of probability and timing of
successful control, these are already incorporated into applications to funding
bodies in Australia (Cooperative Research Centre for Tropical Pest Manage-
ment, unpublished data). Analyses of this kind, which show massive potential
benefits from biocontrol of blackberry,Rubus fruticosus, and Paterson’s curse,
E. plantagineum, in Australia, were used to justify biocontrol programs where
there was conflict over the value of these plants to agriculture (35). Unfortu-
nately, most such economic analyses are not published nor reanalyzed once the
program is completed.

Post-program economic evaluations of classical biocontrol, for both arthro-
pod and weed pests, have been recently reviewed for Australia (35). The suc-
cessful biocontrol of Noogoora burr in Queensland resulted in annual benefits
(in 1991) of $720,000, a return of 2.3:1 (19). Evaluations of the successful con-
trol of skeleton weed (Chondrilla juncea) (110) and of tansy ragwort (24) have
demonstrated benefit-cost ratios of 112 and 15. An evaluation of the control of
salvinia in Sri Lanka by the weevilC. salviniaegave an amazing benefit-cost
ratio of 1675 (45)—an example where costs were low because the weevil had
already been tested and used in Australia. Biocontrol programs also result in
substantial non-economic benefits, in sustainability of the success, and in eq-
uity, in that benefits are not limited to those who can afford the product. Costs
are the risk of failure and possible damage to non-target species (35).

Both benefits and costs are particularly hard to determine for environmental
weeds, where agricultural costs are not involved (35, 52). The program against
Passiflora mollissimain Hawaii cost about $1 million over 5 years, and further
expenditure may be required (109). This amount is small compared with costs
of herbicide control, but it may be large in relation to budgets for management
of natural ecosystems.

Damage to Non-Target Plants
Concern over damage to non-target organisms is emerging as one of the major
challenges to biocontrol, of weeds as well as of arthropod pests. Critics quote
examples taken almost exclusively from biocontrol of arthropods but include
weed biocontrol in the negative statements that they make (88, 157). Com-
ments such as “...notable disasters where organisms were introduced to control
weeds with little regard to non-target organisms” are made without examples
or references (30). The only non-specific agents used in weed biocontrol have
been fish, introduced decades ago into several countries primarily for fishing
and sport (94, 164), with frequently disastrous results. In preparation for this
review, therefore, I contacted biocontrol, weed, and exotic pest newsgroups on
the Internet, requesting examples of weed biocontrol agents causing damage to
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non-target plants anywhere in the world. All examples obtained from this and
from the literature are listed in Table 2.

In the first five examples, the host range of the agent was known at the time of
release to include genera containing plants native to the country of introduction,
but attack on native plants of no economic value was not then seen as a problem.
Cactoblastis cactorumin the Caribbean is a somewhat different example in this
category (6). When it was introduced into the West Indies in the late 1950s
to control the native cactusOpuntia triacantha, no value was placed on native
cacti, and neither conservationists nor the US government raised objections
when the results were published (158). The moth has since spread throughout
the Caribbean, both naturally and through deliberate introductions, until in 1989
it was found in the Florida Keys (138). Here it is threatening the survival of
nativeOpuntiaspp. that are already endangered by clearing and development
of the Keys, which had reducedOpuntia spinosissimato 12 small patches in a
national park (93).C. cactorumis likely to continue its spread westward into
Mexico and the cactus country of the southwest United States (157), where its
impact may be severe unless it is reduced by the effects of parasitism or by
competition with similar native moths in the genusMelitara.

With the two lantana insects, only limited testing was carried out prior to
release in Hawaii, and scientists in Australia and Africa relied on the field
results from Hawaii (68). In the last example, attack on sunflower by the beetle
Zygogramma bicoloratawas not anticipated, despite test results showing that
starving beetles will feed on sunflower (121), because of failure to appreciate
the impact of very large beetle populations in the initial years of establishment
(147). As the weed becomes less abundant, the problem is subsiding (91). In
all examples, economic losses have been very minor and/or temporary, and they
are far outweighed by the benefits obtained. Environmental damage is harder
to assess, and in most cases it has not been properly evaluated. Damage by the
agents must be weighed against the benefits from control of these widespread
introduced weeds and from the cessation of chemical use over extensive areas
of grassland and natural vegetation.

FUTURE OF WEED BIOLOGICAL CONTROL

Increase in Alien Weed Problems
From the start, the introduction of weed biocontrol agents has been strictly
controlled and has required evidence that the agents will not damage non-target
organisms. Unfortunately, this is not true of the transport of other organisms
around the world. Of the plant and animal species deliberately introduced into
the United States for agriculture, sport, or as pets, respectively 2%, 50%, and
50% have become pests (141). Plant introductions for forestry and pasture
have increased greatly in the last three decades, which will inevitably lead to
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increased weed problems after a lag time typically of 50 years (89). Of “pas-
ture” plants introduced into northern Australia, 13% have become weeds (104).
Because of the characteristics for which these plants are selected—ease of es-
tablishment, rapid growth, high competitiveness—such introductions are more
likely to become invasive weeds. The nursery trade is another problem; most
pernicious weed species in the United Kingdom were deliberately introduced as
garden ornamentals (28), as were 85% of woody plants invading natural areas
in the United States (146). Unlike biocontrol agents, these plant introductions
are not subject to any controls in most countries (89, 136).

To compound the problem, damage caused by alien plants to natural ecosys-
tems has been under-researched, and its full seriousness not appreciated (30).
Alien plant invasions can alter the primary production level and the vegetation
structure (29), and whole ecosystems can be destroyed, perhaps irreversibly.
For example, increased transpiration by salt cedarTamarixspp. drained all sur-
face water from a California freshwater marsh (129). Invasion of beaches by
Casuarina equisetifoliain Florida prevents nesting by endangered American
crocodiles and sea turtles (103). A recent study in South Africa demonstrated
reduced invertebrate species diversity in areas invaded by alien woody weeds
as compared with diversity in the native vegetation or even in plantation forests
(151). The disastrous impact of invasive weeds on native ecosystems has been
recently reviewed for the world as a whole (30), for the United States (144),
and for Australia (90).

Alien plant invasions now affect conservation areas on every continent except
Antarctica (29). As a result, conservation scientists and managers are increas-
ingly accepting that “biocontrol is the only resort when the invasion is ‘out of
control”’ (29, p. 10; 30), but this understanding has not reached the general
conservation community or the public as a whole. Biocontrol of weeds of envi-
ronmental areas faces difficulties in assessing damage caused, when economic
loss is no longer the sole criterion, and in working with different interest groups
and financial sponsors (51). However, despite these problems, well-funded
programs against nonagricultural weeds are in development (10, 71).

Biocontrol may be the only feasible solution to many of these weed prob-
lems. Practitioners need to ensure that the science is rigorous and test methods
appropriate. The scientific community needs to ensure that when test results are
clear and satisfactory, biocontrol is not hamstrung by unnecessary regulation,
fear, or confusion with other issues such as genetic technology. Some conser-
vation groups, for example an early opinion by the Australian Conservation
Foundation (quoted in 35), would prohibit any introductions of new biocontrol
agents (insects or pathogens) until all potential effects of the introductions are
known. Because of the complexity of natural ecosystems and food webs, this
would effectively prevent any further introductions and bring classical biocon-
trol to a halt and, for this reason, is not generally supported (88, 157). The FAO
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now regards biocontrol of weeds as an option to be promoted and is currently
supporting programs for the biocontrol of water hyacinth in Latin America and
Africa, itchgrass (Rottboeliaspp.) in Central America and the Caribbean,C.
odoratain West Africa, and the parasitic weedsOrobancheandCuscutaspecies
in North Africa (101).

Weighing the Risks
Despite the long history of successful and safe biocontrol of weeds, practitioners
do need to recognize the risks involved. Classical biocontrol is irreversible—
an agent once widely established in a new country cannot be eradicated—and
therefore it is essential that all potential consequences are adequately consid-
ered beforehand. Successful biocontrol agents may disperse far beyond the
original target area, e.g. lantana seed fly in southeast Asia (133) andC. cacto-
rum in Florida (6, 138), and their impact in their full potential range must be
considered. On the other hand, those who oppose releases until all possible
consequences are understood, in effect indefinitely, need to remember that the
uncontrolled growth of weeds is already causing environmental damage and
species extinctions, which will continue so long as control is delayed.

Classical biocontrol involves a process of decision analysis—balancing the
risks of releasing versus the risks of no control (9, 112). Accurate prediction of
the potential host range of the agent minimizes the risk. Practitioners need to
consider the full range of issues involved: the importance of non-target plants
and associated fauna; the probable impact of any damage; and probable damage
to non-targets from other control options, including no control. Decisions
must be made by appropriate public bodies after an open process: The role
of biocontrol scientists is to submit proposals and supply information but not
to make the final decision. Resources have to be provided for long-term post-
release monitoring of impacts on both target and non-target species (88). Both
supporters and opponents of classical biocontrol need to recognize that, in the
context of alien invasive weeds, doing nothing is not “benign neglect” (157);
rather, it allows the environmental and economic damage to continue and to
increase unchecked. If legal biocontrol using appropriate channels is made too
difficult, expensive, or slow, individuals or groups who are suffering economic
losses from the weeds may act outside the law, with enormously increased risk
of undesirable side effects (88). In Australia alone, two examples of clandestine
introductions occurred that were both almost certainly a result of blocks in the
legal procedures (13, 126).

Conclusions
Biological control of weeds using imported insects and pathogens is safe, en-
vironmentally sound, and cost effective. The successes listed earlier have al-
ready saved many millions of dollars in control costs and increased production.
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Control of the water weeds salvinia and water hyacinth has preserved the life
style of entire communities as well as restored biodiversity to destroyed aquatic
ecosystems. In contrast, after nearly 100 years of use, there are only eight
known examples of damage to non-target plants, none of which have caused
serious economic or environmental damage. Invasive weeds are as environ-
mentally damaging as land clearing, but their attack is more insidious because
the loss of native species, both flora and fauna, is not obvious unless these
effects are measured (151).

Future plant introductions should be subject to the same level of control as
biocontrol agents, but meanwhile we can expect a massive increase in invasive
weed problems as the plants introduced over the last 50–100 years become
naturalized and begin to spread. Classical biocontrol must be available to
control these weeds. Mechanical or cultural control is not feasible in natural
ecosystems, and widespread use of herbicides is economically unsustainable
and unacceptable on environmental and health grounds. Classical biocontrol
is the only safe, practical, and economically feasible method that is sustainable
in the long term, and the importation of insects and pathogens must not be
prevented by ever-increasing restrictions and demands for pre-release studies.
These demands are usually fueled by unrealistic fears, based on misquoted or
out-of-context examples, and on a misunderstanding of host restriction in highly
host-specific insects and pathogens. To claim that no risks are involved would
be irresponsible, but these risks are small and must be weighed against those of
alternative control methods, in a context in which ecosystems and livelihoods
are being destroyed and neglect is not “benign.”
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