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Abstract: (1) Background: The disease-modifying mechanisms of high-dose intravenous vitamin
C (HDIVC) in sepsis induced acute respiratory distress syndrome (ARDS) is unclear. (2) Methods:
We performed a post hoc study of plasma biomarkers from subjects enrolled in the randomized
placebo-controlled trial CITRIS-ALI. We explored the effects of HDIVC on cell-free DNA (cfDNA)
and syndecan-1, surrogates for neutrophil extracellular trap (NET) formation and degradation of
the endothelial glycocalyx, respectively. (3) Results: In 167 study subjects, baseline cfDNA levels in
HDIVC (84 subjects) and placebo (83 subjects) were 2.18 ng/µL (SD 4.20 ng/µL) and 2.65 ng/µL (SD
3.87 ng/µL), respectively, p = 0.45. At 48-h, the cfDNA reduction was 1.02 ng/µL greater in HDIVC
than placebo, p = 0.05. Mean baseline syndecan-1 levels in HDIVC and placebo were 9.49 ng/mL
(SD 5.57 ng/mL) and 10.83 ng/mL (SD 5.95 ng/mL), respectively, p = 0.14. At 48 h, placebo subjects
exhibited a 1.53 ng/mL (95% CI, 0.96 to 2.11) increase in syndecan-1 vs. 0.75 ng/mL (95% CI, 0.21 to
1.29, p = 0.05), in HDIVC subjects. (4) Conclusions: HDIVC infusion attenuated cell-free DNA and
syndecan-1, biomarkers associated with sepsis-induced ARDS. Improvement of these biomarkers
suggests amelioration of NETosis and shedding of the vascular endothelial glycocalyx, respectively.

Keywords: sepsis; vitamin C; glycocalyx; syndecan-1; cell-free DNA; acute respiratory distress syndrome

1. Introduction

Acute respiratory distress syndrome (ARDS) is an inflammatory disease of the lungs with
a mortality rate of 35% to 46% [1–4]. Sepsis can trigger vascular injury that leads to ARDS
through systemic and local inflammation, damaging lung barrier function through both alveolar
and capillary injury. Loss of lung barrier integrity leads to interstitial and alveolar flooding,
surfactant damage, and collapsed lung units. The cumulative result is severe pulmonary
function impairment, diminished lung compliance, increased shunt, and hypoxemia.

Clinical and laboratory evidence suggests that high-dose intravenous vitamin C
(HDIVC) may play a role in the treatment of ARDS [5–9]. A recently completed ran-
domized, double-blind, placebo-controlled, multicenter trial suggested that HDIVC had
an association with reduced 28-day all-cause mortality in sepsis-associated ARDS [8]. We
hypothesized that the key mechanisms of action of HDIVC pertain to the preservation
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of the endothelial glycocalyx and the regulation of neutrophil extracellular trap (NET)
formation [10–12].

A key biomarker for glycocalyceal integrity is the proteoglycan syndecan-1, an im-
portant structural component of the glycocalyx that lines luminal endothelial surfaces
of the vasculature, including alveolar capillaries [13]. Endotoxemia and bacteremia that
lead to sepsis disrupt the glycocalyx, one of the earliest and most significant sites of in-
jury [14]. Early phase injury leads to degradation of the glycocalyx barrier and shedding of
syndecan-1 into the circulation [15]. High plasma syndecan-1 levels are associated with
the development of ARDS [10,16]. Loss of glycocalyceal integrity results in movement of
proteins and fluid from the vasculature into the perivascular interstitial space, a hallmark of
ARDS. Therapies that target protection or restoration of the glycocalyx may benefit septic
subjects and possibly reduce ARDS-associated mortality [17].

NETs, a recent discovery in innate immunity, are composed of granular content
and nuclear content used to kill bacteria extracellularly [18]. A key biomarker of NET
formation is cell-free DNA (cfDNA), which is elevated in sepsis and ARDS [11,18–21].
Prior studies have shown higher levels of cfDNA and syndecan-1 at the onset of sepsis
and ARDS as predictors of increased level of sepsis, mortality rate, and likelihood of
intubation [10,16,22,23]. To date, no study has investigated an intervention that reduces
NET formation and glycocalyx degradation. We hypothesized that HDIVC could reduce
plasma cfDNA and syndecan-1 levels of subjects with sepsis-induced ARDS, compared to
subjects receiving standard of care. We further hypothesized that cfDNA and syndecan-1
correlate with objective clinical oxygenation indices in subjects with ARDS.

2. Materials and Methods

We performed a post hoc analysis of plasma biomarkers obtained from subjects
enrolled in CITRIS-ALI, a recently completed multicenter, double-blind, randomized,
placebo-controlled trial [9]. In this trial, critically ill subjects with new-onset sepsis-induced
ARDS, were randomized to receive 4-day bolus infusions of ascorbic acid (n = 84) (McGuff
Pharmaceuticals, Santa Ana, CA, USA) at 50 mg/kg every 6 h, for 96 h vs. placebo (n = 83).

Whole blood was drawn into sterile Vacutainer tubes (BD 367863, lavender top,
K2EDTA). Plasma was separated by centrifugation (1000× g, 10 min, 4 ◦C), aliquoted
and frozen at −80 ◦C for batch analysis. Plasma cfDNA levels were blindly prepared and
quantified using the Invitrogen Quant-iT PicoGreen dsDNA assay kit, according to the
manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA, USA). Fluorescence
intensity was measured on a SpectraMax Gemini XPS microplate reader with excitation
at 490 nm and emission at 525 nm, with 515 nm emission cutoff filter (Molecular Devices,
San Jose, CA, USA). Plasma syndecan-1 levels were blindly prepared and analyzed using a
human magnetic bead Luminex assay system (LXSAHM), according to the manufacturer’s
instructions (R&D Systems, Minneapolis, MN, USA) and quantified using a Luminex
LX200 instrument with xPONENT 3.1 software (Luminex Corporation, Austin, TX, USA).
Biomarker concentrations were calculated from standard curves of Median Fluorescence
Intensity (MFI) by generating a five-parameter logistic (5-PL) curve-fit and multiplying
by the dilution factor. Specimens outside the standard range were further diluted and the
assay repeated. Samples analyzed were from time points 0 h and 48 h due to maximal
specimen availability.

Analyses were conducted using Stata Statistical Software (Rel.16.0, TX StataCorp
LP, College Station, TX, USA). We applied descriptive statistics to report the baseline
characteristics of the study population. We applied linear regressions to evaluate the
association of the 48 h change of the biomarkers [24,25]. Multiple linear regressions were
applied to assess biomarker differences at 48 h, adjusting for baseline biomarker levels.
The researchers chose the 48 h mark instead of the 96 h because the 96 h endpoint had less
specimens that 48 h mark. This was a result of survival bias in the HDIVC arms, as most of
the mortality difference between the two arms occurred within 48 h treatment initiation.
Post-estimation scatter plots were constructed to graphically represent the findings in



Nutrients 2022, 14, 4415 3 of 10

the two groups. Regression residuals for normalcy were then assessed. Multiple logistic
regression was applied to evaluate the adjusted effect of biomarkers on mortality. We
evaluated the models with the area under the receiver operator characteristic curve, and the
Hosmer-Lemeshow goodness-of-fit test. The funding sponsors had no role in the biomarker
study described here. The corresponding author had full access to all data in the study and
had final responsibility for the decision to submit for publication.

3. Results
3.1. Study Participants

Subjects with sepsis-induced ARDS were enrolled at the time of ARDS onset (n = 167).
Subjects were randomized to receive HDIVC in dextrose 5% in water (n = 84) or placebo
(dextrose 5% in water, n = 83). Baseline plasma samples were analyzed for cfDNA (n = 167)
and syndecan-1 (n = 166). At 48 h, 82 (97.6%) HDIVC subjects and 72 (86.8%) of the placebo
subjects survived and remained in ICU (p = 0.009, Pearson Chi-Square). Plasma specimens
from the survivors were analyzed. Details on study subjects and specimens can be found
in Table 1.

Table 1. Patient characteristics and specimen numbers from the randomized controlled trial.

Baseline
(n = 167)

48-Hours
(n = 154)

Variable HDIVC
(n = 84)

Placebo
(n = 83)

HDIVC
(n = 82)

Placebo
(n = 72)

Survived and in the ICU, n (%) 84 (100) 83 (100) 82 (97.6) 72 (86.7)
Age, years (mean, SD) 52.7 (17.5) 56.8 (15.7) 52.3 (17.3) 55.8 (15.7)
Men, n (%) 45 (53.6) 45 (54.2) 44 (53.7) 39 (54.2)
Subjects with ABG available, n (%) 80 (95.2) 82 (98.8) 62 (75.6) 65 (90.2)
Subjects with cfDNA available plasma,
n (%) 84 (100) 83 (100) 81 (98.8) 70 (97.2)

Subjects with syndecan-1 available
plasma, n (%) 83 (98.8) 83 (100) 80 (96.4) 70 (97.2)

Abbreviations: ABG, arterial blood gas; cfDNA, cell-free deoxyribonucleic acid; HDIVC, high-dose intravenous
vitamin C. N, number; SD, standard deviation.

3.2. Effects of Intravenous Vitamin C on Plasma cfDNA

At baseline, mean cfDNA levels in HDIVC treatment and placebo arms were
2.18 ng/µL (SD 4.20 ng/µL) and 2.65 ng/µL (SD 3.87 ng/µL), respectively, and there
was no statistical difference (p = 0.46). After 48 h, mean cfDNA levels in HDIVC and
placebo arms were 1.78 ng/µL (SD 1.73 ng/µL) and 2.80 ng/µL (SD 5.0 ng/µL), respec-
tively. The mean change (delta, ∆) following 48 h of HDIVC treatment was −0.45 ng/µL
(95% CI, −1.16 to 0.25), indicating a decrease in cfDNA levels. The mean change following
48 h in placebo subjects increased by 0.57 ng/µL (95% CI, −0.19 to 1.33 ng/µL). Adjusting
for baseline cfDNA levels, subjects receiving HDIVC treatment exhibited a mean 48 h
cfDNA decrease of 1.02 ng/µL (p = 0.05) compared to placebo (Figure 1).

3.3. Effects of Intravenous Vitamin C on Plasma Syndecan-1

Mean baseline syndecan-1 levels in HDIVC and placebo arms were 9.49 ng/mL
(SD 5.57 ng/mL) and 10.83 ng/mL (SD 5.95 ng/mL), respectively, with no statistical dif-
ference (p = 0.14). At 48 h, syndecan-1 levels in HDIVC subjects increased to 10.43 ng/mL
(SD 6.05 ng/mL) while corresponding levels in placebo subjects increased to 11.22 ng/mL (SD
5.31 ng/mL). The change in placebo subjects at 48 h (1.53 ng/mL, 95% CI, 0.96 to 2.11) was
twice that of HDIVC subjects (0.75 ng/mL, 95% CI, 0.21 to 1.29, p = 0.05). (Figure 2).
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3.4. Effects of Plasma Syndecan-1 on 28-Day All-Cause Hospital Mortality

Baseline syndecan-1 levels as well as both 48 h changes in cfDNA and syndecan-1
levels predicted 28-day all-cause mortality. Table 2 outlines the Odds Ratio (OR) of death
for every incremental unit of the corresponding biomarker.

Table 2. Effect of cfDNA and syndecan-1 on 28-day all-cause hospital mortality. Adjusted (multiple)
logistic regression table outlining Odds Ratio (OR) of death for each incremental unit increase in
baseline and 48 h change (delta, ∆) of the plasma cfDNA and syndecan-1 levels.

Predictor Odds
Ratio

Standard
Error z p-

Value
95% Confidence

Intervals

Baseline syndecan-1, each
unit increase, ng/mL 1.3 0.1 4.9 <0.001 1.2 1.4

48 h ∆syndecan-1, each
unit increase, ng/mL 1.3 0.1 3.2 0.001 1.1 1.6

Baseline cfDNA, each
unit increase, ng/µL 1.1 0.2 0.5 0.650 0.8 1.5

48 h ∆cfDNA, each unit
increase, ng/µL 1.8 0.5 2.1 0.035 1.0 3.0

Constant 0.0 0.0 −5.7 <0.001 0.0 0.1

Syndecan-1 levels at 0 and 48 h correlated significantly with increased plasma cfDNA
levels at 0 and 48 h, respectively (Figure 3a,b). Furthermore, the 48 h change of plasma
syndecan-1 levels correlated with the 48 h change of coda levels (Figure 3c).
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3.5. Effect of cfDNA and Syndecan-1 on Changes in Oxygenation

Forty-eight-hour syndecan-1 plasma level elevations were significantly correlated with
worsened oxygenation. The incremental increase in syndecan-1 level by one ng/mL corre-
sponded with a change in PaO2/FiO2 ratios of −8.85 (95% CI, −17.50 to −0.19; p = 0.045).
HDIVC treatment had a larger (−18.9 vs. −4.4) and significant (p = 0.004 vs. 0.48) impact
on ∆PaO2/FiO2 ratio compared with placebo (Figure 4). The 48 h ∆cfDNA exhibited no
significant effects on PaO2/FiO2 ratios (−2.72 [95% CI, −9.66 to 4.20], p = 0.44).
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4. Discussion

The present study reports that a 48 h HDIVC infusion in subjects with sepsis-associated
ARDS attenuated increases in 48 h cfDNA and syndecan-1 plasma levels. Attenuated
syndecan-1 levels correlated with improved lung function, as gauged by improved 48 h
PaO2/FiO2 ratios (Figure 4). HDIVC’s impact on syndecan-1 and cfDNA levels indepen-
dently predicted lower 28-day all-cause mortality.

Syndecan-1 elevations at baseline at time of randomization for HDIVC vs. placebo
and increases at 48 h compared to baseline increased the 28-day all-cause mortality odds
ratio. For each increase of one ng/mL of syndecan-1, there was an associated odds ratio
increase of 1.3 for 28-day all-cause mortality, at baseline and the delta at 48 h. Elevated cfDNA
at baseline did not show a significant effect on mortality. However, each increase in cfDNA
by one ng/µL at 48 h compared to time of randomization for HDIVC vs. placebo, there
was associated odds ratio increase of 1.3 for 28-day all-cause mortality (Table 2). As HDIVC
directly attenuates the rise of both syndecan-1 and cfDNA at 48-h, this may provide a partial
pathway into the mechanism of mortality benefit with HDIVC in subjects with sepsis induced
ARDS (Figures 1 and 2). Furthermore, cfDNA and syndecan-1 levels in the plasma of septic
subjects with ARDS provides fresh insight into the extent of systemic inflammation and the
molecular mechanisms that produce vascular injury, leading to ARDS onset.

Neutrophil extracellular traps (NETs) are highly linked to endothelial damage and
organ failure, crucial events in sepsis [19]. NET formation is a neutrophil effector mecha-
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nism whereby neutrophils extrude a web of chromatin fibers complexed to granule-derived
antimicrobial peptides and enzymes. This process occurs following neutrophil activation
and is implicated in producing endothelial damage [26]. Hirose et al. identified NETs in
peripheral blood smears of critically ill subjects [27]. In septic subjects, circulating cfDNA
levels correlated with the degree of lung injury, as higher concentrations were found in
subjects who developed moderate or severe ARDS than septic subjects without ARDS [28].
LeFrancais et al. found that attenuating NET formation in an acute lung injury mouse
model led to increased survival [21]. Activated endothelial cells induce neutrophil NET
formation and are themselves susceptible to NETosis-mediated cell death, [29] thus, pro-
moting a self-perpetuating damage that ultimately leads to hypercoagulable states [30].
The association of syndecan-1 with endothelial damage and neutrophilic inflammation has
focused attention on a biomarker indicative of vascular injury [15,17,31]. Plasma syndecan-1
levels in septic subjects are increased at baseline and may remain elevated for up to 72 h [32].
Further, in these septic subjects, elevations of syndecan-1 are associated with heightened risks
of developing respiratory failure and increased mortality [33]. Both cfDNA and syndecan-1
levels are reported for mortality predictions in septic subjects and are associated with adverse
clinical outcomes (e.g., development of multiple organ failure, ARDS) [14,34]. Correlations
between the two biomarkers to clinical outcomes pertain to their roles as surrogates for NET
formation and glycocalyx integrity. Plasma syndecan-1 elevations are a robust marker of gly-
cocalyx degradation and development of ARDS [31]. To our knowledge, this is the first human
randomized placebo-controlled study of sepsis-associated ARDS to examine an interventional
therapy’s effect on these biomarkers.

CITRIS-ALI is the first study to show that a 96 h infusion of HDIVC decreased human
plasma cfDNA [8]. This post hoc analysis of the CITRIS-ALI study shows HDIVC attenu-
ated the rise in syndecan-1 levels at 48 h (Figures 1 and 2). A re-analysis of the CITRIS-ALI
data, accounting for the missing SOFA scores due to the large survival differences among
the two arms, (i.e., Survivorship Bias), demonstrated improved overall organ-function (mod-
ified SOFA Scores) in ARDS patient who received HDIVC infusion [9]. Murine models of
polymicrobial sepsis using high dose vitamin C have demonstrated attenuation of lung NET
formation and circulating cfDNA [5]. Other studies reveal that high dose vitamin C reduced
multiple organ failure, neutrophilic capillaritis, and extravascular lung water in septic mice [6].
Thus, decreased circulating cfDNA may represent a surrogate marker of high dose vitamin
C’s ability to reduce excessive neutrophilic activation during sepsis, thereby reducing NET
formation and the ensuing inflammatory vascular injury. The present study found significant
correlations between decreased plasma syndecan-1 and improved PaO2/FiO2 ratios (Figure 4)
and 28-day all-cause hospital mortality (Table 1). Taken together, these findings suggest that
a 96 h infusion HDIVC may improve ARDS recovery by protecting or restoring glycocalyx
integrity and reducing neutrophil NET formation.

The study has several limitations. First, the specific origin of circulating cfDNA was
not determined. One study suggests that surges in cfDNA in sepsis results from cellular
necrosis [35]. However, other studies show that cfDNA in septic subjects is host derived
and the cfDNA base pair length is consistent with neutrophil NET formation and not cellular
necrosis [36]. Second, syndecan-1 was measured, but not other glycocalyceal structures
(i.e., endocan, heparan sulfate, hyaluronan). Multiple studies show that syndecan-1 levels in
sepsis correlate strongly with other markers of glycocalyx degradation [14,15]. Third, missing
data points at 48 h due to early deaths in placebo subjects (13.3%) vs. HDIVC subjects (2.4%)
may have biased the ability to detect an even greater difference in biomarker levels.

5. Conclusions

HDIVC treatment reduced 48 h cfDNA and syndecan-1 plasma levels in subjects
with sepsis-associated ARDS. The dynamic changes of these biomarkers were strongly
associated with lung oxygenation and 28-day all-cause mortality. These results suggest
that HDIVC reduces the severity of illness by decreasing excessive NET formation and
glycocalyx degradation. Syndecan-1 and cfDNA signal pathophysiological processes that
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lead to vascular injury in sepsis-associated ARDS. Future studies will clarify the role of
these biomarkers in directing the care of subjects with sepsis induced ARDS.
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