
Ewan Birney

joined the EBI as one of the

founding investigators for the

Ensembl project. He is now a

senior scientist at the EBI and

runs both research and

database projects.

Michele Clamp

joined the Sanger Institute as

one of the founding

investigators for the Ensembl

project. She now works at the

Broad Institute, Cambridge,

MA.

Keywords: database design,
software engineering, source
code control

Ewan Birney,

EBI,

Wellcome Trust Genome Campus,

Hinxton,

Cambridge CB10 1SD,

UK

Tel: +44 (0)1223 494420

Fax: +44 (0)1223 494468

E-mail: birney@ebi.ac.uk

Biological database design
and implementation
Ewan Birney and Michele Clamp
Date received (in revised form): 19th December 2003

Abstract
We present our experience of building biological databases. Such databases have most aspects

in common with other complex databases in other fields. We do not believe that biological

data are that different from complex data in other fields. Our experience has led us to

emphasise simplicity and conservative technology choices when building these databases. This

is a short paper of advice that we hope is useful to people designing their own biological

database.

INTRODUCTION
Building a biological database is, in

theory, no different from building a

database for an investment bank,

government agency, business or another

scientific endeavour. One needs to

understand the information the database is

going to store and present, translate that

understanding into a rigid framework

which one can imagine implementing

using programmatic tools, write and

debug such programs and then finally

actually run and use the database, usually

with additional ‘on-site’ development and

debugging. Of course, such a simple plan

is often complicated by tough decisions

about resources, the need to show a

working system (in particular for the

funding source) and people’s goals and

understanding of the system changing

over time. All such annoyances are also

present in more ‘traditional’ (ie business)

database settings. In the main the real

challenge for any database system are the

myriad details of understanding,

programming logic and presentation

which must all be in synchrony to deliver

an effective solution. From this

perspective all one can write about

effective databases is that it is the details

that one has to get right, and the details

are always specific to a particular database.

Even though it is predominantly about

details, we believe that there are aspects of

building a successful biological database

that deserve specific attention. In addition

there are occasions both when biologists

do not appreciate aspects of running

databases, and IT professionals are naive

about the challenge they face in

implementing a successful biological

database. All three aspects form the focus

of this paper, with Ensembl being our

main experience, but a number of other

biological databases, which we have either

participated in or observed, also

contribute. The precise technical details

of Ensembl are laid out in a number of

papers.1,2 Most of what we say in this

paper is either ‘common knowledge’ or

‘common sense’ but our own experience

is that translating such objective truisms is

hard in practice. We hope that this paper

helps other people avoid some of the

problems we have had in developing

databases.

UNIQUE PROBLEMS FOR
BIOLOGICAL DATABASES
There are two problems often

encountered with biological databases

which are (in our limited understanding

of the broad field) rare in other database

implementations. The first, and by far the

most interesting, is that the ‘true’

biological interpretation of data stored in

a database not only can change over time,

but discovering new relationships

between aspects of the data is part of the

motivation for storing information in a

& HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN BIOINFORMATICS . VOL 5. NO 1. 31–38. MARCH 2004 3 1

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/5/1/31/430451 by U

.S. D
epartm

ent of Justice user on 16 August 2022



database in the first place. Changing one’s

view of the data is not an annoyance but

an outright aim in some cases. For

example, it was a common belief before

1997 that the vast majority of ‘genes’

encoded protein structures, which

implied a series of data structures to store

aspects of protein coding function, eg the

start codon. Although many structural

RNA genes were known, they were

often either not modelled in a database or

had specialised descriptions. However, it

has now become clear that there are a

considerable number of RNA genes with

a number of different roles, and the

storage and display of these genes are of at

least as much interest as protein coding

genes. This change in understanding has

clear knock-on effects for the data

modelling.

Often one will have aspects of a

particular database that are considered to

be ‘invariable’ experiment-based data

(such as sequence information, or read-

outs from microarray chips), but it is

worth noting that in general this is a

deliberate decision about where to assume

‘data’ and ‘interpretation’ starts and ends;

the sequence in Ensembl is composed of

specific trace information that is (to

different degrees of confidence) believed

to be true; microarray data are heavily

manipulated before being stored; gene

structures in model organisms as often

assumed to be true for the analysis of

other features. Often storing the

interpretation of ‘low-level’ data is the

raison d’être of a database:in the case of

Ensembl we developed a highly effective

automatic gene-building system, and the

main feature of the system was the

calculation, storage and display of this

interpretation. Interpreting data sets,

usually by attempting to reconcile

different ‘low-level’ data sets into one

biological synthesis, is the essence of

complex bioinformatics data sets and

directly provides insight into molecular

biology. This ‘problem’ is the exciting

puzzle to solve.

The other problem is far more

mundane: there is still a dearth of people

who appreciate both the biological

problem and the programmatic problem.

This means that most groups have a

combination of people with either

background, with overheads in

communication (for example, the

meaning of the word ‘vector’ meaning

alternatively a set of numbers used in

mathematics, a plasmid system used to

propagate DNA in cells in the laboratory

or an organism involved in host–parasite

transmission) and, far more importantly, a

sense of how complete a particular

understanding of molecular biology is.

Both sides can dramatically over- or

underestimate the problems and effective

solutions to aspects of data

implementation. The inability to rarely

have a full understanding of both biology

and programming affects all levels of

building databases, from programmers to

funders and from users to reviewers.

Thankfully there are now far more people

with honest dual skill sets graduating, and

there are a number of specific educational

courses that blend computer science and

biology. This problem dominates many

aspects of working biological databases,

and the only solution is to find and hire

good people who have at least an

appreciation of the other field, even if

they do not have truly ambidextrous

skills.

GENERAL DATABASE
IMPLEMENTATION POINTS
These points are either ‘common sense’

or ‘common knowledge’ but yet we still

see biological databases that seemingly

wilfully want to invent problems for

themselves. We have both made the same

errors ourselves over time (and indeed

ignore the very same advice we are giving

here, to our cost). Perhaps the only way

to learn these lessons is to make your own

mistakes. But we hope some of this advice

will affect people’s attitude to new

databases.

Always use source code control
Source code control is a system where

text files can be managed by multiple

Changing data models
can be an aim for a
biological database

3 2 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN BIOINFORMATICS . VOL 5. NO 1. 31–38. MARCH 2004

Birney and Clamp

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/5/1/31/430451 by U

.S. D
epartm

ent of Justice user on 16 August 2022



individuals over time, and can be

branched to provide ‘stable’ or

‘development’ branches. CVS is a decent,

open source and free source code control

system, so there is no excuse not to use

one. Source code control is useful for any

size of group, from one programmer

onwards, and is essential once you get to

two people. Effective projects usually

have everything tracked inside a common

source code control system, which is

accessible by the whole group. This gives

a common sense of ownership of the

project and the capability of different

individuals to flexibly contribute and fix

aspects of the system.

Do not use text files in
directories as a poor-person’s
database
It is not worth with the current

availability of sensible database solutions

to go down this route, however ‘simple’

your data are. Both MySQL and Postgres

are easy to install, free and simple to learn

and use. One week’s investment into

learning one of these systems will save

months of otherwise more and more

baroque systems. The only exception to

this is storing inherently ‘opaque’ data that

have to be read by specialised tools, eg

images. Sequence files are also a special

case because of the large number of third

party tools that are tied to specific

formats.

We have not had any success ourselves

at using more ‘pure’ object-based

databases or extensible mark-up language

(XML)-oriented databases; in all the cases

we have encountered, ‘straightforward’

relational systems work better (at least for

us). We might just be dinosaurs in this

regard, and such solutions might work

better for specific cases. (In the interests of

full disclosure, both of us have previously

made databases via files in directory

structures and although they did work,

ultimately they did not scale and had a far

higher software cost of writing specific

directory traversing routines.)

Only use cutting edge
technology if you really have to
Even then think twice about it. There are

two major problems generated by using

cutting edge technology. Firstly, it is

inherently more buggy because bugs are

only found and removed by the software

being used in different scenarios.

Secondly, it is likely that there will be

only a small number of people in the

world (and generally only one of them in

the group) who will understand the

precise details of how things work,

making debugging a bottleneck on that

individual and the entire enterprise reliant

on a single individual.

By using broadly understood

technology one lowers the barriers for

new people to come into the group and

for other people to use the system directly

(assume one is developing an open

system). The practical consequence of this

is that in terms of programming

languages, try to stick to C, C++, Java or

Perl, potentially Python and, at a longer

stretch, Lisp. In terms of databases, use a

relational database that supports ANSI

SQL and use specific extensions with

caution.

Try not to directly mix
production database
development with either
computer science research or
algorithmical ‘bioinformatics’
research
If you are serious about developing a new

database with valuable biological data,

then it must be done using concepts and

technology that people are truly confident

in. We are amazed when people try to

take on both tasks at the same time – one

is easily enough! This often seems to be a

problem with more computer science

oriented people, who want to make an

advance in computer science using

biological data as an exemplar. This is fine

to do, but must never be confused with

building a biological database where the

focus is the storage, manipulation and

inference from the data.

Source code control is
vital for any
successful project

& HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN BIOINFORMATICS . VOL 5. NO 1. 31–38. MARCH 2004 3 3

Biological database design and implementation

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/5/1/31/430451 by U

.S. D
epartm

ent of Justice user on 16 August 2022



Try to focus on doing a few
things well, rather than
requiring the whole universe of
biological data to be integrated
locally
Ideally, make sure there is no one or only

a few other groups providing a similar

resource. This often seems to be a

problem with people with a more

biological background, who immediately

sketch out some grandiose scheme of

incorporating nearly every aspect of

biology from a topic of interest. Instead

try to find the real missing pieces not

done well elsewhere, and then focus on

delivering good data in this area.

MORE DETAILED ADVICE
We have a particular style of designing

and running databases, but we recognise

that this is just one style; other people run

other databases differently with equal or

better results. We expect readers might be

interested in our ‘best practice’ rules, but

this advice is more ‘to taste’ for each

individual.

A standard database project in our

minds would have the following features:

• A CVS repository (potentially shared

with other projects).

• A closed mailing list for all members of

group, which is typically not publicly

archived. This is where the day-to-day

business of the group is discussed, and

sometimes hard decisions have to be

taken.

• A mailing list for the CVS commit

messages, which all programming

developers should be on.

• At least one public mailing list where

users and/or other developers can

provide input and discuss aspects of

the system. This usually is publicly

archived.

• A well-backed-up production database

instance.

• A relatively isolated web-viewed

database instance, with appropriate

web code. It is rare in our experience

to run the web views directly off the

production database, but this is

probably because we have been

involved in more analysis-oriented

databases. When databases are used

directly in a production work-flow (eg

closer to wet experiments or with

many curators), often the web instance

has to be the same as the production

instance. In this case, have a good data

replication and archive strategy, such

that at regular intervals (for example,

daily) one has a complete copy of the

database archived, usually first on disk

and then certain weekly copies are

then moved to a longer-term medium

(eg tape).

• Development areas where developers

can create and destroy development

databases and have enough space to

develop new code.

In terms of people, it is of course

variable in terms of both the scope of the

project and the precise mix of skills

required. Generally one needs:

• A bioinformatician who understands

what the biological data are and why

they are being stored, and can spend

the majority of his or her time on this

project.

• A web developer who understands

how to generate broadly browser

compatible HTML dynamically and

has a sense of how to make user-

friendly web pages.

• A programmer who understands the

precise database and software

implementation that actually writes

the database and supporting software.

• A specific contact person in the

systems group, if not a dedicated

systems person who is fully part of the

computer administration team and

who can forewarn people of systems

upgrades and provide support during

specific systems problems. Out of all

the positions, this one is often the

most overlooked.

Occasionally one person can take on

There are many styles
for managing database
projects – we
present ours

3 4 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN BIOINFORMATICS . VOL 5. NO 1. 31–38. MARCH 2004

Birney and Clamp

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/5/1/31/430451 by U

.S. D
epartm

ent of Justice user on 16 August 2022



more than one of these roles, but it is rare

for a single person to do three or more.

For larger databases, these often

become separate groups. Our experience

is to try to keep these groups although

identifiable still as one broader ‘team’,

with, for example, all the code base

accessible to all groups. Globally accessible

code is important not only so that any

developer can in theory have a complete

local system, but also so that developers

can insert debugging statements into other

parts of the code base while tracking

down bugs. When there is a bug in a

piece of software, people’s natural

tendency is to suggest it is not in their

piece of code, and only by being able to

track a problem up and down all the

layers of the code can bugs be found and

removed.

CODE AND SCHEMA
DESIGN
One has to decide on a principal data

model description as a master of what a

database stores. Examples would be

relational database Data Description

Language (DDL) definition, XML DTD

or XML Schema descriptions or unified

modelling language (UML) files. No

matter which method is used, use just one

of them as the master data model

description. Our preference is now firmly

in DDL definitions, but this is a ‘to taste’

piece of advice. Every biological data

model at some point starts to mushroom

towards modelling ‘all of biology’. Resist

this. Try to focus on the core aspects of

data or analysis being generated in house

and then use ‘links’ to other well-

structured biological databases.

Investment into data model design is

usually time well spent, but beyond a

month’s worth of discussion and

sketching out the returns drop off

dramatically. This is mainly because no

one can fully understand the task at hand

and consequences of the design until one

tries it out. Secondly one can expect the

task to change in the time-scale of a year,

so dramatic investment in data modelling

becomes a futile cycle.

An important aspect immediately

grasped by computational programmers

but sometimes hard to explain to

biological researchers is that one needs

anonymous tracking identifiers for all data

items. In our experience one needs two

types of tracking identifiers – internal

database identifiers that are used only in

database joins and programmatic bindings

of code to database, and then ‘published’

but still anonymous identifiers which can

be tracked by other databases (in Ensembl

these would be an ENSG number, in

Swiss-Prot/SPTrEMBL, these are

accession numbers, etc). The need for

externally accessible but still anonymous

tracking identifiers is that if ‘meaningful’

names are used to track something, there

is very strong likelihood that someone

will wish to change the meaningful name

at some point in the future. Although one

might naively think that using ‘update’

pointers might solve this, it is a clumsy

solution; far better is to have an textual

identifier whose sole use is to track a

particular biological object over time.

One consequence of focusing on a

limited scope of biology is that one often

needs to provide integration with other

databases managing a related but not core

aspect. It is here that the key roles of (a)

well-managed tracking identifiers and (b)

clear linkage of tracking identifiers to

experimental results such that data sets can

be combined are important. An often key

experimental aspect to track are the

sequenced-based reagents (eg the

polymerase chain reaction (PCR) primers,

actual microarray oligos or clone

sequences for proteomic expression)

which are used in the data generation.

Often it is by using these sequence-based

reagents that one can associate tracking

identifiers between two related databases.

Notice that this requires these sequence-

based reagents to be captured in the data-

gathering step for a database. Once

tracking identifiers can be associated

between two databases, then one often

has to programmatically integrate data

either to enhance your own database or to

investigate some aspect of biology. There

Only have one master
data model format

Sequence reagents are
often crucial for inter-
linking data items

& HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN BIOINFORMATICS . VOL 5. NO 1. 31–38. MARCH 2004 3 5

Biological database design and implementation

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/5/1/31/430451 by U

.S. D
epartm

ent of Justice user on 16 August 2022



are a number of ways to do this; from

replication of an external database in

house through to internet-accessible

programmatic access through protocols

such as CORBA or SOAP. In our

experience the technical aspects are

generally easily solved when all the data

from each database are fully open, and so

each side of the integration can see all

aspects of the other system.

It almost goes without saying that we

advocate a straightforward ‘object-

oriented’ approach to code. Object

orientation is a programming style that

considers the unit of code to be a

combination of a data structure and

functions that provide access and

manipulation of that structure. A crucial

aspect in object orientation is the ability

of differently specialising objects to share

common functional interfaces. For

example, both a ‘gene’ and a ‘marker

location’ might be specialisations of

‘sequence feature’ as there is the common

aspect of position on a genome in both

cases. Wherever sensible, people should

isolate code paths from each other to

allow the easy understanding of the code

and also the potential for easy debugging

and replacement of code. Interestingly it

is actually quite easy to develop object-

oriented code that does not isolate

components (eg by having a large,

complex base class) or does not help

debugging (eg with extreme multiple

inheritance and delegation layers for a

function call). We could probably write a

long paper on many bad designs we have

either designed ourselves, or directly been

part of. Our only advice is to aim

primarily for simplicity and then for

simultaneous isolation of different

components and reuse of code – this is

easy to say and hard to do well.

Software testing is another ‘common-

sense’ part of programming. Like many

software developers, we are not immune

from the belief that our code is right

simply because it compiles and runs on

one example. If we are honest with

ourselves, this is just not true. For code

bases involving more than two modules,

independent testing is crucial, and over

time, software testing becomes the only

way to have confidence that changes have

not compromised another piece of

functionality. We make heavy use the

Perl test harness system and Java unit tests.

In a database system, an additional

problem is that one needs a small ‘test

instance’ of data for the code to interact

with to run tests. We have solved this by

having compressed copies of test instance

data and written (in the case of Perl) our

own test harness system that initialises,

loads data, runs tests and then destroys the

data.

As a project progresses, aspects of the

problem will either become clearer or

indeed change, and the scope will almost

certainly shift. This happens to every

database project (whether biological or

not) and is simply part of database life.

Parts of the system will become

inappropriate or just accumulate a series

of short-term fixes around less optimal

aspects. There are generally tough

decisions that must balance the delivery of

the system to the actual users against the

stability and potential of the system to

adjust to change in the future. There are

no clear guidelines we know of to make

these decisions, but both extremes are

wrong. Always rushing a short-term fix

on top of a previous pressurised fix

condemns the project to an eventual

dead-end where the system cannot be

sensibly moved to accommodate any

change. In some worse-case scenarios,

even an OS version upgrade may cause

bizarre, unexplained behaviour.

Conversely, always re-engineering cleanly

as soon as a problem is presented nearly

always leads to delivery delays and in the

worse case prevents the database ever

being delivered.

As with any team, communication and

trust are crucial. The type of

communication and trust across a team of

programmers generally has to be deeper

than a normal molecular biology

laboratory where post-docs and students

are relatively independent. A software

team has to have trust in other people’s

There are always tough
decisions to balance
responsiveness vs
re-engineering

3 6 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN BIOINFORMATICS . VOL 5. NO 1. 31–38. MARCH 2004

Birney and Clamp

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/5/1/31/430451 by U

.S. D
epartm

ent of Justice user on 16 August 2022



code, design decisions and debugging; it

must treat all bugs as common problems

and sense when one person is overloaded

and move tasks off them to relieve

pressure. Such communication and trust

have to be developed and maintained

actively, and the leaders of the project

have to take responsibility for ensuring

that this occurs.

KEEPING A BIOLOGICAL
FOCUS
A final common problem to biological

databases is to lose the biological focus of

the database; symptoms can include

having web pages that have prominent

displays of the database-oriented

information (such as tracking identifiers)

or deploying technology to access

databases which requires considerable

programming skill to simply install. As

people become more confident in their

programming skills, this route becomes

increasingly tempting as it seems

‘natural’ to enhance the database in this

way.

Keeping a good eye on the usage of the

database and the needs of people using it

is the only way to stay grounded. One

easy way to achieve this is to hire in the

‘bioinformatician’ role people with

directly the biological experience of the

area one is working in (eg a geneticist for

a genetics database, a cell biologist for a

cell movement database), but even then

these individuals can ‘go native’ and

become entranced by aspects of the

technology. It is also often hard to find

someone who has specific experience of

an area of molecular biology and some

programming skills, and we would not

recommend hiring molecular biologists,

however appropriate their wet biology is,

if they have no or ‘just starting’

programming skills. Another route is to

embed the whole group in an institute

that will use this database. This usually has

a very positive effect of ensuring that the

database remains focused on providing

useful information, but there are down-

sides. Firstly, the database group can

become captured by the local research

groups and effectively change the database

into a glorified LIMS (Laboratory

Information Management System) for

these groups. There is nothing wrong

with running a good LIMS group, but it

should not be confused with running a

useful scientific database that presents

biological understanding to a broad group

of researchers. Secondly, in most

departments or research institutes

dedicated to wet biology work it is often

hard to get the right sort of IT

infrastructure support, with good machine

room handling, server administration and

network support.

In any situation it also useful to have

regular (for example, yearly or six

monthly) focused meetings with

biological users, ideally with some spread

of geography and types of user. Such

‘focus group’ meetings can be very

productive about understanding new

research emerging and the needs of the

users. However, be aware that if one

simply asks a set of biologists what they

would like, often the ‘wish list’ goes out

of scope of the database and can easily

become unfeasible to execute –

remember that they rarely understand

which things are easy and which hard to

execute. Considerable feedback between

biologists and database programmers is

often required, and this usually means that

the early part of the day is spent learning

each other’s language such that people can

actually describe the details of aspects of

work. By doing this regularly with some

continuity of the invited biologists, one

can actually build up a very productive

relationship. These focus group meetings,

along with good usage statistics, are also

often precisely what funding agencies

want to see in reviews.

CONCLUSIONS
Designing, implementing and running

databases are predominantly a series of

decisions about intricate details.

Experience is the best teacher about how

to make these decisions, but you can learn

& HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN BIOINFORMATICS . VOL 5. NO 1. 31–38. MARCH 2004 3 7

Biological database design and implementation

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/5/1/31/430451 by U

.S. D
epartm

ent of Justice user on 16 August 2022



from other people’s mistakes. We hope

this paper goes some way to passing on

our experience. If you are a database

neophyte and want to gain experience,

there is nothing better than both investing

your own personal time into examining

an existing database project and, ideally,

embedding yourself inside a well-

managed database group. There are now a

number of these groups worldwide, many

of them represented in this journal. We

hope you are successful in your database

endeavour.

References

1. Clamp, M., Andrews, D., Barker, D. et al.
(2003), ‘Ensembl 2002: Accommodating
comparative genomics’, Nucleic Acids Res., Vol.
31(1), pp. 38–42.

2. Birney, E., Andrews, D., Barker, D. et al.
(2004), ‘An overview of Ensembl’, Genome Res.,
accepted for publication.

3 8 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN BIOINFORMATICS . VOL 5. NO 1. 31–38. MARCH 2004

Birney and Clamp

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/5/1/31/430451 by U

.S. D
epartm

ent of Justice user on 16 August 2022


