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Abstract 

 

This thesis is focused on the production of value-added bacterial exopolysaccharides (EPS) 

by the bacterium Enterobacter A47 (DSM 23139), using industrial by-products/wastes as sub-

strates. Enterobacter A47 has demonstrated the ability to synthesize a high molecular weight 

(Mw) fucose-rich EPS, namely, the heteropolysacharide named FucoPol. This new EPS is com-

posed of fucose, glucose, galactose and glucuronic acid, which present interesting functional 

properties. 

Cheese whey was the first industrial by-product studied. Under standard controlled param-

eters for FucoPol’s production, Enterobacter A47 successfully grew using lactose as carbon 

source and an EPS concentration of 6.40 g L-1 was reached within 3.2 days of cultivation, corre-

sponding to a volumetric productivity of 2.00 g L-1 d-1. The produced EPS was mainly composed 

of glucuronic acid and fucose, which confers it a great potential for use in high-value applications, 

such as cosmetics and pharmaceuticals.  

The use of out-of-specification tomato paste as substrate resulted in the highest production 

(8.77 g L-1) and overall volumetric productivity (2.92 g L-1 d-1), which were obtained with con-

tinuous substrate feeding at a constant flow rate of 11 g h-1. The polymer produced had the typical 

FucoPol composition:  30-36 mol% of fucose; 22-29 mol% of galactose; 25-34 mol% of glucose; 

9-10 mol% of glucuronic acid and 12-22 wt.% of acyl groups.  

The ability of Enterobacter A47 to grow and produce EPS using as carbon source a mixture 

of glucose and xylose (75:25%) was also tested using pure sugars and a brewer’s spent grain 

(BSG) hydrolysate. The use of BSG as substrate resulted in an EPS concentration of 2.30 g L-1 

with a low volumetric productivity (0.57 g L-1 d-1). The produced EPS was mainly composed of 

glucose. On the other hand, 5.71 g L-1 of EPS was achieved after 4 days using commercial glu-

cose/xylose mixture, giving an overall volumetric productivity of 1.43 g L-1 d-1. The EPS pro-

duced revealed to be similar to FucoPol composition. Although that the ability of Enterobacter 

A47 to use BSG hydrolysate as sole substrate to grow and produce EPS was demonstrated, further 

studies need to be developed to increase the polymer’s productivity. 

In order to evaluate the potential of the different EPS produced by Enterobacter A47 in 

this study, their properties in aqueous solutions, emulsion forming and stabilizing capacity, and 

film-forming capacity were studied. EPSCW presented the lowest apparent viscosity (ηa), but it 

was able to stabilize emulsions for over 4 weeks with olive oil, cedarwood oil and paraffin oil 
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and its films had higher elongation capacity. EPSTP showed the lowest intrinsic viscosity ([η]) 

and angular frequency at dependence of storage (G’) and loss moduli (G’’) cross-over, good 

emulsion capacity and stabilization with peanut oil, almond oil and olive oil, and the produced 

films are slightly more rigid. In contrast, EPSGX reached the highest [η] and ηa, the emulsions 

formed were very strong with most of the tested oils at low O/W ratios, although having low 

stability. Moreover, EPSGX films were slight stiffer. 

 

 

Keywords:  Exopolysaccharides (EPS), Enterobacter A47, Industrial by-products/wastes, 

Fucose, Glucuronic acid,  Functional properties. 
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Resumo 

 

Esta tese é focada na produção de exopolissacáridos (EPS) bacterianos de valor 

acrescentado pela bactéria Enterobacter A47 (DSM 23139), utilizando como substracto 

subprodutos/resíduos industriais. Enterobacter A47 demonstrou a capacidade de sintetizar um 

EPS rico em fucose de elevado peso molecular (Mw), nomeadamente, o heteropolissacárido 

denominado FucoPol. Este novo EPS é composto de fucose, glucose, galactose e ácido 

glucurónico, que apresentam propriedades funcionais interessantes. 

O soro de leite foi o primeiro subproduto industrial estudado. Sob os parâmetros 

controlados típicos da produção de FucoPol, Enterobacter A47 cresceu com sucesso utilizando 

lactose como fonte de carbono e uma concentração de 6,40 g L-1 foi alcançada em 3,2 dias de 

cultivo, correspondendo a uma produtividade volumétrica de 2,00 g L-1 d-1. O EPS produzido era 

composto principalmente de ácido glucurónico e fucose, o que lhe confere um grande potencial 

para uso em aplicações de elevado valor, como cosméticos e produtos farmacéuticos. 

A utilização de pasta de tomate não conforme como substrato resultou numa elevada 

produção (8,77 g L-1)  e productividade volumétrica global (2,92 g L-1 d-1), à qual foram obtidas 

usando alimentação contínua de substrato a um caudal constante de 11 g h-1. O polímero 

produzido tinha a composição típica do FucoPol: 30-36 mol% de fucose; 22-29 mol% de 

galactose; 25-34 mol% de glucose; 9-10 mol% de ácido glucurónico e 12-22 wt.% de grupos 

acilo. 

A capacidade da Enterobacter A47 para crescer e produzir EPS usando como fonte de 

carbono uma mistura de glucose e xilose (75: 25%) também foi testada usando açúcares puros e 

dreche cervejeira hidrolisada. O uso de dreche como substrato resultou numa concentração de 

2,30 g L-1 com baixa produtividade volumétrica (0,57 g L-1 d-1). O EPS produzido era composto 

principalmente por glucose. Por outro lado, obtiveram-se 5,71 g L-1 de EPS após 4 dias usando 

uma mistura comercial de glucose/xilose, dando uma produtividade volumétrica global de 1,43 g 

L-1 d-1. O EPS produzido revelou ser semelhante à composição do FucoPol. Embora tenha sido 

demonstrada a capacidade da Enterobacter A47 para usar a dreche cervejeira hidrolisada como 

único substrato para crescer e produzir EPS, é necessário desenvolver mais estudos para aumentar 

a produtividade em polímero. 

Para avaliar o potencial dos diferentes EPS produzidos pela Enterobacter A47 neste estudo, 

as suas propriedades em soluções aquosas, capacidade de formar e estabilizar emulsões e 
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capacidade de formar filmes, foram estudadas. O EPSCW apresentou a menor viscosidade aparente 

(ηa), mas conseguiu estabilizar emulsões durante mais de 4 semanas com azeite, óleo de cedro e 

óleo de parafina e seus filmes apresentaram maior capacidade de alongamento. O EPSTP mostrou 

a menor viscosidade intrínseca ([η]) e a menor frequência angular de cruzamento do Módulo 

Elástico (G’) com o Módulo Viscoso (G’’), boa capacidade da formar emulsões e estabilizá-las 

com óleo de amendoim, óleo de amêndoa e azeite, e os filmes produzidos são um pouco mais 

rígidos. Em contraste, o EPSGX atingiu a maior [η] e ηa, as emulsões formadas com baixo rácio 

O/W foram muito fortes com a maioria dos óleos testados, embora com baixa estabilidade. Além 

disso, os filmes EPSGX eram ligeiramente mais rígidos. 

 

 

Palavras-chave:  Exopolissacáridos (EPS), Enterobacter A47, Subprodutos/resíduos 

industriais, Fucose, Ácido glucurónico, Propriedades funcionais.
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Abbreviations 

ADP  Adenosine diphosphate  

BSA  Bovine serum albumin  

BSG  Brewer's spent grains 

CDM  Cell dry mass 
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CMC  Carboxymethyl cellulose  

DO  Dissolved oxygen level  
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EB  Elongation at break (%) 

EM  Elastic Modulus (MPa) 

EPS  Extracellular polysaccharide(s) or Exopolysaccharide(s)  

EPSCW  Exopolysaccharide produced by Enterobacter A47 using cheese whey as 

substrate 

EPS-g  Exopolysaccharide produced by Enterobacter A47 using commercial 

glucose as substrate 

EPSGX  Exopolysaccharide produced by Enterobacter A47 using commercial 

glucose/xylose mixture as substrate 

EPSlac  Exopolysaccharide produced by Enterobacter A47 using commercial 

lactose as substrate 

EPS-s  Exopolysaccharide produced by Enterobacter A47 using commercial 

glycerol as substrate 



xvi 

 

EPSTP  Exopolysaccharide produced by Enterobacter A47 using out-of-specifi-

cation tomato paste as substrate 

EPS-x  Exopolysaccharide produced by Enterobacter A47 using commercial 

xylose as substrate 

GDP  Guanosine diphosphate 

HIV  Human immunodeficiency virus 

HMF  Hydroxymethylfurfural 

HPLC  High performance liquid chromatography  

HPMC  Hydroxypropylmethylcellulose 

LAB  Lactic acid bacteria 

LB  Luria Bertani 

LDPs  Lignin degradation products  

MA  Massachusetts  

MALS  Multi-angle light scattering  

MWCO  Molecular weight cut-off 

N  Nitrogen 

O/W  Oil/water ratio 

OECD  Organization for Economic Co-operation and Development  

P   Phosphate 

PEG  Polyethylene glycol 

PS  Puncture strength at break (kPa) 

RI  Refractive Index  

SEC  Size exclusion chromatography  

sp.  Specie(s) 

TDP  Thymidine diphosphate 

TFA  Trifluoroacetic acid  

TS  Tensile strength at break (MPa) 
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UDP  Uridine diphosphate 

UK  United Kingdom 

US  United States 

USA  United States of America 

UV  Ultraviolet spectroscopy 

UV/VIS  Ultraviolet-visible spectroscopy 

 

Variables 

Acet  Acetyl content (wt.%) 

C   Polymer concentration (g dL-1)  

CDMmax  Maximum CDM concentration (g L-1) 

CDWmax  Maximum CDW concentration (g L-1) 

dn dc-1  Refractive index increment (mL g-1) 

E24  Emulsification index after 24 hours (%) 

EI  Emulsification index (%)  

EPSmax   Maximum EPS concentration (g L-1) 

Fuc  Fucose content (mol%) 

G’  Storage modulus (Pa) 

G’’  Loss modulus (Pa) 

Gal  Galactose content (mol%) 

Glc   Glucose content (mol%) 

GlcA  Glucuronic acid content (mol%) 

he  Height of the emulsion layer (mm) 

ht  Overall height of the liquid column (mm) 

kH  Huggins coefficient (dimensionless) 

kK  Kramer coefficient (dimensionless) 
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Mn  Number average molecular weight 

Mw  Average molecular weight  

PDI  Polydispersity index (dimensionless) 

Pyr  Pyruvyl content (wt.%) 

rP  EPS volumetric productivity (g L-1 d-1) 

Succ  Succinyl content (wt.%) 

T   Temperature (°C) 

t   Efflux time of the solution 

t0   Efflux time of the solvent 

Xyl  Xylose content (mol%) 

Greek letters 

 

ẏ   Shear rate (s-1) 

[η]  Intrinsic viscosity (dL g-1) 

η0  Zero-shear rate viscosity (Pa.s) 

ηa  Apparent viscosity (Pa.s) 

ηsp  Specific viscosity (dimensionless) 

ηrel  Relative viscosity (dimensionless) 

μmax  Maximum specific growth rate (h-1) 
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1.1. Background 

 

Since 1990, the scientific concept of sustainable chemistry seeks to “improve the efficiency 

with which natural resources are used to meet human needs for chemical products and services. 

Sustainable chemistry encompasses the design, manufacture and use of efficient, effective, safe 

and more environmentally benign chemical products and processes. Sustainable chemistry is also 

a process that stimulates innovation across all sectors to design and discover new chemicals, 

production processes, and product stewardship practices that will provide increased performance 

and increased value while meeting the goals of protecting and enhancing human health and the 

environment." (Organization for Economic Co-operation and Development (OECD)). 

The development of biopolymers production and applications is a remarkable example of 

sustainable chemistry. A substantial number of biopolymers (polysaccharides, polyesters, poly-

amides, etc.) can be obtained from several natural sources, namely, plants, algae, animals and 

microorganisms. To gradually have more polysaccharides on the market is essential to develop 

new biodegradable biopolymers with superior material properties suitable for high-value appli-

cations. 

 

 

1.1.1. Polysaccharides 

 

Polysaccharides are high molecular weight carbohydrates (104-107 Da) occurred in Nature 

that perform important roles in several biological mechanisms such as adhesion, infection, im-

mune response and signal transduction (Öner, 2013). Those biopolymers, that cover the surface 

of the most cells, are renewable materials, being generally non-toxic and biodegradable (Freitas 

et al., 2009). 

Polysaccharides are composed of monomers connected through glycosidic linkages, often 

forming repeating units whose repetition would produce the complete polymer chain. Besides 

neutral sugars (e.g. galactose, glucose, mannose), acidic sugars (e.g. glucuronic acid, galacturonic 

acid) or amino-sugars (e.g. N-acetyl-glucosamine, N-acetyl-galactosamine), many of these poly-

mers can also contain non-sugar components, such as organic groups (e.g. acetate, pyruvate, suc-

cinyl) or inorganic residues (e.g. sulphate) (Reis et al., 2008; Sutherland, 2001). 
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Their physicochemical properties allow a wide array of   applications, for example, they 

can be used as thickeners, bioadhesives, stabilizers, prebiotic, and gelling agents in food and cos-

metic products and as emulsifier, biosorbent, and bioflocculant in the environmental sector 

(Freitas et al., 2011 ; Öner, 2013). 

 

 

 

1.1.2. Microbial Polysaccharides 

 

Microorganisms synthesize a varied range of polysaccharides that have different cell func-

tions, including:  

• Intracellular polysaccharides that provide carbon or energy storage reserves (e.g. 

glycogen);  

• Structural polysaccharides that are components of the cell structures, such as cell 

wall components (e.g. chitin);  

• Extracellular polysaccharides (exopolysaccharides, EPS) that are secreted by the 

cells and accomplish a diversity of functions including adhesion, cell to-cell inter-

actions, biofilm formation, and cell protection against environmental stresses 

(Öner, 2013). The EPS can form either a capsule that remains associated with the 

cell surface (e.g. K30 antigen) or a slime that is loosely bound to the cell surface 

(e.g. xanthan, gellan) (Rehm, 2010; Kumar and Mody, 2009). 

EPS have been obtained from different genera of Archaea, Bacteria, Fungi and Algae, be-

longing to mesophilic (such as Bacillus species (sp.) and Lactobacillus bulgaricus), thermophilic 

(such as Thermococcus and Bacillus thermantarcticus) and halophilic groups (such as Haloferax 

and Halobacterium) (Laplagia and Hartzell, 1997; Nicolaus et al., 1993; Parolis et al., 1996; 

Rinker and Kelly, 1996; Sutherland, 1982). EPS-producing microorganisms are found in various 

ecological niches. Habitats having high carbon/nitrogen ratios are known to contain polysaccha-

rides-producing microorganisms, for example, effluents from the sugar, paper or food industries 

as well as wastewater plants. In general, EPS producing bacteria are found in environments rich 

in organic compounds (Morin, 1998). 

EPS production is influenced by cultivation conditions, such as medium composition (car-

bon, nitrogen and/or salt concentration), pH and temperature (Kumar et al., 2007; Torres et al., 

2012, 2014). EPS biosynthesis is related to the primary carbohydrate metabolism of the producing 

cells and is expected to take place during active sugar consumption, as it requires large numbers 
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of activated nucleotide sugars, energy for building the repeating units, for polymerization and 

transmembrane translocation and is usually a growth-associated product (Figure 1.1) (De Vuyst 

and Degeest, 1999; Levander et al., 2002). The synthesis of polysaccharides with different com-

position and structures requires the recruitment of different enzymes and proteins, which is re-

flected in the varied organizations of the biosynthesis gene clusters. Induction of EPS biosynthesis 

is often associated with biofilm formation, during which EPS are important matrix components. 

The direct precursors for EPS biosynthesis, such nucleoside diphosphate sugars (e.g. ADP-glu-

cose), nucleoside diphosphate sugar acids (e.g. GDP-mannuronic acid) and nucleoside diphos-

phate sugar derivatives (e.g. UDP-N-acetyl glucosamine) are described in Table 1.1 for several 

commercial bacterial polysaccharides (Rehm, 2010).  

Based on their monomeric composition, polysaccharides are commonly classified as ho-

mopolysaccharides or heteropolysaccharides. Polysaccharides composed of only one type of 

monosaccharide repeating unit are classified as homopolysaccharides (pullulan, levan or dextran). 

Heteropolysaccharides are composed of two or more types of monosaccharides and usually pre-

sent as multiple copies of oligosaccharides, containing three to eight residues (gellan or xanthan) 

(Freitas et al., 2011b; Öner, 2013). Table 1.1 also summarizes the chemical characteristics, main 

properties and applications of major bacterial and fungal commercial polysaccharides. 

Several EPS produced by microorganisms are interesting to use in food, pharmaceutical, 

biomedical, bioremediation, waste water treatment and bioleaching fields due to their wide chem-

ical, structural diversity and their physical, rheological and other unique properties. EPS may 

function as viscosifying agents, stabilizers, emulsifiers, gelling agents, or water-binding agents in 

food (Freitas et al., 2011b; Öner, 2013; Rehm, 2010).  

Xanthan and gellan, which have widespread legislative approval for food use in the USA 

and Europe (Garcia-Ochoa et al., 2000), owe their success to their improved physical properties 

compared to traditional polysaccharides, such as alginate or carrageenan. Xanthan is an excellent 

thickening or suspending agent with high stability under a range of pH and temperature conditions 

(Garcia-Ochoa et al., 2000), while gellan is a gelling agent (Bajaj et al., 2007). 

Hyaluronic acid, on the other hand, has found medical, pharmaceutical and cosmetic ap-

plications due to their similarity to eukaryotic polymers (Sutherland, 2001). Homopolymeric β-

D-glucans, such as bacterial cellulose, are immune stimulants or tumour suppressive agents 

(Chawla et al., 2009). 

Furthermore, in healthcare, some EPS act as antimicrobial compounds against pathogenic 

bacteria and have been used as natural food preservative and prebiotics (Salas-Jara et al., 2016). 

In biomedical applications, EPS could have antitumor, antiviral and immune stimulant activities 

(Moscovici, 2015).  
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Figure 1.1: Representative scheme of the sugar nucleotide biosynthesis pathways for EPS producing microorganisms (P: phosphate; GDP: guanosine diphosphate; TDP: 
thymidine diphosphate; UDP: uridine diphosphate (adapted from Freitas et al., 2011b; Kumar et al., 2007; Ankit et al., 2012). 
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Table 1.1: Commercial microbial EPS: overview of the most relevant physicochemical and functional properties and main areas of application. 

Polysaccharide Producing strain Composition Precursors Main properties Main applications References 

Xanthan 

• Xanthomonas cam-

pestris 

Glucose 
Mannose 
Glucuronic acid 
Acetate 
Pyruvate 

UDP-glucose 
GDP-mannose  
UDP-glucuronate 

• High viscosity hydrocolloid 
- Stability over wide temperature, 

pH and salt concentrations 
ranges 

• Emulsifier 

• Foods 
• Petroleum industry 
• Pharmaceuticals 
• Cosmetics and personal care products 
• Agriculture 
• Drilling muds 

Garcia-Ochoa et al., 2000 
Sutherland, 2002 
Rehm, 2010 
Freitas et al., 2011b 

Gellan gum 

• Sphingomonas 

        paucimobilis 
Glucose 
Rhamnose 
Glucuronic acid 
Acetate 
Glycerate 

UDP-glucose 
TDP-rhamnose 
UDP-glucuronate 

• Hydrocolloid 
- Stability over wide pH range 

• Gelling capacity 
- Thermoreversible gels 
- Thickening agent, gelling agent, 

stabilizer 

• Foods 
• Pet food 
• Pharmaceuticals 
• Plant biotechnology 
• Research: agar substitute and gel electropho-

resis 

Sutherland, 2002 
Bajaj et al., 2007 
Banik et al., 2007 
Rehm, 2010 
Freitas et al., 2011b 

Dextran 

• Leuconostoc mesen-

teroides 

• Streptococcus sp. 
• Lactobacillus sp. 
 

Glucose Saccharose • Non-ionic 
• Good stability 
• Newtonian 
• fluid behavior 

• Foods 
• Pharmaceutical industry: 

- Blood volume expander 
- Chromatographic media 

Naessens et al., 2005 
Qader et al., 2005 
Rehm, 2010 
Freitas et al., 2011b 

Bacterial Cel-
lulose 

• Acetobacter sp. Glucose UDP-glucose • High crystallinity 
• Insolubility 
• in most solvents 
• High tensile strength 
• Moldability 

• Foods (indigestible fiber) 
• Biomedical: 

- Wound healing 
- Tissue engineered blood vessels 
- Audio speaker diaphragms 

Sutherland, 2002 
Chawla et al., 2009 
Rehm, 2010 
Freitas et al., 2011b 

Hyaluronic 
acid 

• Streptococcus sp. 
• Pasteurella multo-

cida 

Glucuronic acid 
Acetylglucosamine 

UDP-glucuronate 
UDP-N-acetyl glu-
cosamine 

• Biological activity 
• Highly hydrophilic 
• Biocompatible 

• Medicine 
• Solid culture media 
• Cosmetics 

 

Rinaudo, 2008 
Liu et al., 2009 
Rehm, 2010 
Freitas et al., 2011b 
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Polysaccharide Producing strain Composition Precursors Main properties Main applications References 

Alginate 

• Pseudomonas 
• Azotobacter 

Guluronic acid 
Mannuronic acid 
Acetate 

GDP–mannuronic 
acid 

• Hydrocolloid 
• Gelling capacity 
• Film-forming 

• Food hydrocolloid 
• Biomedical: 

- Wound management  
- Controlled drug release 
- Surgical dressings 

Rehm, 2010 
 

Curdlan 

• Alcaligenes faecalis 

• Agrobacetrium sp. 
 

Glucose UDP–glucose • Gelling capacity 
• Thermoreversible gels  
• Water insolubility 
• Edible and non-toxic 
• Biological, anti-tumor and anti-

HIV activity 

• Foods 
• Pharmaceutical industry 
• Heavy metal removal 
• Concrete additive 

Wu et al., 2012 
Donot et al., 2012 
Rehm, 2010 
Freitas et al., 2011b 

Levan 

• Bacillus subtilis 

• Zymomonas mobilis 

• Halomonas sp. 
• Erwinia sp. 

Fructose 
Sucrose 
Glucose 

Levansucrase • Low viscosity 
• High water solubility 
• Biological activity: 
• Anti-tumor activity 
• Anti-inflammatory 
• Adhesive strength 
• Film-forming capacity 

• Food (prebiotic) 
• Feed 
• Medicines 
• Cosmetics 
• Industry 

Donot et al., 2012 
Franken et al., 2013 
Freitas et al., 2011b 

Pullulan 

• Aureobasidium pul-

lulans 

Maltotriose 
Sucrose 

UDP–glucose 
isomaltose 

• Viscous non-hygroscopic solu-
tions 

• Adhesiveness 
• Film formability 
• Enzymatically mediated degrada-

bility  
• Film-forming agent 

• Tumor target drug delivery 
• Food: 

- low-viscosity filler in beverages and sauces 
• Plasma expander 
• Medical imaging 
• Tissue engineering and grafting 

Prajapati et al., 2013 
Donot et al., 2012 
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An expanding area of biotechnology is the application of EPS producing microorganisms 

in the remediation of environmental effluents produced by the mining industry (More et al., 2014). 

In general, biofilm reactors are used to treat hydrocarbons, heavy metals and large volumes of 

dilute aqueous solutions, such as industrial and municipal waste water (Pal and Paul, 2008; Singh 

et al., 2006). The potential role of EPS in the removal of heavy metals from the environment is 

due to their involvement in flocculation and ability to bind metal ions from solutions (Pal and 

Paul, 2008). Some bacteria, such as the sulphate reducing bacteria, have shown to be highly effi-

cient in the anaerobic degradation of many organic pollutants and in the precipitation of heavy 

metals from waste water (Singh and Cameotra, 2004). Other bacteria exhibiting biosorption of 

toxic heavy metals in bioremediation processes include Enterobacter and Pseudomonas sp. (Pal 

and Paul, 2008) 

The commercial value of a polysaccharide will depend on its composition, on the amount 

produced and the ease of extraction and processing (Reis et al., 2008). Extracellular products 

present the considerable advantage of having relatively easy extraction processes, comparing to 

polysaccharides that are plant or algae cell-wall constituents. The global hydrocolloid market 

dominated by algal and plant polysaccharides like starch, galactomannans, pectin, carrageenan, 

and alginate reached 3.9 billion US dollars by 2012 (Öner, 2013). Xanthan gum is the only sig-

nificant bacterial EPS, which accounted for 6% of the total market value (Freitas et al., 2011b and 

2014). 

The sustainable and economical production of microbial polysaccharides requires innova-

tive approaches and considerable progress has been made in discovering and developing new 

microbial extracellular polysaccharides that possess novel industrial significance (Öner, 2013). 

Furthermore, microbial sources are preferred since they enable fast and high yielding production 

processes under fully controlled fermentation conditions. 

The main factor limiting the commercial production of microbial polysaccharides is the 

high cost of carbon sources, especially sugars (e.g. glucose, fructose, sucrose), that have a direct 

impact on production costs (Freitas et al., 2014; Sutherland 2001).  From an economical point of 

view, the demand for cheaper substrates, with comparable incomes, is crucial to reduce produc-

tion costs, since the substrate represents about 20 - 40% of those costs (Kumar et al., 2007). In 

order to reduce microbial polysaccharide production costs, it is desirable to use abundant and less 

expensive carbon sources, such as agro-food and industrial wastes and by-products. 
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1.1.3. Industrial Wastes/By-products Valorisation 

In order to reach high production titers at reasonable costs, fermentation medium should 

be carefully designed to make the end product compatible with its synthetic petrochemical equiv-

alent. Although, complex fermentation medium applied for growth and biopolymer production 

are not economically satisfactory due to their high amount of expensive nutrients such as peptone, 

yeast extract and salts and could represent almost 30% of the total cost of microbial cultivation 

(Öner, 2013). Until 20 years ago, studies were mostly focused on using defined culture conditions 

in order to recover pure biopolymers with the lowest variation between batches and free of con-

taminants that would interfere with their chemical and biological properties (Öner, 2013). Fortu-

nately, the recent studies tend to use cheaper alternatives such olive mill wastewater, syrups, and 

molasses to maximize the cost effectiveness of the process (Nicolaus et al., 2010; Sutherland, 

2007). 

In developed countries, the agro-food industry generates large amount of wastes or by-

products annually around the world from a variety of sources. Gradually, industrial ecology con-

cepts such as cradle to cradle and circular economy are considered leading principle for sustain-

able innovation, aiming at “zero waste economy” in which waste or by-product are an excellent 

source of nutraceuticals, bioactive, inherently functional compounds that are good for human 

health (Mirabella et al., 2014). Nowadays, the process improvement of using wastes/by-products 

as substrates for industrial fermentations, such as sugarcane molasses, cheese whey, waste sugar 

beet pulp and glycerol from the biodiesel industry not just decrease the biopolymer production 

costs but also add value to that wastes/by-products that previously were incinerated, disposal in 

landfills or fed to animals being and an environmental concern. In addition, modern sustainable 

technologies, promote the use of food waste to obtain biopolymers that can be re-used in the same 

sector of the raw materials (Liguori et al., 2013). 

Syrups and molasses have been tested as substrates for fermentative production of com-

mercial polysaccharides such as pullulan (Göksungur et al., 2004; Israilides et al., 1998; Lazari-

dou et al., 2002; Roukas, 1998), dextran (Vedyashkina et al., 2005), levan (Küçükaşik et al., 2011; 

Oliveira et al., 2007), and gellan (Banik et al., 2007), mainly due to their high sucrose and other 

nutrient contents, ready availability and ease of storage (Öner, 2013). In particular, xanthan pro-

duction is being tested as substrate sugar cane molasses, cheese whey, waste sugar beet pulp and 

peach pulp and achieved competitive results. Nevertheless, the industrial process is still based on 

glucose and sucrose due to the higher production yields and product quality they enable (Kalogi-

annis et al., 2003; Rosalam and England, 2006).  

In addition, large amounts of lignocellulosic by-products/wastes are generated by the agro-

industry, including: winery wastes (grape bagasse, grape stalks); rice husk and straw; tomato 



1. Background and Motivation 

 

11 

 

pomace and nut shells, among others (Duarte et al., 2007). There have been several reports on the 

use of lignocellulosic materials or their hydrolysates as substrates for the production of different 

microbial products, including: hydrogen (Kapdan and Kargi, 2006), ethanol (Senthilkumar and 

Gunasekaran, 2005), lactic acid (Bi et al., 2009; Wang et al., 2010), xylitol (Rivas et al., 2009; 

Zeid et al., 2008), polyhydroxyalkanoates (Silva et al., 2007) and polysaccharides (Meade et al., 

1994 and 1995). 

 

1.1.4. FucoPol Production 

  

Alves et al. (2010) reported for the first time the production of a new fucose-rich EPS 

patented by the Portuguese company 73100, Lda. (WO 2011/073874 A2) produced by Entero-

bacter A47, a short rod, gram-negative motile bacterium with a Patent deposit at Deutsche 

Sammlung von Mikroorganismen und Zellkulture (DSMZ) with accession number 23139 (Reis 

et al., 2011). Enterobacter A47 has demonstrated the ability to synthesize a novel exopolysac-

charide, named FucoPol, when grown on glycerol by-product from the biodiesel industry (Alves 

et al., 2010). This new EPS is a fucose-containing high molecular weight heteropolysaccharide, 

characterized by interesting rheological, flocculating and emulsifying properties, which make it 

a good alternative to other polysaccharides in several applications (Alves et al., 2010; Cruz et al., 

2011; Freitas et al., 2011a; Torres et al., 2011). On the other hand, the presence of fucose renders 

this biopolymer an enormous potential for use in pharmaceuticals (e.g. anti-cancer or anti-inflam-

matory agent, wound healing) and cosmetics (e.g. skin moisturizing and anti-agent) (Freitas et 

al., 2011b). FucoPol may also be used as a source of fuco-oligosaccharides and fucose monomers, 

presenting themselves added value applications (Hidari et al., 2008; Péterszegi et al., 2003; 

Vanhooren and Vandamme, 1999).  

Previously, reported by Alves et al. (2010) and Freitas et al. (2011) a typical FucoPol pro-

duction by Enterobacter A47, using glycerol by-product as carbon source, occur at 30 °C, pH 6.8 

and C:N ratio of 14:1 (w/w). During the first 24 h, Enterobacter A47 grow exponentially and 

initiate the EPS production. Then, by imposing a nitrogen limiting condition (<0.1 g NH4
+ L-1) 

the feeding solution begin to enter into the bioreactor at a constant flow rate of 2.5 mL h-1 L-1. 

Moreover, dissolved oxygen concentration is controlled at 10% by the automatic variation of the 

stirring rate between 300 – 800 rpm and it’s when the FucoPol production reaches their maximum. 

Using the same industrial by-product, Torres et al. (2012) reported that the FucoPol production 

was maximized at 30 °C and pH 7.0. Later, Torres et al. (2014) reported that EPS synthesis by 
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Enterobacter A47 is influenced by both the initial glycerol and nitrogen concentrations and by 

the nutrients' feeding rate during the fed-batch phase.  

Furthermore, Enterobacter A47 demonstrated the ability to grow and synthesize FucoPol 

using different sugars, including glucose and xylose, which are components of several agro-food 

industry wastes/by-products. In view of this, Enterobacter A47 has great potential to be used for 

the biotechnological valorisation of such feedstocks (Freitas et al., 2014). 
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1.2. Motivation and Thesis Outline 

 

1.2.1. Motivation 

 

Regarding the fact that renewable resources, like agro-food industrial wastes/by-products, 

may be a potential alternative substrate sources for biopolymers production, and that the bacte-

rium Enterobacter A47 demonstrate the ability to use different sugars as carbon source, in this 

Ph.D. thesis, the development of production of EPS using agro-food industry by-products as sub-

strate was studied. 

The following main objectives were envisaged: 

1- Screening of agro-food industrial wastes/by-products as substrates for Enterobacter A47 

cultivation. Based on the literature and on the industrial partners, study and characterize 

different renewable materials; 

2- Perform bioreactor cultivations to optimize the stoichiometric and kinetic parameters, 

such as cell growth rates, EPS productivities and yields of polymer on substrate; 

3- Evaluate the impact of the different substrates tested upon polymer physical-chemical 

characteristics by the analysis of the chemical composition, molecular weight and intrinsic 

viscosity. Also, assess some functional properties, which will determine the final polymer 

applications, including the rheological properties, emulsion forming and stabilizing ability 

and film-forming capacity.  

 

 

1.2.2. Thesis Outline 

 

This thesis is divided into six chapters, describing the work performed during this Ph.D. 

project. The methodology used in each individual chapter is detailed in the context of the respec-

tive subject and, when applicable, is related to that used in previous chapters. Chapters 2, 3 and 4 

are dedicated to EPS production using different agro-food industry by-products and process op-

timization. Chapter 5 describe the physicochemical properties of the EPS produced by Entero-

bacter A47 using the different wastes/by-products.  

The work performed during this Ph.D. resulted in 2 scientific papers, which have been 

published in international scientific publications, while two more manuscripts are being prepared. 
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• Chapter 1 describes the background (state of the art) and motivation of this Ph.D. the-

sis. 

• Chapter 2 presents the production of EPS by Enterobacter A47 using as carbon source 

commercial lactose and cheese whey. The chemical composition and Mw of the pro-

duced EPS (EPSCW) are also described. 

• Chapter 3 describes the production of EPS using out-of-specification tomato paste and 

optimization of the feeding strategy. The chemical composition and Mw of the pro-

duced EPS (EPSTP) are presented. 

• Chapter 4 reports the optimization of the brewer spent grains (BSG) hydrolysis for the 

bioreactor cultivation of Enterobacter A47 and EPS production. Also, cultivation with 

a mixture of glucose and xylose commercial sugars are described to mimic the use of 

hydrolysate from lignocellulosic materials and infer the ability of Enterobacter A47 to 

growth and produce EPS using this carbon source. The chemical composition and Mw 

of the produced EPS (EPSGX) are also described. 

• Chapter 5 describes the properties in aqueous solutions, ability to emulsify and stabilize 

mixtures of water and hydrophobic compounds and film-forming capacity of the EPS 

produced by Enterobacter A47 using cheese whey (EPSCW) (Chapter 2), out-of-speci-

fication tomato paste (EPSTP) (Chapter 3) and a glucose/xylose mixture (EPSGX) 

(Chapter 4).  

• Chapter 6 presents the final remarks and main conclusions of this thesis, along with 

some suggestions for future research are also proposed. 

 

The scientific work developed in this Ph.D. project is described in Chapters 2 to 5. These 

chapters are written in the format of scientific papers, Chapters 2 and 3 being already published, 

while Chapter 4 and 5 are the basis of two manuscripts to be published. The methodology used 

in each individual chapter is detailed in the context of the respective subject and, when appropri-

ate, is related to that used in previous chapters. 
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CHAPTER 2 

Extracellular Polysaccharides Production: 

Cheese whey 

 

 

 

 

The results presented in this chapter were published in a peer reviewed paper. 

Antunes, S., Freitas, F., Alves, V.D., Grandfils, C., Reis, M.A.M., 2015. Conversion of 

cheese whey into a fucose- and glucuronic acid-rich extracellular polysaccharide by Enterobacter 

A47. Journal of Biotechnology. 210, 1-7. 
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2.1. Summary 

 

Cheese whey was used as the sole substrate for the production of EPS by Enterobacter 

A47. An EPS concentration of 6.40 g L-1 was reached within 3.2 days of cultivation, correspond-

ing to a volumetric productivity of 2.00 g L-1 d-1. The produced EPS was mainly composed of 

glucuronic acid (29 mol%) and fucose (29 mol%), with lower contents of glucose and galactose 

(21 mol% each) and a total acyl groups content of 32 wt.% . The polymer had an Mw of 1.8×106 

Da, with a polydispersity index (PDI) of 1.2. This novel glucuronic acid-rich polymer with high 

content of glucuronic acid and fucose, two bioactive sugar monomers, confers it a great potential 

for use in high-value applications, such as cosmetics and pharmaceuticals. 

 

2.2. Introduction 

 

Cheese whey is a lactose-rich by-product generated in large amounts by the dairy indus-

try, representing about 85-95% of the milk’s volume. Worldwide, whey production averages 

around 1.15×108 to 1.40×108 tons per year, with an estimated annual increase of 1-2 % (Koller et 

al., 2012). This by-product consists mainly of lactose (70-80%), soluble proteins (8-14%), min-

erals (12-15%), lactic acid (0.8-12%) and fats (1-7%), possessing a high oxygen demand that 

needs to be treated before discharged into the environment (Koller et al., 2012; Prazeres et al., 

2012; Siso, 1996). To overcome this, over the years, several approaches have been proposed aim-

ing to treat or valorise cheese whey. Some of whey products utilization, mostly as food supple-

ments, e.g. sweets, nutraceuticals, additives for processed food and baby food, are limited due to 

human lactose intolerance (Koller et al., 2012). Additional alternatives for cheese whey’s valori-

sation include its use as a biotechnological resource for the generation of added-value products, 

such as bioethanol (Ozmihci and Kargi, 2007), biogas (Davila-Vazquez et al., 2009), organic 

acids (Roukas and Kotzekidou, 1998), electricity (Kassongo and Togo, 2010), proteins (Morr and 

Ha, 1993), polyhydroxyalkanoates (Koller et al., 2012; Pais et al., 2014) and microbial polysac-

charides (Fialho et al., 1999; Khanafari and Sepahei, 2007; Savvides et al., 2012). 

Bacterial EPS are carbohydrate polymers secreted by the cells that either remain attached 

to the cell envelope (capsular polysaccharides) or form a slime that is loosely bound to the cell 

surface (Freitas et al., 2011b; Rehm, 2010). Depending on their subunit composition, structure 

and molecular mass, EPS can have commercially relevant material properties that are attractive 
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for applications ranging from pharmaceuticals and cosmetics to industrial uses (Prazeres et al., 

2012). 

Most wild-type EPS producing bacteria are unable to efficiently using lactose as a carbon 

source because of their low β-galactosidase activity (Siso, 1996). To overcome this issue, it is 

often necessary to convert the disaccharide lactose into the constituent monosaccharides, glucose 

and galactose, either chemically or enzymatically, which increases the processes costs. An alter-

native is the use of genetically modified or adapted bacteria able to utilize lactose as carbon source 

(Audic et al., 2003). The first hypothesis increases the costs of the process since one additional 

step is required, while the second has implications on the microorganism genetic stability and 

transfer of recombinant genes with resistance to other bacteria. Thus, it is of interest to find mi-

croorganisms that can directly use lactose and convert it into the bioproduct (Davison, 2005). 

Enterobacter A47 (DSM 23139) is an EPS-producer that synthesizes high molecular 

weight heteropolysaccharides composed of fucose, glucose, galactose and glucuronic acid, which 

present interesting functional properties (Cruz et al., 2011; Dhadge et al., 2014; Ferreira et al., 

2014; Freitas et al., 2011a, 2014). Enterobacter A47 has demonstrated to be highly versatile due 

to its ability to use a wide range of substrates, including glycerol, glucose and xylose (Alves et 

al., 2010; Freitas et al., 2014), but lactose was not previously tested. Hence, in this work, the 

ability of Enterobacter A47 to use lactose and cheese whey as sole carbon sources for EPS pro-

duction was assessed in fed-batch bioreactor cultivations. The produced polysaccharides were 

analysed in terms of sugar and acyl groups composition and Mw. 

 

 

2.3. Materials and Methods 

 

2.3.1. Exopolysaccharide production 

 

Microorganism and media 

The bacterium Enterobacter A47 (DSM 23139) was cryopreserved at -80 °C, in 20% 

(v/v) glycerol. Reactivation from the stocks culture was performed in Luria Bertani (LB) medium 

(bacto-tryptone, 10 g L-1; yeast extract, 5 g L-1; sodium chloride, 10 g L-1; pH 6.8) that was also 

the medium used for inocula preparation.  
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In the bioreactor assays, Enterobacter A47 was grown on a slightly modified Medium E* 

(pH 7.0), with the following composition (per liter): (NH4)2HPO4, 3.3 g; K2HPO4, 5.8 g; KH2PO4, 

3.7g; 10 mL of a 100 mM MgSO4 solution and 1 mL of a micronutrient solution (Freitas et al., 

2014). The micronutrients solution had the following composition (per liter of 1N HCl): 

FeSO4
.7H2O, 2.78 g; MnCl2

.4H2O, 1.98 g; CoSO4
.7H2O, 2.81 g; CaCl2

.2H2O, 1.67 g; CuCl2
.2H2O, 

0.17 g; ZnSO4
.7H2O, 0.29 g).  Medium E* was supplemented with lactose (Scharlau) or cheese 

whey (supplied by Lactogal Produtos Alimentares S.A, Portugal) to give a lactose concentration 

of approximately 70 g L-1. The cheese whey had a lactose content of 78.40 wt.%, as well as 13.62 

wt.% protein, 1.21 wt.% fat and 0.89 wt.% lactic acid. Concentrated lactose and cheese whey 

aqueous solutions (125 g L-1) were prepared and autoclaved separately (121 ºC, 2 atm, for 30 

min). The autoclaved cheese whey mixture was further centrifuged, under aseptic conditions, at 

10,375 × g during 15 min, to separate undissolved constituents and precipitated proteins. The 

resulting lactose-rich supernatant was used to supplement the cultivation medium. 

 

Bioreactor cultivation 

The experiments were performed in 5 L bioreactors (BioStat B, Sartorius, Germany) with 

initial working volumes of 2.5 L. Inocula for the assays were prepared by inoculating 20 mL of 

LB medium grown cells into 200 mL fresh LB medium and incubation in an orbital shaker for 65 

h (at 30 °C, and 200 rpm). The culture obtained was centrifuged (4,053 × g, for 5 min) and the 

cells were resuspended in 50 mL phosphate buffer (K2HPO4, 5.8 g L-1; KH2PO4, 3.7g L-1; pH 7.0) 

for inoculation in the bioreactor.  

All assays took 4 days, under controlled temperature and pH conditions of 30 ± 0.2 ºC 

and 7.0 ± 0.02, respectively. The aeration rate (0.125 vvm - volume of air per volume of reactor 

per minute) was kept constant throughout all cultivation runs. The dissolved oxygen level (DO) 

was controlled below 10% by the automatic variation of the stirrer speed (300-800 rpm). In the 

fed-batch phase, the bioreactor was fed with Medium E* supplemented with either lactose or 

cheese whey (lactose concentration of ~120 g L-1) at a constant lactose feeding rate of 5 g L-1 h-1. 

Samples (25 mL) were periodically withdrawn from the bioreactor for quantification of biomass, 

lactose, ammonium and EPS concentration, as well as measurement of the broth’s viscosity. 

 

Analytical techniques 

The viscosity of culture broth samples was measured immediately after collection from 

the bioreactor, using a digital viscometer (Brookfield Engineering Laboratories Inc., Stoughton, 

MA, USA), for shear rates between 0.28 and 55.8 s-1. 
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Culture broth samples were centrifuged at 13,000 × g, for 15 min, for cell separation. 

Viscous samples (>100 cPs) were diluted (1:2, v/v) with deionized water for viscosity reduction. 

The cell-free supernatant was used for the determination of nutrients concentration, and for EPS 

quantification. The cell pellet was used for the gravimetric determination of the cell dry weight 

(CDW), after washing twice with deionised water (resuspension in water, centrifugation at 13,000 

× g, for 15 min, and, finally, resuspension in deionised water) and drying at 100 ºC until constant 

weight. 

Sugars (lactose, glucose and galactose) and organic acids (citric and lactic acids) in the 

cell-free supernatant samples were determined by high performance liquid chromatography 

(HPLC), with a MetaCarb 87H column (Varian) coupled to a refractive index detector. The anal-

ysis was performed at 50 °C, with sulphuric acid (0.01 N) as eluent, at a flow rate of 0.6 mL min-

1. Lactose (Scharlau), glucose (Sigma), galactose (Alfa Aesar), citric acid (Panreac) and lactic 

acid (Sigma) were used as standards at concentrations between 0.062 and 1.0 g L-1. Ammonium 

concentration was determined using a potentiometric sensor (Thermo Electron Corporation, 

Orion 9512). Ammonium chloride (Sigma) was used as standard at concentrations between 0.006 

and 1.8 g L-1. 

The EPS was extracted from the cultivation broth by the procedure described by Freitas 

et al. (2014), with minor modifications. Briefly, the cell-free supernatant was subjected to thermal 

treatment (70 °C, during 30 min) to denature remaining cheese whey and/or bacterial proteins. 

The precipitated proteins were removed by centrifugation (13,000 × g, for 15 min) and the treated 

supernatant was dialyzed with a 10,000 molecular weight cut-off (MWCO) membrane (Snake-

Skin™ Pleated Dialysis Tubing, Thermo Scientific), against deionized water, over 48 h at 4 °C, 

and, finally, freeze dried. A cheese whey solution (125 g L-1) was subjected to the same procedure 

to quantify the content in high molecular weight compounds present in the cheese whey powder. 

All analyses were performed in duplicate. 

 

 

 Calculations 

The overall volumetric EPS productivity (𝑟𝑃, g L-1 d-1) was determined as follows: 𝑟𝑃 = ∆𝐸𝑃𝑆∆𝑡    (1) 

where EPS is the concentration of EPS produced (g L-1) within the time period t (d). 
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2.3.2. Polymer characterization 

 

Chemical composition 

For the EPS compositional analysis, polymer samples (~5 mg) dissolved in deionized 

water (5 mL) were hydrolyzed with trifluoroacetic acid (TFA) (0.1 mL TFA 99%) at 120 °C, for 

2 h. The hydrolysate was used for the identification and quantification of the constituent mono-

saccharides by HPLC, using a CarboPac PA10 column (Dionex), equipped with an amperometric 

detector (Dionex), as described by Freitas et al. (2014). The acid hydrolysates were also used for 

the identification and quantification of acyl groups by HPLC, with an Aminex HPX-87H column 

(BioRad), coupled to an ultraviolet (UV), as described by Freitas et al. (2014). 

 

Molecular weight 

Number and weight average molecular weights (Mn and Mw, respectively), as well as the 

polydispersity index (PDI=Mw/Mn), were obtained by size exclusion chromatography coupled 

with multi-angle light scattering (SEC-MALS). The latter combines a HPLC pump (Hewlett 

Packard quaternary 1050), an autoinjector (Hitachi-Merck, Lachrom L7200, model 1405 – 040), 

and a set of two analytical SEC linear columns (PL Aquagel-OH mixed 8 µm, 300 x 7.5 mm) 

protected by a guard column (Polymer Laboratory; 50 x 7.5 mm). UV (Beckman UV model 266 

fixed at 254 nm) signals were recorded together with MALS and refractive index (RI) signals (the 

same MALS and RI detector as described above were used) in order to follow the purity and 

molecular mass distribution of the polysaccharide.  

The EPS produced from lactose by Enterobacter A47 and the polysaccharide fraction re-

covered from the cheese whey powder were dissolved first in Tris–HCl 0.1 M; NaCl (0.2 M), pH 

8.1 buffer, at a concentration of 0.2 g d L-1. These solutions were warmed for 1 h at 80 °C in a 

water bath under lateral agitation. Dissolution of the polymer was continued for 35 h under rolling 

agitation at room temperature. A different dissolution protocol was used for the EPS produced 

from cheese whey because the Tris–HCl buffer solution was not suitable for its solubilisation.  

Hence, this EPS was dissolved overnight at room temperature under magnetic stirring (300 rpm) 

in NaCl (0.1 M). NaN3 (10 ppm) was added to prevent microbial contamination. After dissolution, 

the pH was adjusted to 8.0.  

EPS solutions were filtered with 0.45 µm polysulfone membranes (Whatman; Puradisc 

25AS) before their injection on the SEC-MALS system. Tris-HCl buffer solution was used as 

eluent with a flow rate of 0.7 mL min-1 at room temperature. The analysis was performed by 
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injection of 100 µL of EPS solution (0.2 g d L-1). Each analysis was conducted in duplicate. 

Signals from MALS (Wyatt Technology Corporation Dawn Model mounted with an uniphase 

argon laser (488 nm; 10 mW; K5 cell Flow cell) and RI signals (Optilab DSP, Wyatt Technology 

Corporation 488.0 nm, K5 cell at 30 °C) were recorded in parallel and treated with Astra (V 

4.73.04) in order to follow the purity and molecular mass distribution of the polysaccharide. A dn 

dc-1 of 0.190 mL g-1 was adopted to calculate the Mw of the EPS. Quality control of the MALS 

installation was verified with polyethylene glycol (PEG) standards and bovine serum albumin 

(BSA). 

 

 

2.4. Results and discussion 

 

2.4.1. Cultivation of Enterobacter A47 on lactose as the sole substrate 

 

In order to determine the ability of Enterobacter A47 to use lactose as sole carbon source 

for cell growth and EPS synthesis, without the potential interference of the cheese whey constit-

uents, fed-batch bioreactor cultivations were conducted using lactose as model substrate (Figure 

2.1).  

Although the culture was able to use lactose for cell growth, the maximum specific growth 

rate (0.06 h-1) was considerably lower than that obtained in previous studies with glycerol (0.26-

0.32 h-1), glucose (0.35 h-1) or xylose (0.25 h-1), under similar cultivation conditions (Table 2.1). 

A CDW of 4.56 g L-1 was attained at the end of the batch phase (2.3 days), when cell growth was 

limited by ammonium exhaustion and the fed-batch phase was initiated (Figure 2.1).  

Concomitant  with  cell  growth,  25 g L-1  of  lactose  were  consumed  out  of  the  initial 

74 g L-1. No EPS production was detected during the batch phase. During the fed-batch phase, 

lactose concentration was kept above 40 g L-1 by supplying the bioreactor with a lactose contain-

ing medium. These conditions of lactose availability are required for lac operon’s positive regu-

lation. In gram-negative bacteria, lactose is converted to allolactose, acting as an inducer of lac 

operon’s transcription into β-galactosidase (Juers et al., 2012). 

 



2. Extracellular Polysaccharides Production: Cheese whey 

 

23 

 

  

Figure 2.1: Cultivation profile of Enterobacter A47 using lactose as carbon source (( ) CDW; ( ) EPS 
concentration; ( ) ammonium concentration; ( ) lactose concentration; ( ) citric acid concentration; ( ) 
lactic acid concentration). 
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In the fed-batch phase, lactose was mostly used for EPS synthesis (Figure 2.1), since cell 

growth was limited by the low ammonium concentration available (< 0.1 g L-1). At the end of the 

4.0 days cultivation run, 5.22 g L-1 EPS were produced, which corresponds to an overall volumet-

ric productivity of 1.31 g L-1 d-1 (Table 2.1). These values are similar to the ones obtained for 

Enterobacter A47 cultivation on xylose as the sole carbon source (5.39 g L-1 and 1.39 g L-1 d-1, 

respectively) (Freitas et al., 2014), but considerably lower than those obtained from glycerol 

(7.50-7.97 g L-1 and 2.52 g L-1 d-1, respectively) (Alves et al., 2010; Torres et al., 2011) or glucose 

(13.4 g L-1 and 3.78 g L-1 d-1, respectively) (Freitas et al., 2014) (Table 2.1). EPS production by 

Enterobacter A47 from lactose was also lower than the values reported for xanthan and gellan 

gum produced by adapted wild-type strains using lactose as sole carbon source (12.5 g L-1 and 

10.2 g L-1, respectively) (Table 2.1). 
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Table 2.1: Kinetic parameters obtained in the bioreactor cultivation of Enterobacter A47 using different substrates and productivity of commercial bacterial 
polysaccharides tested with lactose or cheese whey as substrate. 
 

n.a. – data not available 

 

 

Bacterium Polysaccharide Substrate µmax 
(h-1) 

CDWmax 
(g L-1) 

EPSmax 
(g L-1) 

rP 
(g L-1 d-1) 

References 

Enterobacter A47 EPSlac Lactose 0.06 5.33 5.22 1.31 This study 

EPScw Cheese whey 0.15 8.60 6.40 2.00    This study 

FucoPol Glycerol 0.26-0.32 5.80-6.75 7.50-7.97 2.52 Alves et al., 2010; Torres et 
al., 2011 

EPS-g Glucose 0.35 8.14 13.40 3.78    Freitas et al., 2014 

EPS-x Xylose 0.25 3.92 5.39 1.39    Freitas et al., 2014 

Xanthomonas cam-

pestris 

Xanthan Lactose n.a. n.a. 12.5 3.00    Savvides et al., 2012 

Cheese whey n.a. n.a. 8.7 2.09    Savvides et al., 2012 

Sphingomonas pauci-

mobilis 

Gellan gum Lactose n.a. n.a. 10.2 2.45    Fialho et al., 1999 

Cheese whey n.a. n.a. 7.9 1.90    Fialho et al., 1999 

Streptococcus thermo-

philes YIT 2084 

Hyaluronic acid Lactose 0.68 n.a. 1.2 1.11    Izawa et al., 2011 

Azotobacter chroococ-

cum 

Bacterial alginate Cheese whey n.a. n.a. 1.0 0.17    Khanafari and  Sepahei, 2007 
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2.4.2. Cultivation of Enterobacter A47 on cheese whey as the sole substrate 

 

Considering that Enterobacter A47 was able to grow on lactose as sole carbon source and 

synthesize EPS, the use of cheese whey as substrate was then tested under similar cultivation 

conditions (Figure 2.2).  

 

Figure 2.2: Cultivation profile of Enterobacter A47 using cheese whey as carbon source (( ) CDW; ( ) 
EPS concentration; ( ) ammonium concentration; ( ) lactose concentration; ( ) citric acid concentration; 
( ) lactic acid concentration). 
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The  specific  cell  growth  rate  was  considerably  higher  (0.15 h-1)  than  with  lactose 

(0.06 h-1) (Table 2.1). This result may be related to the cultivation medium provided by cheese 

whey, which, in addition to lactose, contained remaining proteins, vitamins and mineral salts that 

may have stimulated cell growth. During the batch phase (1.4 days), the culture attained a CDW 

of 6.22 g L-1, but still continued to grow, reaching a maximum CDW of 8.74 g L-1 at 3.2 days of 

cultivation. Since the ammonium concentration supplied during the fed-batch phase was not suf-

ficient to support cell growth (< 0.1 g L-1), the observed cell growth can be assigned to the con-

sumption of organic nitrogen compounds present in the cheese whey feeding solution.  

A low EPS concentration was detected at the beginning of the run (0.66 g L-1), but its 

concentration remained practically unchanged until the fed-batch phase was initiated, increasing 

considerably thereafter (Figure 2.2). The initial polymer content in this assay was mainly due to 

a polysaccharide originally present in the cheese whey, which represented 0.8 wt.% of the cheese 

whey powder. This EPS was probably produced by lactic acid bacteria (LAB) present in fer-

mented dairy products, such as cheese (Harutoshi, 2013).  

An EPS concentration of 6.40 g L-1 was obtained at 3.2 days, corresponding to a volumetric 

productivity of 2.00 g L-1 d-1, which is lower than the values obtained for EPS production by 

Enterobacter A47 using glycerol or glucose as substrates (Table 2.1). Nevertheless, the obtained 

EPS concentration was similar to that reported for xanthan and gellan gum using cheese whey as 

substrate (8.70 and 7.90 g L-1, respectively) and considerably higher than the values reported for 

hyaluronic acid (1.20 g L-1) and bacterial alginate (1.00  L-1)  using the same substrate (Table 2.1).  

In those studies, both xanthan and gellan gum were recovered from the broth by solvent precipi-

tation, without purification step (Fialho et al., 1999; Savvides et al., 2012), thus resulting in higher 

yields of less pure products. In this work, simple dialysis was successful to produce pure EPS 

from Enterobacter A47. 

Significant amounts of citric and lactic acids were detected (4.53 g L-1 and 1.90 g L-1, re-

spectively) in the culture broth during cultivation of Enterobacter A47 on cheese whey (Figure 

2.2). The production of these organic acids was not observed in previous studies using other car-

bon sources, namely, glycerol, glucose or xylose (Freitas et al., 2014; Torres et al., 2011). In the 

lactose fed experiment (Figure 2.1), citric and lactic acids were detected during the fed-batch 

phase, but their concentrations were very low (<1.0 g L-1). The higher organic acids synthesis 

may be related to the presence of proteins, vitamins and mineral salts in the cheese whey medium. 

Such components, besides stimulating cell growth, may also have induced the metabolic path-

ways leading to the synthesis of citric and lactic acids. In the cheese whey assay, a fraction of the 

available carbon was used by the culture for the synthesis of organic acids through metabolic 

pathways different from those leading to polysaccharide synthesis. Therefore, EPS production by 
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Enterobacter A47 from cheese whey might be optimized by minimizing the synthesis of lactic 

and citric acids, which might increase polymer’s productivity. Strategies to reduce the production 

of organic acids by Enterobacter A47 grown on cheese whey may include, for example, the pro-

ton suicide method (Pais et al., 2014) for selection of mutants with diminished or depleted organic 

acids production. 

 

2.4.3. Exopolysaccharide composition and average molecular weight 

 

The EPS synthesized by Enterobacter A47 using commercial lactose, EPSlac, was com-

posed of fucose (25 mol%), galactose (22 mol%), glucose (24 mol%) and glucuronic acid (29 

mol%). A similar composition was found for the EPS synthesized from cheese whey, EPSCW: 

fucose (29 mol%), galactose (21 mol%), glucose (21 mol%) and glucuronic acid (29 mol%) (Ta-

ble 2.2). Although the same sugar monomers were previously reported as residues of the EPS 

synthesized by Enterobacter A47 from other carbon sources, their relative proportion was not the 

same (Table 2.2). The main difference was the considerably higher glucuronic acid content (29 

mol%), that was two to three times higher than the EPS produced from glycerol (9-10 mol%), 

glucose (16 mol%) or xylose (17 mol%). Conversely, both EPSlac and EPSCW had lower contents 

in fucose, glucose and galactose compared to EPS produced from glycerol (Table 2.2).  

The presence of fucose and glucuronic acid as main components of EPSlac and EPSCW is 

worth to mention due to their uncommon presence and bioactive properties. In particular anti-

tumor, anti-inflammatory and immune-enhancing activities have been reported for fucose-con-

taining polysaccharides, suggesting their valorisation for the development of new pharmaceuti-

cals (Hidari et al., 2008; Péterszegi et al., 2003). On the other hand, glucuronic acid has been 

reported as a detoxifying agent in liver, but also for the treatment of osteoarthritis (Yavari et al., 

2011). Glucuronic acid-based polysaccharides, such as hyaluronic acid and heparin, have proven 

biomedical applications in surgery, regenerative medicine, tissue engineering and as active ingre-

dients in anti-thrombotic and anti-arthritic drugs (Cimini et al., 2012).  
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Table 2.2: Sugar (Fuc: fucose; Gal: galactose; Glc: glucose; GlcA: glucuronic acid) and acyl groups (Pyr: pyruvyl; Succ: succinyl; Acet: acetyl) composition, average 
molecular weight (Mw) and polydispersity index (PDI) of the extracellular polysaccharides produced by Enterobacter A47 from different substrates. 

Substrate 

Sugar composition (mol%) Acyl groups composition (wt.%) Mw (Da) 

(×106) 
PDI References 

Fuc Gal Glc GlcA  Pyr Succ Acet 

Lactose 25 22 24 29  22 10 4 4.7 1.7 This study 

Cheese whey 29 21 21 29  24 1 7    1.8 1.2    This study 

Glycerol 32-36 25-26 28-34 9-10  13-14 3 3-5 5.7 1.3 Alves et al., 2010; 

Torres et al., 2012 

Glucose 29 29 26 16  15 2 5 4.2 1.4 Freitas et al., 2014 

Xylose 38 18 27 17  15 2 0 1.7 1.4 Freitas et al., 2014 
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Non-carbohydrate components, namely, the organic acyl groups pyruvyl, succinyl and ac-

etyl, were also detected as constituents of both EPSlac and EPSCW, accounting for 32 – 34 wt.% of 

the polymers’ dry weight (Table 2.2). The main acyl substituent present in both EPSlac and EPSCW 

was pyruvate, whose content was considerably higher (22 and 24 wt.%, respectively) than previ-

ously reported for the polymers obtained from glycerol, glucose or xylose (13-15 wt.%). EPSlac 

had a high succinate content of 10 wt.%, while EPSCW had only trace amounts of that acyl group 

(1 wt.%).  

EPSlac and EPSCW were both high molecular weight biopolymers (4.7×106 Da and 1.8×106 

Da, respectively) with relatively low polydispersity indexes (1.7 and 1.2, respectively) (Table 

2.2). These Mw values are within the ranges reported for other EPS synthesized by Enterobacter 

A47 using different substrates (1.7-5.7×106 Da) and also for EPS synthesized by other bacteria, 

such as xanthan (2.0-50×106 Da), alginate (0.3-1.3×106 Da), GalactoPol (1.0-5.0×106 Da) and 

hyaluronic acid (2.0×106 Da) (Freitas et al., 2011b). 

To confirm if any high molecular weight compounds present in the cheese whey were car-

ried over to EPSCW, cheese whey powder was analysed for its content in high molecular weight 

compounds by subjecting a cheese whey solution to dialysis with a 10,000 MWCO. A polysac-

charide fraction, accounting for 0.8 wt.% of the cheese whey powder, was recovered. This poly-

saccharide’s molecular weight (4.6×104 Da) was significantly lower than that of EPSCW (1.8×106 

Da). It was mainly composed of rhamnose (43 mol%), galactose (35 mol%) and glucose (18 

mol%), with a minor fucose content (3.6 mol%). The polysaccharide recovered from the cheese 

whey powder also had a low acyl groups content, 9.23 wt.%, including pyruvyl, acetyl and suc-

cinyl. Heteropolysaccharides composed of glucose, galactose and rhamnose have been reported 

to be synthesized by lactic acid bacteria used in the dairy industry, namely, Streptococcus ther-

mophilus and Lactobacillus sp., with productions that vary widely, between 0.05 and 2.8 g L-1 

(Harutoshi, 2013). 

The rhamnose-rich polysaccharide recovered from the cheese whey powder had a compo-

sition and a Mw distinct of those of the EPS recovered from the culture broth at the end of the 

cultivation of Enterobacter A47 in cheese whey. Hence, we may conclude that the polysaccharide 

EPSCW was indeed a product synthesized by Enterobacter A47 and that no rhamnose-rich poly-

saccharide from the cheese whey powder were present in the final product. 
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2.5. Conclusions 

 

Cheese whey, an inexpensive and abundant dairy by-product, was converted into a novel 

fucose- and glucuronic acid-rich polysaccharide by the bacterium Enterobacter A47. One inter-

esting feature of this bioprocess is the use of a culture that is able to directly use lactose, without 

any pretreatment, as the substrate for the synthesis of a novel value-added polysaccharide with 

valuable properties. The combination of the two bioactive sugar monomers, fucose and glucu-

ronic acid, in EPScw, confers it a huge potential for application in different areas, including cos-

metics, pharmaceuticals and food products. 
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CHAPTER 3 

Extracellular Polysaccharides Production: 

Tomato paste 

 

 

 

 

 

 

 

The results presented in this chapter were published in a peer reviewed paper. 

Antunes, S., Freitas, F., Sevrin, C., Grandfils, C., Reis, M.A.M., 2017. Production of Fu-

coPol by Enterobacter A47 using waste tomato paste by-product as sole carbon source. Biore-

source Technology. 227, 66–73. 
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3.1. Summary 

 

Out-of-specification tomato paste, a by-product from the tomato processing industry, was 

used as the sole substrate for cultivation of the bacterium Enterobacter A47 and production of 

FucoPol, a value-added fucose-rich extracellular polysaccharide. Among the different tested fed-

batch strategies, pH-stat, DO-stat and continuous substrate feeding, the highest production (8.77 

g L-1) and overall volumetric productivity (2.92 g L-1 d-1) were obtained with continuous substrate 

feeding at a constant flow rate of 11 g h-1. The polymer produced had the typical FucoPol com-

position (37 mol% fucose, 27 mol% galactose, 23 mol% glucose and 12 mol% glucuronic acid, 

with an acyl groups content of 13 wt.%). The average molecular weight was 4.4×106 Da and the 

PDI was 1.2. This study demonstrated that out-of-specification tomato paste is a suitable low-cost 

substrate for the production of FucoPol, thus providing a route for the valorisation of this by-

product into a high-value microbial product. 

 

 

3.2. Introduction 

 

Enterobacter A47 (DSM 23139) is a gram-negative bacterium that synthesizes FucoPol, a 

fucose-rich EPS (Alves et al., 2010; Freitas et al., 2014; Reis et al., 2011; Torres et al., 2011, 

2012, 2014). FucoPol is a high molecular weight biopolymer composed of fucose, glucose, ga-

lactose and glucuronic acid, and acyl groups substituents (Freitas et al., 2014; Torres et al., 2012), 

which presents interesting functional properties. FucoPol forms viscous aqueous solutions with 

shear thinning behaviour (Cruz et al., 2011; Torres et al., 2015), it has film-forming capacity 

(Ferreira et al., 2014, 2016; Freitas et al., 2014), flocculating activity, and emulsion forming and 

stabilizing capacity (Freitas et al., 2011a, 2014). Furthermore, the presence of fucose, a rare sugar 

reported to confer biological activity to fucose-containing polymers (Péterszegi et al., 2003; Roca 

et al., 2015; Wijesinghe and Jeon, 2012), renders FucoPol increased value.  

The bacterium Enterobacter A47 demonstrated the ability to use a wide range of substrates, 

including glycerol (Alves et al., 2010; Reis et al., 2011; Torres et al., 2011, 2012, 2014), glucose, 

xylose (Freitas et al., 2014) and lactose (Chapter 2; Antunes et al., 2015), as sole carbon sources. 

This substrate multiplicity makes the bioprocess more robust and versatile, but the composition 

of the polymer synthesized is influenced by the type of carbon source used. In fact, the use of 

xylose as carbon source, for example, results in increased fucose content in the polysaccharide 

(Freitas et al., 2014), while lactose induces the synthesis of a biopolymer enriched in glucuronic 
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acid (Chapter 2; Antunes et al., 2015). This interesting flexibility allows to tune the bioprocess 

towards the production of tailor-made biopolymers with potentially distinct valuable properties. 

In this perspective, it is relevant to search for alternative feedstocks, especially wastes and by-

products generated by agro-industrial activities, which can not only lower the production costs 

but also result in biopolymers with novel valuable properties. Within this context, the suitability 

of glycerol by-product from the biodiesel industry (Alves et al., 2010; Reis et al., 2011; Torres et 

al., 2011) and cheese whey from the dairy industry (Chapter 2; Antunes et al., 2015) as substrates 

for the cultivation of Enterobacter A47 has already been demonstrated. Similarly, other sugar-

rich materials, like fruit and vegetable wastes and by-products, may also be valorised into valua-

ble polysaccharides with this bioprocess. 

Tomato is the second largest produced vegetable in the world (faostat.fao.org). Tomato 

processing generates a large amount of wastes and by-products (e.g., discarded tomatoes, pulp, 

seeds and peels) that require adequate treatment/disposal procedures (Grassino et al., 2016; 

Sánchez et al., 2002). Currently, tomato processing wastes represent 10–40% of total processed 

tomatoes, being mainly used as animal feed or as soil fertilizers (Strati and Oreopoulou, 2011). 

Some alternative environmentally friendly valorisation strategies have been proposed for tomato 

processing wastes, including the recovery of different value-added products, such as lycopene 

and β-carotene (Choudhari and Ananthanarayan, 2007; Nobre et al., 2009; Strati and Oreopoulou, 

2011), sterols, tocopherols, terpenes and polyphenols (Kalogeropoulos et al., 2012), hydrolytic 

enzymes (Umsza-Guez et al., 2011), polysaccharides (Grassino et al., 2016; Romano et al., 2004; 

Tommonaro et al., 2008), oligosaccharides (Suzuki et al., 2002) and seed oil (Botinestean et al., 

2015). Other strategies include the production of fuel-like material (Toscano et al., 2015), bio-

methane (Calabrò et al., 2015), energy (Bacenetti et al., 2015) and for heat recovery (Amón et al., 

2015).  

A huge amount of tomato is processed into tomato paste, an ingredient of many products, 

such as ketchup, soups and sauces (Sánchez et al., 2002). Tomato paste is obtained by tomato 

pulp concentration, after removal of skins and seeds (Grassino et al., 2016; Sánchez et al., 2002). 

In 2013, 1.54 Mt of tomato paste were produced worldwide (faostat.fao.org). Part of this product 

resulted in out-of-specification tomato paste, which is tomato paste whose test results that fall 

outside the specifications or acceptance criteria established for commercialization. This tomato 

processing by-product is mainly incinerated or disposed in landfills, with associated costs for the 

manufacturer and environmental impact due to the generation of liquid and gaseous emissions 

(Calabrò et al., 2015). Since out-of-specification tomato paste is a sugar-rich complex mixture 

(Calabrò et al., 2015), it has potential to be used as a biotechnological resource for the generation 

http://www.fao.org/faostat
http://www.fao.org/faostat
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of value-added microbial products, such as biopolymers. However, this strategy has received little 

attention. 

In this work, out-of-specification tomato paste was tested for the first time as substrate for 

cultivation of the bacterium Enterobacter A47 to assess its suitability for the production of value-

added extracellular polysaccharides. Fed-batch bioreactor experiments were performed under dif-

ferent cultivation modes to evaluate the best strategy to reach high substrate conversion into pol-

ysaccharide and high volumetric productivities. The polymer synthesized was recovered from the 

cultivation broth and characterized in terms of composition and molecular mass distribution. 

 

 

3.3. Materials and Methods 

 

3.3.1. Characterization of tomato paste 

 

Out-of-specification tomato paste was supplied by HIT Group (www.hit-tomato.com), a 

tomato processing industry. The physical-chemical characterization of tomato paste included the 

determination of its pH, viscosity, content in solids, moisture, and concentration of phosphate, 

ammonium, simple sugars and high molecular weight soluble compounds. 

The viscosity was measured using a rotational viscometer (Fungilab, S.A., Spain), for shear 

rates between 0.005 and 1.667 s-1, at room temperature (20 °C). The moisture content of the to-

mato paste was determined by subjecting a sample (50 mg) to a temperature of 100 ºC, until 

constant weight was attained. The dried sample was further subjected to pyrolysis at a temperature 

of 550 ºC, for 24 hours, to determine its content in inorganic salts.  

A modified Lowry method (Lowry et al., 1951) was used to determine the total protein 

content of tomato paste, as described by Freitas et al. (2009). Briefly, 5.5 mL of a tomato paste 

aqueous suspension (250 g L-1) was mixed with 1 mL NaOH 20% (w/v) and heated at 100 °C for 

5 minutes. After cooling on ice, 170 μL of copper sulfate pentahydratate 25% (w/v) were added. 

The samples were centrifuged (3500×g, for 5 min) and the optical density of the supernatant was 

measured at 560 nm. Albumin solutions (0.05 - 3.0 g L-1) were used as standards.  

Ammonium and phosphate concentrations were determined by colorimetry, as imple-

mented in a flow segmented analyser (Skalar 5100, Skalar Analytical, The Netherlands). Ammo-

nium chloride and sodium phosphate were used as standards at concentrations between of 5 and 

20 mg L-1. Glucose and fructose concentrations were determined by HPLC, with a MetaCarb 87H 

http://www.hit-tomato.com/
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column (Varian) coupled to a RI detector. The analysis was performed at 30 °C, with sulphuric 

acid (0.01 N) as eluent, at a flow rate of 0.5 mL min-1. Glucose and fructose were used as standards 

at concentrations between 0.062 and 2.0 g L-1.  

For quantification of tomato paste’s content in high molecular weight compounds, a sus-

pension (82 g L-1) was centrifuged (10 000×g, for 15 min), for removal of suspended solids, and 

the clarified supernatant was subjected to thermal treatment (70 °C, for 1 h) to denature proteins 

that were removed by centrifugation (10 000×g, for 15 min). The treated supernatant was then 

submitted to a diafiltration process, using a crossflow membrane cassette (Hydrosart® Ultrafil-

tration Cassettes, Sartorius Stedim Biotech GmbH, Germany) with a 100 kDa cut-off and a sur-

face area of 0.6 m², operated at transmembrane pressure of 0.4 bar. The membrane module was 

switched to an ultrafiltration mode to concentrate the treated supernatant (5:1). The solution was 

freeze dried and the obtained polymer was stored at room temperature. 

 

 

3.3.2. Exopolysaccharide production 

 

Microorganism and media 

Enterobacter A47 (DSM 23139) was used in all experiments. The culture was reactivated 

from a cryopreserved stock by inoculation in LB medium agar plates (bacto-tryptone, 10 g L-1; 

yeast extract, 5 g L-1; sodium chloride, 10 g L-1; agar, 20 g L-1 ; pH 6.8). Liquid LB medium 

(without agar) was used for inocula preparation.  

In the bioreactor assays, Enterobacter A47 was grown on a mineral medium with the fol-

lowing composition (per liter): (NH4)2HPO4, 3.3 g; 10 mL of a 100 mM MgSO4 solution and 1 

mL of a micronutrient solution. The micronutrients solution had the following composition (per 

liter of 1 N HCl): FeSO4
.7H2O, 2.78 g; MnCl2

.4H2O, 1.98 g; CoSO4
.7H2O, 2.81 g; CaCl2

.2H2O, 

1.67 g; CuCl2
.2H2O, 0.17 g; ZnSO4

.7H2O, 0.29 g). The mineral medium (1 L) was supplemented 

with approximately 82 g of tomato paste.  

 

Bioreactor cultivation 

Inocula for the assays were prepared by inoculating a single colony, grown on LB agar 

plates at 30 ºC, into 20 mL LB medium and incubation in an orbital shaker, at 30 ºC and 200 rpm, 

for 16 hours. The LB grown cells (20 mL) were transferred into 200 mL fresh LB medium and 
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further incubated for 8 h, under the same conditions. The broth was centrifuged (4 053×g, for 5 

min) and the cells were resuspended in 50 mL deionized water and used as inoculum for the 

bioreactor experiments.  

The experiments were performed in a 5 L bioreactor (BioStat B, Sartorius, Germany) with 

an initial working volume of 1.5 L. All assays took around 3 days, under controlled temperature 

and pH conditions of 30 ± 0.2 ºC and 7.0 ± 0.05, respectively. An air flow rate of 0.4 SLPM 

(standard liters per minute) was kept constant throughout all cultivation runs. The dissolved oxy-

gen level (DO) was controlled at 10% by the automatic variation of the stirrer speed (300-800 

rpm).  

After an initial 9 h batch phase, the bioreactor was fed with substrate, a suspension prepared 

by diluting approximately 250 g of tomato paste in 0.75 L of deionized water. Three feeding 

strategies were tested, namely, pH-stat mode, DO-stat mode and continuous feeding. The pH-stat 

mode (Experiment A) was implemented by taking advantage of the low pH (4.0) value of tomato 

paste, that was used to automatically control the pH during the cultivation (i.e. tomato paste was 

fed to the culture when the pH rose above 7.05). In the DO-stat mode (Experiment B), the sub-

strate feeding flow rate was controlled as a function of DO level (under a constant stirring of 680 

rpm), i.e., when the DO level rose above 10% of the air saturation, tomato paste suspension was 

automatically fed to the bioreactor until the DO dropped to the set point. For the continuous feed-

ing experiments, three different constant substrate feeding rates were tested, namely, 4, 6 and 11 

g h-1 (Experiments C, D and E, respectively).  

Samples (25 mL) were periodically withdrawn from the bioreactor for biomass, polysac-

charide and nutrients quantification.  

 

Analytical techniques 

Cell growth was monitored by measuring the optical density at 450 nm (OD450). The cell 

dry mass (CDM) was estimated considering that one unit of OD450 is equivalent to a CDM of 

0.26 g L-1. This ratio was experimentally determined by measuring the OD450 of cell suspensions 

containing different CDM values. To obtain such suspensions, an Enterobacter A47 LB grown 

culture was centrifuged and the cell pellet was suspended in Medium E* supplemented with to-

mato paste at the same concentration used in the bioreactor experiments. This strategy was 

adopted because the insoluble materials content in tomato paste made it impossible to gravimet-

rically determine the CDM. 

The cell-free supernatant samples obtained by centrifugation of the cultivation broth (13 

000×g, for 15 min) were used for the quantification of sugars (glucose and fructose), ammonium 

and phosphate, as described above section. 
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All analyses were performed in duplicate. 

 

Extraction and purification of extracellular polysaccharides 

The culture broth was diluted with deionized water for viscosity reduction and centrifuged 

at 10 000×g, for 15 min, for cell separation. The cell-free supernatant thus obtained was subjected 

to thermal treatment (70 °C, for 1 h) to denature proteins that were removed by centrifugation (10 

000×g, for 15 min). The treated supernatant was submitted to a diafiltration process, as described 

above for quantification of high molecular weight compounds in tomato paste. The solutions thus 

obtained were further purified by dialysis with 1 000 000 MWCO membranes (Spectra/Por® 

Float-A-Lyzer® G2, Spectrum Laboratories, Inc.) against deionized water, at room temperature. 

Finally, the solutions were freeze dried and the polymers were stored at room temperature. 

 

 

3.3.2. Polymer characterization 

 

Chemical composition 

For the compositional analysis, polymer samples (~5 mg) dissolved in deionized water (5 

mL) were hydrolysed with trifluoroacetic acid (TFA) (0.1 mL TFA 99%) at 120 °C, for 2 h. The 

hydrolysate was used for the identification and quantification of the constituent monosaccharides 

by HPLC, using a CarboPac PA10 column (Thermo Dionex), equipped with pulsed amperometric 

detector (Dionex ICS3000, ThermoFisher Scientific Inc.), the analysis was performed at 30 °C, 

at an eluent flow rate of 1.0 mL min-1, with the following eluent gradient: 0-20 min, sodium 

hydroxide 18 mM; 20-40 min, sodium hydroxide (50 mM) and sodium acetate (170 mM). Glu-

curonic acid, galacturonic acid, glucose, galactose, rhamnose, xylose, arabinose and fucose at 

concentrations between 5 and 100 ppm were used as standards. The hydrolysates were also used 

for quantification of the organic acyl groups by HPLC, with a Biorad Aminex 87H column, using 

sulphuric acid (H2SO4 0.01 N) as eluent, at 30 °C with a flow rate of 0.6 mL min-1. The ultraviolet-

visible (UV/VIS) detection was performed at 210 nm. Acetic, succinic and pyruvic acids at con-

centrations between 25 and 500 ppm were used as standards. 

 

 

 



3. Extracellular Polysaccharides Production: Tomato paste 

 

41 

 

Molecular mass distribution  

Number and weight average molecular weights (Mn and Mw, respectively), as well as the 

polydispersity index (PDI=Mw/Mn), were obtained by size exclusion chromatography coupled 

with multi-angle light scattering (SEC-MALS). The latter combines a HPLC pump (Hewlett 

Packard quaternary 1050), an autoinjector (Hitachi-Merck, Lachrom L7200, model 1405 – 040), 

and a set of two analytical SEC linear columns (PL Aquagel-OH mixed 8 µm, 300 × 7.5 mm) 

protected by a guard column (Polymer Laboratory; 50 × 7.5 mm). UV (Beckman UV model 266 

fixed at 254 nm) signals were recorded together with MALS and RI signals (the same MALS and 

RI detector as described above were used) in order to follow the purity and molecular mass dis-

tribution of the polysaccharide.  

The polysaccharide samples were dissolved in Tris–HCl 0.1 M; NaCl (0.2 M), pH 8.1, 

buffer, at a concentration of 0.2 g dL-1. The solutions were warmed for 1 h at 80 °C in a water 

bath under lateral agitation. Dissolution of the polymers was continued for 35 h under rolling 

agitation at room temperature. The solutions were filtered with 0.45 µm polysulfone membranes 

(Whatman; Puradisc 25AS) before their injection on the SEC-MALLS system. Tris-HCl buffer 

solution was used as eluent with a flow rate of 1.0 mL min-1 at 20 °C. The analysis was performed 

by injection of 100 µL of EPS solution (0.2 g dL-1). Each analysis was conducted in duplicate. 

Signals from MALLS (Wyatt Technology Corporation Dawn Model mounted with an uniphase 

argon laser (488 nm; 10 mW; K5 cell Flow cell) and refractive index (RI) signals (Optilab DSP, 

Wyatt Technology Corporation 488.0 nm, K5 cell at 30 °C) were recorded in parallel and treated 

with Astra (V 4.73.04) in order to follow the purity and molecular mass distribution of the poly-

saccharide. A dn dc-1 of 0.190 mL g-1 was adopted to calculate the Mw of the polymers. Quality 

control of the MALS installation was verified with PEG standards, egg albumin and BSA. 
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3.4. Results and discussion 

 

3.4.1. Characterization of tomato paste 

 

The out-of-specification tomato paste used in this study was a viscous suspension (384 

Pa s, measured at 20 °C, for a shear rate of 0.005 s-1). It had a non-Newtonian and shear-thinning 

fluid behavior, with the apparent viscosity (ηa, Pa.s) decreasing as the shear rate was increased. 

This behavior was probably due to its high content in total solids (27.2 wt.%) (Abu-Jdayil et al., 

2004; Bayod et al., 2008; Sánchez et al., 2003). The suspension had a pH value of 4.0, which is 

within the typical pH range (3.8 – 4.3) reported for tomato paste (Sobowale et al., 2012), im-

portant for preventing the growth of pathogenic microorganisms in the product. The tomato paste 

had a moisture of 72.8 wt.%, an inorganic salts content of 3.5 wt.% and a total protein content of 

4.3 wt.%. 

 A high molecular weight fraction, with an average molecular weight of 1.38×105 Da and 

a PDI of 3.07, was recovered from tomato paste by diafiltration and accounted for 1.0 wt.% of its 

mass. This fraction was mainly composed of galacturonic acid (46 mol%), galactose (20 mol%), 

glucose (13 mol%) and arabinose (11 mol%), with minor rhamnose and xylose contents (6 and 4 

mol%, respectively). This galacturonic acid-rich fraction was probably a mixture of polysaccha-

rides, including pectins that are high molecular weight polysaccharides (2×105 Da) composed 

mainly of galacturonic acid (up to 78 wt.%) and smaller amounts of galactose, glucose, arabinose, 

rhamnose and/or xylose (Chou and Kokini, 1987; Makarova et al., 2015; Müller-Maatsch et al., 

2016). 

Considering the composition of out-of-specification tomato paste, it may be an interesting 

source for Enterobacter A47 cultivation mainly because of its high content in simple sugars, 

namely, glucose (5.9 wt.%) and fructose (6.9 wt.%). As reported by Freitas et al. (2014), Entero-

bacter A47 reaches high exopolysaccharide production using glucose as sole carbon source, but 

fructose was not previously tested. Additionally, the content of ammonium (0.5 wt.%) and phos-

phate (0.4 wt.%) detected in out-of-specification tomato paste rendered it also an interesting 

source of nitrogen and phosphorus. 
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3.4.2. Cultivation of Enterobacter A47 using tomato paste as sole substrate 

 

Fed-Batch Cultivation under pH-stat Mode  

Taking advantage of the low pH value (4.0) of out-of-specification tomato paste, the pH-

stat mode was evaluated for cultivation of Enterobacter A47 and production of extracellular pol-

ysaccharides in Experiment A (Figure 3.1). During cultivation of Enterobacter A47, a pH raise 

is usually indicative of substrate exhaustion or limitation. In the pH-stat mode, the substrate was 

automatically fed to the culture as a function of the pH value that was measured online. In this 

cultivation strategy, when the pH value rose above the set point (7.00 ± 0.05), the substrate was 

automatically fed to the bioreactor until the pH reached the set point.  

During the batch phase, the culture grew at a maximum specific growth rate of 0.29 h-1 

(Table 3.1). This value is within the range of those obtained in previous studies (0.25-0.36 h-1) 

for cultivation on different substrates, including glycerol, glucose and xylose (Freitas et al., 2014; 

Torres et al., 2011, 2012, 2014), which demonstrates that tomato paste is a suitable substrate for 

Enterobacter A47 cell growth. 

A CDM of 7.06 g L-1 was attained at the end of the batch phase (Figure 3.1a). Although 

most of the available ammonium was consumed within the first 9 h of cultivation, remaining in 

the broth at a limiting concentration (below 0.1 g L-1) during the fed-batch phase, the culture 

continued to grow (using the ammonium content in feed), reaching a maximum CDM of 10.22 g 

L-1 at 69 h (Figure 3.1a; Table 3.1). This value is higher than those obtained during cultivation 

with defined carbon sources, such as glycerol, glucose, xylose or lactose (Chapter 2; Antunes et 

al., 2015; Freitas et al., 2014; Torres et al., 2011, 2012, 2014), and is probably related to the richer 

cultivation medium provided by tomato paste, which, in addition to glucose and fructose, con-

tained ammonium. Moreover, tomato paste is also rich in proteins (4.3 wt.%) that may have 

served as additional nitrogen sources for cell growth. Tomato paste also provided an adequate 

supply of phosphate for cell growth. From the initial 0.80 g L-1 present in the cultivation medium, 

0.30 g L-1 were consumed during the batch phase (Figure 3.1b). A phosphate concentration of 

0.25 g L-1 was maintained during most of the fed-batch phase, showing that practically all the 

phosphate provided by tomato paste feeding was consumed by the culture. There was an overall 

phosphate consumption of 0.62 g L-1.   
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Figure 3.1: Cultivation profile obtained in Experiment A for the cultivation of Enterobacter A47 under a 
pH-stat mode, using tomato paste as sole substrate: (a) glucose ( ), fructose (□), ammonium ( ), phos-
phate (×), CDM ( ) and polymer ( ); (b) pH ( ), DO ( ) and tomato paste feed ( ). 



3. Extracellular Polysaccharides Production: Tomato paste 

 

45 

 

Table 3.1: Kinetic and stoichiometric parameters obtained in the bioreactor cultivation of Enterobacter A47 using different substrates and cultivation modes (µmax: 
maximum specific growth rate; CDM: cell dry mass, estimated considering that one unit of OD450 is equivalent to 0.26 g L-1 CDM). 

Substrate Cultivation mode 
µmax 
(h-1) 

CDMmax 
(g L-1) 

EPSmax 
(g L-1) 

Productivity 
(g L-1 d-1) 

References 

Glycerol Continuous feeding 0.27 – 0.36 5.80 – 7.68 7.23 – 7.97 2.04 – 3.72 
Freitas et al., 2014;  
Torres et al., 2011, 2012, 
2014 

Glucose DO-stat 0.35 8.14 13.40 3.78 Freitas et al., 2014 

Xylose DO-stat 0.25 3.92 5.39 1.39 Freitas et al., 2014 

Lactose Continuous feeding 0.06 5.33 5.22 1.31 
Chapter 2; Antunes et al., 
2015 

Cheese whey Continuous feeding 0.15 8.60 6.40 2.00 
Chapter 2; Antunes et al., 
2015 

 
Tomato paste 

 
pH-stat (Experiment A) 

 
0.29 

 
10.22 

 
1.65 

 
0.57 

 
This study 

 
 
DO-stat (Experiment B) 

 
0.27 

 
9.81 

 
3.43 

 
1.16 

 
This study 

 
 
Continuous feeding 

     

 
 

4 g h-1 (Experiment C) 
 

0.27 
 

10.14 
 

3.99 
 

1.34 
 
This study 

 
 

6  g h-1 (Experiment D) 
 

0.32 
 

10.74 
 

4.54 
 

1.56 
 
This study 

 

 
11  g h-1 (Experiment E) 

 
0.33 13.58 8.77 2.92 This study 
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As shown in Figure 3.1a, the two simple sugars detected in tomato paste, glucose and 

fructose, were efficiently used by the culture. However, glucose consumption was initiated right 

after inoculation, while fructose was only utilized when glucose concentration in the broth was 

below 2 g L-1. All the available glucose (4.85 g L-1) and most of the fructose (5.57 g L-1) were 

consumed during the batch phase. At around 8 h of cultivation, there was a raise of the pH value, 

which was indicative of substrate limitation and triggered substrate feeding under the pH-stat 

mode. During the fed-batch phase, glucose and fructose concentration in the broth remained prac-

tically unchanged (0.08-0.13 and 0.58-0.74 g L-1, respectively) (Figure 3.1a), which shows that 

the rate of feeding of both hexoses was the same as their rate of consumption. For the first hours 

of the fed-batch phase, the substrate feeding rate was high (~6 g h-1), but it declined significantly 

thereafter (Figure 3.1b). In fact, between 21 and 70 h of cultivation, a substrate feeding rate of 

only ~1 g h-1 was provided by the pH-stat mode. 

A high molecular weight fraction (0.82 ± 0.10 g L-1) was detected in the cultivation me-

dium at the beginning of the run, which probably corresponded to the presence of the galacturonic 

acid-rich polysaccharide fraction that accounted for 1 wt.% of tomato paste mass, as described 

above. During the batch phase, the content in high molecular weight compounds in the cultivation 

broth remained practically unchanged (Figure 3.1a), indicating that no significant bacterial ex-

opolysaccharide synthesis occurred during that period. Afterwards, during the fed-batch phase, 

increased production was detected, reaching a final concentration of 1.65 g L-1 (Figure 3.1a; Table 

3.1). The overall volumetric productivity of exopolysaccharides was 0.57 g L-1 d-1, which is lower 

than that obtained in previous studies with glycerol (2.04 – 3.72 g L-1 d-1) (Freitas et al., 2014; 

Torres et al., 2011, 2012), glucose (3.78 g L-1 d-1) (Freitas et al., 2014), xylose (1.39 g L-1 d-1) 

(Freitas et al., 2014), lactose (1.31 g L-1 d-1) (Chapter 2; Antunes et al., 2015) or cheese whey 

(2.00 g L-1 d-1) (Chapter 2; Antunes et al., 2015) (Table 3.1). 

The presence of ammonium and proteins in tomato paste has probably served as addi-

tional nitrogen sources for the culture, thus favouring cell growth over extracellular polysaccha-

ride synthesis. On the other hand, there may have been a limitation of available carbon source, 

which might have restricted polysaccharide synthesis. Apparently, the amount of substrate re-

quired to control the pH at the intended set point during the fed-batch phase was not enough to 

guaranty an adequate supply of carbon source. This is also supported by the fact that the DO 

increased at around 21 h and remained above 40% until the end of the experiment (Figure 3.1b), 

which could be related to the limitation of available substrate in the cultivation medium.  

The purified extracellular polysaccharide recovered from the broth at the end of Experi-

ment A had an average molecular weight of 3.6×106 Da and was composed of fucose (20 mol%), 

galactose (45 mol%), glucose (24 mol%) and glucuronic acid (11 mol%) (Table 3.2). 
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Table 3.2: Sugar composition and acyl groups content of the extracellular polysaccharides produced by Enterobacter A47 from various substrates under different 
cultivation modes (Fuc: fucose; Gal: galactose; Glc: glucose; GlcA: glucuronic acid). 

 

Substrate Cultivation mode 
Sugar composition (mol%)  Acyl groups 

content 
(wt.%) 

References 
Fuc Gal Glc GlcA  

Glycerol Continuous feeding 30-36 22-29 25-34 9-10  12-22 
Freitas et al., 2011a, 2014;  

Torres et al., 2011, 2012 

Glucose DO-stat 29 29 26 16  22 Freitas et al., 2014 

Xylose DO-stat 38 18 27 17  17 Freitas et al., 2014 

Lactose Continuous feeding 25 22 24 29  36 
Chapter 2; Antunes et al., 

2015 

Cheese whey Continuous feeding 29 21 21 29  32 
Chapter 2; Antunes et al., 

2015 
 
Tomato paste 

 
pH-stat (Experiment A) 

 
20 

 
45 

 
24 

 
11 

 
 

4 
This study 

 
 
DO-stat (Experiment B) 

 
28 

 
35 

 
25 

 
12 

 
 

6 
This study 

 
 
Continuous feeding 

       

 
 

4 g h-1 (Experiment C) 
 

27 
 

31 
 

32 
 

10 
 

 
5 

 
This study 

 
 

6  g h-1 (Experiment D) 
 

33 
 

27 
 

29 
 

11 
 

 
10 

 
This study 

 
 

11  g h-1 (Experiment E) 
 

37 27 23 12  13 This study 
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This sugar monomer profile is rather different from that obtained in previous studies, namely, the 

polymer had a lower fucose content, while the galactose content was considerably higher. More-

over, the polymer produced in Experiment A had an acyl groups content (4 wt.%) much lower 

than the exopolysaccharides produced from glycerol, glucose or xylose (12-22 wt.%) as carbon 

sources (Alves et al., 2010; Torres et al., 2011; Freitas et al., 2014).  

These results show that the cultivation conditions used in Experiment A not only affected 

the polymer’s composition, resulting in a polysaccharide significantly different from the typical 

FucoPol, but also resulted in poor exopolysaccharide synthesis. Therefore, the pH-stat mode was 

not an adequate strategy to feed tomato paste to the culture.  

 

Fed-Batch Cultivation under DO-stat Mode 

In Experiment B (Figure 3.2), the bioreactor was operated under a DO-stat mode during 

the fed-batch phase. In this cultivation strategy, the feeding flow rate was controlled as a function 

of the DO concentration, a parameter that was measured online and whose raise is indicative of 

substrate limitation.    

Similarly, to the batch phase of Experiment A (pH-stat mode), in Experiment B, the cul-

ture first consumed glucose until a concentration below ~2 g L-1 had been reached (Figure 3.2a). 

Only then (~6 h), fructose started to be consumed. During the batch phase, all the available glu-

cose (8.37 g L-1) and 5.89 g L-1 of fructose were consumed. The culture grew at a maximum 

specific growth rate of 0.27 h-1 (Table 3.1) and a CDM of 5.03 g L-1 was obtained at around 9 h 

of cultivation (Figure 3.2a). Starting at 9 h of cultivation, whenever the DO level rose above 10%, 

the substrate was automatically fed to the bioreactor until the DO reached the set point again 

(Figure 3.2b). This strategy allowed to control the DO concentration and, simultaneously, supply 

fresh substrate to the culture during the fed-batch phase. A total of 241 g of tomato paste were 

fed, supplying the culture with 11.43 g L-1 of glucose and 13.49 g L-1 of fructose that were con-

sumed for cell growth and exopolysaccharide synthesis. Similarly to Experiment A, the culture 

continued to grow during the fed-batch phase, despite the limiting ammonium concentration sup-

plied to the culture, achieving a maximum CDM of 9.81 g L-1 at the end of the run (Figure 3.2a; 

Table 3.1). Exopolysaccharide synthesis, on the other hand, was significantly improved, com-

pared to Experiment A. A final exopolysaccharide concentration of 3.43 g L-1 was attained (Figure 

3.2a), corresponding to an overall volumetric productivity of 1.16 g L-1 d-1 (Table 3.1). This higher 

polymer production was due to the higher substrate availability provided by the DO-stat mode 

strategy (241 g of tomato paste, compared to the 110 g provided with the pH-stat mode strategy).  
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Figure 3.2: Cultivation profile obtained in Experiment B for the cultivation of Enterobacter A47 under a 
DO-stat mode, using tomato paste as sole substrate: (a) glucose ( ), fructose (□), ammonium ( ), phos-
phate (×), CDM ( ) and polymer ( ); (b) pH ( ), DO ( ) and tomato paste feed ( ). 
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This feeding strategy resulted in a high substrate feeding rate (~7 g h-1) until around 30 h of 

cultivation (Figure 3.2b). Afterwards, it gradually decreased to below 3 g h-1. 

The purified extracellular polysaccharide recovered from the broth at the end of Experi-

ment B had an average molecular weight of 3.2×106 Da and was composed of fucose (28 mol%), 

galactose (35 mol%), glucose (25 mol%) and glucuronic acid (12 mol%), and had an acyl groups 

content of 6 wt.% (Table 3.2). This polymer was still enriched in galactose and had a low acyl 

groups content, similarly to the exopolysaccharide synthesized in Experiment A, but its fucose 

content was closer to this monomer’s content in FucoPol (29-38 mol%) produced from different 

carbon sources (Table 3.2). 

Although the DO-stat mode strategy improved the overall exopolysaccharide production 

and productivity, compared to the pH-stat mode, both stoichiometric parameters were still lower 

than those obtained in previous studies with other substrates (Table 3.1). The tested cultivation 

strategies, pH-stat and DO-stat modes, did not result in high exopolysaccharide production. More-

over, the polymers synthesized had a sugar monomer composition different from that of the typ-

ical FucoPol obtained in previous studies.  

 

 

Fed-Batch Cultivation under continuous substrate feeding 

The poor polymer production observed in Experiments A and B might have been related 

to the limited substrate availability provided by the pH-stat and DO-stat fed-batch cultivation 

strategies. Therefore, in an attempt to assure a more adequate supply of substrate during the fed-

batch phase, a continuous feeding strategy was tested in the following experiments. This cultiva-

tion strategy had already been successfully implemented to feed glycerol (Alves et al., 2010; 

Torres et al., 2011, 2012, 2014) and lactose or cheese whey (Chapter 2; Antunes et al., 2015) in 

previous studies.  

The continuous feeding strategy was evaluated in three experiments (Figure 3.3), with 

different feed flow rates during the fed-batch phase. In Experiment B, an overall of 241 g of 

tomato paste entered the bioreactor throughout the 62 h of the fed-batch phase, corresponding to 

an average flow rate of approximately 4 g h-1. However, the feed flow rate was decreased after 

around 30 h of cultivation (Figure 3.2b) and this reduction might have impaired polymer synthe-

sis. Hence, in Experiment C, a similar feed flow rate of approximately 4 g h-1 was implemented 

starting at around 9 h of cultivation (Figure 3.3a) and was kept throughout the cultivation run to 

guaranty a constant rate of supply of substrate. Two higher feed flow rates, 6 g h-1 (Experiment 

D) and 11 g h-1 (Experiment E), were also tested to evaluate if a higher substrate availability  
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Figure 3.3: Cultivation profiles obtained in Experiment C (a and b), Experiment D (c and d) and Experiment E (e and f) for the cultivation of Enterobacter A47 under 
continuous substrate feeding mode, using tomato paste as sole substrate ( , glucose; □, fructose; , tomato paste feed; , CDM; , polymer; , ammonium; ×, 
phosphate concentration). 
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would improve exopolysaccharide production or, by the contrary, might be inhibitory to the cul-

ture.  

The feed flow rate tested in Experiment C resulted in an exopolysaccharide production 

of 3.99 g L-1 (Figure 3.3b) and an overall volumetric productivity of 1.34 g L-1 d-1 (Table 3.1). 

These values are similar to the ones obtained in Experiment B, wherein the overall amount of 

substrate fed to the culture during the fed-batch phase was approximately the same. Glucose and 

fructose were detected in the broth at low concentrations (<0.20 g L-1 and <1.0 g L-1, respectively) 

(Figure 3.3a) during the fed-batch phase, suggesting that exopolysaccharide synthesis might have 

also been impaired by carbon source limitation.  

The exopolysaccharide produced in Experiment C was identical to that obtained in Ex-

periment B, in terms of average molecular weight (4.1×106 Da), sugar monomer composition (27 

mol% fucose, 31 mol% galactose, 32 mol% glucose and 12 mol% glucuronic acid) and acyl 

groups content (5 wt.%) (Table 3.2). 

Increasing the substrate flow rate and, consequently, the nutrients’ availability, in Exper-

iments D and E seemed to stimulate Enterobacter A47 cell growth, as seen by the higher maxi-

mum CDM obtained (10.74 and 13.58 g L-1, respectively) (Table 3.1; Figure 3.3d and f). Inter-

estingly, the higher substrate availability also resulted in improved exopolysaccharide production, 

especially in Experiment E, in which a polymer production of 8.77 g L-1 (Figure 3.3f) and a vol-

umetric productivity of 2.92 g L-1 d-1 were achieved (Table 3.1). These values are within the ranges 

reported for cultivation of Enterobacter A47 on glycerol, xylose, lactose or cheese whey (Table 

3.1). This reactor operation mode was successful to produce exopolysaccharide from tomato 

paste. The overall phosphate consumption increased from 0.81 g L-1 in Experiment C, to 0.98 and 

1.15 g L-1 for Experiments D and E, respectively, which might be related to the improved exopol-

ysaccharide synthesis. In fact, the synthesis of polysaccharides in bacteria requires the biosynthe-

sis of activated precursors, nucleoside diphosphate sugars (NDP-sugars), which are derived from 

phosphorylated sugars (Freitas et al., 2011b). Hence, the increasing phosphate consumption ob-

served in Experiments C, D and E suggests the higher requirement of this nutrient for the biosyn-

thesis of the exopolysaccharides’ building blocks. 

The higher substrate availability tested in Experiments D and E also resulted in the syn-

thesis of polymers with higher fucose content (33 and 37 mol%, respectively) and lower galactose 

content (27 mol%), which is in accordance with the typical FucoPol composition (Freitas et al., 

2014; Torres at al., 2011, 2012, 2014). Moreover, the exopolysaccharides also had higher acyl 

groups contents (10 and 13 wt.%) that is also closer to the typical FucoPol content (12 – 22 wt.%) 

(Table 3.2). The polymer produced in Experiment E had an average molecular weight of 4.4×106 

Da and a PDI of 1.2. 
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3.5. Conclusions 

 

Out-of-specification tomato paste was used for the first time as the sole substrate for the 

production of a microbial polymer. Tomato paste proved to be an adequate source of nutrients, 

including sugars, ammonium and phosphate, for Enterobacter A47 growth and exopolysaccha-

ride synthesis. The best bioprocess performance, in terms of polymer production and volumetric 

productivity, was higher for the continuous mode operation, which guarantied non-limiting avail-

ability of carbon and nutrients. Polymer composition and molecular mass distribution was similar 

to those produced from other feedstocks. 
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4.1. Summary 

 

The ability of Enterobacter A47 growth and produce extracellular polysaccharides (EPS) 

using as carbon source a mixture of glucose and xylose (75:25%) was tested using pure sugars 

and a brewer’s spent grains (BSG) hydrolysate. Using as substrate the hydrolysate of a beer man-

ufacturing  by-product,  BSG,  within  4  days  the  culture  reached  an  EPS  concentration  of 

2.30 g L-1, corresponding to a volumetric productivity of 0.57 g L-1 d-1. The produced EPS was 

mainly composed of glucose (53 mol%), with lower contents of galactose, xylose and fucose (20 

mol% ,17 mol% and 10 mol%, respectively), and a very lower acyl groups content (0.5 wt.%). 

On the other hand, using commercial glucose/xylose mixture, 5.71 g L-1 of EPS was achieved 

after 4 days, giving an overall volumetric productivity of 1.43 g L-1 d-1. Evaluating the sugar 

monomer content, the EPS produced revealed to be similar to FucoPol (36 mol% fucose, 24mol% 

glucose, 22 mol% galactose and 17 mol% glucuronic acid, with an acyl groups content of 19 

wt.%) with an average molecular weight of 3.6×106 Da and a PDI of 1.1. 

This study demonstrated that the use of glucose/xylose mixture as carbon source is sustain-

able to produce FucoPol by Enterobacter A47. Moreover, although was proved that Enterobacter 

A47 could use BSG hydrolysate as sole substrate to growth and produce EPS, further studies need 

to be developed to increase the EPS productivity, thus valuing this by-product into microbial 

value added product. 

 

4.2. Introduction 

 

During the manufacture of the third-most consumed beverage in the world, beer, several 

residues and by-products are generated, being the most common ones, spent grains, spent hops 

and surplus yeast (Aliyu and  Bala, 2011). Brewer’s spent grains (BSG), the residual malted bar-

ley grains resulting from wort preparation, correspond to around 85% of the total by-products, 

which accounts for 30 to 60% of the biochemical oxygen demand (BOD) and suspended solids 

generated by a typical brewery (Mussatto and Roberto, 2005; Aliyu and  Bala, 2011). BSG is rich 

in cellulose and non-cellulosic polysaccharides, lignin, proteins and lipids and is mainly used as 

animal feed (Mussatto and Roberto, 2005). Other proposed applications are human nutrition, en-

ergy and charcoal production, as a brick component, paper manufacture, adsorbent and biotech-

nological processes (Mussatto et al., 2006). BSG has been used as substrate for cultivation of 



4. Extracellular Polysaccharides Production: Brewer’s spent grain 

 

58 

 

microorganisms such as mushrooms (Wang et al., 2001), production of enzymes such as α-amyl-

ase (Francis et al., 2002, 2003) and monosaccharide source to produce ethanol and xylitol, for 

example (Carvalheiro et al., 2004).  

The main processes used for the selective fractionation of hemicelluloses from biomass 

include the use of acids, water (liquid or steam), organic solvents and alkaline agents (Gírio et al., 

2010). Acid catalysed processes can be divided in two general approaches, based on concentrated-

acid/low temperature and dilute-acid/high temperature hydrolysis (Gírio et al., 2010). The con-

centrated-acid hydrolysis has the advantage to allow operating at low/medium temperatures (be-

low 121 °C) leading to a reduction of the operational costs and also extracts some glucose from 

cellulosic material (Gírio et al., 2010). On the other hand, concentrated-acid hydrolysis has high 

acid consumption and more costs associated with equipment corrosion (Gírio et al., 2010). The 

most efficient process to selectively release hemicellulose sugars (xylose and arabinose) is diluted 

acid hydrolysis but need higher temperatures (above 121 °C) (Mussatto and Roberto, 2005). To 

prevent the problem of simultaneously hydrolyse the produced monosaccharides into potent in-

hibitors of cell growth such as furfural, hydroxymethylfurfural (HMF), acetic acid and lignin 

degradation products (LDPs), it is important to conduct the hydrolysis under adequate reaction 

conditions. Therefore, it is necessary to establish the best hydrolysis conditions for the lignocel-

lulosic material in order to produce a liquor with a higher amount of fermentable sugars using 

less acid (Mussatto and Roberto, 2005). The levels of the degradation compounds generated can 

also be low, under controlled conditions (Gírio et al., 2010). 

In previous works, the EPS-producer Enterobacter A47 (DSM 23139), demonstrated the 

ability to consume a wide range of substrates, including glycerol (Alves et al., 2010; Reis et al., 

2011; Torres et al., 2011, 2012, 2014), glucose, xylose (Freitas et al., 2014) and lactose (Chapter 

2; Antunes et al., 2015) as sole carbon sources. Several by-products were also used as feedstock, 

namely glycerol generated by the biodiesel industry (Alves et al., 2010; Reis et al., 2011; Torres 

et al., 2011, 2012, 2014), cheese whey (Chapter 2; Antunes et al., 2015) and out-of-specification 

tomato paste (Chapter 3; Antunes et al., 2017). The capacity of Enterobacter A47 to use a large 

range of substrates makes the bioprocess more robust and versatile, but the composition of the 

polymer synthesized could be different according to the type of carbon source used. For example, 

a polysaccharide with higher fucose content was produced using xylose as carbon source (Freitas 

et al., 2014) and a biopolymer enriched in glucuronic acid was synthesize using lactose as carbon 

source (Chapter 2; Antunes et al., 2015). On the other hand, the polysaccharide produced by En-

terobacter A47 consuming tomato paste as substrate presents similar chemical composition to 

FucoPol (Chapter 3; Antunes et al., 2017).  
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From this point of view, the search for alternative feedstocks is very relevant, especially 

abundant wastes and by-products generated by agro-industrial activities, which can not only lower 

the production costs but also result in biopolymers with novel valuable properties. Within this 

context, the potential application of BSG as feedstock for Enterobacter A47 growth and EPS 

production in fed-batch bioreactor cultivations was studied. For that purpose, BSG hydrolysate 

was obtained using a mild acidic hydrolysis in two steps to infer the best acid concentration to 

reach high sugar monomers concentration. The produced polysaccharides were analysed in terms 

of sugar and acyl groups composition. 

 

 

4.3. Materials and Methods 

 

4.3.1. BSG characterization 

From crude BSG, supplied by Unicer Bebidas, S.A. (Matosinhos, Portugal), was deter-

mined the moisture by drying a sample (50 mg) at 105 °C,  

Before the hydrolisation step, BSG was dried in a 70 °C oven until reaching a moisture 

content less than 10% (w/w). The feedstock material was ground in a hammermill (particle size 

<1 mm2) and stored in sealed bags at -20 °C. The dried BSG powder was characterized in terms 

of particle-size distribution by submitting a milled sample (100 g) through a nest of five different 

sized sieves (1.0 – 0.125 mm). Also were determined the proteins by Kjeldahl technique, lipids 

using Soxhlet extraction with hexane and inorganic salts content by incineration at 550 °C. 

 

4.3.2. BSG Hydrolysis 

The dry and milled BSG was mixed with sulfuric acid solution at a liquid-to-solid ratio of 

8 (w/w) in 500 mL Schott® bottles and hydrolysed in an autoclave (121 °C, 20 min). Four different 

sulphuric acid (Sigma) concentrations (v/v) were tested (3, 5, 7 and 9%). After the reaction time 

and cool down the solution, the liquid phase was filtered with a paper filter (pore size >11 µm). 

The remaining solid phase was hydrolysed again at the same condition subjected before. After 

the second hydrolysis, the liquid phase was also filtered and put together with the first liquid 

phase. BSG hydrolysate was adjusted to pH 7.0 by adding Ca(OH)2 and the precipitate formed 

was removed by centrifugation (8 000 × g, for 10 min). Finally, the BSG hydrolysate was lyoph-

ilized. 
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The BSG hydrolysate sugar content was determined by HPLC, with a Biorad 87H column 

coupled to a refractive index detector. The analysis was performed at 30 °C, with sulphuric acid 

(0.01 N) as eluent, at a flow rate of 0.5 mL min-1. Glucose (Sigma) and xylose (Sigma) were used 

as standards at concentrations between 0.062 and 1.0 g L-1. Total nitrogen concentration was de-

termined using commercial photochemical Hach-Lange test kits (Hach Lange DR 2800, UK). 

The protein content was determined using a modified Lowry method described at section 3.3.1. - 

Chapter 3. The method to extract and quantify the BSG hydrolysate’s high molecular weight 

compounds are described at section 3.3.1. – Chapter 3.  

 

 

4.3.3. Exopolysaccharide production 

 

Microorganism and media 

Enterobacter A47 (DSM 23139) reactivation preparation were performed as described in 

section 2.3.1. - Chapter 2. Also, the bioreactor assays preparation is described in section 2.3.1. - 

Chapter 2 with some modifications. For the glucose/xylose mixture run, Medium E* (1 L) was 

supplemented with approximately 40 g of those sugars in a ratio of 75:25 (w/w), while for the 

BSG assay the ammonium phosphate was withdrawn from Medium E* and supplemented with 

40 g of dried BSG hydrolysate.  

 

Bioreactor cultivation 

Inocula for the assays were prepared as described in section 3.3.2. - Chapter 3.  

The experiments were performed in 2 L bioreactors (BioStat B, Sartorius, Germany) with 

initial working volume of 1.5 L. The assays took around 4 days, under controlled temperature and 

pH conditions of 30 ± 0.2 ºC and 7.0 ± 0.02, respectively. An air flow rate of 0.4 SLPM (standard 

litters per minute) was kept constant throughout the cultivation runs. The DO was controlled at 

10% by the automatic variation of the stirrer speed (300-800 rpm).  

During the fed-batch phase, the bioreactor was fed with Medium E* supplemented with 

glucose and xylose to give an overall sugar concentration of 200 g L-1 (75:25 w/w) or with BSG 

hydrolysate (400 g L-1), at constant feeding rates of 8 mL h-1 or 4 mL h-1, respectively. Samples 

(25 mL) were periodically withdrawn from the bioreactor for biomass, polysaccharide and nutri-

ents quantification.  
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Analytical techniques 

The cell growth and CDM were monitored and determined, respectively, as described in 

section 3.3.2 - Chapter 3.  

The cell-free supernatant samples obtained by centrifugation of the cultivation broth (13 

000 × g, for 15 min) were used for the quantification of sugars (glucose, xylose and arabinose), 

as described above. Ammonium concentration were determined by colorimetry, as described in 

section 3.3.1 – Chapter 3. 

All analyses were performed in duplicate. 

 

Extraction and purification of EPS 

The culture broth from glucose/xylose mixture (75:25 (w/w) ratio) bioreactor was ex-

tracted and purified as described in section 3.3.2. - Chapter 3 for quantification of high molecular 

weight compounds. To extract and purify the EPS from BSG bioreactor was applied the procedure 

described in section 2.3.1. - Chapter 2. Finally, the solutions were freeze dried and the polymers 

were stored at room temperature. 

 

4.3.4. Polymer characterization 

 

For the compositional analysis, polymer samples were hydrolysed as described in section 

3.3.2. - Chapter 3. The identification and quantification of the constituent monosaccharides were 

also described on the same section in Chapter 3. 

Sample preparation and measurement of molecular mass distribution from the EPS purified 

from glucose/xylose mixture assay (EPSGX) is described in section 3.3.2. – Chapter 3. Intrinsic 

viscosity, apparent viscosity and viscoelastic properties were determined as described in section 

2.3.2. - Chapter 2 but maintaining the native pH of EPSGX solutions. 
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4.4. Results and Discussion 

 

4.4.1. BSG characterization  

 

BSG composition differs considerably from lot to lot, as it is a by-product resulting from a 

mixture of several raw materials that can be processed in the brewery under variable conditions. 

The crude BSG batch used had a moisture of 72.1% (w/w) and after drying it had 10% (w/w). It 

was composed of 58.1% (w/w) carbohydrates, 26.9% (w/w) proteins, 11.5% (w/w) lipids and 

3.5% (w/w) ash. The crude BSG used in this study strongly agrees with other composition data 

present in the literature, only with slightly higher ash and fat contents (Table 4.1). 

 

Table 4.1: Chemical composition of the BSG used in this study and comparison with literature data. DW: 
Dry weight. 

 n.a. – data not available 

 

The hydrolysis step could be improved by a previous drying and milling step of BSG, 

forming small particles that would increase the surface area to volume ratio (Figure 4.1). After 

the grinding process, the BSG particle-size distribution was mostly constituted of 0.710 to 0.125 

mm particles (85% (w/w)) (Figure 4.2).  

 

 

 

 

Components This study 

Kotlar et al., 

2011 

Pires et al., 

2012 

Mussatto et al., 

2006 

Moisture (%, w/w) 72.1 77.4 – 79.7 n.a. n.a. 

Ash (%, w/w) DW 3.5 2.1 – 2.6 2.2 2.4 

Protein (%, w/w) DW 26.9 30.0 – 34.6 39.1 24.0 

Lipids (%, w/w) DW 11.5 5.7 – 6.7 10.5 10.6 

Carbohydrates (%, w/w) DW 58.1 56.3 – 61.6 61.8 59.1 
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Figure 4.1: Dried BSG before (A) and after milling (B). 
 

Figure 4.2: Dried BSG particle-size distribution 
 
 
 
 

4.4.2. BSG hydrolysis 

 

The hydrolysis conditions used for this study were based on Carvalheiro et al. (2004), 

where a dilute-acid hydrolysis of BSG was optimised to obtain a pentose’s rich media. In this 

study, the main difference was that a second hydrolysis was performed to infer if more sugars 

A 

B 
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could be hydrolysed from the same BSG fraction, improving the final hydrolysis yield (Table 

4.2).  

 

Table 4.2: Monosaccharide content and overall hydrolysis yield of BSG acid hydrolysis. 
[H2SO4] 

(% w/w) 

1st hydrolysis 

[Sugars] (g L-1) 

2nd hydrolysis 

[Sugars] (g L-1) 

Combined hydrolysates 

(g L-1) 

Yield 

(g sugars/g BSG hydrolysed) 

3 42.05 26.53 58.07 0.55 

5 38.75 24.97 54.03 0.51 

7 39.71 24.59 54.37 0.51 

9 40.21 21.76 51.92 0.50 

 

Table 4.2 demonstrates that the best conditions for hydrolysis were obtained with using 

3% (w/w) of sulphuric acid. This hydrolysis condition achieved a combined hydrolysate concen-

tration of 58.07 g L-1 and a yield of 0.55 g sugars/g BSG hydrolysed (Table 4.2). On the other hand, the 

hydrolysis using 9% (w/w) of sulphuric acid, thought achieving also high sugar content in the first 

hydrolysis step (40.21 g L-1),  in the second step reached a lower sugar content (21.76 g L-1) 

causing the lowest combined hydrolysates concentration and yield (51.92 g L-1 and 0.50 g sugars/g 

BSG hydrolysed, respectively) (Table 4.2). This could be related with the fact that with higher acid 

concentration cellulose could also be hydrolysed but then more quantity of sugar monomers could 

be converted into furfural or HMF, reducing the sugar amount extracted in the second hydrolysis. 

Carvalheiro et al. (2004) reported that the optimum conditions to obtain a pentose-rich hydroly-

sate with dilute-acid hydrolysis of BSG was at temperature of 130 °C during 15 min, obtaining 

43.5 g L-1 of glucose, xylose and arabinose for just one hydrolysate step. In this study, a concen-

tration of 42.05 g L-1 was achieved at a lower temperature, although a higher reaction time was 

used (121 °C, 20 min). The use of lower acid concentration and temperature of hydrolysis result 

in less process and operational costs due to lower quantity of acid for the hydrolysis, lower amount 

of Ca(OH)2 required to neutralize the pH and also less corrosion impact on the equipment.  

For the bioreactors experiments, the combined hydrolysates using 3% (w/w) of H2SO4 

was chosen to use as substrate for Enterobacter A47 cultivation. This hydrolysate was composed 

of 41.18 g L-1 glucose, 15.66 g L-1 xylose and a minor content of arabinose (1.2 g L-1). Besides 

the simple sugars, the combined hydrolysate also contained a high content of proteins (21.59 g L-

1), 0.75 g L-1 of ammonium and a total nitrogen concentration of 3.26 g L-1.  In addition, a high 

molecular weight fraction (1.3 g L-1) was extracted from the BSG hydrolysate that was mainly 
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composed of undergraded hemicellulose and cellulose present in BSG (Mussatto et al., 2006). 

This polysaccharide was mainly composed of glucose (51 mol%), rhamnose (18 mol%), galactose 

(16 mol%) and xylose (15 mol%), and an acyl groups content of 0.9 wt.%. It represented 2.25 

wt.% of the hydrolysed BSG powder.  

 

4.4.3. Fed-batch cultivation of Enterobacter A47  

 

Using commercial glucose/xylose mixture as substrate 

 

Freitas et al. (2014) demonstrated the capacity of Enterobacter A47 to use glucose and 

xylose for the production of EPS (Table 4.3). Using glucose as sole carbon source the culture had 

the highest EPS productivity (3.78 g L-1 d-1) and the polymer had the typical Fucopol composition, 

namely a fucose content of 29 mol%. On the other hand, the cultivation using xylose achieved a 

lower EPS productivity (1.39 g L-1 d-1), but the polymer richer in fucose (38 mol%). To evaluate 

the EPS production capacity using mixtures of glucose and xylose, the two sugars were tested at 

an hexoses:pentoses ratio of approximately 75:25% (w/w) as substrate for the cultivation of En-

terobacter A47 (Figure 4.3).   

The cultivation started with a batch phase where the carbon source was used mainly for 

cell growth (Figure 4.3). Enterobacter A47 grew at a specific cell growth rate of 0.39 h-1 (Table 

4.3) which is higher than those obtained in previous studies for cultivations on different substrates, 

such as glycerol (0.27 - 0.36 h-1), glucose (0.35 h-1), xylose (0.25 h-1) and lactose (0.06 h-1) (Table 

4.3).  This  result  could  be  explained  by  the  lower  glucose/ammonium  ratio  at  batch  phase 

(57 g g-1) comparing with previous cultivation run with glucose as sole carbon source (61 g g-1), 

meaning that there was more ammonium available for the same amount of glucose, thus increas-

ing the cell growth rate from 0.35 to 0.39 h-1. At the end of batch phase (12 h), just before the 

ammonium exhaustion, the CDM achieved was 4.42 g L-1, which is very similar to the CDM 

achieved after 12 h of cultivation by Freitas et al. (2014), using glucose as sole carbon source 

(Figure 4.3, Table 4.3). 

As shown in Figure 4.3, glucose and xylose were efficiently used by the culture. During 

the batch phase, despite glucose and xylose consumption was initiated right after inoculation, 

Enterobacter A47 consumed almost all the available glucose (31.8 g L-1), but only 3.5 g L-1 of 

xylose out of the 9.3 g L-1available. The sugar consumption profile during the batch phase is in 

agreement with previous work using the same carbon sources separately (Freitas et al., 2014), 
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Table 4.3: Kinetic and stoichiometric parameters obtained in the bioreactor cultivation of Enterobacter A47 using different substrates and cultivation modes (µmax: 
maximum specific growth rate; CDM: cell dry mass; BSG: brewer’s spent grains. 
 

*CDM estimated considering that one unit of OD450 is equivalent to 0.26 g L-1 CDM). 

Substrate Cultivation mode 
µmax 
(h-1) 

CDM 
(g L-1) 

EPS 
(g L-1) 

Productivity 
(g L-1 d-1) 

References 

Glycerol Continuous feeding 
0.27 – 
0.36 

5.80 – 7.68 
7.23 – 
7.97 

2.04 – 3.72 
Freitas et al., 2014; 

Torres et al., 2011, 2012, 
2014 

Glucose DO-stat 0.35 8.14 13.40 3.78 Freitas et al., 2014 

Xylose DO-stat 0.25 3.92 5.39 1.39 Freitas et al., 2014 

Lactose Continuous feeding 0.06 5.33 5.22 1.31 
Chapter 2; Antunes et al., 

2015 

Cheese whey Continuous feeding 0.15 8.60 6.40 2.00 
Chapter 2; Antunes et al., 

2015 

Tomato paste Continuous feeding 
 

0.27 – 
0.33 

 
10.14 – 
13.58* 

 
3.99 – 
8.77 

 
1.34 – 2.92 

 
Chapter 3; Antunes et al., 

2017 
Glucose/Xylose mix-
ture 

Continuous feeding 0.39 5.91* 5.71 1.43 This study 

BSG Continuous feeding 0.43 17.99* 2.30 0.57 This study 
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Figure 4.3: Cultivation profile obtained for the bacterium Enterobacter A47, using glucose/xylose mixture 
as carbon source: glucose (  ), xylose (□),  ammonium ( ), CDM ( ) and EPS ( ). 

 

 

where glucose was totally used within 24 h and only part of the available xylose (3.48 g L-1) was 

consumed within the same period of time.  

After the fed-batch phase started, although glucose was continuous entering the bioreac-

tor, all concentration continued to decrease, meaning the culture used all the glucose from feed 

solution, being limited from 24 hours until the end of the run. On the other hand, xylose consump-

tion rate was lower remaining a xylose concentration at 6 g L-1 until 50 h of cultivation run and 

from that point the sugars from the feed were consumed at the same rate that feed was entering 

the bioreactor (Figure 4.3). Moreover, after 50 h of Enterobacter A47 cultivation is notice a 

slightly increase of CDM concentration that might be explained by evaporation of culture media 

during the cultivation run. 
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Before the fed-batch phase was initiated, a small amount of EPS was detected (0.4 g L-1), 

which indicates that its synthesis is partially growth associated (Figure 4.3). A final EPS produc-

tion of 5.71 g L-1 was obtained at the end of the 96 h cultivation, corresponding to an overall 

volumetric productivity of 1.43 g L-1 d-1 (Figure 4.3 and Table 4.3). Comparing with previous 

work (Freitas et al., 2014), these values are lower than the assay using only glucose as carbon 

source with DO-stat fed-batch mode (final EPS production of 13.40 g L-1 and volumetric produc-

tivity of 3.78 g L-1 d-1), and slightly higher than the run using xylose as carbon source (final EPS 

production of 5.39 g L-1 and volumetric productivity of 1.39 g L-1 d-1). For Enterobacter A47 

cultivation runs using different carbon sources, the values of EPS concentration and productivity 

obtained are similar to the ones using lactose (5.22 g L-1 and 1.31 g L-1 d-1, respectively) (Chapter 

2; Antunes et al., 2015), but considerably lower than those obtained from glycerol cultivation runs 

(7.50-7.97 g L-1 and 2.52 g L-1 d-1, respectively) (Freitas et al., 2014; Torres et al., 2011, 2012 and 

2014).  

Although the culture was continuously being fed, during the fed-batch phase the carbon 

source was depleted in this study after 50 h of culture (Figure 4.3). In opposition, Freitas et al. 

(2014) reported that under a DO-stat strategy, the carbon source never reached limiting values, 

which favoured the EPS production achieving the highest productivity value for EPS production 

by Enterobacter A47. In conclusion, the chosen flow rate was probably not sufficient to guaranty 

the culture’s needs to maintain high EPS productivity (Table 4.3) (Freitas et al., 2014). 

The EPS recovered from the culture broth at the end of the run (EPSGX) had an average 

molecular weight of 3.6×106 Da and a PDI of 1.1. Comparing with the EPS synthesized with only 

glucose (4.2×106 Da, PDI of 1.4) or xylose (1.7×106 Da, PDI of 1.4) as substrate, EPSGX molecular 

weight is in the range of the Mw from EPS produced using glucose, which might be expected 

given that glucose was the major sugar in this cultivation run. In addition, EPSGX Mw had the 

same order of magnitude reported for other substrates, such as the EPS produced from tomato 

paste (3.2 - 4.4×106 Da), lactose, cheese whey and glycerol (1.8 - 5.7×106 Da, please see Table 

2.2 from section 2.4.3. – Chapter 2). 

The polymer was composed of fucose (36 mol%), galactose (22 mol%), glucose (24 mol%) 

and glucuronic acid (17 mol%) (Table 4.4). This sugar monomer profile is in accordance with the 

typical FucoPol composition produced using different carbon sources, namely, fucose (27-38 

mol%), galactose (18-35 mol%), glucose (23-34 mol%) and glucuronic acid (9-17 mol%) (Table 

4.4). Moreover, the acyl groups content (19 wt.%) is similar to that of the FucoPol synthesized 

using glucose (22 wt.%) or xylose (17 wt.%) as carbon source (Freitas et al., 2014) (Table 4.4). 

Thus, these results show that the use of the glucose/xylose mixture as substrates for the cultivation 

of Enterobacter A47, had no significant effect on the polymer’s sugar and acyl composition. 
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Table 4.4: Sugar composition and acyl groups content of the extracellular polysaccharides produced by Enterobacter A47 from various substrates under different 
cultivation modes (Fuc: fucose; Gal: galactose; Glc: glucose; GlcA: glucuronic acid; Xyl: xylose). 

Substrate Cultivation mode 
Sugar composition (mol%)  Acyl groups 

content 
(wt.%) 

References 
Fuc Gal Glc GlcA Xyl  

Glycerol Continuous feeding 30-36 22-29 25-34 9-10 -  12-22 
Freitas et al., 2011a, 
2014;  
Torres et al., 2011, 2012 

Glucose DO-stat 29 29 26 16 -  22 Freitas et al., 2014 

Xylose DO-stat 38 18 27 17 -  17 Freitas et al., 2014 

Lactose Continuous feeding 25 22 24 29 -  36 
Chapter 2; Antunes et al., 
2015 

Cheese whey (EPSCW) Continuous feeding 29 21 21 29 -  32 
Chapter 2; Antunes et al., 
2015 

Tomato paste (EPSTP) Continuous feeding 
 

27 - 37 
 

27 - 31 
 

23 - 32 
 

10 - 12 -  
 

5 - 13 
 
Chapter 3; Antunes et al., 
2017 

Glucose/Xylose mixture (EPSGX) Continuous feeding 36 22 24 17 -  19 This study 

Brewer’s spent grains Continuous feeding 10 20 53 - 17  0.5 This study 
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Using BSG hydrolysate as substrate 

After the results achieved using glucose/xylose (75:25 (w/w)) as carbon source have con-

firmed that the mixture is suitable for bacterial growth and allows to achieve good EPS production 

by Enterobacter A47, with no significant impact on the polymers’ composition and Mw, BSG 

hydrolysate was tested as substrate under similar cultivation conditions (Figure 4.4). BSG hydrol-

ysate had a similar glucose:xylose ratio, although the initial sugar concentration in the bioreactor 

was lower, 5.66 g L-1 and 2.25 g L-1 for glucose and xylose, respectively. 

 

Figure 4.4: Cultivation profile obtained for the bacterium Enterobacter A47, using brewer’s spent grain 
hydrolysate as carbon source: glucose ( ), xylose (□), ammonium ( ), CDM ( ) and EPS ( ). 

 

The specific cell growth rate obtained with the BSG hydrolysate was higher (0.43 h-1) 

than with the glucose/xylose mixture (0.39 h-1), attaining also a lower CDM at the end of the batch 

phase (2.73 g L-1), most likely due to less amount of available sugar monomers from BSG hy-

drolysate. During the fed-batch phase the culture continued to grow, achieving a maximum CDM 

of 17.99 g L-1 at the end of the run (Figure 4.4, Table 4.3). Since the ammonium concentration 

supplied during the fed-batch phase was not sufficient to support cell growth (< 0.1 g L-1), the 

observed CDM is probably related to the cultivation medium provided by BSG hydrolysate, 
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which, in addition to glucose and xylose, had a high total nitrogen concentration (232.44 mM) 

and proteins (21.59 g L-1) that could stimulate cell growth (Mussatto et al., 2006).  

During the batch phase, all the available glucose (5.66 g L-1) and 1.31 g L-1 of xylose 

were consumed (Figure 4.4). A total of 368 g of BSG hydrolysate solution (400 g L-1) were fed 

with a total of 14.2 g of glucose and 5.6 g of xylose that were totally consumed, since no sugar 

was detected during the fed-batch phase. Up to around 40 h of cultivation, no significant EPS 

synthesis was observed since its content in the broth remained 0.9 – 1.2 g L-1 Figure 4.3). When 

the culture decreases the cell growth rate (40 h), EPS production was initiated, reaching a final 

concentration of 5.01 g L-1, corresponding to an overall production of 2.30 g L-1 of EPS within 

the 4 days of the run. An overall volumetric productivity of 0.57 g L-1 d-1 was achieved (Figure 

4.3, Table 4.3). The values obtained for EPS production are the lowest values obtained by Enter-

obacter A47 cultivations (Table 4.3). The higher ammonium concentration available during all 

the assay could explain the reduced EPS production, since the best cultivation strategy to produce 

EPS requires carbon availability during the fed-batch phase, concomitantly with nitrogen limita-

tion (Freitas et al., 2011b, 2014; Torres et al., 2014). Thus, the results demonstrate that this sub-

strate offered the opposite, which maximised cell growth in detriment of EPS synthesis. Also, the 

presence of cell growth inhibitors compounds, such as furfural and/or HMF, may have caused a 

lower EPS production (Gírio et al., 2010; Mussatto and Roberto, 2005). 

The polysaccharide fraction recovered from the cell-free supernatant at the end of culti-

vation run was composed mainly of glucose (53 mol%), galactose (20 mol%), xylose  (17 mol%) 

and fucose (10 mol%), and an acyl groups content of 0.5 wt.% (Table 4.4). This polymer’s chem-

ical composition with very low fucose content, no glucuronic acid and presence of xylose mono-

mer also suggests that the recovered EPS was mixed with partially hydrolysed BSG polysaccha-

rides (> 10 kDa) (Mussatto et al., 2006).  

Therefore, EPS production by Enterobacter A47 from BSG hydrolysate should be opti-

mized by minimizing the nitrogen source and possible cell growth inhibitors compounds, max-

imizing the sugar monomers hydrolysis. Strategies to produce higher sugar yields and lower de-

composition products from BSG may include, for example, an enzymatic hydrolysis after a more 

diluted acidic prehydrolysis (Hernández et al., 2013). 
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4.5. Conclusions 

 
Enterobacter A47 demonstrated the capacity to use as substrate a mixture of glucose/xy-

lose, either commercial pure sugars or BSG hydrolysate. The EPS produced using commercial 

sugars as carbon source has high similarity with FucoPol in terms of chemical composition and 

molecular mass distribution. The preliminary results of the cultivation of Enterobacter A47 using 

for the first time the hydrolysate from an abundant lignocellulosic by-product, BSG, as substrate, 

indicate that the culture has the ability to growth and produce EPS, but further studies needs to 

be developed to improve the EPS productivity.  
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CHAPTER 5 

Extracellular Polysaccharides Functional Properties 

 

 

 

 

 

 

 

Some of the results presented on this chapter were published in a peer reviewed paper. 

Antunes, S., Freitas, F., Alves, V.D., Grandfils, C., Reis, M.A.M., 2015. Conversion of 

cheese whey into a fucose- and glucuronic acid-rich extracellular polysaccharide by Enterobacter 

A47. Journal of Biotechnology. 210, 1-7. 
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5.1. Summary 

 

The extracellular polysaccharides produced by Enterobacter A47 using cheese whey (EP-

SCW) (Chapter 2), out-of-specification tomato paste (EPSTP) (Chapter 3) and a glucose/xylose 

mixture (EPSGX) (Chapter 4) were studied to infer their properties in aqueous solutions, their 

emulsion forming and stabilizing capacity, and their film-forming capacity and film mechanical 

properties. EPSCW presents the lowest apparent viscosity (0.1 Pa.s) for the same concentration in 

aqueous solution (1 wt%) and shear rate, stabilize emulsions for more than 4 weeks with olive oil 

(E24 = 70 ± 2%), cedarwood oil (E24 = 69 ± 0%) and paraffin oil (E24 = 72 ± 1%), and the films 

formed have higher elongation capacity. EPSTP shows the lowest intrinsic viscosity (4.7 dL g-1) 

and angular frequency at G’ and G’’ cross-over (0.18 Hz), good emulsion capacity and stabiliza-

tion with peanut oil (E24 = 74 ± 2%), almond oil (E24 = 68 ± 0%) and olive oil (E24 = 70 ± 3%) and 

the produced films are slightly more rigid. In contrast, EPSGX reached the highest intrinsic vis-

cosity (14.7 dL g-1) and apparent viscosity (15 Pa.s), the emulsions formed are very strong with 

most of the tested oils at low O/W ratios (E24 > 90%), but low stability (< 3 weeks) and the films 

are slight stiffer. Thus, results indicate that the EPS synthesized by Enterobacter A47 using the 

different substrates can be a promising alternative to many synthetic polymers, as well as other 

natural polysaccharides that are used as thickening, emulsion forming and stabilizing agents and 

could form films. Potential applications for these EPS are: in the food, pharmaceutical, cosmetic, 

textile, paper and petroleum industries, since they are biodegradable, harmless to human and en-

vironment and produced from renewable resources. 

 

 

5.2 Introduction 

 

In the domain of water soluble polymers, microbial polysaccharides are particularly im-

portant due to their role as thickening, gelling, emulsifying, hydrating and suspending agents 

(Rinaudo, 2008). Polysaccharides area characterized by a structural diversity that leads to a vast 

variety of physical chemical properties (Kumar et al., 2007, Freitas et al., 2011b). To predict 

potential polysaccharides’ industrial applications, it is very important to understand their proper-

ties in aqueous solution. Therefore, viscometry studies are necessary to obtain information about 

the molecular characteristics, such as intrinsic viscosity and viscoelastic properties.  
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The intrinsic viscosity is a direct measure of the solute’s contribution to the solution’s 

viscosity for a given solvent. Therefore, it depends on the polymer’s molecular mass, chain rigid-

ity and type of solvent, being indicative of the hydrodynamic volume of individual polymer mol-

ecules (Freitas et al., 2011a). Consequently, the value of the intrinsic viscosity is indicative of the 

polysaccharide’s conformation and has typical values ranging from 1 dL g-1, for compact coil or 

flexible chains, to 20 dL g-1, for extended chains (Alves et al., 2010). On the other hand, viscom-

etry studies with concentrated polymer solutions assess the viscoelastic behaviour (Newtonian or 

non-Newtonian) and properties of a polymer. 

Previously, FucoPol’s intrinsic and apparent viscosities were reported to present a quite 

low variation under a wide range of pH (3.5–8.0) and ionic strength (0.05–0.50 M NaCl) values 

for the polymer produced from glycerol. Moreover, the polymer produced viscous solutions with 

a shear-thinning behaviour at different polymer concentrations (0.2–1.2 wt.%) (Torres et al., 

2015). 

Another important physical property of polysaccharides is the ability to form and/or stabi-

lize emulsions. Emulsions consist of mixtures of at least two immiscible, or poorly miscible, liq-

uids, dispersed one into the other, in the form of small droplets (Bouyer et al., 2012; Klinkesorn, 

2013). For emulsion formation, either synthetic (e.g., Tweens and Spans) or natural (e.g., gelatin, 

caseinate and lecithin) emulsifiers are commonly used (McClements and Gumus, 2016). Their 

role is to rapidly adsorb to the surface of the recently formed fine droplets, reduce the interfacial 

tension and protect the newly formed droplets from flocculation or coalescence, forming a pro-

tective interfacial layer around them (Bouyer et al., 2012; Klinkesorn, 2013). Emulsifiers are used 

in bioremediation and various industries, such as textile, paper, polymers, plastics, cosmetics, 

pharmaceuticals, food, petrochemical and machinery manufacture (Martínez-Checa et al., 2008; 

Mnif and Ghribi, 2015). To improve the long-term stability of an emulsion stabilizers, such as 

silica particles and sodium dodecyl sulphate (SDS), are added to prevent the instability of the 

emulsions by opposing close contact between the droplets. Stabilizers may also act as texture 

modifiers that increase the viscosity of the continuous phase of the emulsions, slowing down the 

gravitational separation of the droplets (Bouyer et al., 2012; Klinkesorn, 2013).  

Although synthetic emulsifiers (e.g., Triton X-100) are among the most produced com-

pounds in the world, they are extremely toxic to the environment and living organisms (Cserháti 

et al., 2002; McClements and Gumus, 2016). Besides, they are inherently toxic due to their easy 

accumulation in living organisms and may interfere on drugs distribution and elimination, causing 

irritant skins reactions and toxic symptoms in animals and humans (Bouyer et al., 2012; Mnif and 

Ghribi, 2015). Furthermore, due to extensive use of surfactants, high amounts are released into 
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the environment, causing problems in wastewater and sludge treatment systems and severe pol-

lution on soil and water (rivers, lakes and sea) (Cserháti et al., 2002; Mnif and Ghribi, 2015).  

In alternative, over the last years, natural emulsifiers/stabilizers came to answer the con-

sumer demand for sustainable and environmental friendly commercial products. Usually, the nat-

ural emulsifiers employed are biosurfactants (e.g., saponins), phospholipids (e.g., lecithin), ran-

dom coil biopolymers (e.g., polysaccharides, flexible proteins), compact biopolymers (e.g. glob-

ular proteins) and colloidal particles (e.g. starch granules, chitin crystals) (McClements and 

Gumus, 2016). These compounds, among other roles, help to solubilize hydrophobic substrates 

due to their hydrophilic and hydrophobic moieties, having high biodegradability, biological com-

patibility and environmental safety (Bouyer et al., 2012; Mnif and Ghribi, 2015; Satpute et al., 

2010). Among them, polymeric bioemulsifiers have attracted a great attention for biotechnologi-

cal applications. They are mostly amphipathic polysaccharides, proteins, lipopolysaccharides, lip-

oproteins, fatty acids or complex mixtures of these biopolymers (Mnif and Ghribi, 2015). The 

most studied polymeric bioemulsifiers are emulsan, alasan, liposan, mannoprotein and other pol-

ysaccharide-protein complexes (Mnif and Ghribi, 2015; Panilaitis et al., 2007).  

To improve emulsion stability, polymeric bioemulsifiers, besides their overall interfacial 

tension lowering capacity, also induce steric or electrostatic interactions, changes in the interface 

viscosity or elasticity, or changes in the bulk viscosity of the system (Bouyer et al., 2012). Poly-

saccharide-stabilized emulsions are known for their water-holding capacity and thickening prop-

erties and tend to form and stabilize emulsions due to their hydrophilic character and high molec-

ular weight (Bouyer et al., 2012). Some examples of polysaccharides proposed as emulsion form-

ing or stabilizing compounds include xanthan gum, alginates, carrageenans, hyaluronan, chitosan, 

gum arabic, hydroxypropylmethylcellulose (HPMC), galactomannans and pectin (Bouyer et al., 

2012; Klinkesorn, 2013; Ngouémazong et al., 2015; Petri, 2015). Usually, they are odorless, col-

ourless, tasteless, and have low energy value and digestibility (Paraskevopoulou et al., 2005). 

Their major advantage over other types of natural emulsifiers is the high stability of polysaccha-

ride-coated lipids droplets to environmental stresses (pH and ionic strength) due to the strong 

steric repulsion between them (McClements and Gumus, 2016). Moreover, from an application 

perspective, another interest of polysaccharides is that, thanks to their viscosifying properties, 

they simultaneously stabilize emulsions and control their texture and they can be produced from 

renewable and low-cost sources (Bouyer et al., 2012; Freitas et al., 2011b). Thus, the use of pol-

ysaccharides produced by microorganisms (bacteria, yeast and fungi) as emulsifiers/stabilizers 

reveal the possibility to formulate stable “clean labelled” emulsions in numerous industries. 

 The EPS synthesized by the bacterium Enterobacter A47 using glycerol (Alves et al., 

2010; Freitas et al., 2011a; Reis et al., 2011; Torres et al., 2011, 2012, 2014), glucose or xylose 
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(Freitas et al., 2014), as sole carbon sources demonstrated interesting emulsifying/stabilizing ca-

pacity. The EPS produced using glycerol (EPS-s) demonstrated to have higher emulsification in-

dexes (60 ± 4%) than xanthan gum, alginate and pectin (20 – 56%) for a ratio of sunflower oil/wa-

ter of 2:3 (v/v), a good emulsion stabilizing capacity at low temperatures (72%) and after freez-

ing/thawing cycles retained about one third of the initial emulsification index (EI) (Freitas et al., 

2011a; Freitas et al., 2014). In contrast, EPS produced using glucose (EPS-g) has shown a higher 

capacity for stabilization of emulsions at high temperatures (up to 90 ºC) and the emulsions 

formed with the EPS synthetized using xylose (EPS-x) broken within a few hours after being 

prepared (Freitas et al., 2014). 

 

Many polysaccharides besides being used as hydrocolloids, also possess film-forming 

properties which make them suitable for the preparation of membranes with distinct characteris-

tics (Freitas et al., 2014). The polysaccharides more often used to produce membranes are ex-

tracted from animal sources (e.g., gelatin, chitin), plants (e.g., starch, cellulose) and algae (e.g., 

alginates, carrageenan) (Ferreira et al., 2016; Freitas et al., 2014; Song and Zheng, 2014).  

Polysaccharide membranes have a hydrogen-bonded dense polymer matrix which provides 

excellent gas (oxygen and carbon dioxide) and aroma barrier properties at low and intermediate 

relative humidity (Freitas et al., 2014). However, their applications are restricted due to their sen-

sitivity to moisture, limited mechanical properties and high water vapour permeability (Castro-

Rosas et al., 2016; Fabra et al., 2013; Freitas et al., 2014). The mechanical strength and barrier 

properties of polysaccharide-based membranes are dependent of film-forming agent (composition 

and structure), plasticizer additives, cross-linking agents and solvents (type and amount), manu-

facturing process, final thickness and storage conditions (Freitas et al., 2014; Preis et al., 2014). 

For example, the addition of plasticizers (e.g., glycerol or sorbitol) prevents film brittleness, con-

ferring flexibility and ability to elongate, by reducing the intermolecular forces and increasing the 

mobility between polymer chains (Castro-Rosas et al., 2016; Preis et al., 2014).  

Pullulan, gellan gum, kefiran, levan, bacterial cellulose, and bacterial alginates are some 

examples of microbial extracellular polysaccharides with film-forming capacity commercially 

used in food packaging and preservation as edible films or coatings, pharmaceutical industries for 

controlled release of active compounds and medicine as wound dressings (Ferreira et al., 2016; 

Vijayendra and Shamala, 2014). 

The film-forming capacity of EPS produced by Enterobacter A47 using glycerol, glucose 

or xylose as sole carbon sources have been developed and characterized previously (Ferreira et 

al., 2014 and 2016; Freitas et al., 2014; Meireles et al., 2015). The membranes formed were trans-

parent, poor barriers to water vapour, but good barriers to gases (O2 and CO2). The mechanical 
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tests revealed they were malleable films, not mechanically resistant enough to be used as stand-

alone films, but instead, as hydrophilic layers in multi-layered films (Ferreira et al., 2014; Freitas 

et al., 2014; Meireles et al., 2015). 

 

Taking into account the distinct chemical composition and molecular weight of the extra-

cellular polysaccharides produced by Enterobacter A47 using cheese whey (EPSCW) (Chapter 2), 

out-of-specification tomato paste (EPSTP) (Chapter 3) and a glucose/xylose mixture (EPSGX) 

(Chapter 4) as substrates, in this chapter their solution properties, as well as their emulsifying and 

film-forming capacity, were studied. 

 

 

5.3. Materials and Methods 

 

5.3.1. Solution properties  

 

Intrinsic viscosity 

The efflux times of the dilute polymers solutions (0.025 – 0.1 g d L-1, in 0.01 M NaCl) 

were measured using an automatic viscosity measuring unit AVS 450 (Schott-Gerate, Germany), 

with an Ubbelhode capillary viscometer (Ref. 53013/Ic, Schott–Gerate, Germany) at the temper-

ature of 25 °C, controlled with a thermostatic bath. Three independent measurements were made 

for each solution. The measured efflux times were converted into relative and specific viscosities 

(ηrel and ηsp, respectively), according to the following equations: 𝜂𝑟𝑒𝑙 = 𝑡𝑡0  (2) 𝜂𝑠𝑝 = 𝜂𝑟𝑒𝑙 − 1 = (𝑡−𝑡0)𝑡0    (3) 

where 𝑡 (s) is the efflux time of the solution, and 𝑡0 the efflux time of the solvent. Therefore, 

the intrinsic viscosity of the purified polymer was determined by the average of double extrapo-

lation to zero concentration of the Huggins and Kraemer equations: 𝜂𝑠𝑝𝐶 = [𝜂] + 𝑘𝐻[𝜂]2𝐶  (4) ln⁡(𝜂𝑟𝑒𝑙)𝐶 = [𝜂] + 𝑘𝐾[𝜂]2𝐶  (5) 

where [η] (dL g-1) is intrinsic viscosity, kH is the Huggins coefficient, kK is the Kraemer 

coefficient and C (g dL-1) is the polymer concentration. 
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 Apparent viscosity and viscoelastic properties  

Aqueous EPS solutions (1 %, w/w) were loaded in the cone and plate geometry (diameter 

3.5 cm, angle 2 degrees) of a controlled stress rheometer (Haake Mars III, Thermo Scientific, 

Germany) and the shearing geometry was covered with paraffin oil in order to prevent sample 

dehydration. Flow curves were determined using a steady state flow ramp in the range of shear 

rate from 0.3 s-1 to 700 s-1. Small amplitude oscillatory tests were conducted in order to obtain the 

viscoelastic properties. Stress sweeps were performed at constant frequency (1 Hz) for a stress 

range from 0.1 to 1000 Pa, in order to identify the linear viscoelastic region. Frequency sweeps 

were carried out for a frequency range from 0.01 to 10 Hz, at a constant stress within the linear 

viscoelastic region. All tests were performed at 25 °C. 

 

5.3.2. Emulsion forming and stabilizing capacity 

 

Emulsification assays were carried out following the method described by Cooper and 

Goldenberg (Cooper and Goldenberg, 1987). Aqueous solutions (0.5 wt.%) of  EPSCW, EPSTP and 

EPSGX were prepared and used for the tests. In the cylinder test tube (D 16 ×H 100 mm), each 

EPS aqueous solution was mixed with each hydrophobic compound to be tested (Table 5.1), vor-

texed (24 000 rpm, 2 min) and left to stand at room temperature (~21 °C) for 24 hours.  

 

 

Table 5.1: Hydrophobic compounds used at the emulsification tests. 

Compound Source Applications References 

Corn Oil Maize Food industry 
Corn Refiners Association, 

2006; 
Dupont et al., 1990; 

Gunstone, 2011 

Sunflower Oil Sunflower seeds 
Food and cosmetic in-

dustries 

Gunstone, 2011; 
Raß et al., 2008; 

Thomas et al., 2015 

Olive Oil Olives Food industry 
Gunstone, 2011; 

Paraskevopoulou et al., 2005; 
Thomas, 2002; 

Soybean oil Soybean seeds 
Food and ink indus-

tries 

Gunstone, 2011; 
Cahoon, 2003; 
Thomas, 2002 
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Peanut Oil Peanuts Food industry Gunstone, 2011; 
Thomas, 2002 

Cedarwood Oil Conifers foliage 
Cosmetic and furniture 

industries 
Adams, 1991; 
faostat.fao.org 

Almond Oil 
Dried kernel of sweet 

almonds 
Pharmaceutical and 
cosmetic industries 

Ahmad, 2010; Canellas and 
Saura-Calixto, 1988 

Paraffin Oil Petrochemical 
Pharmaceutical and 
cosmetic industries 

JML, 2015; Liu et al., 2006 

Benzene Petrochemical Petrochemical industry Aburto-Medina and Ball, 2015; 
pubchem.ncbi.nlm.nih.gov 

Toluene Petrochemical 
Paint and petrochemi-

cal industries 
Frazer et al., 1995; 

pubchem.ncbi.nlm.nih.gov 

Hexane Petrochemical 
Petrochemical and tex-

tile industries 
pubchem.ncbi.nlm.nih.gov; 

Saien et al., 2014 

 

 

The emulsification index (EI, %) was determined using the following equation: 

100=
t

e

h

h
EI      

where eh (mm) is the height of the emulsion layer and th (mm) is the overall height of the 

liquid column (Freitas et al., 2009, 2014; Satpute et al., 2010). E24 (%) is the EI determined 24 h 

after emulsion preparation. The emulsions were left at room temperature and their stability was 

evaluated over a period of 9 weeks, by periodically measuring the EI. The hydrophobic com-

pounds tested included oils (corn oil, sunflower oil, olive oil, soybean oil, peanut oil, cedarwood 

oil, almond oil and paraffin oil, purchased at the local supermarket), and hydrocarbons (benzene, 

Riedel de Haën; toluene, Sigma; hexane, Sigma). For a total volume of 5 mL in the test tube (16 

mm of diameter), different O/W were tested, namely, 4:1, 3:2, 2:3 and 1:4 (v/v), by varying the 

proportion of aqueous and organic phases. 

 

 

 

 

http://www.fao.org/faostat
http://pubchem.ncbi.nlm.nih.gov/
http://pubchem.ncbi.nlm.nih.gov/
http://pubchem.ncbi.nlm.nih.gov/
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5.3.3. Film-forming capacity 

 

Films preparation 

EPSCW, EPSTP and EPSGX solutions (1.25 wt%) were prepared in deionised water. Glycerol 

(30 wt%, dry basis) was added as plasticiser. The solutions were left under stirring overnight at 

room temperature to assure complete dissolution. Next, a mass of 20 g of each mixture was trans-

ferred to plastic Petri dishes (diameter of 6.5 cm) and the solvent was allowed to evaporate at 30 

°C. The formed films were lifted from the dishes' surface and conditioned at a controlled relative 

humidity of 45 % before testing.  

 

Films Mechanical Properties  

Tensile and puncture tests were performed using a TA-Xtplus texture analyser (Stable Mi-

cro Systems, Surrey, England) performed at temperature (T) = 22.0 ± 2.0 °C. The thickness of 

the tested film stripes/squares was measured using a digital micrometer (Mitutoyo, UK).  

For the tensile tests, three film strips of each EPS (20 mm × 50 mm) were attached to tensile 

grips A/TG and stretched at 0.5 mm/s in tension mode. The tensile strength (stress) at break (TS, 

MPa) was calculated as the ratio of the maximum force to the films' initial cross-sectional area. 

The elongation (strain) at break (EB, %) was determined as the ratio of the extension of the sample 

upon rupture by the initial gage length. The Elastic Modulus (EM, MPa) was calculate through 

the slope of initial linear region of the stress-strain curve.  

Puncture tests were performed by immobilizing three test film squares (20 mm × 20 mm) 

of each EPS on a specially designed base with a hole of 10 mm in diameter. The samples were 

compressed at a speed of 1.0 mm/s and punctured through the hole with a stainless steel cylindri-

cal probe (2 mm diameter). The puncture strength (stress) at break (PS, kPa) was expressed as the 

ratio of the puncture strength (force, N) by the probe contact area (mm2). The deformation (strain, 

%) at break was determined as the ratio of the deformation of the sample upon rupture by the 

initial gage length.  
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5.4. Results and Discussion 

 

The EPS produced by Enterobacter A47 using cheese whey, EPSCW (Chapter 2), out-of-

specification tomato paste, EPSTP (Chapter 3), and a glucose/xylose mixture, EPSGX (Chapter 4) 

(Table 5.2), as substrates were subjected to a preliminary assessment of their solution properties in 

diluted and concentrated aqueous solutions, their potential to be used as emulsion forming or 

stabilizer agents and their ability to form films.  

 

Table 5.2: Sugar composition, acyl groups, protein and inorganic salts content, average molecular weight 
(Mw) and polydispersity index (PDI) of EPSCW, EPSTP and EPSGX produced by Enterobacter A47 (Fuc: 
fucose; Gal: galactose; Glc: glucose; GlcA: glucuronic acid). 
 

* Contained a pectin-like polysaccharide (12 wt.%) from the tomato paste feedstock. 

 

5.4.1. Solution properties 

 

Intrinsic viscosity 

The intrinsic viscosity of EPSCW, EPSTP and EPSGX was determined in 0.01 M NaCl. A 

good accuracy and linearity in the extrapolations to zero concentration was achieved for all the 

samples, in the Huggins and Kraemer plots (Figure 5.1). The values of the relative viscosity for 

each biopolymer’s dilute solution (0.025 to 0.1 g dL-1) were between 1.2 and 2.0.  

EPS 

Sugar composition 
(mol%) 

 
Acyl 

groups 
content 
(wt.%) 

Protein 
content 
(wt.%) 

Inorganic 
salts con-

tent (wt.%) 

Mw  

(×106 Da) 
PDI 

 
Fuc Gal Glc GlcA  

EPSCW 29 21 21 29  32 22 3 1.8 1.2 

EPSTP
* 37 27 23 12  13 7 4 4.4 1.2 

EPSGX 36 22 24 17  19 18 6 3.6 1.1 
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 Figure 5.1: Determination of EPSCW (blue), EPSTP (red) and EPSGX (green) intrinsic viscosity, in 0.01 M 
NaCl, using the Huggins (full symbols) and Kraemer (open symbols) equations. 

 

Comparing the three polysaccharides, EPSTP demonstrated the lowest intrinsic viscosity 

value (4.7 dL g-1), while EPSGX obtained the highest one (14.7 dL g-1). These values mean that a 

single molecule of EPSGX occupy more hydrodynamic volume at the given solvent than one mol-

ecule of EPSTP (Freitas et al., 2011a).  EPSCW demonstrated to have an intrinsic viscosity value 

(8.0 dL g-1) similar to that of other EPS synthesized by Enterobacter A47 using different carbon 

sources (6.2-7.5 dL g-1) (Freitas et al., 2014). Nevertheless, all values are within the range of those 

reported for other commercial polysaccharides, such as xanthan and guar gum (5–50 dL g-1) 

(Freitas et al., 2011a).  

The Huggins constant, a parameter highlighting polymer–solvent interactions, was 0.36 

for EPSCW, 0.79 for EPSTP and 0.60 for EPSGX. Reminding that Huggins constant values from 

0.25 to 0.5 are assigned to good solvents, whilst values above 0.5 to 1.0 are representative of poor 

solvents (Delpech et al., 2002), the actual Huggins constant for EPSCW supports the hypothesis 

that this polymer should not be aggregated in the solvent system used. On the other hand, for 
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EPSTP and EPSGX, the Huggins constant values support the hypothesis that those two polymers 

might have formed aggregates and, hence, more adequate solvents should be investigated. 

 

Apparent viscosity and viscoelastic properties 

The apparent viscosity (ηa, Pa.s) of the different EPS solutions tested are presented in Fig-

ure 5.2A. All the flow curves (1.0 wt.%, in 0.01 M NaCl) show a shear thinning behavior. It can 

be observed that the polysaccharides produced using cheese whey (EPSCW) and tomato paste (EP-

STP) have similar values of apparent viscosity (0.1 and 0.3 Pa.s, respectively, at a shear rate of 4 

s-1) but EPSGX demonstrated a higher zero shear viscosity (η0) approaching 15 Pa.s. For the range 

of shear rates studied, a well-defined first Newtonian plateau is observed for EPSCW, while for 

the others EPS only an approaching of that plateau is perceived. A similar thickening capacity 

was observed for the EPS synthesized by Enterobacter A47 from xylose (η0 = 0.08 Pa.s). For the 

same polymer concentration, ionic strength and pH values, the EPS produced from glycerol or 

glucose by the same bacterial strain imparted an apparent viscosity (0.27-0.34 Pa.s) similar to the 

EPSTP (0.3 Pa.s) (Freitas et al., 2014). The high apparent viscosity observed for EPS using a mix-

ture of glucose/xylose (15 Pa.s) is in line with the high intrinsic viscosity achieved for the same 

polymer. 

Interestingly enough, the mechanical spectrum of 1.0 wt.% EPS solutions (Figure 5.2B) 

shows a high dependence of storage (G’) and loss moduli (G’’) with the frequency. For almost 

all frequency range of EPSCW and EPSGX mechanical spectra, the G’’ values were higher than 

those of G’, except at higher frequencies, where a cross-over is perceived at an angular frequency 

of about 6.3 and 3.2 Hz, respectively. These results are indicative of a liquid-like behaviour gen-

erally observed for entangled polymer chains solutions. The same behaviour was observed for the 

EPS produced by Enterobacter A47 from glycerol, glucose and xylose (Freitas et al., 2014). On 

the other hand, G’ and G’’ cross-over for EPSTP was at lower frequencies (0.18 Hz), which could 

be related with the lower intrinsic viscosity obtained for this polymer. 
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Figure 5.2: Flow curve (A) and mechanical spectrum (B) of 1.0 wt.% EPScw (blue), EPSTP (red) and 
EPSGX (green) solutions, ((full symbols - G’, open symbols - G’’). 
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Solution properties: Overall Perception  

The resume table below (Table 5.3) gives an overall overview of the relevant parameters 

determine for each EPS to study their solutions properties.  

 

Table 5.3: Resume table of the relevant parameters determined to study the EPS’s solution properties. 

 

Though EPSCW, EPSTP and EPSGX reveal different behaviour in aqueous solutions, they all 

show great potential to be used in applications as thickening agent in diverse aqueous formula-

tions such as oil drilling fluids, paints, pharmaceuticals, cosmetics and food products. 

 

5.4.2. Emulsion-Stabilizing Capacity 

 

The EPS produced by Enterobacter A47 using cheese whey, EPSCW (Chapter 2), out-of-

specification tomato paste, EPSTP (Chapter 3), and a glucose/xylose mixture, EPSGX (Chapter 4) 

(Table 5.2), as substrates were subjected to a preliminary assessment of their potential to be used as 

emulsion forming or stabilizer agents.  

Eleven hydrophobic compounds (Table 5.1) were selected to assess the polymers’ ability 

to form emulsions at different oil/water ratios (v/v). The selected hydrophobic compounds in-

cluded oils and hydrocarbons, representative of compounds used in different industrial and com-

mercial emulsion applications. Vegetable oils, namely, corn oil, sunflower oil, olive oil, soybean 

oil and peanut oil, are normally used in food products and food processing. For example, olive oil 

is used in mayonnaise or vinaigrette manufacture (Gunstone, 2011; Thomas, 2002).  

Some vegetable oils, such as sunflower oil and soybean oil, are also used in the cosmetic 

and ink industries, respectively (Gunstone, 2011; Thomas, 2002) (Table 5.1). Almond and cedar-

wood oils are used in cosmetic industry (Adams, 1991; Ahmad, 2010; Canellas and Saura-Ca-

lixto, 1988; faostat.fao.org), while paraffin oil is a mineral oil used in creams and pastes of phar-

maceutical and cosmetic industries (Liu et al., 2006; J M L, 2002). Benzene, toluene and hexane 

are hydrocarbons used, for example, as primary components for glues and paints manufacture 

EPS [η] (dL g-1) kH η0 (Pa.s) 
ƒ of G’ and G’’ cross over 

(Hz) 

EPSCW 8.0 0.36 0.1 6.3 

EPSTP 4.7 0.79 0.3 0.18 

EPSGX 14.7 0.6 15 3.2 

http://www.fao.org/faostat
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(Aburto-Medina and Ball, 2015; Frazer et al., 1995; pubchem.ncbi.nlm.nih.gov; Saien et al., 

2014).  

The emulsion’s forming and stabilizing capacity of the polymers was evaluated by deter-

mining the E24 for each hydrophobic compound, at different O/W ratios (v/v). Moreover, the sta-

bility of the obtained emulsions was evaluated by determining the EI over a period of 9 weeks. 

 

 

EPSCW  

EPSCW was able to stabilize the emulsions prepared with all the tested oils, although with 

differing efficiencies, which was also affected by the O/W ratio (Figure 5.3). According to Wil-

lumsen and Karlson (1996), a criterion for determining the emulsion-stabilizing capacity of an 

emulsifier consists on having an E24 of at least 50%. Considering that criterion, only some of the 

tested conditions resulted in good emulsification. 

Specifically, EPSCW was shown to have a good emulsification capacity for olive oil at the 

4:1 (v/v) O/W ratio (E24 = 70 ± 2%), but the E24 decreased for lower O/W ratios (Figure 5.3). A 

similar E24 value (69%) was reported for emulsions formed with olive oil and the plant polysac-

charide gum arabic, for an O/W of 2:3 (v/v) (Hifney et al., 2016) (Table 5.4). Lower values (59-

65%) were reported for Fucoidan (Hifney et al., 2016), guar gum (Han et al., 2015) and CMC 

(Hifney et al., 2016), as well as for the bacterial polysaccharide GalactoPol (Freitas et al., 2009) 

and the EPS of B. amyloliquefaciens (Han et al., 2015) (Table 5.4).  

For cedarwood and paraffin oils, on the other hand, the highest E24 (69 ± 0% and 72 ± 1%, 

respectively) were achieved for 3:2 (v/v) O/W ratio, decreasing to below 50% for lower O/W 

ratios (Figure 5.3). Similar profiles were shown for sunflower and peanut oils, with rather good 

emulsions (E24 ≅ 50%) being obtained only at the 3:2 (v/v) O/W ratio. For all other tested oils 

(corn, soybean and almond oils) and O/W ratios, the obtained emulsions were weak (E24 < 50%). 

Cedarwood oil emulsions with EPSCW had an E24 lower than those prepared with Fucoidan (78%) 

or gum arabic (84%). However, EPSCW performed considerably better than FucoPol (20%), Ga-

lactoPol (30%), xanthan gum (30%), alginate (10%) or pectin (40%)  (Table 5.4). The E24 ob-

tained for paraffin oil emulsions with EPSCW was similar to that of an EPS produced by the cya-

nobacterium Nostoc flagelliforme (72%) (Han et al., 2014) and for xanthan gum (64%) (Table 

5.4). 

https://pubchem.ncbi.nlm.nih.gov/


5. Extracellular Polysaccharides Functional Properties 

 

89 

 

 Figure 5.3: E24 for emulsions prepared with EPSCW and different oils, at different O/W ratios (v/v). 
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Table 5.4: E24 comparison for emulsions prepared with several emulsifiers and different hydrophobic compounds. 

 

Emulsifiers 
Concentration 

(wt.%) 

O/W  

ratio 

(v/v) 

E24 (%)  

Corn oil  Sunflower oil Olive oil  Soybean oil  Peanut oil  Cedarwood oil  Paraffin oil  Benzene  Toluene  Hexane  References 

EPSCW 

0.5 

2:3 23 28 49 47 48 48 48 47 50 46 

This work 

3:2 35 50 41 10 50 69 72 63 65 51 

EPSTP 
2:3 42 47 52 2 49 49 36 39 31 24 

3:2 55 50 70 4 58 64 64 43 45 34 

EPSGX 
2:3 60 <10 64 96 62 81 64 67 73 25 

3:2 <10 <10 <10 <10 61 80 79 32 53 24 

FucoPol (EPS-s) 
0.5 

2:3 64 60    20    30 Freitas et al., 2011a 

3:2 
 73         

Freitas et al., 2014 
EPS-g  69         

GalactoPol 0.8 

3:2 

<10 20 65   30 30 60 65 75 Freitas et al., 2009 

EPS (Nostoc flagelli-

forme) 
0.45 82 80  43 74  72   27 Han et al., 2014 

EPS 1 (Bacillus amylo-

liquefaciens LPL061) 
1.0 

 68 59  61      

Han et al., 2015 
EPS 2 (Bacillus amylo-

liquefaciens LPL061) 
 70 60  66      

Xanthan gum 
0.5 2:3 90 40    30    40 Freitas et al., 2011a 

0.45 3:2    30 16  64   24 Han et al., 2014 

Alginate 
0.5 2:3 

40 56    10    10 Freitas et al., 2011a 

Fucoidan 50 59 62   78  22 47  
Hifney et al., 2016 

Gum arabic 
0.5 2:3 

   30 16  64   24 

Pectin 60 20    40    30 Freitas et al., 2011a 

Guar gum 1.0 3:2  66 59  60      Han et al., 2015 
Carboxymethyl cellu-

lose (CMC) 
0.5 2:3 

62 59 59   0  0 0  Hifney et al., 2016 

Triton X-100 82 80    80    70 Freitas et al., 2011a 
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Regarding the hydrocarbons tested, namely benzene, toluene and hexane, their emulsifica-

tion capacity as a function of the O/W ratio had similar trends: the highest E24 values were 

achieved for the 3:2 (v/v) O/W ratios (63 ± 1%, 65 ± 1% and 51 ± 1%, respectively), decreasing 

to below 50% for lower or higher O/W ratios (Figure 5.4). 

 

Figure 5.4: E24 for emulsions prepared with EPSCW and different hydrocarbons, at different O/W ratios 
(v/v). 

 

The results reveal that EPSCW might replace some other emulsifiers due to its better perfor-

mance with the tested hydrocarbons (Table 5.4). For example, the E24 obtained for benzene and 

toluene emulsions was considerably higher than that reported for Fucoidan, 22 and 47%, respec-

tively (Hifney et al., 2016).  

The EI was measured periodically during 9 weeks to infer about the emulsions’ stability 

overtime, which is an important parameter for many applications. As expected, EPSCW stabilizing 

capacity depended on the O/W ratio and was specific for some of the tested oils and hydrocarbons 

(Figure 5.5). The most stable emulsions were the ones prepared with EPSCW and olive oil and 

cedarwood oil (Figure 5.5). For olive oil, the E24 at 4:1 (v/v) O/W ratio was high but the emulsion 

was stable for less than a week, while for the other ratios the emulsions were very stable, main-

taining at least 50% of the initial EI during all the 9 weeks tested. EPSCW maintained an almost 

constant EI for the emulsions prepared with cedarwood oil, at O/W ratios of 3:2 and 2:3 (v/v), 

during the entire test period. At the same O/W ratios, emulsions with paraffin oil demonstrated a 

good stability by maintaining an EI of over 50% of the E24 during at least 4 weeks.  

Hydrocarbons emulsions demonstrated to be much less stable comparing with oils emul-

sions. Benzene and toluene emulsions were only stable for one week at high oil/emulsifier ratios 

and hexane emulsions were stable for less than a week at all ratios (Figure 5.5). 
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Figure 5.5: EI overtime for emulsions prepared with EPSCW and different hydrophobic compounds, at different O/W ratios (v/v).

benzene toluene hexane
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The distinct stability behaviour of the polymer for the different tested hydrophobic com-

pounds might be related to the physico-chemical processes involved in emulsion formation. At 

lower oil/emulsifier ratios, the emulsion formation and stabilization is not so dependent on emul-

sifier concentration, but mainly controlled by the hydrodynamic processes of droplet disruption 

and subsequent emulsifier capacity of prevent coalescence, flocculation and/or Ostwald ripening 

phenomena (Calero et al., 2013; Dickinson, 2009). The emulsion formation and stabilizing ca-

pacity depends not only of environmental and process conditions, but also of emulsifier molecular 

and chemical properties (Chabrand et al., 2008; Dickinson, 2003, 2009). The good emulsification 

capacity of EPScw might be related to the presence of hydrophobic groups, such deoxysugars 

(e.g., fucose), uronic acids (e.g., glucuronic acid), acyl groups or the residual proteins (Han et al., 

2014; Neu et al., 1992; Shepherd et al., 1995). 

Comparing the chemical composition of the polysaccharides listed in Table 5.4, EPSCW had 

the higher content in glucuronic acid (29 mol%), acyl groups (32 wt.%) and proteinaceous frac-

tion (22 wt.%). Additionally, polysaccharides with higher molecular weight have better stabiliz-

ing capacity because contribute to form more viscous continuous phase (Maalej et al., 2016; Rossi 

and De Philippis, 2015). 

In some industrial applications, such as beverages, pharmaceutics, paints, protective coat-

ings, waxes and polishes, emulsions are required to be stable for extended periods of time. There-

fore, a good emulsion stabilizer is necessary to guaranty a high shelf life and endurance to envi-

ronmental stresses of a commercial product (Bouyer et al., 2012; Kosaric, 2001; Piorkowski and 

McClements, 2014). Thus, EPSCW could be an alternative for emulsions using cedarwood and 

paraffin oils at 3:2 (v/v) O/W ratio, since the results demonstrated good emulsifying and stabiliz-

ing capacity (Figures 5.3 and 5.5). 

On the other hand, some polymeric bioemulsifiers are able to break down the formed emul-

sion and are recognized as de-emulsifiers (Mnif and Ghribi, 2015). Therefore, less stable emul-

sions may be suitable for use in de-emulsification processes. For example, during the extraction 

of vegetable oils from theirs sources through aqueous extraction processing, the majority of the 

oil extracted is emulsified, being necessary a subsequent de-emulsification agent to increase the 

oil recovery (Chabrand et al., 2008). De-emulsification capacity is also needed before the 

transport and refining of crude oil, to reduce water content. This process prevents corrosion, scale 

formation and sludge accumulation in storage tanks (Mnif and Ghribi, 2015). For benzene and 

toluene emulsions at 3:2 (v/v) O/W ratio, EPSCW could be the de-emulsification agent for this kind 

of application since had demonstrated good E24 but low stability over time (Figures 5.4 and 5.5). 
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EPSTP 

The EPS produced by Enterobacter A47 using out-of-specification tomato paste as sub-

strate, named EPSTP, demonstrated, in general, the ability to form strong emulsions with some of 

the tested oils (Figure 5.6). However, it demonstrated to have low emulsification capacity for the 

tested hydrocarbons (Figure 5.7). 

EPSTP demonstrated higher E24 for the emulsions prepared with peanut (74 ± 2%), and 

almond (68 ± 0%) oils comparing with EPSCW which had values below 50% for the same oils. 

Similar performance between both polymers were achieved with corn, sunflower and paraffin 

oils, namely, the highest E24 values were attained at 3:2 (v/v) O/W (55 ± 0%, 50 ± 1% and 64 ± 

1%, respectively) (Figures 5.3 and 5.6; Table 5.4). A high E24 value (70 ± 3%) was obtained for 

the olive oil emulsions but a lower EPSTP emulsifier content was necessary compared to that of 

EPScw (E24 = 70 ± 2% for 4:1 (v/v) O/W ratio), (Figure 5.3 and 5.6). These values are higher than 

those obtained for emulsions prepared with GalactoPol (65%) (Freitas et al., 2009), EPS1 and 

EPS2 (Bacillus amyloliquefaciens LPL061) (59 and 60%, respectively) (Han et al., 2015) and 

guar gum (59%) (Han et al., 2015) for a 3:2 (v/v) O/W ratio. 
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Figure 5.6: E24 for emulsions prepared with EPSTP and different oils, at different O/W ratios (v/v). 
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For the hydrocarbons tested, EPSTP demonstrated low emulsification capacity because the 

E24 was below 50% for all O/W ratios and all hydrocarbons (Figure 5.7). 

 

Figure 5.7: E24 for emulsions prepared with EPSTP and different hydrocarbons, at different O/W ratios 
(v/v). 

 

Similarly to EPSCW, the most stable EPSTP emulsions were the ones formed with olive oil 

and cedarwood oil, which maintained their EI practically unchanged during the 9 weeks of the 

test (Figure 5.8). Most of the other emulsions were broken within 1 week or less. 

These results are probably related to the physico-chemical properties of EPSTP, which has 

a pectin-like polysaccharide content of 12 wt.% (Table 5.3). The presence of the pectin-like pol-

ysaccharide has probably influenced the ability of the mixture to form and stabilize emulsions. 

Pectin, a plant cell wall polysaccharide, is increasingly being studied and gradually accepted as 

emulsifier/stabilizer in food applications (Dickinson, 2003; Ngouémazong et al., 2015). The 

emulsifying activity of pectin, as for other polysaccharides, is mostly related with its protein, 

feruloyl, and acetyl groups content, whereas the stabilizing capacity is predominantly attributed 

to the physico-chemical properties of its carbohydrate portion (Ngouémazong et al., 2015). 

Comparing the E24 values obtained for EPSTP emulsions prepared with sunflower (47±2%) 

and cedarwood (49±4%) oils with those using pectin (20 and 40%, respectively) (Freitas et al., 

2011a) alone, at 2:3 (v/v) O/W ratio, we may conclude that EPSTP performed better. The relatively 

lower results achieved with corn oil and hexane emulsions were possibly due to an obstruction of 

neutral sugar side chains to the accessibility of hydrophobic species to the oil/water interface 

(Ngouémazong et al., 2015). Furthermore, EPSTP had the highest fucose content (37 mol%) 

among the tested EPS secreted by Enterobacter A47, and also the highest average molecular 

weight (4.4 × 106). However, it had the lowest intrinsic viscosity and glucuronic acid, acyl groups 
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and proteins content, which may have hampered the emulsion formation and subsequent stabili-

zation through the increase of interface viscosity of the emulsion (Han et al., 2014; Maalej et al., 

2016; Rossi and De Philippis, 2015) 

Thus, EPSTP could be used as natural emulsifier and stabilizer in food and cosmetic indus-

tries, since it stabilized emulsions with olive and cedarwood oils that revealed high stability dur-

ing more than two months. On the other hand, EPSTP could be used in applications using peanut 

and almond oils where is needed lower emulsions stability, such as oils extraction, since at 4:1 

(v/v) O/W ratio the E24 were high but the emulsions break down a few hours later (Figure 5.8). 

Observing the results obtained using benzene, toluene and hexane, could be stated that the EPSTP 

does not seem to have good emulsification/stabilizing abilities for applications using this type of 

hydrocarbons. 
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Figure 5.8: EI overtime for emulsions prepared with EPSTP and different hydrophobic compounds, at different O/W ratios (v/v). 
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EPSGX 

The exopolysaccharide produced by Enterobacter A47 using glucose and xylose as sub-

strates (EPSGX) had an interesting behaviour, distinct from that of EPSCW and EPSTP. Indeed, 

EPSGX demonstrated to have very strong emulsification capacity (E24 > 90%) with most of the 

tested oils, at low O/W ratios. The only exceptions were the emulsions formed with paraffin oil, 

for which the best E24 value was obtained at the 3:2 (v/v) O/W ratio (79 ± 0%), decreasing for 

lower ratios (Figure 5.9). For almost all the oils tested, the E24 value was higher than 95%, at 1:4 

(v/v) O/W ratio, decreasing for higher ratios. For peanut oil, at all the ratios tested, EPSGX formed 

very good emulsions (E24 > 61%). In the case of cedarwood oil emulsions, except for the 4:1 O/W 

ratio that formed a weak emulsion, all other tested O/W ratios resulted in very good emulsions 

with E24 values above 80%. The fact that only at lower O/W ratios were obtained higher E24 values 

could be related with the insufficient emulsifier concentration which may originated emulsion 

coalescence, flocculation and/or Ostwald ripening phenomena (Calero et al., 2013; Dickinson, 

2009).
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Figure 5.9: E24 for emulsions prepared with EPSGX and different oils, at different O/W ratios (v/v). 
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Considering the tested hydrocarbons, EPSGX only formed good emulsions with benzene, at 

a 2:3 (v/v) O/W ratio (E24 = 67 ± 6%), and with toluene, at the 2:3 and 3:2 (v/v) O/W ratios (E24 

= 73 ± 4% and 53 ± 4%, respectively) (Figure 5.10).  

 

Figure 5.10: E24 for emulsions prepared with EPSGX and different hydrocarbons, at different O/W ratios 
(v/v). 

 

As shown in Table 5.4, the E24 values obtained for EPSGX using olive oil, soybean oil, 

peanut oil, cedarwood oil, paraffin oil, benzene and toluene at 2:3 (v/v) O/W ratio were higher 

than the other studied Enterobacter A47 EPS and also than some emulsifiers at the same emulsion 

conditions (FucoPol, GalactoPol, xanthan gum, alginate, Fucoidan, gum arabic, pectin, guar gum 

and CMC). For example, the obtained E24 for cedarwood oil emulsions was so high (81±7%) that 

EPSGX might replace the synthetic emulsifier Triton X-100 (80%). Also, noteworthy the emulsi-

fication capacity of EPSGX for paraffin oil (79±0%) that were higher than that of xanthan gum 

(64%) (Han et al., 2014), GalactoPol (30%) (Freitas et al., 2009) and the polysaccharide synthe-

sized by Cyanobacteria (72%) (Han et al., 2014). Moreover, EPSGX demonstrated higher emulsi-

fication capacity for benzene and toluene with E24 values higher than Fucoidan (22%) and CMC 

(0%) (Hifney et al., 2016). The higher intrinsic viscosity (14.7 dL g-1) and high protein content 

may have impacted on the E24 high values (Table 5.1), since, as explained above for EPSCW, these 

two properties could improve the physico-chemical processes involved in emulsion formation 

(Dickinson, 2009; Maalej et al., 2016). 

Despite the high E24 values observed for the EPSGX emulsions, they were not very stable 

for a long period of time, since most of them broke within 1 week or less (Figure 5.11). The 

exceptions were olive and cedarwood oils, whose emulsions (at the O/W ratios of 2:3 and 3:2 

(v/v), respectively) were stable (i.e., kept at least half their E24 value) for the entire test period (9 

weeks). According that criterion, other stable emulsions were the ones formed with cedarwood 

oil (at the 3:2 (v/v) O/W ratio) and with paraffin oil (at the 3:2 and 2:3 (v/v) O/W ratios), which 

were stable for around 3 weeks (Figure 5.11).  
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Figure 5.11: EI overtime for emulsions prepared with EPSGX and different hydrophobic compounds, at different O/W ratios (v/v).   
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Regarding the strong hydrocarbon emulsions formed but with lower stabilization overtime, 

EPSGX could be applied wherein it is desired that after their intended use, the emulsions are broken 

down into oil and water (de-emulsification), within a relatively short period of time (e.g. petro-

leum, bioremediation or oil extraction technologies) (Chabrand et al., 2008). 

 

Emulsion-Stabilizing Capacity: Overall Perception  

 

The resume table below (Table 5.5) gives an overall analysis of the ability of each EPS to 

form and stabilize emulsion with the different tested hydrophobic compounds.  

The results reveal that EPSCW might replace other emulsifiers that stabilize cedarwood and 

paraffin oils emulsions and could be a de-emulsification agent for processes using sunflower oil, 

olive oil, benzene and toluene emulsions since had demonstrated good E24 but low stability over 

time. EPSTP, could be used as natural emulsifier and stabilizer in food and cosmetic industries, 

since it revealed high stability with olive and cedarwood oils emulsions and as a de-emulsification 

agent in applications using peanut and almond oils. Since EPSGX demonstrates to be a great emul-

sifier for all the oils tested but a weak stabilizer, it could be used in petroleum industries, oil 

extraction technologies and bioremediation processes. 
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Table 5.5: Resume table classifying emulsions according to emulsifying index after 24h (E24) and stability overtime of the EPS studied at different O/W ratios and 
different hydrophobic compounds. E24 ≥ 80% (       ), 50 - 79% (       ), 20 - 49% (       ), < 20% (       ), stable 9 weeks (VS), stable 4 to 8 weeks (S), stable 3 to 1 week 
(LS) and stable less than a week (UNS). 

 
 

EPS 
O/W ratio 

(v/v) 
Corn Oil 

Sunflower 
Oil 

Olive 
Oil 

Soybean 
Oil 

Peanut 
Oil 

Cedarwood 
Oil 

Almond 
Oil 

Paraffin 
Oil 

Benzene Toluene Hexane 

EPSCW 

4:1 UNS UNS UNS UNS UNS UNS UNS UNS UNS LS UNS 

3:2 UNS UNS VS UNS LS VS UNS S LS LS UNS 

2:3 UNS UNS VS S S VS LS S LS LS UNS 

1:4 S S VS S S S S LS UNS UNS UNS 

EPSTP 

4:1 UNS UNS UNS UNS UNS VS UNS S UNS UNS UNS 

3:2 UNS UNS VS UNS UNS VS UNS LS LS LS UNS 

2:3 LS LS VS UNS LS VS UNS LS LS UNS UNS 

1:4 LS LS VS S S S S LS UNS LS UNS 

EPSGX 

4:1 UNS UNS UNS UNS UNS LS UNS UNS UNS UNS UNS 

3:2 UNS UNS UNS UNS UNS S UNS S LS UNS UNS 

2:3 LS UNS VS LS LS LS LS LS UNS UNS UNS 

1:4 UNS UNS UNS UNS UNS UNS UNS UNS UNS UNS UNS 
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5.4.3. Film-forming Capacity 

 

In this Chapter, films prepared with EPSCW, EPSTP and EPSGX were characterized. The 

formed films were transparent with a brownish tone and exhibited hygroscopic behaviour (Figure 

5.12). Further investigation regarding their mechanical properties was developed through tensile 

and puncture tests. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Photos of typical films from EPSCW (A), EPSTP (B) and EPSGX (C). 
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Mechanical properties 

 

The films prepared with EPSCW, EPSTP and EPSGX were subjected to tensile and puncture 

tests, after being equilibrated at relative humidity values of 45% at 20 ± 2 °C. Characteristic 

stress–strain curve of tensile (A) and puncture tests (B) are presented in Figure 5.13 and the cal-

culated parameters are shown in Table 5.5 and Table 5.6, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Typical stress–strain curves of the EPSCW (blue), EPSTP (red) and EPSGX (green) film 
samples for tensile tests (A) and puncture tests (B).  

 

In the respective table, alongside with experimental results from tensile (Table 5.6) and 

puncture tests (Table 5.7), are the values referred in the literature for other polysaccharides’ films 

from natural resources. 

A 

B 
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Table 5.6: Tensile tests results of films prepared with EPS synthesised by Enterobacter A47 with the different carbon sources and of other microbial polysaccharides 
referred in the literature (n.a. data not available). 

Film Additives 
Tensile strength at 

break, TS (MPa) 

Elongation at 

break, EB (%) 

Elastic modulus, 

EM (MPa) 
References 

EPSCW 0.3 g glycerol/g polymer 3.6 ± 0.4 18.6 ± 2.5 50.8 ± 1.0 
This study EPSTP 0.3 g glycerol/g polymer 7.2 ± 1.2 12.0 ± 0.7 159.5 ± 2.1 

EPSGX 0.3 g glycerol/g polymer 7.6 ± 1.2 9.8 ± 3.7 184.6 ± 28.4 

FucoPol 0.3 g glycerol/g polymer 9.8 ± 0.7 5.4 ± 0.6 322.0 ± 44.7 
Freitas et al., 2014 EPS-g 0.3 g glycerol/g polymer 15.5 ± 0.3 8.1 ± 1.0 457.8 ± 32.3 

EPS-x 0.3 g glycerol/g polymer 3.8 ± 0.2 22.1 ± 4.3 14.5 ± 4.7 

FucoPol 0.5 g citric acid/g polymer 7.6 ± 2.2 6.6 ± 2.6 237.5 ± 43.7 

Ferreira et al., 2016 
Bilayer (FucoPol/Chitosan) 

0.5 g citric acid/g FucoPol + 
(0.5 g citric acid/g Chitosan + 

0.5 g glycerol/g Chitosan) 
11.9 ± 6.2 38.4 ± 11.3 137.0 ± 36.8 

d/FucoPol-PES 0.67 g Genipin/g polymer 4.1 ± 0.0 4.5 ± 0.2 157.2 ± 14.0 
Meireles et al., 2015 

DU/FucoPol-PES 0.67 g Genipin/g polymer 3.1 ± 0.3 2.8 ± 0.4 155.6 ± 51.1 
GalactoPol no 28.7 ± 2.6 2.4 ± 0.3 1275 ± 150 

Meireles et al., 2013 d/GalactoPol-PES 0.67 g Genipin/g polymer 3.5 ± 0.4 18.9 ± 4.4 59 ± 3 
DU/GalactoPol-PES 0.67 g Genipin/g polymer 6.8 ± 1.6 3.5 ± 1.3 254 ± 20 

Pectin 0.3 g glycerol/g polymer 10 4 n.a. Esposito et al., 2016 

Gelatin 0.3 g glycerol/g polymer 20 70 n.a. Rivero et al., 2010 

Pullulan 0.3 g glycerol/g polymer 1 675 1 Trovatti et al., 2012 
Corn starch 0.3 g glycerol/g polymer 16.1 ± 5.3 20.9 ± 7.1 n.a. 

Jost and Stramm, 2015 
Alginate 0.3 g glycerol/g polymer 15.6 ± 1.0 29.1 ± 2.3 n.a. 
ĸ-Carrageenan 0.3 g glycerol/g polymer 24.4 ± 1.8 15.6 ± 3.9 n.a. Cerqueira et al., 2014 
Chitosan 0.33 g glycerol/g polymer 7.7 ± 0.8 71.8 ± 4.3 n.a. 

Cerqueira et al., 2012 
Galactomannan 0.33 g glycerol/g polymer 13.2 ± 0.7 11.9 ± 0.5 n.a. 

 



5. Extracellular Polysaccharides Functional Properties 

 

108 

 

Table 5.7: Puncture tests results of films prepared with EPS synthesised by Enterobacter A47 with the different carbon sources and of other microbial polysaccharides 
referred in the literature (n.a. data not available). 

 

 

 

Film Additives Test probe 

Puncture 

strength at break 

(kPa) 

Deformation 

at break 

(%) 

Force at break 

(N) 

Distance at 

break 

(mm) 

References 

EPSCW 
0.3 g glycerol/g poly-

mer 
cylindrical (2 mm of 

diameter) 

29.5 ± 4.8 28.4 ± 0.6 2.3 ± 0.4 3.8 ± 0.2 
This study EPSTP 42.2 ± 1.6 9.4 ± 0.9 3.2 ± 0.2 2.1 ± 0.2 

EPSGX 52.0 ± 3.2 13.6 ± 2.0 4.1 ± 0.2 2.7 ± 0.2 

GalactoPol no 
cylindrical (2 mm of 

diameter) 
2959 ± 261 3.8 ± 0.6 n.a. n.a. Alves et al., 2011 

Calcium alginate no 
hemispherical tip 

(3.5 mm of diameter) 
25 2.5 n.a. n.a. Crossingham et al., 2014 

Cellulose acetate no 
cylindrical (5 mm of 

diameter) 
n.a. n.a. 23.4 ± 1.2 2.7 ± 0.8 Santos et al., 2016 

Chitosan lactate 
0.6 g sorbitol/g poly-

mer 
hemispherical tip (2 

mm of diameter) 

1.4 ± 0.2 n.a. n.a. n.a. 

Kowalczyk et al., 2015 Oxidized potato starch 
0.6 g sorbitol/g poly-

mer 
4.2 ± 0.2 n.a. n.a. n.a. 

Gelatin 
0.6 g sorbitol/g poly-

mer 
14.3 ± 0.3 n.a. n.a. n.a. 

Gellan 
0.67 g glycerol/g poly-

mer 
cylindrical (8 mm of 

diameter) 
n.a. n.a. 34.3 7.3 Yang and Paulson, 2000 
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The results show that comparing the three different polymers, EPSCW films elongate more 

(EB=18.6 ± 2.5%) but have lower tension at break (3.6 ± 0.4 MPa), which results in a lower EM 

(50.8 ± 1.0 MPa). On the other hand, EPSTP and EPSGX films presented a slightly higher TS (7.2 

± 1.2 and 7.6 ± 1.2 MPa, respectively) and EM (159.5 ± 2.1 and 184.6 ± 28.4 MPa) but EPSGX 

films were slightly stiffer (EB=9.8 ± 3.7 MPa). In terms of puncture tests, the behaviour was 

similar for all tested films, although EPSTP demonstrated to be slightly more rigid because it 

showed the lowest deformation at break (9.4 ± 0.9%). 

These differences in terms of the films’ mechanical properties might be related to the bi-

opolymers chemical composition, as EPSCW had higher glucuronic acid (29 mol%) and acyl 

groups content (32 wt.%) (Table 5.2). Moreover, EPSCW and EPS-x have similar mechanical 

properties results (TS and EB) envisaged to be also correlated to the similar lower average mo-

lecular weight of both polymers, and to possible differences on the polymer inter-chain interac-

tions within the films matrices (Tables 5.2 and 5.6). 

It is difficult to compare the mechanical properties of the obtained films and the ones al-

ready described in other works because they are strongly dependent on the addition and concen-

tration of plasticizers, cross-linking agents and other additives upon film formation. Thus, for a 

similar plasticizer concentration (0.3 g glycerol/g polymer), the films developed in this study, 

demonstrated results of the same order of magnitude as those referred for pectin and Galactoman-

nan (Table 5.6). On the other hand, gelatin, Pullulan, Corn starch, Alginate, ĸ-Carrageenan and 

Chitosan demonstrate higher elongation at break (EB) (Table 5.6). Comparing with films pre-

pared with different plasticizers, it can be noticed that the GalactoPol-PES film with 0.67 g of 

Genipin/g polymer reveal mechanical properties very similar to the EPXCW film, demonstrating 

to be more malleable films. Moreover, EPSGX revealed tensile properties similar to FucoPol with 

0.5 g citric acid/g polymer as cross-linking and plasticizer agent but with lower EM (Table 5.6). 

For a comparison of puncture test results from the EPS films formed using EPS from Enterobacter 

A47 with other polysaccharides, is notice a similarity with the value obtained of puncture strength 

at break for gelatin film with 0.6g sorbitol/g polymer as plasticizer (14.3 ± 0.3 kPa). 

 In conclusion, the mechanical properties of EPS films produced from EPSCW, EPSTP and 

EPSGX, reveal a polymeric structure that is not mechanically resistant enough to be used as a 

stand-alone film. However, there is the potential to be used as a hydrophilic layer incorporated in 

a multi-layered material.  
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5.5. Conclusions 

 

The EPS produced by Enterobacter A47 using cheese whey (EPSCW), out-of-specification 

tomato paste (EPSTP) and a mixture of glucose/xylose (EPSGX) as substrates, have revealed inter-

esting aqueous solutions properties, the ability to form and stabilize emulsions, and to form films 

with good mechanical characteristics. In conclusion, the EPS produced by Enterobacter A47 us-

ing industrial wastes/by-products as substrate, may be a sustainable substitute of synthetic and 

natural thickening agents, emulsifiers/stabilizers in several industries processes and final prod-

ucts, such textile, paper, polymers, plastics, cosmetics, pharmaceuticals, food and petrochemicals. 

Although the mechanical tests shown that the films produced are not mechanically resistant 

enough to be used as a stand-alone film, there is the potential to be used as a hydrophilic layer 

incorporated in a multi-layered material. 
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6.1. General Conclusions 

 

The studies performed during this Ph.D. thesis evaluated the capacity of Enterobacter A47 

to growth using a wide range of industrial by-products/wastes as substrates, the production of 

EPS and their physico-chemical properties. 

In particular, cheese whey was converted into a novel fucose- and glucuronic acid-rich 

polysaccharide by the bacterium Enterobacter A47. One interesting feature of this bioprocess is 

the use of a culture that is able to directly use lactose, without any pretreatment, as substrate. The 

EPS produced, EPSCW, is a novel value-added polysaccharide with two bioactive sugar mono-

mers, fucose and glucuronic acid, which confers it a huge potential for application in different 

areas, including cosmetics, pharmaceuticals and food products. Also, it was the first time that out-

of-specification tomato paste was used as the sole substrate for the production of a microbial 

polymer. Tomato paste proved to be an adequate source of nutrients, including sugars, ammonium 

and phosphate, for Enterobacter A47 growth and exopolysaccharide synthesis. The best biopro-

cess performance, in terms of polymer production and volumetric productivity, was higher for the 

continuous mode operation, which guarantied non limiting availability of carbon and nutrients. 

Further, Enterobacter A47 demonstrated the capacity to use as substrate a mixture of glucose/xy-

lose sugars. The preliminary results of the cultivation of Enterobacter A47 using for the first time 

a hydrolysate from an abundant lignocellulosic by-product, BSG, as substrate, indicates that the 

culture as the ability to growth and produce EPS. 

Regarding EPS’s physico-chemical properties of the EPS produced by Enterobacter A47 

using cheese whey (EPSCW), out-of-specification tomato paste (EPSTP) and a mixture of glu-

cose/xylose (EPSGX) as substrates, have revealed interesting properties, the ability to form and 

stabilize emulsions, and to form films with good mechanical characteristics and they may be a 

sustainable substitute of synthetic and natural thickening agents, emulsifiers/stabilizers in several 

industries processes and final products, such textile, paper, polymers, plastics, cosmetics, phar-

maceuticals, food and petrochemicals. Although the mechanical tests shown that the films pro-

duced are not mechanically resistant enough to be used as a stand-alone film, there is the potential 

to be used as a hydrophilic layer incorporated in a multi-layered material. 

Taking into account the versatile properties presented, combined to the prospective lower 

production costs from using a low-cost carbon source, The EPS has an enormous potential to be 

used on several industrial applications. Furthermore, the use of food industrial wastes/by-products 

to produce value-added EPS could constitute a new step for implementation of a more sustainable 

industrial production, which EPS could be applicable on the final product and/or packaging.  



6. General Conclusions and Future Work 

 

114 

 

6.2. Future Work 

Based on the work developed and on the results obtained, the following suggestions for 

future work can be proposed: 

• Further investigation of the EPS production using the tested industrial by-products 

as substrate, in terms metabolic pathway in order to better understand the EPS syn-

thesis process and optimize stoichiometric and kinetic parameters; 

• Study of more cost-effective saccharification methods for BSG, such as, enzymatic 

hydrolysis with cellulases and hemicellulases that also could generate less inhibi-

tory compounds for cell growth. 

• Improvement of EPS recovery methods, to increase the purity and yield of the En-

terobacter A47 EPS, while taking into consideration possible industrial applica-

tions. For example, the use of membranes with higher cut-off than the contaminant 

polysaccharide’s Mw. 

• Further studies of the EPS properties to better understand the best application for 

each EPS produced, such as, thermal properties, solubility and stability in several 

solvents, the influence of temperature, pH and ionic strength on the viscosity and 

viscoelasticity of EPS solutions, gel forming capacity, flocculating and/or suspend-

ing agents. 

• The biocompatibility of the EPS should be assessed by cytotoxic assays. The bio-

logical activity may also be evaluated, as well as the antioxidant properties, anti-

inflammatory effect and antimicrobial activity. 
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