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ABSTRACT

The rice water weevil, Lissorhoptrus oryzophilus Kuschel, is the 

most important insect pest of rice, Oryza sativa (L.), in the United 

States. Although this insect has been associated with C). sativa since

the introduction of this plant species into the United States in 1685,

some aspects of its biology remain obscure. Larvae of L̂. oryzophilus 

have four instars, based on measurements of head-capsule widths of 

field-collected larvae in 1981 and 1982. The head-capsule widths of 

each instar were: I, 0.14 to 0.18 mm; II, 0.20 to 0.26 mm; III, 0.28 to

0.38 mm; IV, 0.40 to 0.60 mm. Further studies revealed that the

duration of each instar was: I, 1.20; II, 2.56; III, 7.14; and IV,

10.33 days, respectively at 27.1 ± 5.6 °C. Plant introduction PI 321264 

sustained significantly (p<0.01) lower larval populations of 

L. oryzophilus and was significantly (p<0.01) less preferred for feeding 

than the susceptible variety Saturn.

Populations of L. oryzophilus larvae appear to conform to a clumped

distribution pattern. Sampling plans using the equation:
2logeTn = (loge(DQ /a)/b - 2) + (b - 1/b - 2)logen, show that 15 samples

of Saturn and 19 samples of PI 321264 are needed to estimate

1.. oryzophilus larval populations with a relative variance of 10%.

Scanning electron microscopy of the antenna and venter of 

L_. oryzophilus revealed bifurcate sensilla trichodea, sensilla 

basiconica, and sensilla placodea on the antennal club. All three 

sensilla types were also found on the rostrum. Brush-like sensilla were 

found, on the rostrum, legs, coxae and abdominal sternites VI and VII.

All receptor types are found to be distributed similarly on both males



and females. Females possess significantly (p<0.01) more sensilla 

basiconica and longer sensilla placodea than males.

vii



INTRODUCTION

Rice comprises the staple diet of over half the world population. 

About 90 percent of the world rice crop is grown in China, India, Japan, 

Korea, southeastern Asia, and the adjacent islands of the Pacific. 

Outside of Asia, Brazil and the United States produce the largest 

amounts of rice, yet their production is less than 5 percent of the 

total world production (Adair 1973, Poehlman 1979). Rice is grown from 

latitudes 55° north to 35° south, and from sea level to altitudes of 

3000 meters (Pathak 1968). It is grown either by broadcast or drilled 

seeding, or by transplanting. It is grown as a rain fed, upland crop 

or under lowland conditions with impounded rain or irrigation water 

(Pathak 1975).

As many as 10,000 varieties of rice have been distinguished (Pathak 

1975) The traditional tropical (indica) varieties are tall and leafy, 

and often lodge during the latter growth stages. Temperate (japonica) 

varieties are short, ca. one meter high, with stiff straw and erect 

leaves (Pathak 1975). In current rice breeding programs there is an 

increasing amount of hybridization between the tropical and temperate 

plant types. As a result, the distinctiveness of the two varietal types 

is being lost (Poehlman 1979). In the southern United States, many of 

the rice varieties originated from crosses between the tropical and 

temperate plant types (Poehlman 1979). In California, the temperate 

varieties are grown due to their tolerance of low temperature (Poehlman 

1979).

Rice was introduced into North America as early as 1609 and became 

established as a crop in South Carolina about 1685 (Rutger and Brandon



1981). It is believed that Carolina rice originated from Madagascar, 

and was an upland type (Grist 1975). The first rice production in 

Louisiana was in Plaquemine Parish about 1718 (N.E. Jodon, Rice Research 

Station, Crowley, Louisiana, personal communication), and soon spread 

into Texas, Arkansas, California (Rutger and Brandon 1981), and 

Mississippi (Adair 1973). Small amounts of rice are also grown in 

Missouri, Oklahoma, South Carolina, and Tennessee (Adair 1973). 

Additionally, some rice has been grown in each of the states in the 

southeastern United States (Adair 1973).

The rice water weevil, Lissorhoptrus oryzophilus Kuschel, is the 

most important pest of rice in the United States. Adult feeding damage 

to the foliage is generally of little importance, although Ingram (1927) 

reported plant death due to adult feeding in some late planted rice 

fields. Adults have also been reported to feed on rice panicles, 

consuming floral parts or the endosperm of the developing rice grain (A. 

A. Grigarick, University of California, Davis, personal communication). 

Larval feeding is considered the greatest source of damage, since larvae 

can prune almost all of the roots from the plant. This results in 

stunted seedlings and yield losses of up to 1,000 pounds per acre 

(Newsom and Swanson 1962). Heavy larval infestations may also reduce 

vigor and cause lodging during harvest (Riley 1881, Webb 1914).

Chemical control with dieldrin, aldrin, and lindane seed treatments 

provided about 90% L_. oryzophilus larval control (Bowling 1957). 

Additional research by Rolston and Rouse (1960) and Newsom and Swanson 

(1962) led to the use of 0.25 lb of aldrin per cwt rice as an effective 

control. This practice eventually led to the development of resistant 

populations however, in Louisiana (Hendrick and Everett 1963), Arkansas



(Rolston et al. 1965), and Texas (Bowling 1968).

Aldrin resistance renewed interest in finding better insecticides 

for L. oryzophilus control. Research by Everett and Trahan (1965), 

Gifford and Trahan (1967), and Gifford et al. (1968, 1969, 1970) showed 

that a postflood broadcast application of granular carbofuran resulted 

in satisfactory control and increased yields. The efficacy of this 

compound continues at the present time and recent studies (Rahim et al. 

1981) have revealed no economically important levels of carbofuran 

resistance.

Host plant resistance should prove a suitable alternative as well 

as an effective addition to control of _L. oryzophilus with insecticides. 

Previous research has revealed some rice varieties that sustain less 

root damage and support fewer weevil larvae than susceptible lines 

(Grigarick et al. 1976, Gifford et al. 1974, Robinson et al. 1979, Smith 

and Robinson 1982) . Knowledge of the biology of L,. oryzophilus is 

necessary in order to assess accurately rice germplasm in host plant 

resistance studies. Two important gaps in knowledge of the biology of 

this insect exist; the number of larval instars and the duration of each 

instar. Similarly, an understanding of the spatial distribution of 

_L. oryzophilus will also aid in the development of sampling schemes for 

screening rice germplasm. In addition, adult L_. oryzophilus exhibit a 

nocturnal positive phototaxis for rice growing in thin stands (Rolston 

and Rouse 1964a) and information on adult sensory morphology may aid in 

explaining the behavior of this insect once the function of these 

structures are known.

The objectives of this study were to: 1) elucidate the number 

and duration of L̂. oryzophilus larval instars; 2) determine the spatial



distribution and develop an accurate sampling method for L. oryzophilus 

in experimental rice plots; 3) compare the growth and development of L̂. 

oryzophilus on resistant and susceptible rice varieties; and 4) study 

the ultrastructure of sensilla of JL. oryzophilus using scanning electron 

microscopy.



LITERATURE REVIEW

Taxonomy

The rice water weevil was originally described by Say in 1831 as 

Bagous simplex (Tucker 1912), but in 1876, this insect was placed in the 

genus Lissorhoptrus LeConte (Riley 1883). Early researchers referred to 

this species as _L. simplex. Kuschel (1951) revised the genus, and 

described a new species, L̂  oryzophilus, from a specimen collected in 

Texas. This species was found to be predominant in the southern U. S. 

rice producing area (Everett 1966).

Description

The adult rice water weevil is a small, (ca. 32mm long), olive-gray 

to tan weevil, with a dark V-shaped area on the elytra. This V-shaped 

area is most distinct on females or moist specimens (Ingram 1927,

Douglas and Ingram 1942, Lange and Grigarick 1959). The sexes are 

distinguished as follows: the abdomen of the female is more robust than

that of the male. The first two ventral abdominal segments are flat to 

convex at the midline, and the fifth abdominal segment has a raised area 

which occupies more than half of the length of this segment, and is 

rounded posteriorly. In males, the first two abdominal sternites are 

broadly concave, and the raised area of the fifth segment occupies less 

than half of the length of the sternite, and is straight posteriorly 

(Everett and Newsom 1964).

The egg is white, elongate, and slightly curved. It is about 0.80 

mm long and three or four times as long as broad (Ingram 1927, Webb 

1914).

5
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The larvae are white, legless grubs. The head is brown-colored, 

and small in relation to the rest of the body. Larvae are almost 

microscopic at hatch, and attain an approximate length of 8mm (Ingram 

1927). Additionally, larvae possess dorsal hooks which are formed by 

the modification of the abdominal spiracles. These hooks are thought to 

facilitate the movement of the larvae through the soil, and in the 

acquisition of oxygen from the aerenchyma of rice roots (Isely and 

Schwardt 1930, Everett 1966).

Distribution

The genus Lissorhoptrus is restricted to North, Central, and South 

America and Cuba (Kuschel 1951, Vicente-Chandler et al. 1977).

According to Blatchley and Leng (1916), the North American distribution 

is from New England and Canada, westward to Michigan and Iowa, and South 

to Texas and Florida. In the United States, L,. oryzophilus normally 

reproduces sexually. However, in 1959, a parthenogenic strain was found 

in California (Lange and Grigarick 1959), and has recently been 

introduced into Japan (Hirao 1978).

Host Plants

Newell (1913), Webb (1914), and Isely and Schwardt (1934) have 

noted a number of alternate hosts which support development of 

L̂. oryzophilus. These include: Paspalum larrangoe Arech., P_. plicatulum 

Michx. (brownseed paspalum), J?. dissectum L. (mudbank paspalum),

F_. boscianum Flugge (bull paspalum), IL membranaceum Walt., P_. urvillei 

Steud. (vasey grass), Cyperus flavicornis Michx., Echinochloa crusgalli 

var zelayensis H.B.K., EL crusgalli Beauv. (barnyard grass), Syntherisma 

sanguinalis (L.) Dulac, Cynodon dactylon (L.) Ktze. (bermuda grass),



Axonopus compressus (Sw.) Beauv. (carpetgrass), Panicum hians Ell. 

(gaping panicum), P_. dichotomiflorum Michx. (fall panicum), Jussioea 

suffruticosa L., and Eleocharis obtusa Schult. (spikerush). Douglas 

and Ingram (1942) also report that adult weevils have been found feeding 

on corn, Zea mays L., and sugarcane, Saccharum officinarum L. In 

California, Lange and Grigarick (1959) found that the following plants 

serve as hosts for the weevil: Polypogon monspeliensis (L.) Desf.

(rabbitfoot grass), .E. crusgalli Beauv., Agrostis avanacea Gmel. 

(bentgrass), Setaria geniculata (Lam.) Millsp. & Chase (knotroot 

bristlegrass), Eleocharis palustris R & S (spikerush), and Scirpus 

mucronatus Pursh. (rough-seed bulrush). Additionally, adults have been 

found feeding on Paspalum distichum L. (knotgrass)(Lange and Grigarick 

1959).

Economic Importance

Adult L. oryzophilus strip the epidermal tissue from the leaves of 

the rice plant, leaving a scar. As the leaves grow or are battered by 

the wind, this scarred area will break through and produce a tear 

(Newell 1913, Ingram 1927). Douglas and Ingram (1942) reported that in 

some fields, adult infestation was so high, and the feeding so intense, 

that some plants were killed as a result of the leaf shredding. If the 

infestation is great enough, larvae will prune almost all of the roots 

from the plant, causing seedling stunt that results in rough rice yield 

loss of up to 1,000 pounds per acre (Newsom and Swanson 1962). Other 

researchers (Tucker 1912, Bowling 1957, Rolston and Rouse 1960, Newsom 

and Swanson 1962, Grigarick 1963) have reported yield losses ranging 

from 1-75%. Heavy larval infestations also result in the reduction 

of plant vigor, and cause lodging during harvest (Pathak 1968).



Chemical Control

Newell (1913) suggested lead arsenate for the control of 

L. oryzophilus. Whitehead (1954) found that broadcasting organochlorine 

materials onto the soil before flooding the fields was effective.

Bowling (1957) obtained 90% larval control with seed treatments of 

aldrin, dieldrin, and lindane, but these failed to increase yields. 

Bowling (1959), Rolston and Rouse (1960), and Newsom and Swanson (1962) 

found that the use of 0.25 pounds of aldrin per cwt seed was the most 

effective and economical means for JL. oryzophilus control. Seed 

treatment with aldrin was short-lived, however, as resistant weevil 

strains were found in Louisiana (Everett et al. 1964), Arkansas (Rolston 

et al. 1965), and Texas (Bowling 1968). This development renewed 

interest in finding better chemical control measures.

Numerous workers (Bowling 1967a, Everett and Showers 1964a, b, 

Gifford and Trahan 1967, Gifford et al. 1972, Grigarick and Beards 1965) 

found that those chemicals which provided satisfactory control were 

phytotoxic to the seeds or seedlings, or interacted with propanil, an 

herbicide commonly used on rice, and damaged the seedlings. Other 

workers (Everett and Trahan 1965, Gifford and Trahan 1967, Gifford et 

al. 1968, 1969, 1970) showed that granular insecticide applications 

broadcast post-flood controlled L̂. oryzophilus larvae and increased 

yields in replicated small plot and aerial treated outfield trials.

These studies have led to the practical use of granulated carbofuran for 

weevil control. Further studies by Gifford et al. (1972, 1975a) 

demonstrated that a pirimiphos-ethyl seed treatment also gave good 

control, and showed no seedling phytotoxicity. Recent work at the 

Louisiana State University Rice Research Station has shown that several



new compounds offer an effective means of control of L. oryzophilus 

adults and larvae (Robinson et al. 1980, Smith 1981).

Cultural Control

Webb (1914), Isely and Schwardt (1934), and Douglas and Ingram 

(1942) found that draining rice fields caused a considerable reduction 

in the damage caused by _L. oryzophilus. This procedure is prohibitive 

because of restricted water supply, loss of fertilizers, and 

ineffectiveness of killing the larvae if the rice is reflooded 

prematurely. Additionally, in Louisiana, in dry years when much of the 

fresh water is pumped from canals and wells, salt water may enter from 

the Gulf of Mexico, and an excess of salt may be pumped into the fields 

causing injury to the rice. Rolston and Rouse (1964b) found that soil 

type, seeding method, and treated seed storage intervals exerted little 

L. oryzophilus control, but presence of aquatic grass and rice seeding 

rate did influence larval population levels. Control decreased as the 

ratio of aquatic grasses to rice plants increased. Apparently, adults 

and larvae became established on the grasses, and then migrated to the 

rice seedlings.

Biological Control

Bunyarat et al. (1977) reported that an undescribed mermithid 

nematode found almost exclusively in females, parasitized 1L. oryzophilus 

in Arkansas. Peak abundance occurred in late June and a small second 

peak occurred in early August. The nematode is thought to be a new 

genus, closely resembling the genus Skrjabinomermis. Tucker (1912) and 

Ingram (1927) reported that ten species of birds were known to ingest 

L̂. oryzophilus adults, and noted finding adult weevils (up to 7/web)
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entangled in the webs of spiders. Puissegur (1976) dissected 291 Hyla 

cinera Daudin and H. squirella Bose, individuals, and found that 9.3% 

contained L̂. oryzophilus adults. Concomitantly, 4.0% of 25 Rana pipiens 

Schreber individuals dissected contained L. oryzophilus adults. In 

field cage studies, Puissegur (1976) also found that the tettigoniid 

grasshoppers Conocephalus fasciatus fasciatus (De Geer), Neoconocephalus 

triops (L.), and Orchelimum agile (De Geer), consumed L̂. oryzophilus 

adults. Additionally, he reported that significantly lower 

Ij. oryzophilus larval populations were found in field test cages 

containing naiads of the libellulid dragonfly, Pantala flavescens (F.), 

than in control cages.

Host Plant Resistance

Recently, host plant resistance has begun to be studied as a method 

to manage L_. oryzophilus. In Louisiana, Oliver and Gifford (1972) found 

two selections (WC 7072 and Cl 9810) that in three years of screening 

had infestations that were 45-75% and 42-87% as great, respectively, as 

the susceptible check variety, Saturn. Gifford et al. (1974) identified 

one Japanese rice variety, PI 224842 (Mogami mochi) and two U. S. 

varieties, Cl 9903 [(Bluebonnet x Belle Patna) (Dawn 71 x Beaumont 305)] 

and Cl 8900 (R3 111), with larval infestations that were 20%, 40%, and 

56% less, respectively, than Saturn. Gifford and Trahan (1976) found 

three plant introductions (PI 162162, PI 162254, and PI 224927) that 

exhibited L̂  oryzophilus tolerance. Grigarick et al. (1976) identified 

seven rice genotypes in California with resistance to L. oryzophilus. 

Robinson et al. (1981) screened 2,800 rice genotypes in 1979, 1980, and 

1981, and found six with moderate levels of resistance. Low levels of 

resistance have also been identified in five varieties of Philippine
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origin (Smith and Robinson 1982). Bowling (1973) has devised a method 

for screening rice germplasm in the laboratory.

Behavior and Biology

The life cycle of L_. oryzophilus requires approximately 40 days for 

completion under field conditions. Factors such as temperature, food 

supply, and soil moisture influence this period. Adult weevils begin 

overwintering as early as July in Spanish moss, rice stubble, and 

perennial bunch grasses in and around rice fields (Tucker 1912, Webb 

1914, Isely and Schwardt 1934, Gifford and Trahan 1969a). Nilakhe 

(1977) examined 636 overwintering females and found only 13.7% mated. 

Thus, because the gonads are undeveloped, overwintering weevils are 

considered to be in a state of diapause (Nilakhe 1977). Adult emergence 

may begin in late March, but migration into the rice field occurs in 

early April and continues until late May. Flight does not occur during 

daylight hours, but adults in flight are trapped by both incandescent 

and fluorescent light at night. Isely and Schwardt (1934) noticed that 

large field to field migrations occurred at night. Muda et al. (1981) 

studied the flight muscles of hibernating adults and found that they are 

reduced in size during the winter, regenerate just before the exodus 

from overwintering sites, and then degenerate with the onset of feeding 

and oviposition.

Bang and Tugwell (1976) and Sooksai and Tugwell (1978) demonstrated 

that young plants are preferred, and that preference decreases as plants 

increase in age from about 2 to 7 weeks. Bang and Tugwell (1976) also 

reported that increased levels of nitrogen fertilizer increase the level 

of feeding.
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Ovlposition begins as soon as the rice fields are flooded. The 

majority of the eggs are deposited in the submerged leaf sheaths of 

seedling rice (Everett 1965, Grigarick and Beards 1965, Everett and 

Trahan 1967) and a few on the roots (Webb 1914, Isely and Schwardt 1930, 

Douglas and Ingram 1942, Grigarick and Beards 1965). Maximum 

oviposition occurs 7 to 14 days after flood (Everett 1966). This agrees 

with the results of Bang and Tugwell (1976), who reported that plants 

30-40 days of age were preferred for oviposition. Larval survival was 

highest on plants of this age. The egg stadium lasts four to nine days, 

depending upon temperature (Raksarart and Tugwell 1975) . After 

eclosion, first instar larvae feed in the leaf sheath while moving down 

the plant to the roots. After a short period of time, the larvae cut an 

exit hole and move by gravity through the water to the soil, where they 

feed on the roots (Bowling 1972). Feeding increases in each successive 

stadium, and the larvae attain a maximum length of 8mm in approximately 

21 days (Everett 1966) .'

Pupation takes place in oval mud cells lined with a water-tight 

material and attached to the plant roots. Adult eclosion occurs several 

days later (Everett 1966, Gifford et al. 1973). Under optimal 

conditions, four generations of L. oryzophilus can occur in south 

Louisiana; however, Gifford et al. (1973) indicate that two and perhaps 

a partial third generation occur more frequently. There are two 

generations per year in California (Everett 1966), and Isely and 

Schwardt (1934) found one generation per year in Arkansas. Successive 

generations occur within the same field only when there is no seedling 

rice in the vicinity (Gifford et al. 1973).
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ABSTRACT

The rice water weevil, Lissorhoptrus oryzophilus Kuschel, 

was determined to have four instars, based on measurements of 

head-capsule widths of field-collected larvae. The head-capsule 

widths of each instar were: 1st, 0.14 to 0.18 mm; 2nd, 0.20 to 0.26 

mm; 3rd, 0.28 to 0.38 mm; and 4th, 0.40 to 0.60 mm. The existence o 

four instars is substantiated by Dyar's "Rule" and linear regression 

analysis.



INTRODUCTION

The rice water weevil (RWW), Lissorhoptrus oryzophilus 

Kuschel, is the major insect pest of rice in the southern United 

States and California (Riley 1881, Webb 1914, Bowling 1961, Newsom and 

Swanson 1962).

Parts of the insect's life history were described by Newell 

(1913) and Webb (1914), but neither mentioned the number of instars or 

head-capsule widths. Isely and Schwardt (1934) reported three instars 

and the corresponding head-capsule widths. Grigarick and Beards 

(1965) reported four instars, but gave no head-capsule widths.

Bowling (1972), finding some larvae with widths smaller than those 

reported by Isely and Schwardt (1934), concluded that the RWW has four 

instars.

Part of the difficulty in enumerating the number of instars 

is due to the small size of the larvae (ca. 8 mm maximum for last 

instars). Therefore, we sought to establish both the number of larval 

instars, and corresponding head-capsule measurements, once and for 

all.

Materials and Methods

Larvae were collected from flooded plots of the rice 

varieties 'Saturn' and PI 321264 at Crowley, La., from 26 June to 22 

September 1981. Collections, made at 3 to 4 day intervals, consisted 

of soil-root core samples (one plant per core) 10.0 cm deep by 9.2 cm 

in diameter. Samples in plastic bags (one core per bag) were taken to 

the laboratory and elutriated through 35-mesh wire buckets, or 35-mesh 

U. S. Standard soil sieves. Buckets/sieves were then placed in 

plastic dishpans containing a saturated solution of NaCl. Samples



were agitated briskly, and larvae floating to the top were collected. 

The bottoms of the buckets/sieves were also examined for larvae which 

failed to float. All larvae were preserved in 80-100% EtOH.

Results and Discussion 

Four larval instars were indicated by frequency 

distributions of the measurements of head-capsule widths (Table 1,

Fig. 1). Isely and Schwardt (1934) reported head-capsule widths for 

three instars of L̂. oryzophilus: 1st, 0.20 to to 0.22 mm; 2nd, 0.33 to 

0.35 mm; 3rd, 0.44 to 0.45 mm. Bowling (1972) found widths of 0.14 to 

0.18 mm. and concluded that the RWW had four instars. Our results 

show that Isely and Schwardt (1934) missed the 1st instar, and they 

substantiate Bowling's conclusion (1972).

Our calculations of Dyar's constant (1890)(Table 1) indicate 

that no instar was omitted. Gaines and Campbell (1935) pointed out 

that a perfect geometrical progression of head-capsule widths can be 

represented by a straight line. If the logarithm of the widths is 

plotted against the number of instars, the resulting line is expressed 

by the following equation:

In Y = a + bX

where: Y = head-capsule width; X = instar for which the head-capsule

width is required; and b = slope of the line.

A plot of this equation for _L. oryzophilus larvae (Fig. 2)

reveals that the calculated regression line is highly significant 
2(p<0.01; r = 0.999). Since such a close fit could not have been 

obtained if an instar had been overlooked, it can be concluded that 

L. oryzophilus has four instars.
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Table 1. Head capsule widths (ram) and ratios between instars for larvae 
of oryzophilus Kuschel, Crowley, La., 1981.

Instar n X ± SD
Coefficient of 

Size range variation (%)
Inter-instar ratio 
(Dyar's constant)

I 252 0.16 + 0.2 COf-Ho1r-—i

o 5.31

II 672 0.22 + 0.02 0.20-0.26 6.99

III 1,009 0.32 + 0.02 0.28-0.38 6.45

IV 1,761 0.45 + 0.06 0.40-0.60 12.66
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Figure 1. Frequency distribution of larval head-capsule widths of the 
rice water weevil, Lissorhoptrus oryzophilus Kuschel.
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Figure 2 Semilog plot of the mean larval head-capsule width of the 
four instars using the regression line, In Y=-2.815 + 0.346X.
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As the biology of L_;_ oryzophilus is incompletely known, our 

findings are important for the construction of its life table. In 

addition, to assess different rice varieties for oryzophilus 

resistance, a knowledge of the number of instars is crucial.
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ABSTRACT

The rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel, was 

studied on the rice plant introduction PI 321264 (moderately RWW 

resistant) and the variety Saturn (RWW susceptible) in 1981 and 1982.

PI 321264 sustained significantly (p<0.01) lower larval populations and 

was significantly (p<0.01) less preferred for feeding and oviposition 

than Saturn. Manly's instar duration technique revealed that the length 

of each larval instar was 1.20 (I), 2.56 (II), 7.14 (III), and 10.33 

(IV) days, respectively. Taylor's power equation, and Iwao's 

distribution function strongly indicate a clumped distribution pattern 

for immature RWW on each variety for both years. The equation: 

loge T^ = loge(DQ^/a/b - 2) + (b - 1/b - 2)logen, indicated that 15 

samples of Saturn and 19 samples of PI 321264 are needed to estimate RWW 

larval populations with a relative variance of 10%.
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INTRODUCTION

The rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel, is 

the most destructive insect pest of rice in the southern United States. 

Adult feeding is considered unimportant, but larval root feeding is 

economically significant and results in stunted seedlings, lodging 

during harvest, and yield losses of up to 1,000 pounds of rough rice per 

acre (Newsom and Swanson 1962). The seasonal history of RWW in a given 

field begins with the flooding of rice fields. At this time, the field 

is invaded by swarms of weevils (Isely and Schwardt 1934). Adults feed 

on the upper surface of the foliage, leaving narrow, longitudinal 

scars. The eggs are deposited under the epidermis of the leaf sheath 

below the surface of the water (Grigarick and Beards 1965) and larvae 

hatch within 4 to 9 days (Raksarart and Tugwell 1975). First instar 

larvae mine the leaf sheaths while migrating towards the roots where 

they feed and develop into adults. The four larval instars (Cave and 

Smith 1983) require about 21 days for development (Everett 1966).

Weevils normally reproduce sexually, but a parthenogenic biotype exists 

in California, (Grigarick and Beards 1965) and Japan (Hirao 1978).

Although rice has been grown in the United States since about 1685, 

host plant resistance research did not begin until the early 1970's. 

Initial research in Louisiana (Gifford and Trahan 1975b) demonstrated 

tolerance to RWW larval feeding in five genotypes. Robinson et al.

(1981) evaluated 2500 plant introductions for resistance to RWW root 

feeding, and found seven lines which gave between 22-34% control. Smith 

and Robinson (1982) evaluated 106 rice cultivars grown in the United 

States, and found five Philippine-derived cultivars which had 

significantly (p<0.05) lower RWW infestations than the susceptible check
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variety Saturn. Even though a considerable amount of RWW resistance 

research has been conducted, no comparative life history studies on 

resistant and susceptible varieties exist. Similarly, the duration of 

each RWW larval instar is also unknown. Limited information exists 

concerning the spatial distribution of RWW in rice, a prerequisite for 

developing accurate RWW sampling procedures for screening germplasm.

The objectives of this study were to compare the population dynamics and 

spatial distribution of RWW on a resistant and a susceptible rice 

variety, to determine RWW larval instar duration, and to determine the 

optimum sample size for use in screening rice germplasm for RWW 

resistance.

MATERIALS AND METHODS

Sample Collection. The rice plant introduction PI 321264

(moderately RWW resistant) (Robinson et al. 1981) and variety Saturn

(RWW susceptible) were hand planted (18 May, 1981; 20 May, 1982) at the

LSU Rice Research Station, Crowley, Louisiana. Plots consisted of three

rows of plants 3.9 m long separated by 0.5 m, with 7 m alleys between

each plot. The plots were flushed on 20 May 1981 and 21 May 1982.

Permanent flood was established on 19 June, 1981 and 18 June, 1982. The

herbicides Propanil (3’,4'-Dichloropropionanilide) and Bolero

(S-(4-Chlorophenyl)methyl diethylcarbamothioate) (2.6 + 2.6 kgs ai/ha

were applied for weed control on 12 June, 1981 and 14 June, 1982. Plots

were fertilized with 100-60-60 lb/A (N-P20,.-K20) on 19 June, 1981

and 18 June, 1982. Plants within each plot were thinned to one plant

per 0.15 x 0.46 m on 16 June in both years (this equals one plant/0.1 
2m , as compared with the commercial situation of three to four 

2plants/0.1 m ). Each variety was replicated 15 times in 1981 and 10
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times in 1982. Plots were arranged in the field in a completely random 

design in both years.

In both years RWW eggs, larvae, and pupae were sampled every 3-4 

days (from 26 June until 22 September, 1981, and from 1 July until 26 

August, 1982). Root core samples (15/variety/date in 1981) consisting 

of a single plant, its roots and surrounding soil, were collected with a 

9.1 cm diam x 10.0 cm deep metal sampler, and held individually in 

plastic bags until they were processed. In 1982, 10 samples/variety/date 

were collected based on preliminary sampling results. Each sample was 

elutriated (1981), or placed in a metal funnel fitted on the bottom with 

a piece of hardware cloth, washed with water at 80 psi (1982) and 

immatures were collected in a 35-mesh wire bucket. Buckets were then 

placed in plastic dishpans containing a saturated NaCl solution, and 

agitated briskly. For use in sample size determinations, floating 

larvae, categorized as small, medium, or large, and pupae were collected 

with forceps and preserved in 80% EtOH. Bottoms and sides of buckets 

were also examined for pupae and larvae which failed to float. For use 

in plant resistance studies, larvae were further classifed as to instar 

by measurement of head-capsule widths.

In both years, rice plants were returned to the laboratory where 

length of adult feeding scars on the distal 5 cm of leaf was determined. 

In 1982, height and number of tillers were also measured in the 

laboratory. Concomitantly, the volume of excised roots was also 

determined by displacement. Roots were oven-dried at 30°C for 24 h and 

weighed. Stems of plants were stained for RWW eggs and counted using 

the method of Gifford and Trahan (1969b).
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Statistical and Mathematical Analyses. Egg, larval and pupal

counts were not normally distributed, so were transformed for analysis

of variance using the slope, b, from Taylor's power equation (1961) and

the z transformation, z = x*3 of Healy and Taylor (1962); where z is

the transformed value, x is the original value, and p = 1 - b/2.

Untransformed root volumes and weights were analyzed by analysis of

variance. Single classification ANOVA was used to separate mean larval

numbers by variety and date, and mean lengths of feeding scars by

variety and date. Duration of each instar was determined using the

insect stage-frequency method of Manly (1976).

Spatial Distribution and Optimum Sample Size. Spatial distribution

patterns of RWW immatures were determined by Taylor's power law (Taylor

1961), and Iwao's mean crowding-mean density regression (Iwao 1968).

Sample sizes were calculated based on1 Green's (1970) equation:

log T = (log (D ^/a)/b-2) + (b-l/b-2)log n; where T is °e n e o e n
the cumulative total for each sample; D^ is the fixed level of 

precision; a and b are the intercept and regression coefficient, 

respectively, from Taylor's power equation; and n is the sample size.

RESULTS AND DISCUSSION 

Host Plant Resistance. In both 1981 and 1982, a greater amount of 

feeding occurred on Saturn than on PI 321264 (Fig. 1). A combined ANOVA 

for both years of the study showed that the two lines were significantly 

(p<0.01) different on 10 of 17 dates. In 1981, there was little 

difference in egg counts between PI 321264 and Saturn, but in 1982 

females significantly (p<0.05) lower egg counts were found on PI 321264 

(Table 1). However, since so few eggs were collected in 1982, this 

difference may not be real. The reason for the low egg recovery in 1982



Figure 1 Adult Lissorhoptrus oryzophilus feeding on PI321264 
(resistant) and Saturn (susceptible) rice. Crowley, 
Louisiana. 1981-1982.
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Table 1. Jj. oryzophilus populations on Saturn and PI 321264 rice. 
1981-1982. Crowley, Louisiana.

x number of individuals/plant____
Larvae Total

Year Variety Eggs I II III IV Pupae Immatures

1981 Saturn 10.9 0.4 1.2 2.1 5.6 2.4 11.2

PI 321264 11.4 0.3 0.8* 1.3* 3.9* 2.0* 8.3*

% Reduction 13.9 36.1 36.5 29.1 18.0 25.7

1982 Saturn 1.6 0.7 2.6 4.4 8.1 2.1 17.9

PI 321264 0.4* 0.4* 1.6* 3.4* 6.5* 1.3* 13.2*

% Reduction 76.0 39.4 39.2 20.9 19.8 40.3 25.9

x % Reduction 5.6 30.4 38.2 25.9 23.6 28.4 25.8

Means in each column within each year differ significantly (p< 0.05) 
as determined by ANOVA.
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is unexplained, since the same staining and counting technique was 

employed in both years. In 1981, approximately the same number of eggs 

and first instar larvae were recovered on both varieties, but the number 

of second, third, and fourth instar larvae, and pupae collected was 

significantly (p<0.05) lower on PI 321264. In 1982, Saturn sustained 

significantly (p<0.05) higher populations of all four instars than PI 

321264 (Table 1). The differences in numbers developing on the two 

varieties reached a maximum in the fourth instar and declined in the 

pupal stage (Table 1). The mean number of immatures collected from the 

two varieties was significantly (p<0.01) different on nine of 17 sample 

dates (Fig. 2). There were no differences between varieties for either 

dry weight, numbers of tillers, or root volume.

The overall population dynamics of RWW on PI 321264 and Saturn was 

similar within a given year. Peak density of each instar occurred on 

the same dates, or within a few days of each other. The first and final 

dates of detection of the various instars were similar. In 1981, the 

RWW oviposition period peaked approximately two weeks after sampling was 

initiated, and no larvae were collected until one and one-half weeks 

after sampling was begun. In 1982, peak egg density occurred three weeks 

later on both varieties than in 1981; instars I and II peaked two weeks 

earlier than in 1981; instar III occurred one day later than in 1981; 

while instar IV and pupae peaked one week earlier than in 1981 

(Appendices I, II).

These differences may be due to temperature, as the mean 

temperatures varied from 1.8 to 2.7°C on the dates of peak density over 

both years. Precipitation may account for some of the variability in 

oviposition. In 1982, a bimodal oviposition peak occurred, with a



Figure 2 Lissorhoptrus oryzophilus Kuschel populations on resistant 
(PI321264) and susceptible (Saturn) rice varieties. Crowley, 
Louisiana. 1981-1982.
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period of one week between the end of the first mode and the beginning

of the second. The reasons for this are unknown.

Stage Duration. The combined duration of all four instars range

from 16 to 26 days (Table 2), supporting data of Everett (1966) which

indicated that 14 to 21 days are required for the larval period. First

instar larvae are sheath-miners, and have a stage duration of about one

day. Few first instar larvae were collected in the samples due to the

short (one day) developmental time of this instar (Table 2), its sheath

feeding behavior, and the sampling interval (every 3-4 days). The

number of larvae collected in the samples increased from the second

through fourth instars due to the longer duration of these stages.

Spatial Distribution. Taylor's power law andlwao's m-m

regression indicated clumped distribution patterns for immatures on both

genotypes in both years of this study (Tables 3 and 4). Mean/variance

slopes of the immatures on both varieties in both years differed

significantly (p<0.01). from the Poisson slope and indicated that the

distribution of all immatures was clumped. A large proportion of the

variance in the immature count data was accounted for by the fitted

lines obtained from both methods. Use of the power law (Table 3) on PI

321264 resulted in r̂  values of 0.94 to 0.97 (1981), and 0.75 to 0.92 
2(1982). The r values on Saturn ranged from 0.91 to 0.98 (1981), and

from 0.89 to 0.94 (1982). Values of using Iwao's method (Table 4)

ranged from 0.93 to 0.99, and from 0.72 to 0.99 on PI 321264 in 1981 and
21982, respectively. On Saturn, r values ranged from 0.71 to 0.99,

and from 0.87 to 0.96 in 1981 and 1982, respectively. The intra-varietal
2range of differences in the r values may be due to differences in RWW 

infestation levels between the two years. Since all immature categories
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Table 2. Duration estimates of oryzophilus Kuschel 
larval instars. Crowley, Louisiana.

Larval Duration ± SD
Instar (Days)jy

I 1.20 ± 0.39

II 2.56 ± 0.59

III 7.14 ± 2.09

IV 10.34 ± 2.19

Total 21.24 ± 5.26

- 27.1 ± 5.6°C



Table 3. Regression of log variance (s2) on log mean (m) for L. oryzophilus immatures on PI 321264
and Saturn rice at Crowley, Louisiana. 1981-1982.

PI 321264 Saturn

Year
Immature
Category Intercept, a Slope, b— r2 Intercept, a Slope, b r2

1981 Small 1.66 1.35 0.95 1.75 1.27 0.98

Medium 1.73 1.29 0.96 2.04 1.34 0.96

Large 1.47 1.28 0.97 1.65 1.31 0.96

Pupae 1.51 1.21 0.95 1.35 1.28 0.91

Total 1.21 1.46 0.94 1.10 1.53 0.95

1982 Small 1.45 1.42 0.92 1.69 1.44 0.94

Medium 1.59 1.21 0.90 1.82 1.23 0.89

Large 1.09 1.15 0.86 1.33 1.33 0.90

Pupae 1.24 1.31 0.75 1.62 1.37 0.91

Total 1.22 1.42 0.87 0.78 1.63 0.88

\J all slopes differed significantly from the Poisson slope, b=l (p<0.01)



Table 4. Regression of mean crowding (m) on mean density (m) for L̂. oryzophilus immatures on
PI321264 and Saturn rice at Crowley, Louisiana. 1981-1982.

PI 321264 Saturn

Year
Immature
Category Intercept, <= Slope, r2 Intercept, * Slope, 8 r2

1981 Small 0.06 1.42 0.96 0.23 1.27. 0.98

Medium 0.05 1.38 0.97 0.40 1.40 0.97

Large 0.76 1.27 0.97 0.44 1.21 0.98

Pupae 0.14 1.27 0.93 -0.46 1.50 0.71

Total 0.18 1.22 0.99 0.26 1.23 0.99

1982 Small 0.10 1.36 0.94 -0.09 1.51 0.87

Medium 0.15 1.22 0.93 0.48 1.23 0.93

Large -0.97 1.14 0.97 0.93 1.15 0.93

Pupae -0.13 1.54 0.72 -0.42 1.71 0.87

Total 0.65 1.10 0.99 1.12 1.14 0.96

1J all slopes differed significantly from the Poisson slope, b=l (p<0.01).
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had clumped distributions, they were pooled to yield overall intercept,
2slope, and r values.

Intercept values for both varieties did not differ significantly

(p>0.05 and p>0.0L) from zero in the single classification ANOVA of the

pooled data for both years. Slopes of the immature categories on both

PI 321264 and Saturn in 1981 and 1982 exceeded unity, indicating a

departure from the Poisson expectation, and a clumped RWW larval
2distribution. Values of r explain much of the variance in the 

distribution for both varieties in both years. Values of b, also tested 

by using single classification ANOVA, were not significantly (p>0.01) 

different in all variety, year, and variety-year combinations. 

Additionally, Iwao's 8 values were tested against Taylor's b values with 

single classifcation ANOVA. Again, there were no significant (p>0.01) 

variety, year or variety-year differences, indicating that both methods 

support Taylor's (1965) idea of the species specificity of this 

parameter.

A total of 68 mean-variance linear regressions of RWW immatures on 

PI 321264 and Saturn (17 on each genotype in both years) were tested for 

conformation to the Poisson distribution. Twenty seven (79.41%) of the 

PI 321264 regressions fit the clumped distribution, and seven (20.59%) 

were random. On Saturn, 26 (76.47%) of the regressions fit the clumped 

distribution, while eight (23.53%) were random. In most circumstances, 

insects are seldom distributed at random, and have been described as 

fitting the negative binomial distribution, especially in the 

Coleoptera. Examples include the Egyptian alfalfa weevil, Hypera 

brunniepennis (Boheman)(Christensen et al. 1977); wireworms, Ctenicera 

destructor (Brown), and Hypolithus bicolor Eschscholtz (Doane 1977); and
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clover root curculio, Sitona hispidula (Fabricius)(Ng et al. 1977).

The linear regression data cited above indicate that the

distribution of RWW immatures is clumped. A strong linear correlation

was obtained on a log/log plot of total RWW larval and pupal count
2variances on means (r = 0.94 and 0.92 on PI 321264 and Saturn, 

respectively in 1981; r~ = 0.87 and 0.92 on PI 321264 and Saturn, 

respectively in 1982) demonstrating a strong dependence of the variance 

on the mean, and further indicating the existence of a clumped larval 

distribution.

Optimum Sample Size. Using Green's (1970) equation, the results

indicate that 15 samples are needed to reach the stop line for Saturn

(x = 54 larvae/core) and that 19 samples are needed to reach the stop

line for PI 321264 (x = 35 larvae/core) at a precision level of 0.10

(Fig. 3a). Using a precision level of 0.15, seven and eight samples are

needed for Saturn and PI 321264, respectively (Fig. 3b). These results

were from larval counts taken five weeks after permanent flood at peak

RWW population density.

It appears that the interactions of PI 321264, Saturn, RWW, and

environmental factors are complex and multidimensional. The results of

this study indicate that only a moderate level of resistance is present

in PI 321264, and that this resistance is expressed in the early stages
*of RWW infestation. Taylor’s power law and Iwao’s m-m regression 

describe RWW immature spatial distribution as clumped. Using the 

optimum number of samples calculated in this study, a resistant and 

susceptible variety can be accurately sampled in 2% to 3 hours, 

depending on the date of sampling. This procedure estimates population



42

Figure 3 Sequential sampling scheme for larvae of Lissorhoptrus 
oryzophilus. Crowley, Louisiana. A: Precision level 0.10; B: 
Precision level 0.15.
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levels with a precision of 0.10, without an inordinate amount 

processing time.
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CHAPTER III

SENSILLA OF THE RICE WATER WEEVIL,

LISSORHOPTRUS ORYZOPHILUS KUSCHEL (COLEOPTERA: CURCULIONIDAE)

This Chapter is written in the style of 

International Journal of Morphology and Embryology



ABSTRACT

Scanning electron microscopy of the antennae and venter of the rice 

water weevil, Lissorhoptrus oryzophilus Kuschel, revealed bifurcate 

sensilla trichodea, two types of sensilla basiconica, and sensilla 

placodea on the antennal club. All three sensilla types were also found 

on the rostrum. Brush-like sensilla were found on the rostrum, legs, 

coxae, and abdominal sternites VI and VII. All receptor types were 

found on both males and females, and their distribution was similar. 

Females possessed significantly (p<0.001) more sensilla basiconica and 

longer sensilla placodea than males.
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INTRODUCTION

The rice water weevil, Lissorhoptrus oryzophilus Kuschel, is the 

most important insect pest of cultivated rice in the United States 

(Bowling 1967b). Though little information exists concerning 

_L. oryzophilus sensory behavior, adults exhibit a nocturnal positive 

phototaxis and infest rice growing in thin stands more heavily than in 

thick stands (Rolston and Rouse 1964a). Adult host recognition 

therefore, may involve photoreception, hygroreception, olfaction, or 

some combination of these behaviors. No information exists concerning 

the sensory morphology of L_. oryzophilus, although different sensilla 

types have been classified for a limited number of Curculionidae. These 

include the pine weevil, Hylobius abietis (L.)(Mustaparta 1973); the 

clover head weevil, Hypera meles (F.)(Smith jet al. 1976); and the pecan 

weevil, Curculio caryae (Horn) (Hatfield e_t a_l. 1976). This research was 

initiated to determine types and distribution of sensilla present on the 

antennae and body of oryzophilus.

MATERIALS AND METHODS

Dead weevils were immersed in 80% EtOH for 10 min. and sonicated 

for 5 min. Specimens were then prepared for mounting as follows: 5 min. 

in glacial acetic acid; 15 min. in 4% Triton-X 100; and 5 min. in 

xylene. Specimens were then mounted on aluminum Cambridge type stubs 

with silver paint (intact weevils) or double stick tape (excised
O

antennae). Stubs were coated with 200 A of gold-palladium applied by 

sublimation under vacuum using a Hummer I sputter coater. Specimens
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were then viewed in an Hitachi S-500 scanning electron microscope, 

operated at an accelerating voltage of 25 kV. Sensilla types and 

distribution were determined using whole bodies of six males and six 

females, and antennae of five males and five females. Numbers of 

sensilla were determined by counting all sensilla of each type on the 

dorsal and ventral surfaces of the antennal club. Sensilla lengths were 

determined by measuring 15 sensilla of each type on the dorsal and 

ventral aspects of the antennae. Differences in sensilla numbers and 

lengths were determined using the t-test.

RESULTS

The antennae of L̂. oryzophilus are composed of six segments (Fig. 

1), and the antennal club is divided into four bands of sensilla at the 

distal end of the club (Fig. 2). Sensilla placodea type I (Figs. 2 and 

3) are bi- or multi-furcate arranged radially around the basal edge of 

band I. The segment of the club beneath this row of sensilla is covered 

by sensilla placodea type II (Fig. 4), which have 4 to 7 tines, and are 

appressed to the surface of the club. Exceptions are those which appear 

at the base of the first band of sensilla, and extend above the surface 

of the antennal club (Fig. 2)

Bifurcate sensilla trichodea (Fig. 5) occur in alternate rows with 

sickle-shaped, blunt tipped sensilla basiconica (Fig. 6) over the entire 

antennal club surface. The rostrum (Fig. 7) possesses four types of 

sensilla: sensilla basiconica, near the tip of the rostrum; sensilla

placodea type I, toward the center of the rostrum; sensilla placodea 

type II, on the rostral surface; and proximal to these, brush sensilla. 

(Fig. 8). The brush sensilla are also found on the scape of the
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Figure 1. The antenna of the rice water weevil, 200x.

Figure 2. The tip of the antennal club (segments I, II, III, IV), 900x.

Figure 3. Sensilla placodea type I, 1700x.

Figure 4. Sensilla placodea type II, 2000x.
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Figure 5. Sensilla trichodea, 4000x.

Figure 6. Sensilla basiconica, 4000x.

Figure 7. Rostrum of the rice water weevil, 200x

Figure 8. Brush-sensilla, 2000x.
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antennae, the distal end of the tibiae, the base of all coxae, and on 

abdominal sternites VI and VII.

Significantly (p<0.01) more sensilla basiconica were found on 

females than on males (Table 1), but there were no differences between 

sexes in the number of any other types of sensilla. The mean lengths of 

sensilla placodea types I and II were significantly (p<0.01) greater on 

females than on males, while males possessed significantly (p<0.05) 

longer sensilla trichodea than females (Table 2).

DISCUSSION

The general arrangement of the sensilla types on the antennal club 

of L. oryzophilus is much different than that of other Coleoptera that 

have been studied, however, most of the types of sensilla are similar. 

Trichoid sensilla of similar lengths have been reported for H. abietis 

(Mustaparta 1973), H. meles (Smith e£ al. 1976), Trypodendrum lineatum 

(Olivier) (Moeck 1968), and other scolytidae (Payne eit al. 1973).

Borden and Wood (1966) and Moeck (1968) suggested that trichoid sensilla 

function as olfactory receptors in T. lineatum and Ips confusus. Grasse 

(1975) reported that sensilla trichodea are sensitive to mechanical 

stimuli, such as touch, pressure, and traction, for insects in general. 

The large number of sensilla trichodea found on L̂. oryzophilus (Table 1) 

may also serve as chemo- or mechanoreceptors.

Sensilla basiconica similar to those on the antennal club of 

_L. oryzophilus have been described for T. lineatum (Moeck 1968),

II. abietis (Mustaparta 1973), and several scolytid species (Payne et al. 

1973). Electrophysical and/or behavioral studies conducted by these 

researchers, as well as the presence of pores on the surface of the 

sensillum suggest an olfactory function. Mustaparta (1975) demonstrated
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Table 1. Mean number of sensilla on the antennal club of Lissorhoptrus 
oryzophilus.1/

_____________ Sensillum Type_________________
______ Placodea_____

Surface Sex Type I Type II Trichodea Basiconica

Dorsal Male 10 42 70 102
Female 12 49 60 130*

Ventral Male 10 43 70 104
Female 8 55 58 128*

J/ Mean of 5 individuals of each sex.
* p<0.01, t-test.
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Table 2. Mean lengths (ym) of various sensilla types on the antennal 
club of Lissorhoptrus oryzophilus.1/

Sensillum Type
Placodea

Sex Type I Type II Trichodea Basiconica

Male 17.55 11.86 15.54 14.43

Female 23.13* 25.16** 13.32* 13.88

_1/ Mean of 5 individuals of each sex. 
* p<0.05, t-test.
** p<0.01, t-test.
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electrophysiologically that this sensillum type acts as a pheromone 

receptor in H. abietis. Other researchers (Slifer 1954, 1967, Schneider 

and Steinbrecht 1968, Payne e_t al. 1973, Norris and Chu 1974, Grasse 

1975), report chemoreceptive functions for Coleoptera as well as other 

insect orders.

Placoid sensilla have not been reported to occur in the 

Curculionidae. In I,. oryzophilus, these sensilla are restricted in both 

number and distribution. Twenty sensilla placodea type I occur on the 

proximal end of the first antennal segment at the edge of the first band 

of sensilla, while 85 to 104 sensilla placodea type II occur in the area 

of the first antennal segment. This type of sensillum functions as an 

olfactory receptor in Homoptera and Hymenoptera (Lacher and Schneider 

1963, Slifer e£ al. 1964), and as a hygroreceptor (Schneider 1964) and 

mechanoreceptor (Thurm 1964) in Apis mellifica. Additionally, Callahan 

(1973) has postulated that this type of sensillum may "be a specialized 

sensor which resonates by shape to some infrared line or lines from 

attractant or host plant scents". Therefore, it seems likely that 

sensilla placodea act as chemo- or mechanorecptors in Ij. oryzophilus.

Brush sensilla have been found in other species of Coleoptera, and 

referred to as setiferous punctures (Casey 1905, Halstead 1963), a patch 

of yellow setae (Triplehorn 1952), and fovea (Wheeler 1979). As with 

L. oryzophilus, these structures have been reported to occur on 

metathoracic tibiae, abdominal sternites, antennal segments, coxae, 

femora, and head appendages (Murray 1864, Casey 1905, Triplehorn 1952, 

Halstead 1963, Wheeler 1979). Unlike other Coleoptera that have been 

studied, where only males possess brush sensilla, these sensilla occur 

on both male and female L_. oryzophilus. Because of their occurrence on



many of the ventral parts of the body of L. oryzophilus, it is possible 

that these sensilla act as mechanoreceptors to aid females during 

oviposition, and males during copulation. Since L̂. oryzophilus is 

semi-aquatic, brush sensilla may also help individuals orient in or 

detect movement in water.

Four types of sensilla exist on the antenna, rostrum, tibia, coxa, 

and abdomen of Ii. oryzophilus. Trichoid sensilla found on the antennae 

may serve a chemoreceptive function, based on their resemblance to 

sensilla trichodea with this function in other insects. Basiconic and 

placoid sensilla on the antennae may have olfactory or hygroreceptive 

functions for similar reasons. This is the first report of the 

occurrence of placoid sensilla on a curculionid. The function of the 

brush sensillum is unknown at this time, but is thought to be related to 

mechanoreception, or orientation.'. In order to determine the functions 

of the various types of sensilla, electrophysiological, behavioral, and 

transmission electron microscopic investigations are necessary.
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SUMMARY AND CONCLUSIONS

The rice water weevil, Lissorhoptrus oryzophilus Kuschel, is a problem 

in the rice producing regions of the United States and Japan. The 

studies reported herein have added important information to the seasonal 

history of this pest. There are four larval instars; the head capsule 

widths being: I, 0.14 to 0.18 mm; II, 0.20 to 0.26 mm; III, 0.28 to 0.38 

mm; IV, 0.40 to 0.60 mm. The duration of each instar is estimated as 

being: I, 1.20; II 2.56; III, 7.14; IV, 10.33 days, respectively. Based 

on these studies, it will now be possible to time plant resistance 

sampling to coincide with peak density for any given instar.

Plant resistance studies revealed that the plant introduction PI 

321264 possesses moderate resistance, expressed as low-level antibiosis 

to first instar larvae; and adult feeding non-preference.

_L. oryzophilus larval populations are distributed in a clumped fashion 

under the conditions described in this study. Due to this clumped 

distribution, it was shown that 15 samples of Saturn (susceptible) and 

19 samples of PI 321264 (resistant) will estimate L̂. oryzophilus 

populations with a relative variance of 10%.

Scanning electron microscopy revealed sensilla basiconica, sensilla 

placodea, and sensilla trichodea on the antennal club and rostrum of 

L. oryzophilus. Additionally, brush-like sensilla were found on the 

rostrum, legs, coxae, and abdominal sternites VI and VII. Using these 

electron microscopical studies as a baseline, further research can now 

be conducted to identify the functions of each type of sensillum. These 

studies may ultimately benefit olfactory discrimination studies related 

to plant resistance research.
62
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APPENDIX I. Means and variances of larval count data on PI 321264 and Saturn, Crowley, LA. 1981.

_t

PI321264 Saturn

Untransformed (x) r , , 0.24* Transformed (x ) Untransformed (x) Transformed (x°-24)

X s2 X s2 X s2 X s2

1 0.53 0.70 0.37 0.30 0.60 1.26 0.32 0.31
2 1.07 2.21 0.56 0.39 3.93 11.64 1.21 0.28
3 4.13 14.27 1.20 0.30 9.93 46.21 1.69 0.06
4 6.07 5.35 1.53 0.02 11.87 30.84 1.76 0.04
5 19.33 106.95 1.96 0.16 26.67 159.81 2.17 0.07
6 20.07 126.35 2.01 0.09 34.13 330.70 2.28 0.13
7 24.73 278.21 2.08 0.14 26.80 399.17 2.00 0.49
8 34.93 256.21 2.32 0.08 53.87 697.70 2.56 0.12
9 29.00 176.71 2.21 0.08 36.73 231.21 2.34 0.12
10 25.13 153.55 2.14 0.07 25.00 107.14 2.15 0.04
11 14.67 101.95 1.75 0.33 21.67 199.52 2.04 0.09
12 10.80 31.74 1.74 0.05 12.47 47.84 1.79 0.06
13 7.20 15.17 1.50 0.21 8.53 29.41 1.55 0.24
14 5.80 7.46 1.49 0.04 6.33 9.38 1.52 0.05
15 3.80 6.74 1.27 0.16 4.93 13.07 1.35 0.19
16 4.53 9.98 1.27 0.29 • 4.73 7.78 1.41 0.05
17 9.00 10.71 1.68 0.02 7.93 11.21 1.62 0.03
18 1.53 1.70 0.91 0.24 2.27 3.35 1.06 0.22
19 1.47 2.84 0.78 0.35 3.20 7.46 1.14 0.26
20 1.33 3.10 0.64 0.41 2.93 4.92 1.12 0.25
21 2.53 2.27 1.10 0.22 1.67 3.10 0.81 0.37
22 1.47 4.41 0.65 0.42 2.33 3.67 1.12 0.14
23 0.53 0.55 0.42 0.29 0.87 '1.12 0.59 0.33
24 0.67 0.52 0.56 0.30 1.07 0.92 0.74 0.30

r2 = 0.941 (p<0.01) r2 = 0.274 (p>0.01) r2 = 0.923 (p<0.01) r2 = 0.320 (p>0.01)
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APPENDIX II. Means and variances of larval count data on PI 321264 and Saturn, Crowley, LA. 1982.

PI321264 Saturn

t 0.24Untransformed (x) Transformed (x * ) Untransformed (x) Transformed (x^*2 )̂
~ 2 ” 2X s X s ; s2 5 s2

1 1.50 2.28 0.74 0.41 1.80 1.96 0.87 0.37
2 6.70 26.68 1.30 0.52 16.10 174.10 1.81 0.23
3 10.70 34.01 1.72 0.07 19.30 163.79 2.00 0.07
4 24.80 131.51 2.13 0.08 24.30 241.57 2.08 0.14
5 13.90 41.88 1.85 0.06 21.40 164.27 2.02 0.14
6 22.40 64.04 2.10 0.03 28.80 101.07 2.23 0.04
7 28.30 160.90 2.21 0.06 35.70 143.12 2.35 0.04
8 24.90 82.10 2.16 0.03 29.60 130.49 2.24 0.06
9 19.90 95.21 2.01 0.08 39.60 284.49 2.40 0.05
10 13.00 19.56 1.84 0.02 19.60 84.27 2.02 0.06
11 18.00 76.22 1.97 0.06 23.20 163.73 2.04 0.18
12 11.90 8.54 1.81 0.01 16.30 29.34 1.95 0.03
13 15.00 40.89 1.90 0.03 14.80 42.84 1.89 0.04
14 6.70 11.57 1.55 0.04 5.00 6.00 1.45 0.03
15 3.70 7.12 1.23 0.22 4.70 8.68 1.22 0.42
16 1.90 6.77 0.92 0.28 2.20 3.51 0.99 0.30
17 1.20 1.29 0.78 0.30 2.10 3.21 1.06 0.18

r2 = 0.874 (p<0.01) r2 = 0.163 (p>0.01) r2 = 0.919 (p<0.01) r2 = 0.102 (p>0.01)
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APPENDIX III. Raw count data of Lissorhoptrus oryzophilus eggs, larvae, and pupae. Crowley, Louisiana 1981.

PI 321264 Saturn
Instar Instar

Date Eggs I II III IV Pupae Total Eggs I II III IV Pupae Total

6/26 215 215 421 421
6/30 343 343 8 8
7/3 333 1 3 1 338 203 4 1 3 211
7/7 248 2 6 2 5 263 538 17 23 11 8 597
7/10 1013 11 21 15 9 1069 902 28 51 47 29 1057
7/14 519 2 3 4 5 533 766 6 16 19 12 819
7/17 712 50 89 72 70 2 995 486 45 125 120 104 1 880
7/21 554 29 55 64 156 1 859 264 20 89 156 206 4 739
7/24 287 19 49 98 144 10 607 356 9 40 127 195 10 737
7/28 186 3 31 108 322 52 702 216 11 69 159 492 64 1011
7/31 22 6 21 54 284 80 467 61 3 34 88 327 94 607
8/4 22 10 38 217 107 394 22 0 6 35 220 104 387
8/7 5 3 14 107 104 233 3 3 5 26 189 100 326
8/11 0 10 68 78 156 3 7 82 99 191
8/14 1 7 44 52 104 2 54 75 131
8/18 0 7 26 51 84 4 18 69 91
8/21 0 4 16 37 57 2 15 55 72
8/25 3 4 16 49 72 3 14 51 68
8/28 2 4 12 52 70 2 12 48 62
9/1 2 6 14 22 1 8 22 31
9/4 0 5 19 24 1 8 39 48
9/8 1 8 12 21 1 41 42
9/11 1 4 31 36 3 22 25
9/15 2 2 19 23 8 27 35
9/18 3 5 8 2 11 13
9/22 5 6 11 1 15 16
Total 4459 122 295 514 1535 781 7706 4246 142 465 811 2011 951 8626



APPENDIX IV. Raw count data of Lissorhoptrus oryzophilus eggs, larvae, and pupae. Crowley, Louisiana 1982.

PI 321264 Saturn
Instar Instar

Date Eggs I II III IV Pupae Total Eggs I II III IV Pupae Total

7/1 5 4 2 4 15 6 2 7 3 18
7/5 9 20 24 14 67 8 25 68 40 38 179
7/8 3 35 47 21 1 107 46 25 56 64 48 239
7/12 17 63 80 88 0 248 0 9 52 92 89 1 243
7/15 0 10 40 79 10 139 0 7 28 59 111 9 214
7/19 6 27 45 130 17 225 5 14 61 75 119 19 293
7/22 11 8 30 75 154 16 294 0 9 51 73 198 26 357
7/26 18 8 24 48 144 25 267 78 4 38 67 150 37 374
7/29 24 2 11 37 129 30 233 127 4 43 118 180 51 523
8/2 9 0 3 30 61 28 131 0 0 3 10 135 48 196
8/5 5 15 63 83 14 180 4 8 18 62 109 35 236
8/9 0 9 30 69 11 119 1 8 32 78 34 158
8/12 2 3 34 80 31 150 0 4 19 71 44 138
8/16 2 8 15 29 13 67 1 4 13 21 11 50
8/19 2 3 13 16 3 37 2 3 28 14 47
8/23 2 3 5 9 19 1 4 2 15 22
8/26 1 4 7 12 3 3 15 21
Total 62 69 267 587 1110 215 2310 268 113 439 741 1383 359 3303
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