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INTRODUCTION

An unmanned flying vehicle (UFV) is generally used to 

search for and track an adversary and even designed to go 

down with the adversary’s vehicle under the extreme con-

ditions of modern wars [1]. The precision of a UFV’s elec-

tromagnetic sensors generally influences the accuracy of its 

guidance. To improve the accuracy of the UFV’s guidance 

system, advanced guidance technologies based on bionic vi-

sion have been studied in recent years. Some developments 

based on bioinspired intelligence [2], [3] have also been in-

vestigated for aerial systems. Bionic vision, such as that in-

spired by the vision of Limulus species (i.e., horseshoe crabs), 

fruit flies, birds, and humans [4], has become a hot research 

field, and some of these new technologies have been applied 

to missile homing guidance.

In the bird kingdom, the eagle is renowned for its excel-

lent eyesight, a trait that is produced by to its distinct vi-

sual principle. An eagle’s eye is almost the same size as a 

human’s eye but is at least four times sharper than that of 

a person with perfect vision. An eagle flying at an altitude 

of 1,000 ft can spot prey over an area of almost 3 mi2 from a 

fixed position [5]. It has two fovea areas with one central fo-

vea in the middle. Figure 1 shows the physiological structure 

of the eagle’s eye. Both fovea and the center of the pupil in 

each eye are on a plane, as is the line of sight of every point 

on the surfaces of the retina cut by the plane. This physi-

ological structure helps it see forward and to the sides at the 

same time. This broadens its visual field [6]. Its wider view 

can be imitated with a system of binocular stereo vision and 

can be applied to the imaging guidance by using the image 

mosaic to splice the two images from different vision sensors 

on a UFV.

Lateral inhibition widely exists in some living things. In 

a retinal image, the intensively excited receptors in illumi-

natingly light areas inhibit the receptors in illuminatingly 

dark areas more strongly than the latter inhibit the former, 

which enhances the contrast and distortion of the sensory 

information. This electrophysiological phenomenon is called 

lateral inhibition. Another important characteristic of eagle-

eye vision is that the vision scene and the intensity gradient 

(i.e., the image’s edge) are both strengthened [7]. Image seg-

mentation [8] and visual attention [9] are two sophisticated 

image-processing technologies that are included in the pro-

cessing of visual information and exist in eagle-eye visual 

processing.

In this article, we present our work’s main focus, devel-

oping a bionic vision imaging guidance simulation platform 

for UFVs, which is a creative and an interesting endeavor.

EAGLE-EYE VISUAL PRINCIPLE

The eagle-eye visual principle contains four well-established 

paradigms: image mosaic, lateral inhibition, image segmen-

tation-based on an intersecting cortical model (ICM) algo-

rithm, and visual attention.

IMAGE MOSAIC PARADIGM

Image mosaic is defined as a technique for combining two 

or more images into a larger one [10]. The construction and 
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Figure 1. 
Frontal section through an ideal eagle’s head at the foveal 
plane.
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application of mosaic images have been active areas of re-

search in recent years. There are two common methods of 

image mosaics: one based on grayscale and the other based 

on phase correlation [11]. In our developed platform, an im-

age mosaic method based on both grayscale and phase cor-

relation is proposed. Our method combines the advantages 

of the two common methods, with less computation than the 

method based on grayscale and stronger anti-interference 

ability than the one based on phase correlation.

Our method can be simply described with two techno-

logical processes. First, fast Fourier transform is used to cal-

culate a rough position for the image alignment. Then the 

gray correlation algorithm is applied to search for a precise 

position locally. The detailed procedures are as follows:

1. Input images f
1
 and f

2
.

2. Transform two input images by two-dimensional Fourier 

transform.

3. Calculate the mutual power spectrum of the two input 

images.

4. Transform the mutual power spectrum by two-dimen-

sional inverse Fourier transform.

5. Find the maximum amplitude values (i.e., the translation 

of the two images).

6. Fuse the transformed images using the biological image 

fusion algorithm.

LATERAL INHIBITION PARADIGM

Lateral inhibition is one of the biological information-pro-

cessing principles in neural systems. This mechanism plays 

an important role in the eagle-eye visual principle, which 

was discovered and verified by Hartline and his research 

team when they carried out an electrophysiology experi-

ment on Limulus vision [12]. They found that every microph-

thalmia of a Limulus ommateum (i.e., an individual photo-

receptor unit of the Limulus compound eye) is regarded as 

a receptor, which is inhibited by its adjacent receptors. The 

inhibited effect is mutual and spatially summed. That is to 

say, a receptor inhibits its adjacent receptors and at the same 

time is inhibited by them. The nearer the adjacent receptors 

are to one another, the more strongly they inhibit mutually. 

In this way, the important characteristics of vision scene and 

intensity gradient in a retinal image (i.e., the image’s edge) 

are both strengthened.

Lateral inhibition can be used widely in many fields, 

such as image processing, pattern recognition, artificial in-

telligence, and imaging navigation [7], [13]. This mechanism 

can be applied to preprocessing of the original and template 

images to stress the spatial resolution, which can increase 

the accuracy of image matching. Lateral inhibition increases 

the contrast and sharpness in visual response. It occurs in 

the mammalian retina. For example, in the dark, a small 

light stimulus is enhanced by the different photoreceptors 

(rod cells). The rods in the center of the stimulus transduce 

the “light” signal to the brain, whereas different rods on the 

outside of the stimulus send a “dark” signal to the brain. 

This contrast between the light and the dark creates a sharp-

er image.

Figure 2 shows an example of a lateral inhibition net-

work. The small gray squares have the same intensity, but 

the one on the left looks darker and the one on the right 

looks lighter. The reason for this is that output cells near the 

edge of the left small gray square are signaling “decreasing” 

light intensity as one moves into the square, while those 

near the edge of the right small gray square are signaling 

“increasing” light intensity as one moves into the square. 

Clearly, the surrounding intensities dramatically affect what 

one perceives.

Figure 2. 
Optical illusions with lateral inhibition.



38 IEEE A&E SYSTEMS MAGAZINE DECEMBER 2013

Eagle-Eye–Based Visual Imaging Simulat ion

We choose the following matrix as the lateral inhibition 

modulus [14]:

 (1)

The matrix to process the image can be described with

 (2)

where  is the convolution operator and Pic is the gray value 

of the image. If the gray value of the pixel of the image goes 

beyond the limit of [0, 255], it needs normalization.

ICM SEGMENTATION PARADIGM

Image segmentation is the process of assigning a label to 

every pixel in an image so that pixels with the same label 

share certain visual characteristics [15]. The goal of image 

segmentation is to cluster pixels into salient image regions 

(i.e., regions corresponding to individual surfaces, objects, 

or natural parts of objects) by turning a grayscale image into 

a binary image. The simplest method of image segmenta-

tion is called the thresholding method. However, the key to, 

and the difficulty of, this method is selecting a best thresh-

old value (or values when multiple levels are selected). In 

our developed platform, ICM is introduced to help select the 

threshold value. In this article, the term “ICM segmentation” 

is short for “image segmentation based on ICM.”

The ICM is a simplified model of a pulse-coupled neural 

network (PCNN) model, which is based on the Eckhorn’s 

anatomic research result of the cat vision cortex in the 1970s 

[16]. It is a single-layer, two-dimensional neural network 

and has great potential to perform pixel grouping. It is 

based on neural network techniques and derived from sev-

eral visual cortex models. ICM 

is computationally faster than 

the full PCNN model as a tool 

for image processing. It enhanc-

es features in images that lack 

sharp edges or straight lines. 

Figure 3 shows the architecture 

of the ICM neuron. ICM consists 

of neurons that communicate 

through dynamic connections 

and doesn’t need training in the 

image segmentation. In image-

processing application, a pixel 

of a two-dimensional input im-

age corresponds to a neuron. 

After a number of neural pulse 

iterations, output of the ICM is 

obtained with binary pulse im-

ages, which can be used for image segmentation.

In our method, mutual information (MI) is adopted as 

the objective function for ICM segmentation. That is, the 

largest MI value is selected by calculating and retaining the 

MI between the objective region and the original region in 

the ICM each time. The MI between the objective region and 

the original region is defined by the Shannon entropy [17].

VISUAL ATTENTION PARADIGM

Psychologists have found that the eagle can make deep 

analysis for selecting a specific area of interest by visual at-

tention. Furthermore, this specific area can be transferred 

to a high-resolution foveal area, where further analysis and 

processing are conducted. In this way, the vision system can 

simultaneously process massive information and make the 

punctual response to the environment.

Visual attention is a mechanism that filters out redun-

dant information and detects the most relevant parts of a 

visual field. Automatic determination of the most visually 

relevant areas would be useful in many applications, such 

as image and video coding, watermarking, video browsing, 

and quality assessment [18].

Among the kinds of visual attention models, Itti [9] pro-

posed a data-based bottom-up implicit visual attention mod-

el that builds on a second biologically plausible architecture 

on the basis of several other models. The visual attention 

model breaks down the complex problem of scene under-

standing using rapid selection in a computationally efficient 

way. The framework, as illustrated in Figure 4, provides a 

massively parallel method for fast selection of a number of 

interesting image locations. These attention locations can 

then be analyzed by more complex and time-consuming ob-

ject recognition processes.

In the visual attention model, the input is first decom-

posed into a set of topographic feature maps from three 

separate yet parallel channels (i.e., color, intensity, and ori-

entation). Each feature is computed by a set of linear “center-

Figure 3. 
Architecture of the ICM neuron.
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surround” operations akin to visual receptive fields. Differ-

ent spatial locations then compete for saliency within each 

map. Only locations that locally stand out from their sur-

round can persist. In a purely bottom-up manner, all feature 

maps are feed into a master “saliency map,” which topo-

graphically codes for local conspicuity over the entire visual 

scene. A dynamical neural network is then used to select 

attended locations in order of decreasing saliency [19]. The 

detailed procedure is described as follows:

1. Extract early visual features. The visual input is broken 

into three separate feature channels. To obtain multiscale 

features, the Gaussian pyramid technique is adopted to 

create a series of images that are weighted using a Gauss-

ian average (Gaussian blur) and scaled down. In addi-

tion, a Gabor pyramid, which is similar to the Gaussian 

pyramid, can be acquired using a Gabor filter instead of 

the Gaussian average. These color channels can conduct 

three Gaussian pyramids. Local orientation information 

is obtained from the input image by oriented Gabor pyr-

amids.

2. Obtain the saliency map. The values in the map are nor-

malized to [0,  . . . , Max]. Feature maps are then com-

bined into three “conspicuity maps.” The saliency map 

is obtained by normalizing and summing the three con-

spicuity maps.

3. Select the attended locations. The most salient location is 

the first attended location. To successively select the next 

most salient locations, the inhibition-of-return feedback 

is adopted to inhibit the first location after it has been 

obtained.

IMAGING GUIDANCE SIMULATION PLATFORM

STRUCTURE OF THE PLATFORM

The bionic vision imaging guidance simulation platform for 

a UFV based on the eagle-eye visual principle mainly con-

sists of five functional modules (image mosaic, lateral inhi-

bition, ICM segmentation, and visual attention, as well as 

control and guidance). These modules play essential roles in 

the platform. Two auxiliary modules (the control area and 

the operation area), which have several controls, are also in-

cluded to help people use this platform. The relationships 

among the five functional modules are shown in Figure 5.

The control area contains four program control but-

tons: “Start,” “Pause,” “Clear,” and “Exit.” The operation 

area consists of the buttons “Input,” “Output,” and “Save,” 

which are designed to input the images from the vision sen-

sors and output and save the images processed, respectively. 

Images from the different vision sensors are input into the 

operation area using the “Input” button. Then the platform’s 

users can use the buttons in the operation module to con-

trol when the program runs, pauses, and stops. The results 

of the image mosaic can be saved using the “Save” button 

and can be transferred to the next three modules (i.e., lateral 

inhibition, ICM segmentation, and visual attention). Lateral 

inhibition and ICM segmentation are used for image prepro-

cessing, while visual attention finds the target candidates. 

All results can be displayed by clicking “Output.” The guid-

ance information is calculated according to the binocular vi-

Figure 4. 
General architecture of Itti’s visual attention model.

Figure 5. 
Structure of the imaging guidance simulation platform for a 
UFV based on the eagle-eye visual principle.
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sion principle. In the last module, control and guidance, the 

platform’s users can call the algorithm to control and guide 

a UFV to intercept a moving object “Target.”

WELCOME INTERFACE OF THE PLATFORM

The main interface of the developed platform is shown in 

Figure 6. The platform’s user can click the “Enter the Plat-

form” button to enter this platform and choose the corre-

sponding modules (Figure 7). At the top of the platform, 

there are several toggle buttons. Again, this platform con-

tains five major processing modules (i.e., image mosaic, 

lateral inhibition, ICM segmentation, visual attention, and 

control and guidance), which are described in the follow-

ing sections. The always useful “Return” button is also con-

tained in the platform so that the user can skip back to the 

previous module, making the platform easy to operate.

IMAGE MOSAIC MODULE

In the image mosaic module (Figures 7–9), to test the perfor-

mance of the image mosaic algorithm, we can choose four im-

ages to mosaic and compared the results of two methods. One 

is to splice the images without fusing methods (mosaic only), 

and the other is to fuse the whole image after splicing all im-

ages (mosaic and fuse). To conduct the experiment, four im-

ages are input in order and split apart. The results are shown 

in the mosaic only and mosaic and fuse areas, respectively.

The image mosaic algorithm of this module is built in 

a Matrix Laboratory (MATLAB) toolbox called V-Realm 

Builder. V-Realm Builder is a powerful authoring package 

for the creation of three-dimensional objects and “worlds” 

to be viewed with V-Realm Browser or another Virtual Real-

ity Modeling Language 2.0–compliant browser. The whole 

algorithm is shown in Figures 8 and 9.

LATERAL INHIBITION MODULE

Our lateral inhibition module is used for image edge detec-

tion and image enhancement for the UFV’s image guidance. 

In this module (Figure 10), the lateral inhibition algorithm 

is presented with the lateral inhibition matrix, and several 

edge operators (Canny, Roberts, Sobel, Laplace, and Prewitt) 

can be chosen to extract the input image’s edge.

The central area shows the results, and several buttons 

can be switched to observe the results and compare them. 

The module’s users can compare the results of different 

methods, especially against the image processed by lateral 

inhibition.

ICM SEGMENTATION MODULE

In the ICM segmentation module, the platform’s users can 

set up numerical values of the iteration Nc and the ampli-

tude coefficient of the threshold 

h in the edit boxes of the param-

eters setting. This operation is 

similar to that of the previous 

modules: Input the original im-

age, and then start the algorithm 

of this module using the cor-

responding buttons. When the 

algorithm finishes running, a 

gray image and a binary image 

automatically show in the image 

Figure 7. 
Image mosaic interface of our biological imaging guidance 
simulation platform.

Figure 6. 
Main interface of our biological eagle-eye–based imaging guid-
ance simulation platform.

Figure 8. 
Architecture of the image mosaic module of our biological imaging guidance simulation platform.
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areas labeled “Gray Image” and “ICM Segmentated Image,” 

respectively. The gray image is the input image converted 

from a red–green–blue color model image to a gray image, 

and the binary image is the result of ICM segmentation. The 

original image and the results of ICM segmentation are also 

shown in Figure 11.

VISUAL ATTENTION MODULE

The visual attention module is the fourth module of the plat-

form to get the object candidates out of the input image. In 

this algorithm, the first three attractive areas are selected as 

object candidates.

As shown in Figure 12, an image is input to test this visual 

attention module. “Original image” shows the input image, 

while “consistent map” shows the map normalized by the 

Figure 9. 
Image mosaic algorithm built in V-Realm Builder.

Figure 10. 
Lateral inhibition interface of our biological imaging guidance 
simulation platform.

Figure 11. 
ICM segmentation interface of our biological imaging guidance 
simulation platform.

Figure 12. 
Visual attention interface of our biological imaging guidance 
simulation platform.
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three conspicuity maps (i.e., the color map, intensity map, 

and orientation map). The saliency map is also shown in the 

lower-left image area. The results of the first three segmenta-

tions and first three candidates can be shown by clicking the 

buttons “Segm.1,” “Segm.2,” “Segm.3,” “Result 1,” “Result 

2,” and “Result 3,” respectively. The original image and first 

segmentation share an image area. When the “Segm.1” but-

ton is clicked, the upper-left image area shows the result of 

the first segmentation, and when “Original image” is clicked, 

the input image is displayed in this image area. The same 

function design is used in the other image areas.

WHOLE EAGLE-EYE VISION SYSTEM OF THE DEVELOPED 

PLATFORM

The whole eagle-eye vision system, including the preceding 

four modules, was built in V-Realm Builder. A diagram of 

our developed platform is shown in Figure 13.

Figure 14 shows the detailed module in MATLAB Simu-

link. Simulink is a block diagram environment for modeling 

that was developed by MathWorks. It can be efficiently used 

for simulating and analyzing multidomain dynamic sys-

tems. Its primary interface is a graphical block diagramming 

tool, along with a customizable set of block libraries. Simu-

link is integrated with the rest of the MATLAB environment, 

allowing us to incorporate MATLAB algorithms into models 

and export simulation results to MATLAB for further analy-

sis and even to drive MATLAB and script from it.

CONTROL AND GUIDANCE MODULE

In the control and guidance module, the control and guid-

ance system is built (Figures 15 and 16), according to [20]–

[22]. In our experiments, for simplification, the velocities are 

Figure 13. 
Structure of the whole biological eagle-eye vision–based plat-
form.

Figure 14. 
Whole vision system developed in V-Realm Builder and shown in MATLAB Simulink.
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initially set with 10 (for UFV) and 3 (for target), while the 

numerical values are normalized without a dimension. The 

initial position of the target is set to be 500 distance units in 

x-axis and y-axis. To test the ability of anti-interference, we 

add a disruption as a decoy in our experiments. The target 

and disruption are moving with Gaussian white noise.

The simulation result (Figures 17–20) shows that the UFV 

can strike and get a blow in the target accurately with the 

help of the imaging guidance based on the eagle-eye visual 

principle. In Figure 17, a particle filter based on a Kalman 

filter is used for track estimation. Data fusion is also intro-

duced to balance the information between the vision system 

and the other sensors, which makes our platform more reli-

able in real applications. Figure 18 shows the fusion results 

of three variables measured by the sensors, such as vision 

system and radar.

Control and guidance results can also obtained in our 

platform using the preceding procedures. Figure 19 shows 

the experimental results of a UFV (green) tracking for a tar-

get (blue) with disruption (red). From the period and com-

plete track results, it is obvious that the control and guidance 

system is effective and reliable.

Figure 20 shows another experimental result created us-

ing our biological imaging guidance system. The speed of a 

UFV was initially set as 200 m/s, speeding along the x-axis. 

The starting point was [0, 0, 0], and the searching scope of 

UFV was [−200, 800] along the x-axis, [−1, 1] along the y-

axis, and [0, 600] along the z-axis. The initial parameters of 

the moving target were a speed of 50 m/s at an angle of 15° 

along the x-axis and a starting point of [610, −1, 400]. From 

the result in Figure 20, the UFV can intercept the target accu-

rately at the location [795, 0.5, 440] with the help of imaging 

guidance based on the eagle-eye visual principle.

MAIN FUNCTIONS OF THE DEVELOPED SIMULATION 

PLATFORM

Practitioners can apply the eagle-eye visual principle to im-

age processing in this simulation platform. In correspond-

ing modules, practitioners can investigate an eagle-eye 

visual principle, such as lateral inhibition, and its optic net-

work in a convenient and effective way. This platform can 

be applied to image processing, for instance, image mosaic, 

edge detection, template matching [23], image segmenta-

tion, and selection of objects to track. The practitioners can 

Figure 15. 
Control and guidance interface of our biological imaging guid-
ance simulation platform.

Figure 16. 
Architecture of the control and guidance system of our biologi-
cal imaging guidance simulation platform.

Figure 17. 
Track estimation result using a particle filter.

Figure 18. 
Fusion results for a UFV.
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input images, observe the performance of the algorithms, 

and learn the whole vision system of image guidance si-

multaneously.

Practitioners also can observe the performance of this 

guidance and control system. Our system is built in MAT-

LAB, Simulink, and V-Realm Builder. It consists of image-

processing modules and control and guidance modules. Its 

users can change the parameters in the platform and ob-

serve the performance through the intermediate images or 

the simulation curves. In this way, the optimal parameters 

in the practical issue can be obtained. Satisfactory improve-

ments can be achieved through more detailed and exact 

modeling.

Finally, this platform can be expanded and applied to 

carrying out different tasks. In this platform, we developed 

a guidance and control system based on eagle-eye visual 

image guidance. It can help guide the UFV to search, track, 

and strike the adversary’s vehicles, even in the complicated 

battlefield environments of modern wars. Practitioners can 

also apply it to different types of UFVs by modifying some 

parts of this platform.

CONCLUSIONS

In this article, we have developed a bionic vision imaging 

guidance simulation platform for UFVs in a MATLAB envi-

ronment, which is based on the biological eagle-eye–based 

visual principle. The practitioners can investigate the eagle-

eye visual principle and apply our platform to image guid-

ance for a UFV. Our biological imaging guidance simulation 

platform is easy to operate. 
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