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ABSTRACT

DeYoe, H.; Lonard, R.I.; Judd, F.W.; Stalter, R., and Feller, I., 2020. Biological flora of the tropical and subtropical
intertidal zone: Literature review for Rhizophora mangle L. Journal of Coastal Research, 36(4), 857–884. Coconut Creek
(Florida), ISSN 0749-0208.

Rhizophora mangle L. is a tropical and subtropical mangrove species that occurs as a dominant tree species in the
intertidal zone of low-energy shorelines. Rhizophora mangle plays an important role in coastal zones as habitat for a
wide range of organisms of intertidal food webs, as a natural barrier to coastal erosion, and as carbon sequestration. A
review of mangrove literature has been performed, but a review specifically on red mangroves has not. The approach was
to cover a broad range of topics with a focus on topics that have seen significant work since the 1970s. This review
includes a brief introduction to red mangroves and then focuses on the following topics: biogeography, habitats and
zonation, geomorphological interactions, taxonomy, histology, anatomy, physiological ecology, productivity, biomass,
litter, reproduction, population biology, plant communities, interactions with other species, impacts of storms,
reforestation, remote sensing, modelling, and economic importance.

ADDITIONAL INDEX WORDS: Red mangrove, taxonomy, morphology, biogeography, habitats, reproduction,
physiological ecology, mangals, hurricanes, economic importance, climate change, coastal ecology.

INTRODUCTION
Red mangrove (Rhizophora mangle L.) is a widely distributed

intertidal mangrove and an ecologically and economically

important coastal species in tropical areas of the world. The

literature base on mangroves in general is immense. Rollett

(1981) and Tomlinson (1994) listed more than 6000 articles

published between 1600 to 1975. Peer-reviewed investigations

related to mangroves increased exponentially in the late 20th

century and in the first two decades of the 21st century.

Tomlinson (1994), in an extensive review of mangroves, stated

that his major difficulty was deciding what to exclude. A similar

problem exists with the voluminous literature base for R.

mangle.

The intent is to have an article that will be useful to coastal

ecologists, natural resource managers, and parties interested

in tropical coastal ecology and management. The approach is to

summarize red mangrove literature with a focus on the period

from 1970 to the present that was not covered by Rollett (1981)

and Tomlinson (1994). Most of the references are from 2000 to

the present, including references not covered by the previous

investigators. These references will be of value to those

interested in tropical coastal ecology and management.

BIOGEOGRAPHY
Rhizophora mangle occurs on tropical shorelines in West

Africa from Mauritania to Angola (Keay, 1953; Tomlinson,

1994). The northernmost distribution in North America is on

shorelines and in inland saltwater pools in Bermuda (328 N)

(Thomas, 1993). In the United States, it occurs in the subtropics

on the Atlantic coast of Florida as far north as 29.988 N, 81.338

W (Goldberg and Heine, 2017) and on the Gulf Coast of Florida

as far north as Escambia County in the Florida Panhandle

(30.498108 N) (Wunderlin et al., 2018).

Red mangrove occurs on the southern Gulf of Mexico coast

from Cameron County, Texas, at the mouth of the Rio Grande/

Rio Bravo (DeYoe, Lonard, and Judd, personal observations)

and southward from Tamaulipas to Yucatan, Mexico (Britton

and Morton, 1989). It is widespread in the Caribbean where it

occurs on nearly all islands (Albrecht et al., 2013; Berenguer et

al., 2006). It is common in intertidal sites in Central America

where it extends from the Atlantic to Pacific coastlines. Its

distribution in South America ranges from Guyana to northern

Brazil (Tomlinson, 1994).
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The distribution of R. mangle on the Pacific coast of the

Americas extends from Baja California (298 N) and the Gulf of

California (248 N) in Mexico to Ecuador, Peru, and northern

Chile (Blanchard and Prado, 1995; Domı́nguez et al., 1998;

López-Medellı́n and Ezcurra, 2012; Sandoval-Castro et al.,

2012). Red mangrove also occurs on the Galapagos Islands

(Fessl et al., 2011; Song, White, and Heumann, 2011), has been

introduced in Hawaii (Krauss and Allen, 2003), and is widely

distributed on islands and atolls in the South Pacific (Graham,

1964).

HABITATS AND ZONATION
The typical habitat for R. mangle is the sheltered intertidal

seaward fringe on tropical and subtropical shorelines where it

is the dominant species. However, it may be found at the mouth

of estuaries, on tidal creek banks, and in shaded and dry,

stagnant hypersaline pools (Chen and Twilley, 1999; Farns-

worth and Ellison, 1996). Chen and Twilley (1999) reported

that red mangrove is the dominant species on the margins of

the upper reaches of the Shark River Estuary in Florida.

Mangroves tend to develop where the elevation gradient is

modest. The gradient is a product of physical and biological

processes, including inorganic sedimentation, groundwater

influx, and land movements. Biological processes of importance

are root accumulation, leaf-fall and woody debris deposition,

root accumulation, and sediment trapping by mangroves and

algal mats (Kraus et al. 2014).

The biological zonation is a notable feature of the mangal

plant community. Lugo and Snedaker (1974) conclude that the

factors and forces responsible for zonation is complex, may not

necessarily represent a successional sequence, and that

zonation of mangroves may be a result of all the external

sources acting on a locality. They observed that zonation is best

developed where a steep topographic shoreline gradient occurs

and that zonation may not be pronounced in areas with a very

flat gradient (1 cm/km gradient), as exists in south Florida

where mixtures of species can occur. In addition to zonation

patterns, Lugo and Snedaker (1974) proposed a five-unit

classification scheme: fringe forest, riverine forest, overwash

forest, basin forest, and dwarf forest.

A common zonation pattern that occurs on shorelines is noted

on Grand Cayman Island (Woodroffe, 1982). Zonation is

expressed from the intertidal fringe to higher elevations

landward as R. mangle . Avicennia germinans . Laguncu-

laria racemosa . Conocarpus erectus (Woodroffe, 1982).

Conocarpus erectus is a mangal-associated shrub in the

landward transition zone. Avicennia germinans and L. race-

mosa tolerate higher levels of soil salinity and are found behind

R. mangle, where flooding is less frequent (Atwell, Wuddivira,

and Gobin, 2016).

In the Amazon region of northern Brazil, slightly different

zonation patterns exist. One zonation sequence includes

monotypic stands of R. mangle on the intertidal fringe and a

mid-intertidal zone of R. mangle and A. germinans as co-

dominants. Avicennia germinans is the dominant species in

landward intertidal sites (Mendoza et al., 2012). In southern

Brazil, Sereneski de Lima et al. (2013) reported the following

zonation sequence from the intertidal fringe to the high

intertidal zone: R. mangle . L. racemosa . Avicennia

schaueriana.

Sousa et al. (2007) described a more complex mangal profile

in Panama. Rhizophora mangle occurs in low velocity water

and 10 to 20 m from the edge of the water. Laguncularia

racemosa and R. mangle are co-dominants in the low intertidal

belt, and A. germinans is the dominant species in the upper

intertidal zone. Laguncularia racemosa reappears in the

upland transition zone to tropical forest (Sousa et al., 2007).

The mangal is circumscribed by a narrow zone of about 25 m

in Bermuda. Red mangrove is present on the seaward margin,

and A. germinans and R. mangle occur in the mid-intertidal

zone. Conocarpus erectus and the invasive shrub Schinus

terebinthifolius occur in the upland transition zone (Thomas,

1993).

Zonation in the mangal in Gambia, West Africa, is charac-

terized by a tall gallery forest of Rhizophora racemosa at the

low intertidal zone, a midlevel zone of Rhizophora harrisonii,

and an upper inland zone of R. mangle shrubs about 3-m tall

(Teas and McEwan, 1982).

GEOMORPHOLOGICAL INTERACTIONS
Mangal species are usually the only species present in the

intertidal zone of tropical and subtropical shorelines that have

fine-textured alluvium or where the substrate is soft mud or

fine silt-clay (Walsh, 1974). These are low-energy coastlines

that are free of strong waves and high tidal amplitudes (Lugo,

1980).

Davis (1940) stated that R. mangle is a pioneer in the

classical Clementsian view of plant succession. In that

interpretation, zonation is seral, and the stages of succession

would in time proceed to climax vegetation. In the tropics, this

would be a tropical forest.

Ball (1980), Farnsworth and Ellison (1996), Lugo (1980), and

Thom (1967) stated that R. mangle does not fit categories of

early or late succession. McKee and Faulkner (2000) indicated

that mangroves are passive in shoreline changes and respond

to geomorphological processes of sedimentation, erosion, and

changing sea level.

Thom (1967) studied mangrove-dominated deltaic systems

in Tabasco and Campeche, Mexico. He advanced the concept

of microtopographic controls over mangrove zonation. He

found that active sedimentation is an important ecological

factor that sustains equilibrium in the mangal. Rhizophora

mangle is dominant in fringe lagoons that are relatively

stable where neither accretion nor erosion are occurring.

Thom (1967) concluded that changes in habitat are attributed

to geomorphic process rather than traditional successional

concepts.

In Jalisco, Mexico, Méndez Linares et al. (2007) found that

red mangrove is a pioneer species that dominates actively

accreting frontal edges of deltaic fans. However, Cunha-Lignon

et al. (2011) stated that fringe forests in Brazil dominated by R.

mangle have significant structural development attributable to

high flooding frequency in depositionally stable sites.

Alleng (1998) examined historical records of the Port Royal,

Jamaica, mangal from 1692 to 1991. He concluded that the

areal extent of the fringe mangrove community dominated by

R. mangle has been stable. The horizontal extension of
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colonizers has not been significant. He stated that factors that

promote equilibrium are a small tidal range, a lack of large

sediment inputs, and episodic hurricanes. Ball (1980) made

similar conclusions. She stated that zonation patterns of

mangroves are consistent with geological data and these

patterns have existed in situ for millennia.

TAXONOMY
Rhizophora mangle L. (red mangrove) is a member of the

family Rhizophoraceae. The family is usually placed in the

order Rhizophorales but has been referred to the orders

Myrtales, Lecythidales, Cornales, and Celastrales (Tomlinson,

1994; Zomlefer, 1994). Taxonomists disagree on the number of

species and hybrids in the genus. Mabberley (1997) stated that

eight to nine taxa are included in the genus Rhizophora, and

Arbeláez-Cortes et al. (2007) noted that the genus contains five

species and several hybrids. Tomlinson (1994) lists the

following species and putative hybrids: R. mangle L., R. x

harrisonii Leechman, R. racemosa Meyer, R. apiculata BL., R.

samoensis (Hochr.) Salvoza, R. mucronata Lamk., R. stylosa

Griff., R. x lamarckii Montr., and R. selala (Salvoza) Tomlin-

son.

Breteler (1977) and Cornejo (2013) reported that the R. x

harrisonii represents a morphotype produced by hybridization

and introgression of sympatric populations of R. mangle and R.

racemosa. Duke and Allen (2006) indicated that the R.

samoensis taxon should be reduced to varietal status (R.

mangle L. var. samoensis Hochr.). Tomlinson (1994) presents

details of the hybrid taxa R. x lamarckii and R. selala. The

latter taxon does not involve hybridization with R. mangle.

The following taxonomic description of the diagnostic

features of R. mangle summarized below are from Britton

and Millspaugh (1962), Graham (1964), Proctor (2012), and

Tomlinson (1994). Common names for red mangrove in the

Caribbean, Central America, and South America include

mangle rojo, mangue vermelho, manglier rouge, and mangle

rouge (Barker and Dardeau, 1930).

Growth Habit and Shoot Morphology
Red mangroves range in size from shrubs less than 1.0 m tall

in nutrient-deficient sites to trees up to 50-m tall (Figure 1)

(Golley et al., 1969). The growth habit or architectural model of

R. mangle is considered to correspond with the Attims’ model,

i.e. the axes have continuous growth, differentiated into a

monopodial trunk and equivalent branches (Hallé, Oldeman,

and Tomlinson, 1978). Branching takes place either continu-

ously or diffusely with branches having swollen nodes (Gill and

Tomlinson, 1969).

Leaves
Leaves are simple, elliptical, entire, persistent, and leathery

in texture (Figure 2). Each pair of opposite leaves is associated

with interlocking stipules that form a terminal bud (Graham,

1964). Petioles are 0.5- to 2-cm long and extend into a

prominent midvein. Stipules are 2.5- to 8-cm long, leaflike,

convolute, and encompass the young leaf and open as the leaf

expands. Blades are 5- to 15-cm long, elliptic, oblong to obovate,

dark green and punctate on the lower epidermis. Occluded

hydathodes, referred to as cork warts, are conspicuous on the

leaves (Tomlinson, 1994).

Root Morphology and Development
Aerial roots, referred to as prop roots or rhizophores, are

unbranched until they are anchored in the sediment or branch

only after injury (Figure 1) (Gill and Tomlinson, 1977). Aerial

roots above the high-tide mark have lenticels. Lenticels provide

an aeration pathway to capillary roots in the typically anoxic

sediment. The architecture of aerial roots facilitates anchorage

and support of the shoot system. These roots usually form an

extensive horizontal network that hinders human travel

through the mangal community. Aerial roots have unique

anatomical specializations that are similar to stem anatomy

(discussed below). A reduction in root diameter and complexity

is noted with each order of submerged roots. Capillary roots

arise from mitotic activity in the root apical meristem. A root

cap is present, but root hairs are absent.

Figure 1. Red mangrove habit with rhizophores.

Figure 2. Red mangrove shoot tip with leaves.
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Inflorescence and Flowers
The inflorescence is axillary, cymose, dichotomously

branched, and usually bears two to three flowers. Occasionally

only one flower is present; however, up to 16 flowers may be

produced in the inflorescence. Peduncles on vigorous shoots are

up to 6-cm long. Pedicels are 5- to 10-mm long. Flowers are

actinomorphic and bisexual. The calyx comprises four persis-

tent, leathery sepals and is adnate to the base of the ovary.

Sepals are 7- to 8-mm long and have a longitudinal vein on the

inner surface. The sepals are reflexed at maturity. The corolla

is actinomorphic and comprises four distinct, white or

yellowish petals that are about equal in length to the sepals

(Figure 3). The margins are glabrous or pubescent. Eight

stamens alternate with the petals. The filaments are about 5-

mm long, and the anthers are grouped around the style. A

single, two-celled ovary per flower is produced. The stigma is

two-lobed, and the style is subtended by a semisuperior ovary.

Flowers are usually wind pollinated, but insects may serve as

occasional pollinators (Sánchez-Núñez and Mancera-Pineda,

2012b).

Fruit, Propagule, and Seedling Morphology
The fruit is a conical, indehiscent, one-celled, leathery

structure that is 2.5- to 3.5-cm long and is attached to the base

of the ovary.

The single propagule (a viviparous seed), when mature, is 15-

to 20-cm long and has a thick, fleshy coat and two cotyledons

(Figure 4). The cotyledons are exposed and expanded when

germination is evident. The ovary has four ovules, but only one

develops into an embryo. Endosperm development is free

nuclear initially but becomes cellular in later stages of

development. The cotyledons develop into a cylindrical struc-

ture that remains in the fruit at the time the propagule is

released.

Seedling development is viviparous. The embryo is initially

attached to the integuments at the micropylar end by an

elongated suspensor. Later, the basal cells disintegrate.

Expansion of the endosperm initiates germination and growth

of the hypocotyl. Hypocotyl elongation extends the seedling

beyond the developing fruit.

The hypocotyl of the viviparous seedling emerges from the

seed coat and is now referred to as a propagule. After several

months of maturation, the propagule is released from the

parent plant. The mature propagule-seedling unit is about 10-

to 50-cm long and is pencil shaped. When the first photosyn-

thetic leaves develop, the propagule initiates formation of

woody tissue.

Chromosome Number
Chromosome numbers reported for the family Rhizophor-

aceae are 2n¼ 36 and 2n¼ 64 (Graham, 1964). A chromosome

number of 2n ¼ 36 for R. mangle was reported initially by

Yoshioka et al. (1984) and confirmed by Tyagi (2002).

Karyotype analysis suggested that five mangrove species (R.

mangle, Rhizophora mucronata, Kandelia candel, Bruguiera

gymnorrhiza, and Ceriops tagal) were closely related although

they were taxonomically placed in different genera (Yoshioka et

al., 1984).

HISTOLOGY AND ANATOMY
Because of where they live, red mangroves have numerous

structural and physiological adaptations to address the

challenges of their environment, including variable salinity,

frequent tropical storms, and low-energy shorelines with

resultant fine-grained anoxic sediment. Leaf structure, roots,

and rhizophores have features that enable red mangroves to

grow in this kind of environment.

Leaves
Mature leaves are persistent, thick, fleshy, waxy, and shiny.

They are bright green on the upper epidermis and light yellow

on the lower. Leaf epidermal cells are polygonal and have

straight and thickened anticlinal walls (Adenegan-Alakinde

and Jayeola, 2015). The lower epidermis is characterized by a

few randomly arranged, sunken stomata flanked by six or

seven subsidiary cells (Adenegan-Alakinde and Jayeola, 2015;

Figure 3. Red mangrove flowers. Figure 4. Red mangrove propagules.
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Britton and Morton, 1989). Globular papillae 65 lm in

diameter are present on the lower epidermis (Jayeola, Thorpe,

and Adenegan, 2001). Cork warts are histological features of

the lower epidermis and represent air entry sites (Evans and

Bromberg, 2010; Evans, Okawa, and Searcy, 2005). Air is

delivered to aerenchyma near the upper epidermis. For all

mature leaves, aerenchyma composes 24% of the total leaf

volume (Evans and Bromberg, 2010). Aerenchyma in leaves is

linked to aerenchyma in stems and roots and ultimately to

growing roots in the anoxic substrate.

A transverse section of the R. mangle leaf shows a one-to

three–layered sclerified hypodermis, a three-layered palisade

mesophyll, and a 10- to 12-celled spongy mesophyll and

extensive aerenchyma. Vascular bundles are collateral and

heavily sclerified (Adenegan-Alakinde and Jayeola, 2015).

Sclerophylly in the subepidermal hypodermis defines coria-

ceous and hard leaves and is a response to multiple environ-

mental stresses (Sereneski de Lima et al., 2013). Feller (1996)

noted that sclerophylly decreased in the leaf anatomy of dwarf

forms of red mangrove after addition of phosphorus fertilizer.

Sclerophylly is viewed as protection for photosynthetic tissue

when metabolic rates are limited because of macronutrient

deficiencies and excess light intensity (Feller, 1996). Farns-

worth and Ellison (1996) stated that leaf anatomy is insensitive

to the light environment, but leaf length, width, leaf area, and

summer photosynthetic rates vary among shade and sun

leaves.

Red mangroves at sites of constant high salinity have a

maximum leaf thickness of 2.4 mm, whereas leaves of plants

growing in fluctuating salinity have a thickness of 0.9 mm

(Camilleri and Ribi, 1983). They stated that thick leaves have

more water-holding capacity than thin leaves, so they may play

a role in osmoregulation.

A mass of colleters (secretory glands) occur at the base of the

paired stipules that subtend the petiole. Colleters produce a

viscous fluid that bathes the stipules (Lersten and Curtis,

1974). Primack and Tomlinson (1978) suggest that colleters

may be a source of sugar secretions that attract pollinators.

Stems
Rhizophora mangle bark is light brown and contains tannins

and calcium oxalate crystals. The wood is hard, and the stems

have swollen trilacunar nodes (Zomlefer, 1994). Growth rates

in brackish and frequently flooded saline sites have higher

growth rates than trees in saline sites that are seldom

inundated (Menezes, Berger, and Worbes, 2003). This species

has annual rings that are the result of xylem pore density

variations attributable to wet–dry seasons (Correa, Grajales,

and Bernal Escobar, 2010). With increased rainfall and a

reduction of salinity, pore density increases and wood density

decreases. Cambial activity decreases when salinity is high

resulting in smaller, more densely compacted secondary xylem

(Correa, Grajales, and Bernal Escobar, 2010). Stem growth is

rapid under optimal conditions. Rey (1994) reported stem

growth increments of 1.1 m year�1 in Florida.

Stem galls produced by Cylindrocarpum didymium may

occur on stems and rhizophores. Some sites in Florida have

infection rates of 100% for red mangrove (Olexa and Freeman,

1978).

Rhizophores and Roots
A prominent feature of R. mangle is an extensive network of

rhizophores. Rhizophores have been referred to as stilt roots,

aerial roots, prop roots, cable roots, and flying buttresses

(Méndez-Alonzo et al., 2015; Tomlinson, 1994). Rhizophores are

formed adventitiously from stems and do not form lateral

branches unless they are anchored in loose sediment or are

injured (Gill and Tomlinson, 1969). These specialized plant

features combine anatomical properties of roots and stems.

Conspicuous white lenticels are present on rhizophores above

the water level and are sites of aeration from aerial parts of the

plant to the fine root mass in the anoxic sediment (Zomlefer,

1994). Respiration-derived carbon dioxide is released from

lenticels on the rhizophores (Evans, Okawa, and Searcy, 2005).

A reduction in diameter of rhizophores and anatomical features

of true roots are found in the ultimate absorptive capillary roots

in the substrate (Gill and Tomlinson, 1971a). Capillary roots

lack root hairs and have a root cap covering the apical

meristem.

True roots in the sediment have a cortex with a loose

arrangement of parenchyma tissue and a narrow vascular

cylinder. Trichosclereids are absent. A periderm (lignified cork

layer) is present, and an extensive aerenchyma network typical

of wetland species is noted (da Costa Souza et al., 2014; de

Menezes, 2006).

Lin and da S.L. Sternberg (1994) reported that most of the

fine root mass is located 0- to 50-cm deep in the sediment, and

root biomass increases with lower salinity. Capillary roots

lengthen 3 to 9 mm day�1 (Gill and Tomlinson, 1971a). McKee

(1995a, 2001) and McKee, Cahoon, and Feller (2007) found that

low macronutrient levels combined with high light levels

stimulate an increase in root biomass.

de Menezes (2006) discussed the unique stemlike features of

R. mangle rhizophores. Morphological features include positive

geotropism and sympodial branching. Anatomical features are

a slightly thickened cortex, a polyarch vascular cylinder,

collateral vascular bundles, and an endarch protoxylem.

Trichosclereids are in the parenchyma of the cortex. This

represents a stemlike feature (Gill and Tomlinson, 1971a).

Trichosclereids are absent in the capillary root mass in the

sediment, and few tannin cells are produced (Gill and

Tomlinson, 1977).

The stiltlike flying buttress appearance of the rhizophores

present an almost impenetrable thicket in the R. mangle low

intertidal zone. Rhizophores play a crucial role in stabilizing

the slender tree canopy (Méndez-Alonzo et al., 2015). Dynamic

loads are supported from the top of the tree to the unstable

substrate. The specialized anatomy of rhizophores is related to

mechanical stress attributable to canopy orientation and

prevailing winds. Therefore, red mangrove trees are well

suited to withstand frequent tropical storms (Méndez-Alonzo et

al., 2015).

PHYSIOLOGICAL ECOLOGY
Physiological stress, which is a near constant where red

mangroves live, includes variable salinity and nutrient

availability, tropical heat, high light intensity, anoxic sedi-

ments, and coastal pollution. This species, as well as other

mangrove species, has developed various physiological strate-
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gies to survive and grow in this environment. Acquisition of

water, although not in short supply, requires significant energy

expenditure of metabolic processes that cope with the salt in it.

Temperature
Climatic conditions suitable for R. mangle are found in

tropical-megathermal and humid to subhumid zones (Souza-

Santos et al., 2016). Mangroves can tolerate seasonal temper-

atures that exceed 508C (Feller, personal observation) despite

earlier observations that they cannot (Walsh, 1974). The

latitudinal limit for this species is a 168C isotherm where the

distributional range is not limited by physiographic features (J.

Ellison, 2000).

Frequency, duration, and/or severity of freezing conditions

affect distribution and abundance of red mangrove. Mehlig

(2006) noted that low temperature usually reduces floral

production, but a minimal temperature was not reported. A

temperature of –6.118C for three hours or freezing conditions at

or slightly below 08C for 54 consecutive hours killed R. mangle

shrubs at South Padre Island, Texas (Sherrod, Hockaday, and

McMillan, 1986).

Stuart et al. (2007) advanced the hypothesis that the absence

of mangroves in general at higher latitudes is attributable to a

freeze-induced xylem failure. Markley, McMillan, and Thomp-

son (1982) reported that chill resistance is based on the fatty

acid content and subsequent fluidity of cell membranes. They

found that seven- to 12-month-old red mangrove saplings

exposed to 28C to 48C for 144 hours showed leaf injury that

correlated with latitudinal origin of the seedlings. Proffitt and

Travis (2014) noted that cold stress conditions reduced

mutation rates in red mangroves and increased reproductive

output along a latitudinal gradient.

Salinity
Rhizophora mangle is a facultative halophyte and can occur

in environments where salinity ranges from 0 to 90 ppt

(Orihuela, Diaz, and Conde, 1991; Stern and Voigt, 1959) but

typically occurs where the range of salinities is close to sea-

water conditions (Pezeshki, DeLaune, and Patrick, 1989). In

the short term, high soil salinity (90 ppt) limits growth,

whereas in the long term it can lead to mortality (Cintron et al.,

1978). They proposed that cyclic rainfall patterns and hurri-

canes act as regulators of speed and direction of succession.

Rainy periods are associated with lower soil salinities and

expansion of the red mangroves. Drought periods result in high

soil salinities and mangrove mortality. Salinity, in combination

with water logging, influences enzymatic functions, stomatal

activity, carbon fixation, and water-use efficiency (Pezeshki,

DeLaune, and Meeder, 1997). High salinity, low nutrient level,

and high sediment sulfide concentration all significantly

decreased CO2 assimilation, stomatal conductance, and plant

growth (Lin and da S.L. Sternberg, 1992b). High nutrient

levels can partially alleviate growth depression because of high

salinity (Lin and da S.L. Sternberg, 1992b). Hyperspectral

remote sensing can be used to assess large-scale salinity stress

of mangroves (Song, White, and Heumann, 2011).

Salinity affects enzymatic reactions, stomatal functions,

carbon assimilation, and water-use efficiency and regulates

photosynthesis and respiration (Lovelock et al., 2006; Pezeshki,

DeLaune, and Meeder, 1997). Hypersalinity is a primary factor

in limiting the distribution of R. mangle (Chen and Twilley,

1999; Song, White, and Heumann, 201l; Wier, Tattar, and

Klekowski, 2000). Rodrı́guez-Rodrı́guez, Mancera-Pineda, and

Rodrı́guez (2016) reported a die-off of R. mangle in Colombia

attributable to hypersalinity.

In well-developed stands of red mangrove in Florida, optimal

conditions for growth occur in salinities ranging from 24.5 after

heavy rain to normal sea-water salinity of 33.5 (Maybruck and

Rogerson, 2004). In Puerto Rico, Cintron et al. (1978) reported

rainy periods associated with lower sediment salinity that

resulted in the expansion of the red mangrove zone. Monotypic

stands of red mangrove occur in Hawaii in salinities ranging

from 15 to 55. Lin and da S.L. Sternberg (1994) found that fine

root mass in dwarf forms increased and that overall root

biomass increased during the wet season presumably as a

result of lower salinities. In general, Guanghui and Sternberg

(1993) found that fluctuating salinity has significant negative

effects on photosynthesis and plant growth relative to constant

salinity of the same mean.

Hao et al. (2009) found that dwarf forms of red mangrove

have lower stem vessel diameters and lower sapwood-specific

hydraulic conductivity than tall trees. Dwarf forms have

smaller leaf sizes, lower CO2 assimilation rates, and lower

stomatal conductance than tall trees. Hao et al. (2009)

suggested that the lower water transport efficiency of dwarfs

may be caused by high salinity in the surface soils, notably in

the dry season. Melcher et al. (2001) found that R. mangle

adjusts hydraulic properties of its water-transport system, as

well as the leaf osmotic potential, in concert with the

environmental growing conditions.

Metabolic processes in roots counteract the admission of salts

into the vascular system. Gilbert, Mejia-Chang, and Rojas

(2002) found that via ultrafiltration in the roots, salt is largely

prevented from entering the vascular tissue, but a small

amount is ultimately found in leaves. Red mangrove does not

actively secrete salt from leaves by salt glands as A. germinans

does.

Smith and Snedaker (1995) stated that red mangrove

maintains a high negative internal osmotic pressure while

permitting an intake of freshwater; therefore, hydraulic

properties of water and cellular osmotic potential are main-

tained. Sperry, Tyree, and Donnelly (1988) reported that red

mangrove loses 80% of its hydraulic conductivity in the range of

–6.0 to –7.0 MPa (Pascal metric units). Field populations of R.

mangle typically have xylem pressures ranging between –2.5

and 4.0 MPa (Sperry, Tyree, and Donnelly, 1988). They found

that water-column breakage occurs when air enters water-

filled vessels from a neighboring air-filled one via pores in the

shared pit membranes. Embolism follows breakage of the water

column (Sperry, Tyree and Donnelly, 1988).

Nutrient Limitation
Nitrogen-use efficiency in mangroves and nutrient reabsorp-

tion are among the highest in angiosperms (Feller et al., 1999),

but macronutrient limitation (nitrogen and phosphorus) is still

one of a variety of factors that influence red mangrove growth

and biomass (Feller et al., 2002). Patterns of nutrient limitation

are complex. The few tropical and subtropical mangrove

wetlands that have been studied seem to be either nitrogen
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or phosphorus limited (Boto and Wellington, 1983; Feller, 1995;

Feller et al., 1999). Phosphorus deficiency has been shown to be

a major factor limiting plant growth in some dwarf mangrove

forests (Feller, 1995). In mesocosm studies in Florida, Koch and

Snedaker (1997) found that phosphorus limitation in sediment

is a more important limiting factor than nitrogen availability.

Feller et al. (2003) found in Florida that growth rates where

dwarf mangroves occur increased significantly after nitrogen

fertilization, indicating nitrogen limitation. They found that

dwarfs resembled vigorously growing saplings two years after

nitrogen fertilization. Feller, Lovelock, and Piou (2009) studied

the effects of macronutrient deficiencies on red mangrove in

Florida, Belize, and Panama. They reported that fringe

intertidal and inland dwarf zones of R. mangle on siliciclastic/

carbonate sediments in Florida are deficient in nitrogen. In

Belize, where substrates comprise peat and limestone, the

intertidal fringe was nitrogen deficient whereas the dwarf zone

was phosphorus deficient. In Panama, where substrates

comprised peat and limestone, plants of the intertidal fringe

responded to the addition of nitrogen whereas in the adjacent

dwarf stands plants were phosphorus deficient (Feller, 1996;

Feller, Lovelock, Piou, 2009).

In a field experiment Feller (1995) and in a greenhouse

experiment Koch and Snedaker (1997) examined the effects of

adding fertilizers of nitrogen, phosphorus, and potassium to

dwarf red mangroves. They found slow growth rates in controls

and in nitrogen-fertilized dwarfs. Growth in leaf area and

woody shoots of dwarf forms was stimulated by the addition of

the three macronutrients in combination and in the addition of

only phosphorus. They concluded that phosphorus enhances

stem elongation and leaf area expansion and was the most

important macronutrient.

Nutrients
Lovelock et al. (2006) found that the addition of phosphorus

to dwarf R. mangle stimulates the expansion of xylem vessel

diameters and leaf area indices. They concluded that hydraulic

properties are a key to controlling growth. Zimmermann et al.

(1994) reported the occurrence of a viscous protein in xylem sap

that enhances long distance water transport. Lovelock et al.

(2004) noted that stem hydraulic conductance in dwarf red

mangrove increased six times after the addition of phosphorus

and 2.5 times after the addition of nitrogen compared to

controls. Overall shoot growth increased 10-fold with the

addition of phosphorus and twofold over controls after the

addition of nitrogen fertilizer.

Potential for nitrogen to be supplied by nitrogen-fixation

occurs in the aged leaf litter of the sediment (Gotto and Taylor,

1976; Peligri, Rivera-Monroy, and Twilley, 1997). Birds of

numerous species are common to red mangroves and are

potentially abundant enough to be another nutrient source for

mangroves (Walsh, 1974). Fry and Cormier (2011) used a

combination of chemical markers (15dN, 13dC, C, N, P, B, Cu,

Mg, K, and Ca) as indicators of nitrogen loading in red

mangrove habitat.

Substrate Characteristics
Mangrove soils are essentially anoxic and are usually

characterized by having high sulfide levels (Jacinthe and

Groffman, 2006; Lacerda et al., 1993; McKee, 1993, 1995c).

McKee (1996) found that anoxic sediment conditions modify

physiological and morphological growth patterns. Maintenance

of root oxygen concentrations, root respiration rates, and root

extension rates by R. mangle demonstrated an ability to reduce

low oxygen stress, unlike A. germinans with minimal changes

in root morphology and physiology.

Mangals occur in substrates that range from hypo- to

hypersaline conditions and low- to high-nutrient levels.

Optimal conditions for the development of red mangrove

stands are on alluvial substrates on coastlines that are rich

in organic matter and where soil particles comprise fine silt and

clay (Demopoulos and Smith, 2010; Walsh, 1974). In Hawaii,

where red mangrove has been introduced, this species has

colonized saline sands overlain by silty, alluvial sediments (Cox

and Allen, 1999). Sheridan (1997) also reported this species in

sandy clay substrates rich in organic content in Rookery Bay,

Florida. In Nigeria, Asuquo and Ewa-Oboho (2005) noted an

enriched development of the mangal in sediments comprising

sandy clays, silty clays, and fine sediment muddy flats.

Sediment/Nutrient
Substrate characteristics affect nutrient availability. Sauer

(1982) reported that R. mangle occurs on unconsolidated

calcareous sands in the Cayman Islands. Calcareous sub-

strates, typically deficient in phosphorus, are not conducive to

the development of a tall forest canopy of red mangrove

(Cordeiro da Cruz et al., 2013). Dwarf forms of red mangrove,

usually less than 5-m tall, characterized these substrate

conditions in Puerto Rico, the Florida Everglades, and sites

in Belize (Feller, 1995; Koch and Snedaker, 1997; Medina,

Cuevas, and Lugo, 2010). Medina, Cuevas, and Lugo (2010)

emphasized that the stunted growth of R. mangle in Puerto

Rico is a result of the combination of a calcareous substrate,

phosphorus deficiency, and seasonal water stress.

Water-Level Change
Global mean sea-level rise in the 21st century is 3.2 mm

year�1 (Kraus et al., 2014). Carbon dioxide and methane are the

principal players, and these gases are predicted to increase in

the earth’s atmosphere, accelerating the rate of sea-level rise.

Local disturbances such as hurricanes and tsunamis may also

affect sea level, causing a rise in sea level (at times) relative to

mean sea-level rise by soil and debris deposition (Stalter and

Baden, 1994) or elevation loss by peat collapse. Oil extraction in

the Gulf of Mexico may also cause the land there to sink,

exacerbating sea-level rise. Rates of sea-level elevation change

are variable, but all will affect mangrove distribution (Kraus et

al., 2014). Mangroves may contribute to accretion and positive

elevation change by aerial roots and sedimentation, subsurface

root accumulation, litter and root debris accumulation, and

benthic mat formation (Kraus et al., 2014).

Hydraulic properties of R. mangle are a key in promoting

growth. Dwarf and canopy tree heights are associated with

flooding, nutrient availability, and the absence of a salinity

gradient (Koch and Snedaker, 1997; Lovelock et al., 2006).

Mendoza et al. (2012) confirmed that water logging, pore water

salinity, and nutrient availability influence red mangrove

forest structure.

Flooding in conjunction with salinity influences enzyme

systems, stomatal function, carbon fixation, and water-use
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efficiency (Pezeshki, DeLaune, and Meeder, 1997). Ellison and

Farnsworth (1996b) indicated that mangroves are sensitive to

increasing water depth and seasonal variations in insolation.

They predicted that mangroves in coral cays in Belize will not

survive rising sea levels.

High water levels result in the loss of potential competitors of

R. mangle. Avicennia germinans, B. maritima, and Sarcocor-

nia (Salicornia) sp. do not survive long-term inundation (Vogt

et al., 2012). Rhizophora mangle saplings grow faster than L.

racemosa seedlings in reforested sites under higher water

levels. Red mangrove seedlings are highly resistant to total

flooding and survive for six months or longer (Elster, 2000).

Rising sea level that is attributable to global warming may

pose an additional threat to mangroves (Ellison and Farns-

worth, 1997) in the future if sea-level rise outpaces coloniza-

tion. Following the late Holocene, which was a period of greater

sea-level stability, a period of more rapid sea-level rise started

in the mid to late 19th century. The latest estimates for sea-

level rise are 3.2 mm year�1 although there are lower (1.9 mm

year�1 in the Caribbean) and higher (7.5 mm year�1 in

Indonesia) estimates (Kraus et al. 2014).

Ellison and Farnsworth (1997) evaluated reproduction,

physiology, growth, and anatomical changes in R. mangle

subjected to simulated rising sea level. They found that red

mangrove seedlings initially grew more rapidly in experimen-

tal higher water levels than under current (control) sea-level

conditions. However, at the conclusion of the experiment,

saplings under control conditions were 10 to 20% larger than

those that were placed in simulated sea-level rise conditions

(Ellison and Farnsworth, 1997).

Secondary Metabolites
A wide variety of carbon-based secondary metabolites have

been identified from red mangrove leaves and wood. Kandil et

al. (2004) reported that most of these compounds play a role as

deterrents to herbivory. Aromatic polyphenols such as tannins

may have astringent properties. These compounds comprise

23% of the leaf dry weight (Kandil et al., 2004). Koch,

Rullkötter, and Lara (2003) indicated that leaves have high

amounts of triterpenoids, including b-amyrin, germanicol,

taraxerol, and leucol, whereas tannins are also found especially

in the bark (Drabble, 1908). Barr et al. (2003) reported that red

mangroves periodically release low amounts of volatile iso-

prene and monoterpenes that contribute to ozone concentra-

tions and biogenic aerosol formation. Afzal-Rafii, Dodd, and

Fauvel (1999) found that long-chain alkanes lend biophysical

properties to cuticular properties of waxes produced by the leaf

epidermis, such as increased impermeability of the epidermal

layer.

Pollution
Rhizophora mangle in the intertidal zone adjacent to urban

centers is vulnerable to a wide variety of pollutants. Persistent

petroleum pollutants cause seedling mutations, defoliation,

death of populations, and loss of epibionts and motile animals

(Ellison and Farnsworth, 1996a). Proffitt, Devlin, and Lindsey

(1995) found that red mangrove mortality was greatest and

growth was lowest after a one-time oil spill under full sunlight

and hot conditions. Motor oil accounts for 40% of oil in harbors,

estuaries, and other coastal waterways (Proffitt, Devlin, and

Lindsey, 1995).

Proffitt and Devlin (1998) monitored effects of multiple

oilings of seedlings and saplings. They found no significant

effects on seedlings and saplings exposed to number-6 oil after

10 months of exposure over controls. A second oiling 32 months

later with number-6 oil resulted in reduced lateral stem

growth, fewer lateral stems, and fewer leaves than controls.

A combination of number-6 oil and crude oil was administered

in a second experiment. They found significant detrimental

effects on seedling and sapling survival, stem growth, number

of leaves, and leaf production after the first addition of crude oil

and number-6 oil over controls (Proffitt and Devlin, 1998).

Chindah et al. (2011) implied that crude oil may immobilize

mineral-nitrogen activities by bacteria during degradation of

crude oil. Crude oil also alters substrate properties and reduces

sediment porosity and gas exchange (Chindah et al., 2011).

Proffitt and Travis (2005) noted that contaminated sites have

higher levels of mutagenic stress. They reported higher

frequencies of propagules heterozygous for albinism in con-

taminated sites than in uncontaminated areas.

Burns et al. (1994) monitored the effects of the largest crude

oil spill in Panama that occurred in an area east of the Panama

Canal. They reported aromatic residues of crude oil in anoxic

sediments 5 years after the spill. They noted an increased

number of dead red mangrove rhizophores. They predicted a

20-year minimum recovery time for the loss of toxicity of

trapped crude oil in the sediment (Burns et al., 1994). Levings

and Garrity (1994) found that 13% of red mangroves were lost

in a crude oil spill. They found 10 to 51% fewer submerged roots

and shorter submerged roots at oiled locations.

Organochlorides pose a long-term major pollution problem in

the mangal. Espinosa, Campos, and Ramı́rez (1998) reported

high levels of toxic residues of lindane, heptachlor, aldrin,

DDE, and DDT in an estuary in Colombia. Lindane was more

common in the dry season. The effects of organochlorides on the

mangal ecosystem are largely unexplored.

The red mangrove community located close to urban

development and industry are subject to a wide variety of

heavy metal contaminants (Martins de Oliveira et al., 2015;

Ramos e Silva, da Silva, and de Oliveira, 2006; Vilhena, Costa,

and Berredo, 2013). Ramos e Silva, da Silva, and de Oliveira

(2006) and Silva, Lacerda, and Rezende (1990) stated that

mangroves, including R. mangle, provide efficient biogeochem-

ical transport. They suggested that the red mangrove commu-

nity contributes to cycling of pollutants. Reducing conditions in

mangrove sediments favors heavy metal preservation and

immobilization as sulfides (Silva, Lacerda, and Rezende, 1990).

Iron, zinc, and lead primarily remain concentrated below the

sediment surface in the root zone. Aluminum is concentrated in

rhizophores, cadmium in lateral branches, and nickel in large

trunks (Ramos e Silva, da Silva, and de Oliveira, 2006). Walsh,

Ainsworth, and Rigby (1979) confirmed that lead is not

translocated, but cadmium and mercury are. Methyl mercury

is highly toxic and tends to become more concentrated with

increasing salinity (Martins de Oliveira et al., 2015). Ruelas-

Inzunza and Páez-Osuna (2006) found cadmium and manga-

nese translocated to twigs and copper and zinc to leaves.
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Vilhena, Costa, and Berredo (2013) found zinc, strontium,

arsenic, and selenium concentrated in red mangrove leaves.

These heavy metals enter the food chain when crabs (Ucides

cordatus) consume contaminated leaves. They indicated that

selenium was concentrated in crab muscle tissue and in the

hepatopancreas. Iron plaques (metal-rich deposits on roots)

may moderate uptake of heavy metals by roots. Machado et al.

(2005) found that seedlings exclude iron, manganese, and zinc

by iron plaque formation.

Studies of the impacts of sewage outflow, air pollution, and

long-term effects of plastic flotsam on red mangroves are

limited. Ricarda Boehm et al. (2016) reported that sewage

outflow reduces crab herbivory of R. mangle propagules. They

found that herbivory was significantly lower in contaminated

than in uncontaminated sites. Pereira Arrivabene et al. (2015)

reported that air pollution by particulate iron from mining

operations had no evident morphological or structural damage

to highly exposed leaves. Ivar do Sol et al. (2014) noted that

plastic debris is trapped and retained by rhizophores for

months to years. They did not indicate the long-term effects of

plastics degradation on the ecosystem.

Photosynthesis
Rhizophora mangle is a C3 facultative halophyte in carbon

fixation with its light independent reaction of photosynthesis

(Kathiresan and Bingham, 2001). Suárez (2003) stated that

chlorophyll a and b levels are highest in adult leaves but that

chlorophylls decline with age. Flores-de-Santiago, Kovacs, and

Flores-Verdugo (2012) found no seasonal differences in leaf

chlorophyll a content. They reported higher levels of chloro-

phyll a in the upper canopy than in shade leaves in the middle

and lower canopies. Farnsworth and Ellison (1996) noted that

photosynthesis rates did not differ between summer and

winter. Demmig-Adams et al. (1989) found that red mangrove

leaves exposed to 58C and high light intensities affected

photosystem II and enzyme-influenced carbon fixation path-

ways, i.e., zeaxanthin synthesis and non-photochemical fluo-

rescence quenching were reduced. They found that zeaxanthin

synthesis and nonphotochemical fluorescence quenching were

reduced under the previous conditions.

Detrés, Armstrong, and Connelly (2001) reported that

ultraviolet (UV) radiation alters photosynthesis and photo-

protective UV pigments. The UV radiation reduces chlorophyll

content and affects the protective role of flavonoids. Full solar

radiation showed lower red mangrove leaf reflectance and a

shift of 5 nm in the inflection point at the red edge of the visible

spectrum (Detrés, Armstrong, and Connelly, 2001). They noted

that even minor shifts of UV radiation could have significant

effects on pigments.

Snedaker and Araújo (1998) compared net primary produc-

tion and stomatal conductance under ambient and elevated

CO2 levels among R. mangle, A. germinans, L. racemosa, and

C. erectus. They found no significant difference among the

species in net primary conduction and instantaneous transpi-

ration efficiency (ITE) at ambient CO2; however, at higher

CO2 (361–485 ppm) ITE increased 2.7-fold in Rhizophora, 1.9-

fold in Avicennia, and 1.5-fold in Laguncularia and Con-

ocarpus. They concluded that the ITE pattern was consistent

with the classical zonation pattern of these species. Sobrado

(2000) looked experimentally at gas exchange and hydraulic

properties of three mangrove species: R. mangle L., L.

racemosa (L.) Gaertn.f, and A. germinans (L.).L. He found

that A. germinans had a higher CO2 assimilation rate than R.

mangle or L. racemosa.

Salinity and CO2 levels influence enzymatic activities that

affect photosynthesis and respiration. Farnsworth and Ellison

(1996) stated that elevated CO2 levels increase biomass, total

shoot length, branching, and leaf area. They found that

doubling CO2 levels decreased stomatal density as epidermal

cells enlarged. Lin and da S.L. Sternberg (1992a) found that

dwarf red mangroves have lower intercellular CO2 concentra-

tions and higher water-use efficiency than taller red man-

groves. Photosynthetic gas exchange measurements showed

15% lower CO2 assimilation, 6% lower intercellular CO2

concentrations, and almost 12% higher water-use efficiency

in dwarfs than in tall canopy trees (Lin and da S.L. Sternberg,

1992a).

PRODUCTIVITY, BIOMASS, AND LITTER
Mangroves rank second only to coral reefs in gross

productivity in tropical marine ecosystems (Arreola-Lizárraga,

Flores-Verdugo, and Ortega-Rubio, 2004). In general, man-

grove primary productivity is a function of salinity, light,

nutrients, sulfides, and duration of flooding (Twilley and

Rivera-Monroy, 2005). Net global primary productivity of

mangroves is estimated at 218 (1022) g year�1 with 26 to 34

(l022) g year�1 subject to burial (Smoak et al., 2013). Data for net

global primary production for red mangroves are lacking.

Productivity
Lugo and Snedaker (1974) measured primary production at

several sites in Florida and concluded that gross primary

productivity (GPP) of red mangrove decreased with increased

salinity (Table 1). In areas of low salinity and under similar

light intensity, GPP of R. mangle was four times as great as

that of A. germinans. In sites of intermediate salinity,

Laguncularia racemosa exhibited twice the GPP of R. mangle

(Lugo and Snedaker, 1974). In Florida, Koch (1997) indicated

that productivity of R. mangle in riverine sites is usually

highest and lowest in dwarf forests.

In Brazil, Silva, Mozeto, and Ovalle (1998) estimated red

mangrove root biomass production at 7439 kg ha�1 year�1, and

the sediment sequestered 452 kg of phosphorus ha�1 year�1.

Imbert and Menard (1997) reported productivity values for A.

germinans and R. mangle at Fort-de-France Bay, Martinique.

They estimated biomass of the combined species of 19 tons ha�1

year�1. They found that red mangrove populations produced

2.5 times more leaves than A. germinans. For Hawaii, Cox and

Allen (1999) estimate of the average net daytime canopy

Table 1. Gross and net primary production (g C m–2 day) of red mangroves

at four sites in Florida.

Location GPP NPP

Rookery Bay 6.3 4.4

Key Largo 5.3 0

Hammock Forest 1.9 1.3

Scrub Forest 1.4 0

Note: From Lugo and Snedaker (1974).
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primary production was 10.5 g m2 day�1 or 76.6 t ha year�1.

Ross et al. (2001) provided estimates of above-ground biomass

production in the mangrove fringe and adjacent dwarf forests

at Biscayne National Park in Florida. They found that above-

ground productivity in the tall canopy forest was about three

times higher than that in the dwarf forest, 26.1 versus 8.1 Mg

ha�1 yr1, respectively. Félix-Pico et al. (2006) estimated annual

primary productivity of R. mangle (509 g dry wt m�2), L.

racemosa (805 g dry wt m�2), and A. germinans (444 g dry wt

m�2) at La Paz Bay, Baja California.

Biomass and Litter
Mangrove biomass is governed by the parent substrate and

latitude, with productivity greatest near the equator (Co-

meaux, Allison, and Bianchi, 2012; Cuc and de Ruyter van

Steveninck, 2015). Aboveground biomass is in part a reflection

of productivity in a plant community (Osland et al., 2014) and

the potential to store carbon in the mangal zone (Cuc and de

Ruyter van Steveninck, 2015). Biomass is usually given as

aboveground biomass with a range from 1653 to 17,442 kg ha�1

year�1 (Table 2). Feliciano, Wdowinski, and Potts (2014)

assessed mangrove above-ground biomass and structure using

terrestrial laser scanning.

Belowground biomass is not often quantified, but because of

its role in carbon storage it is gaining attention. For example,

Ochoa-Gómez et al. (2019) found 209.2 6 144.6 Mg C ha�1 in

red mangrove sediment in La Paz Bay, Mexico. In a typical

fringe forest in Brazil with tree density of 4510 stems ha�1,

aboveground biomass was 65 t ha�1 (80% of total biomass),

whereas belowground biomass was 16 t ha�1 (Silva et al., 1991).

Aerial and belowground roots accounted for 40% of the total

biomass, confirming the importance of such structures to

mangrove forests.

Rhizophora mangle has the highest rate of litter decompo-

sition of all other mangrove species that occur in the regularly

inundated intertidal fringe. Litter dynamics are important for

the export of detritus as well as for nutrient cycling. Litter

degradation is more rapid in the lower intertidal fringe because

of frequent inundation. Leaves contribute about 90% of litter,

litter decomposition is rapid, and initial rapid decomposition is

followed by deceleration and slow weight loss (Bomfin de

Oliveira, Rizzo, and da Conceição Cuerreiro Couto, 2013).

Immobilization of nutrients in leaf litter during decomposition

and high root-shoot ratios contribute to nutrient-conserving

processes (Feller, Lovelock, and Piou, 2009; Reef, Feller, and

Lovelock, 2010). As in most mangle ecosystems, decomposition

and export of litter is dependent on the magnitude of tidal

flooding (Twilley, Lugo, and Patterson-Zucca, 1986).

Rapid weight loss of leaf litter is attributable to leaching and

degradation of soluble sugars and highly soluble polyphenolic

tannins (Bomfin de Oliveira, Rizzo, and da Conceição Cuerreiro

Couto, 2013; Lima de Colpo and Colpo, 2014). Little data are

available for the decomposition of R. mangle wood. Romero,

Smith, and Fourqurean (2005) found that wood decomposed

faster on the sediment surface than wood buried in the

sediment. They noted that 17 to 68% of phosphorus in wood

litter was leached during the first two months of decomposition.

Anaerobic rates of leachable lignocellulosic compounds are 10

to 30 times slower than in aerobic conditions (Benner and

Hodson, 1985). The polysaccharide fraction of lignocellulose is

mineralized twice as quickly as mineralization of the lignin

fraction. Lignocellulose and hemicellulose are resistant to

decomposition, and lignin is most resistant (Benner and

Hodson, 1985).

Bomfin de Oliveira, Rizzo, and da Conceição Cuerreiro Couto

(2013) found that 95% of red mangrove leaves decayed within

35 days. Benthic macrofauna play an important role in litter

decomposition (Bomfin de Oliveira, Rizzo, and Conceição

Guerreiro Couto, 2012; Proffitt and Devlin, 2005; Proffitt et

al., 1993). Proffitt et al. (1993) found that snails (Melampus

coffeus) consumed 80% of brown R. mangle leaves within six

weeks and 90% of all leaves within seven weeks.

Florida
Castañeda-Moya et al. (2011) found belowground biomass of

roots ranged from 2317 to 4673 g m2 in the Everglades. The root

zone from 0- to 45-cm deep had 62% to 85% of the root biomass.

Davis et al. (2003) found that leaching accounted for 33% of

leaf decomposition after three weeks. Leaching losses peaked

the second day after leaf fall. They found that 60% of the leaf

mass was retained after 1 year of decomposition. Davis et al.

(2003) concluded that litter may be a substantial reservoir of

phosphorus in the ecosystem.

Ellis and Bell (2004) studied the effects of creating canopy

gaps in mangrove stands relative to complete canopies. They

found no difference between the biomass of standing litter on

the forest floor beneath the trimmed canopy and the undis-

turbed intact canopy.

Hawaii
In Hawaii, where R. mangle was introduced in 1902, high

levels of tree densities and productivity have been reported

(Allen, 1998; Cox and Allen, 1999). Cox and Allen (1999)

recorded greater than 24,000 trees ha1 and 121 seedlings m2.

Because of very high rates of propagule production and low

predation, densities are high and are comparable or higher than

productivity values for the Gulf of Mexico and for mangal stands

in southeast Asia (Allen, 1998; Cox and Allen, 1999). Above-

ground biomass ranged from 266 tons ha�1 to 279 tons ha1.

Caribbean
Juman (2005) reported aboveground biomass of red man-

grove at Bon Accord Lagoon, Tobago, ranging from 20 to 25.9 kg

dry weight m2. Decomposition of leaf litter was estimated as 12

kg dry weight day�1.

Golley, Odum, and Wilson (1962) estimated R. mangle

biomass of 778 g m2, wood dry weight of 5507 g m2, and peat

and root biomass of 45 kg m2 in Puerto Rico.

Table 2. Biomass of Rhizophora mangle in Brazil, Puerto Rico, Mexico,

Florida, Hawaii and Martinique.

Country

Biomass

(kg ha�1 year�1) Source

Brazil 7939 (including roots) Silva, Mozeto, and Ovalle (1998)

Puerto Rico 7780 Golley, Odum, and Wilson (1962)

Mexico 1653 Guerra-Santos et al. (2014)

Florida 2317–4673 (including

roots)

Castañeda-Moya et al. (2011);

Ross et al. (2001)

Hawaii 8065 Cox and Allen (1999)

Martinique 17,442 Imbert and Menard (1997)
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Mexico
At Veracruz, Mexico, Aké-Castillo, Vázquez, and López-

Portillo (2006) estimated litter production of 1116 g m2 year1

and total leaf litter fall ranging from 3.4 to 17 tons ha�1 year1.

They noted that leaching and microbial degradation accounted

for 50% of litter loss. In the rainy season, the snail Nerita

reclivata increased the rate of decomposition. Utrera-López

and Moreno-Casasola (2008) reported productivity of A.

germinans, L. racemosa, and R. mangle at two basins at La

Mancha Lagoon, Veracruz. The estimated litter fall ranged

from 2.35 g m2 day1 (Utrera-López and Moreno-Casasola,

2008).

In Campeche, Guerra-Santos et al. (2014) included C. erectus,

a mangal associate, with A. germinans, L. racemosa, and R.

mangle in aboveground biomass estimates. They found that

aboveground biomass was 182 tons ha�1. Carbon sequestration

ranged from 34 to 480 tons ha�1.

In arid environments on the shorelines of the Sonoran Desert

in Sinoloa, Sonora, and Baja California, mangroves produce

surprisingly high amounts of organic matter. Félix-Pico et al.

(2006) estimated biomass of R. mangle, L. racemosa, and A.

germinans at La Paz Bay, Baja California. They found 2960

individuals ha�1 with a mean height of 3.1 m. Litter fall was

509 g dry weight m2. López-Medellı́n and Ezcurra (2012) stated

that litter fall production was associated with latitude on the

Mexican Pacific coast and estimated litter fall of 1053 g ha�1

year1. Adame and Fry (2016) examined century-old sediment

cores on the Mexican Pacific coastline. They concluded that

buried carbon reserves have changed little over the past

century. Productivity had been constant and decomposition

rates were slow.

Belize
In Belize, Middleton and McKee (2001) and Koltes, Tschirky,

and Feller (1998) found that amphipods and crabs triple the

overall rate of leaf litter decomposition. These invertebrates

consumed all unbagged leaf litter within 23 days. Twigs and

roots required 540 and 584 days for decomposition, respec-

tively.

Brazil
In southern Brazil, Cunha, Tongella-de-Rosa, and Costa

(2005) estimated R. mangle tree density of 4700 trees ha�1 and

litter production of 214,095 kg ha�1 year�1. They related that

the ecosystem is highly productive because of high carbon

concentrations in stems and roots. Silva, Mozeto, and Ovalle

(1998) reported fluctuations of phosphorus in detritus in

Sepetiba Bay. They reported the addition of 3.9 kg m2 of

phosphorus to the substrate, of which 63% of the phosphorus is

incorporated into leaf biomass.

In northern Brazil, Schories et al. (2003) found that litter was

exported from the R. mangle intertidal fringe 10 to 17 times

faster in spring tides than in neap tides. They estimated that

tidal export and decomposition account for 39% of annual litter

production and crabs (U. cordatus) consume the bulk of the

litter. Nordhaus, Wolff, and Diele (2006) estimated that leaf

litter and propagule biomass of 16.4 tons ha�1 year�1 in

nutrient-poor mangal in the dry season.

At a polluted mangrove site at Natal, Brazil, Ramos e Silva,

da Silva, and de Oliveira (2006) reported leaf fall of 11,158 kg

ha�1 year�1, and of that total, 8618 kg ha�1 year1 were

branches.

REPRODUCTION
Rhizophora mangle lacks the capacity for vegetative repro-

duction. Red mangrove stems are too dense to float after

tropical storms disrupt the intertidal fringe (Rumbold and

Snedaker, 1994). Both green and dry wood have a greater

density than sea water; therefore, rafting and establishment of

stem fragments are unlikely (Rumbold and Snedaker, 1994).

Elster and Perdomo (1999) further noted that no red mangrove

vegetative cuttings survived after 110 days of planting trials.

Nadia and Machado (2014) and Tomlinson (1994) reported

that R. mangle is wind pollinated, but Tomlinson (1994) noted

that the stigma shape is not conducive to catching wind-born

pollen and that bees are frequent visitors to Rhizophora

flowers. Although it can self-pollinate, Nadia and Machado

(2014) noted that its fruit production rate by spontaneous self-

pollination is low (2.56%) compared with wind pollination

(19.44%). Rhizophora mangle exhibited ambophilous pollina-

tion with a fruit set of 7.2% and a highly effective pollinator, the

hoverfly Copestylum sp. (Sánchez-Núñez and Mancera-Pineda,

2012b). Reproduction of R. mangle appears to be favored by

self-pollination, but cross-pollination does occur (Lowenfeld

and Klekowski, 1992; Menezes, Oliveira, and Mello, 1997).

Phenology
Barthélémy and Caraglio (2007) found that vegetative

growth of red mangrove is continuous. Mehlig (2006) noted

that there is no distinctive growth cycle. Gill and Tomlinson

(1971b) indicated that the rate of leaf expansion and leaf fall

peaks in summer. Leaf fall is correlated with leaf expansion. In

Belize, Ellison and Farnsworth (1996b) found that the relative

rates of change in the number of shoot meristems and stem

length peaked 1 month after solar insolation peaked in May.

In Martinique, Mehlig (2006) reported that flowering and

leaf production are linked and that low temperatures reduce

flower production. Leaf production declines slightly at the end

of the dry season, and the maximum life span of a leaf is about 1

year. Davis (1940) stated that R. mangle reaches sexual

maturity in 4 to 5 years, but precocious reproduction (plants

,2 years old) has been found in Florida at the northern edge of

their distribution (Dangremond and Feller, 2016).

Flowering in red mangrove is expected at any time of the year

in tropical regions (Agraz-Hernández et al., 2011; Barreiro-

Gümes, 1999; de Lima Nadia, Cerdeiro Morellato, and

Machado, 2012; Garcı́a-Hansen et al., 2002; Gill and Tomlin-

son, 1971b; Mehlig, 2006). In Brazil, de Lima Nadia, Cerderio

Morellato, and Machado (2012) noted a flowering peak in April

to June that corresponds to the rainy season. Precipitation

plays an important role in the intensity of flowering and

subsequent production of propagules.

In the Amazon region of Brazil, Fernandes (1999) found

significant variation in the flowering phenophase. Flowering

peaks were noted from August to January when temperatures

are high. Fruiting peaks and propagule dispersal are from

October to April during the wet period.

In a study on San Andrés Island in the Caribbean off the

coast of Colombia, Sánchez-Núñez and Mancera-Pineda
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(2012a) noted that flowering is dependent on seasonally

contrasting salinity conditions. They found that flowering

intensity is regulated by pore water salinity and energetic

balance and that flower and floral bud maturation depends on

the amount of resources available after water and salinity

regulation.

Fruit development requires 4 to 7 months after flowering,

and the largest production of propagules is 4 to 6 months later

(Gill and Tomlinson, 1971b). Propagules are produced after the

highest intensity of fruiting. Gill and Tomlinson (1971b) found

peak propagule production in January at the end of the dry

season. In Martinique, Mehlig (2006) reported that propagules

mature and are dispersed in the wet season. Timing of the

release and dispersal of propagules is dependent on day length

(de Lima Nadia, Cerderio Morellato, and Machado, 2012).

Release of propagules is nearly aseasonal near the equator but

becomes more seasonal the farther away from the equator (Van

der Stocken, López-Portillo, and Koedam, 2017).

Pollen
Bertrand (1983) provided a detailed description of R. mangle

pollen. The pollen is zonocolporate and equatorially broad with

a continuous band. The exine is thick with pits evenly

distributed over the surface. The outline of the grain is

irregularly circular in the equatorial view and semi-angular

in the polar view. The grain axis is 22 lm to 24 lm, and the

equatorial diameter is 20 lm to 22 lm (Bertrand, 1983).

Mangrove pollen is a good indicator of sea-level change and is

used to describe transgressions and regressions of Quaternary

coastal deposits (Bertrand, 1983). Rhizophora mangle pollen

dominated sediment cores from 6200 to 3400 BP in mid-

Holocene deposits in Chiapas, Mexico (Joo-Chang, Islebe, and

Torrescano-Valle, 2015). Torrescano and Islebe (2006) found

that R. mangle and C. erectus pollen dominates mid-Holocene

deposits from 4600 to 4000 BP at the Yucatan Peninsula,

Mexico.

Propagules and Viability
Red mangrove seeds are viviparous, and the seedling unit is

termed a propagule (Gill and Tomlinson, 1969). Vivipary is best

described as precocious growth of the embryo with no

dormancy period while the seedling is still attached to the

parent plant (Farnsworth and Ellison, 1997). Seedling devel-

opment requires four to eight months before it is detached as a

propagule (Farnsworth and Ellison, 1997; McKee, 1995b;

Mehlig, 2006). At maturity the cotyledons remain on the tree

and propagules can persist for a year or more under forest

canopies (Rabinowitz, 1978b).

Propagule predation by herbivores is high. Longonje and

Rafaelli (2014) found that two-thirds of R. mangle propagules

are consumed by mangrove crabs in Cameroon. Farnsworth

and Ellison (1997) noted that a host of herbivores nearly

doubled the abscission rate of immature propagules.

No seed bank is available for R. mangle; however, propagules

are viable for a year or more (Arbeláez-Cortes et al., 2007;

Davis, 1940; Sauer, 1982; Sengupta et al., 2015). Davis (1940)

found that propagules have continuous development of roots

while floating in cages.

Mature propagules range in length from 12 to 40 cm (Allen

and Krauss, 2006; McKee, 1995b; Smith and Snedaker, 2000;

Sussex, 1975). Propagule length is a function of hypocotyl

elongation (McKee, 1995b). Large propagules grow more

rapidly and have lower mortality than smaller ones (Rabino-

witz, 1978a; Sousa, Kennedy, and Mitchell, 2003). Stomata are

absent, but lenticels bearing chloroplasts are conspicuous

(Smith and Snedaker, 2000). Allen and Krauss (2006) and

Smith and Snedaker (2000) reported that large propagules

weigh 20 g or more.

Dispersal
The early life history of R. mangle comprises dispersal,

stranding, and establishment of the seedling-propagule unit. In

Martinique, primary release of propagules occurs during the

wet season (Mehlig, 2006). The action of tides and oceanic

currents plays an important role in dispersal (Gunn and

Dennis, 1999). Sengupta et al. (2005) found that propagules are

buoyant for 20 to 100 days.

Dispersal is usually highly localized. Most propagules are

stranded within 2 to 5 km from parent trees (Blanchard and

Prado, 1995; Sengupta et al., 2005). However, Gunn and

Dennis (1972) found live seedlings stranded on North Carolina

beaches 805 km from the nearest source in Florida.

Germination Ecology and Establishment of Seedlings
Sousa, Kennedy, and Mitchell (2003) found that seedlings

established regardless of propagule size, but large propagules

grew more rapidly. In Florida, Rey (1994) reported that

seedling mortality was less than 10% yr�1. Predation by

herbivores and desiccation are the major causes of seedling

failure (McKee, 1995c). Rey (1994) stated that moderate

salinities and a lack of competition from canopy trees are

largely responsible for low mortality and high growth rates.

Ellison and Farnsworth (1993) found that seedlings planted in

open canopy sites had greater survivorship, grew twice as fast,

produced more leaves, and had less damage by herbivores than

seedlings growing beneath the intact canopy. Litter in the

substrate can be an important factor in seedling establishment.

Chapman and Feller (2011) found that seedlings grew rapidly

in the A. germinans litter.

A long-held assumption of propagule-seedling establishment

was that propagules planted themselves by a ‘‘dartlike’’ process

where the elongated propagule drops at the distal root end into

the muddy sediment and assumes an upright position. This

may be true in a limited sense, but propagule dispersal at more

distant sites usually deposits propagules in a horizontal

position.

Cheeseman (2012) and Tomlinson and Cox (2000) discussed

the anatomical adaptations of R. mangle for vertical orienta-

tion of the propagule, but Fisher and Tomlinson (2012) stated

that Cheeseman (2012) did not make a comprehensive review

of the literature on the topic. Tension wood fibers produced by

the secondary xylem at the distal end of the propagule

seedling form a hook that aids in the righting of the seedling.

Fisher and Tomlinson (2002, 2012) stated that extreme

bending occurs in the hook region above the basal 1.0 cm of

the hypocotyl where roots are formed. The morphological

result of wood tension fiber action and the hook is that the

shoot is raised above the tidal level. The process takes several

months, and the elevation of the seedling is related to

production of additional secondary xylem and the abundance
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of tension wood fibers on the adaxial side of the hook region.

Cheeseman (2012) stated that this developmental phenome-

non improves chances of establishment of R. mangle in

unpredictable fluctuating sediments.

POPULATION BIOLOGY
As might be expected from a widely distributed pantropical

species with propagules often dispersed by oceanic currents,

genetically distinct populations of R. mangle have evolved.

Colonization or recolonization by a few individuals followed by

selfing may produce morphological distinctions among popula-

tions. Kennedy et al. (2016, 2012) found genetically distinct

populations of red mangrove in the Caribbean and Florida with

a genetic relationship with R. mangle populations on the

Caribbean mainland. Albrecht et al. (2013) reported that small

red mangrove populations in Florida and on Caribbean islands

are genetically isolated but may not be morphologically

distinct.

The isthmus of Central America serves as a barrier to gene

flow from the Atlantic to the Pacific (Cerón-Souza et al., 2012,

2010). Takayama et al. (2013) further stated that the Central

American isthmus is a barrier to gene flow and that clear

genetic distinctions occur in R. mangle between Atlantic and

Pacific populations. They noted that the trans-Pacific dispersal

of R. mangle propagules has given rise to the taxon R. mangle

var. samoensis.

In Baja California and the Gulf of California in NW Mexico,

Sandoval-Castro et al. (2012) found two genetically distinct

populations. They indicated that genetic diversity is reduced in

northern populations because of small population sizes,

inbreeding, and by harsh environmental conditions.

Domı́nguez et al. (1998) studied floral variation of red

mangrove from 12 populations in Mexico—seven from the east

coast and five from the west coast. Through principal

component analysis, they found that floral morphology varia-

tion was strongly linked to calyx and corolla size and

gynoecium size. They suggested that frequent events of

extinction and recolonization by a few individuals, followed

by selfing, produced differentiation among red mangrove

populations in Mexico.

Population dynamics in coastal habitats are controlled by

biophysical factors and naturally occurring and anthropocen-

tric disturbances. Rhizophora mangle stands colonize the lower

intertidal fringe. In Panama, Rabinowitz (1978b) stated that

intraspecific competition is high. However, she reported that

greater than 50% of seedlings survive the first year. In

Ecuador, Blanchard and Prado (1995) found that seedling

densities are high within 5 m of large canopy red mangrove

trees of 25 cm diameter at breast height (dbh) or greater.

Seedlings were in frequently flooded sites with soil salinities

ranging from 23 to 26 ppt (Blanchard and Prado, 1995).

PLANT COMMUNITIES
Intertidal and adjacent tropical and subtropical communities

with R. mangle and associated species form a discrete plant

community referred to as a mangal (Tomlinson, 1994). Species

richness is low in the mangal (Table 3) because of the harsh

environment. Undisturbed mature stands of R. mangle in the

New World tropics and subtropics are noted for the paucity of

understory herbs, shrubs, and vines (Janzen, 1985). Snedaker

and Lahmann (1988) stated the hypothesis that the high

metabolic expenditure in intertidal environments prevents the

evolution of tolerant terrestrial species.

Mangrove forest patterns are the result of the interplay of

species-specific responses to abiotic stress factors, disturbance,

dispersal, and competition resulting in species zonation (Ball,

1988; Jiménez and Sauter, 1991; McKee, 1993; Snedaker,

1982). Structural patterns as a result of succession have been

discussed (Ball, 1980; Fromard et al., 1998; Smith, 1992), but

there is no consensus about the nature and outcome of

mangrove succession. Berger et al. (2006) used a spatially

explicit, individual-based model, KiWi (Berger and Hilden-

brandt, 2000), to test different hypotheses about the effect of

nutrient availability on species-specific growth rates. They

modelled secondary succession of mangroves (R. mangle, L.

racemosa, and A. germinans) and determined that the initially

dominating species were gradually replaced in the canopy and

that high growth rate of the pioneer species slows down relative

to those of later species. They excluded shade tolerance as a

factor and concluded that the height growth rate of the pioneer

species slowed down relative to those of later species. They

attributed slower growth to a decrease in nutrient availability,

which might be explained by species-specific differences in

nutrient-uptake efficiency. They concluded that a dispropor-

tionate change occurs in growth rates between L. racemosa and

A. germinans during early secondary succession in abandoned

Brazilian rice fields. Although nutrient availability was

deemed important, the extent to which this process contributes

to the observed successional process is not known (Berger et al.,

2006).

In Ecuador, Blanchard and Prado (1995) reported that the

red mangrove community has a limited number of associated

species including R. harrisonii, Pelliciera rhizophorae, and the

fern Acrostichum aureum. In Colombia, Urrego et al. (2009)

also noted a paucity of species in the red mangrove community,

including L. racemosa, A. germinans, C. erectus, and A.

aureum. The northernmost stand of R. mangle in Texas occurs

in the tidal segment of the Rio Grande, the border with Mexico.

This small population occurs with A. germinans (the dominant)

and Batis maritima adjacent to a shallow tidal inlet (DeYoe,

Lonard, and Judd, personal observations).

Rhizophora mangle as an Invasive Species
Red mangrove was introduced to Oahu, Hawaii, from stock

from Florida in 1902 to stabilize mudflats and now is

recognized as an invasive species (Allen, 1998). It is associated

with B. maritima, Spartina alterniflora (¼Sporobolus alterni-

florus), Hibiscus tiliaceus, Paspalum vaginatum, and Thespe-

sia populnea. Red mangrove currently occurs on nearly all

Hawaiian Islands and has negative economic and ecological

impacts. It has altered drainage patterns, reduced habitat for

the endangered Hawaiian stilt (Himantopus mexicanus), and

has posed aesthetic problems for shorelines (Allen, 1998). Red

mangroves have colonized fishponds, riparian zones, tidal flats,

reefs, embayments, lagoons, and 70% of the area around Pearl

Harbor (Chimmer et al., 2006). Both R. mangle and the Old

World mangrove Bruguiera sexangula are naturalized in
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Hawaii, but B. sexangula occurs only on Oahu (Allen and

Krauss, 2006).

INTERACTIONS WITH OTHER SPECIES
Rhizophora mangle is a pioneer species in the inundated

intertidal fringe, a habitat unsuitable for many plant species.

Populations are established without succession. Interspecific

competition may occur, but there are few competitors.

Intraspecific competition between sapling and neighboring

canopy trees may be important. On the other hand, neighbor-

ing individuals may also serve as buffers (facilitation) from

physical stress factors such as storms (Bertness and Shumway,

1993).

In Florida, Donnelly and Walters (2014) found that succulent

halophytic ground cover, including B. maritima and Sarcocor-

nia perennis, act as traps for the capture and retention of rafted

R. mangle propagules. They concluded that for red mangrove

revegetation efforts, the first step is to establish perennial

species, as listed previously, into disturbed sites before

planting.

Micro- and Macroflora
Rhizophora mangle is a foundation species that facilitates

the establishment and persistence of an abundance of micro-

and macroflora and fauna (Demopoulos and Smith, 2010). The

distribution of the microbial communities in Rhizophora forest

soil is influenced by the silt-clay percentages for both Bacteria

and Archaea and organic matter content significantly influ-

ences the distribution of Archaea (Barquil Colares and Macial

Melo, 2013). Symbiotic relationships are common with R.

mangle and other species. Epiphytic cyanobacteria (blue-green

algae) and marine algae are commensalistic on rhizophores

and submerged roots. Epiphytic benthic diatoms are primary

producers associated with submerged rhizophores and serve as

a food source for grazing invertebrates. Siqueiros Beltrones et

al. (2005) reported the occurrence of 171 diatom taxa on red

mangrove rhizophores on the west coast of Baja California,

Mexico. They stated that diatom population estimates are

among the highest ever inventoried for benthic species. In

Florida, Maybruck and Rogerson (2004) estimated that

pennate diatoms accounted for 2.4 3 106 cells g�1 dry weight

and were exceeded only by bacteria (6.9 3 l09 cells g�1 dry

weight).

Rigonato et al. (2012) documented the occurrence of 19

genera of cyanobacteria as epibionts on R. mangle in Brazil.

The orders Oscillatoriales and Nostocales constituted most of

the species. The genera Symphyonemopsis and Brasilomema

are common epiphytes (Rigonato et al., 2012).

Red mangrove rhizophores provide a stable substrate for the

attachment of epiphytic green and red algae. No data exist for

brown algae associated with rhizophores. Farnsworth and

Ellison (1996) found that epiphytic macroalgae were abundant

in well-lit windward sites in the mangal. In southern Belize,

Taylor, Littler, and Littler (1986) reported that fleshy sub-

merged marine algae are dominant on submerged rhizophores

that do not contact the sediment. Calcifying green algae

dominate roots that penetrate the sediment. Dominants on

hanging rhizophores are the red algae Acanthophora spicifera

and Spyridia filamentosa and the green alga Caulpera race-

Table 3. Representative species associated with Rhizophora mangle.

Species BRZ MEX PUE COR PAN NIC BER FLA GUI NCA

Acrostichum aureum X X X

Asparagus sprengeri X

Avicennia bicolor X

Avicennia germinans X X X X X X X X X X

Avicennia schaueriana X

Cyperus articulatus X

Batis maritima X

Borrichia frutescens X

Casuarina equisetifolia X

Cladium jamaicense X

Clusia sp. X

Conocarpus erectus X X X

Distichlis spicata X

Hibiscus tiliaceus X

Laguncularia racemosa X X X X X X X X X

Nypa fruticans X

Pachira aquatiaca X

Pandanus spp. X

Pelliciera rhizophorae X X X

Phoenix reclinata X

Raphia taedigera X

Rhizophora harrisonii X X

Rhizophora racemosa X X

Sarcocornia perennis X

Schinus terebinthifolius X X

Sesuvium portulacastrum X

BRZ ¼ Brazil (Bomfin de Oliveira, Rizzo, and da Conceição Guerreiro Couto, 2013; Calegarı́o et al., 2015; Castellanos-Galindo and Krumme, 2014; Souza-

Santos et al., 2016); MEX¼Mexico (Campeche and Yucatan) (Aké-Castillo, Vázquez, and López-Portillo, 2006; Day et al., 1996; Guerra-Santos et al., 2014;

Lara-Dominguez et al., 2005); PUE¼ Puerto Rico (Medina, Cuevas, and Lugo, 2010); COR¼ Costa Rica (Zamora-Trejos and Cortés, 2009); PAN¼ Panama

(Phillips, Rouse, and Bustin, 1997); NIC¼Nicaragua (Roth, 1992); BER¼Bermuda (Thomas, 1993); FLA¼Florida (Simpson, Feller, and Chapman, 2013);

GUI ¼Guinea (Kovacs et al., 2010); NCA ¼Nigeria and Cameroon (Ukpong, 1995).
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mosa var. occidentalis. Calcified green algae Halimeda opuntia

and H. monile are confined to the root-sediment interface

(Taylor, Littler, and Littler, 1986).

In another site in Belize, Farnsworth and Ellison (1996)

indicated that the dominant taxa of the rhizophore zone were

the green algae Bryopsis pennata and H. opuntia; in Colombia,

Pena, Zingmark, and Nietch (1998) reported that the red algae

Bostrychia calliptera and Caloglossa leprieurii are common on

rhizophores. In Panama, Levings and Garrity (1994) indicated

that submerged rhizophore surfaces are covered with 27

species of foliose red algae.

Microfauna
An immense diversity of microfauna are epibionts on red

mangrove rhizophores or are early colonizers on red mangrove

leaf litter. Leaf litter has a thin film of microorganisms that

increases the nutritive value of debris and attracts benthic

invertebrates (Bomfim de Oliveira et al., 2012). Laurent et al.

(2013) indicated that sulfide-tolerant nematodes, flatworms,

and ciliated protozoans and amoebae are the initial colonizers

on leaf litter. Heterotrophic flagellates (2.7 3 10�3 g�1 in dry

film), amoebae (7310�3 g�1 in dry film), and ciliated protozoans

(4.8 3 10�3 g�1 in dry film) occur as epibionts on rhizophores or

in leaf detritus (Maybruck and Rogerson, 2004).

Marine nematodes are the most abundant metazoans

inhabiting decaying leaves (Hopper, Fell, and Cefalu, 1973).

Copepods, foraminifera, rotifers, gastrotrichs, tardigrades,

turbellarians, phoronids, and tanaeids inhabit detritus and

serve as food sources for larger invertebrates in the ecosystem

(Hopper, Fell, and Cefalu, 1973; Sheridan, 1997). Fleck and

Fitt (1999) found that the planula stage of the upside-down

jellyfish Cassiopea xamachana settles on decomposing R.

mangle leaf litter and undergoes metamorphosis on the litter

substrate.

Epiphytic Animals
Slightly larger macroscopic epibionts use benthic rhizo-

phores and roots as substrates. Sponges, ascidians, cnidarians,

bryozoans, hydroids, amphipods, coelenterates, tunicates,

urochordates, ectoprocts, and endoprocts are common com-

mensalistic organisms associated with R. mangle.

Rhizophore and root-fouling invertebrates include bivalves,

sponges, and tunicates (Sutherland, 1980). Hunting et al. (2010)

stated that a positive correlation of tannins in red mangrove

bark provides a chemical stimulus for the attachment of

epiphytic sponges. In southern Belize, Dı́az and Rützler (2009)

found that sponges comprise 10 to 70% of the epiphytic diversity

of meiofauna on rhizophores and roots. In Florida, Engel and

Pawlik (2005) reported that 74% of benthic rhizophore and root

surfaces were covered by 1200 sponges represented by 10

species. Ellison, Farnsworth, and Twilley (1996) found that

sponges protect rhizophores from isopod attack.

Creary (2003a) identified 18 epiphytic species of bryozoans

associated with rhizophores and roots of R. mangle in Kingston

Harbor, Jamaica. Creary (2003b) noted that the preponderance

of sponges and ascidians can smother bryozoans.

Macrofauna
Mangrove forests in the Caribbean host the earth’s richest

mangrove-associated invertebrate fauna (Ellison and Farns-

worth, 1996a). The shallow intertidal zone dominated by R.

mangle is a nursery for juvenile penaid shrimp and lobsters

and is a critical habitat for keystone crab species and other

crustaceans. Rhizophora mangle provides a habitat for macro-

faunal invertebrates including oysters, crabs, annelids, mus-

sels, arthropods, and snails. Snails forage on fungal mycelia on

the surface of rhizophores in the narrow interface at and above

the mean high tide mark (Kohlmeyer and Bebout, 1986). Snails

also browse leaf litter at low tide and move to higher branches

during inundation (Proffitt and Devlin, 2005).

Colonies of ants and termites utilize aerial shoots. Dejean et

al. (2003) identified one species of termite and 37 species of

arboreal ants that populate shoots of red mangrove in

Quintana Roo, Mexico. Adams and Levings (1987) found that

rhizophores provide connections between trees in the canopy

for termite migrations.

Many mosquito species use red mangrove for depositing eggs.

Ritchie and Johnson (1991) found that Aedes taeniorhynchus

exclusively selected stands of R. mangle in an A. germinans

forest to lay eggs.

Crabs
Crabs (Order: Decapoda) play an important ecological role in

the functioning of mangrove ecosystems. They are among the

most common and abundant large invertebrates in the mangal

(Cannicci et al., 2008). They perform vital biogeochemical

functions, influence seedling recruitment, and provide an

important human food source (Longonje and Rafaelli, 2014).

Ucides cordatus (mangrove crab or hairy crab) is a keystone

species of subtropical and neotropical mangrove forests and is

an important source of human food in developing countries (de

Cássia Conti and Cunha Nalesso, 2010). It is a wide-spread,

semiterrestrial species in the western Atlantic from Florida to

the Gulf of Mexico, Central America, the Caribbean, and

northern South America from Brazil to Uruguay.

Ucides cordatus is a leaf-removing species and acts as an

ecological engineer (Piou, Berger, and Feller, 2009). The

species is abundant in the intertidal fringe in Brazil where it

has densities ranging from 1.38 to 4.75 crabs m�2 (de Cássia

Conti and Cunha Nalesso, 2010; Schories et al., 2003). It is

estimated that each crab ingests 1.30 g dry weight of R. mangle

leaves day�1 (Schories et al., 2003). Christofoletti, Hattori, and

Pinheiro (2013) stated that the preferred food of U. cordatus is

R. mangle leaves and that they consume 81% of leaf litter. They

also reported that senescent leaves with high polyphenol levels

were rejected as a food source. In northern Brazil, Pülmanns et

al. (2014, 2016) found that this species consumes 70% of the

total leaf litter and propagules and is the primary modifier of

sediments where it burrows 2-m deep. Sediment around

burrows may oxidize during low tides, and significant amounts

of CO2 may be released from burrows. They concluded that crab

burrows are an important pathway for CO2 export from

mangrove sediments (Pülmanns et al., 2014).

Mangrove crabs are continuous feeders (Nordhaus, Wolff,

and Diele, 2006). They estimated food intake of U. cordatus at

4.1 g dry weight m2 day�1. Rates of propagule consumption in

Brazil is highest in the intertidal fringe where R. mangle is the

dominant species (Ferreira et al., 2013; Sousa and Mitchell,

1999). Litter processing by U. cordatus is important in the
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mangal for retaining energy and nutrients in nutrient-

deprived mangrove ecosystems (Nordhaus, Wolff, and Diele,

2006).

Aratus pisonii (mangrove tree crab) is an arboreal species

that lives in R. mangle trees in Florida and the Caribbean. Its

distribution ranges from Nicaragua to Peru (Beever, Simberl-

off, and King, 1979). It feeds mostly on red mangrove leaves

and is found on roots, branches, and in the canopy of R. mangle

(Diaz and Conde, 1989; Erickson, Bell, and Dawes, 2012).

Mangrove tree crabs feed on fresh and senescent leaves while

they are attached to the parent plant (Miranda et al., 2017).

Aratus pisonii consumes the leaf epidermis and leaves

distinctive scraping marks where they have fed. Damage may

range from 4 to 25% of the leaf area and may be attributed not

only to A. pisonii, but also to mangrove periwinkles (Littorina

angulifera), insects, and aphids (Farnsworth and Ellison,

1991).

Rhizophora mangle and A. germinans typically do not share

A. pisonii as a herbivore (López and Conde, 2013). Erickson,

Bell, and Dawes (2012) found by gut analysis that A. pisonii

preferred red mangrove leaves more than A. germinans and L.

racemosa in Tampa Bay, Florida.

Goniopsis cruentata (mangrove root crab) is also a wide-

spread species that ranges from south Florida to southern

Brazil, throughout the Caribbean, and in West Africa from

Senegal to Angola. It is a common semiterrestrial crab in Brazil

and is an important human food source. It serves the role as a

keystone species and affects sediment biogeochemistry, rates of

litter decomposition, and nutrient recycling. This species like

U. cordatus and A. pisonii consumes leaf litter adjacent to red

mangrove and other mangrove roots and R. mangle seedlings

(Mohammed, 2016; Reis, Taddei, and Cobo, 2015).

Goniopsis cruentata and U. cordatus are the most important

consumers of red mangrove propagules in Brazil. They affect

establishment of seedlings and saplings; therefore, they are

crucial to mangrove conservation (Ferreira et al., 2013; Ricarda

Boehm et al., 2016). In Costa Rica, Perry (1988) found that

colonization of red mangrove was reduced by predation of

hermit crabs (Clibanarius panamensis).

In Cameroon, predation of R. mangle propagules is estimated

at 66.7% (Longonje and Rafaelli, 2014). Leaf-eating crabs are

dependent on litter, and they supplement their diet from other

sources. Important species of crabs in estuaries and intertidal

sites in Cameroon include Metagrapsus curvatus, Sesarma

huzardi, S. elegans, S. alberti, Goniopsis selii, and Grapsus

grapsus (Longonje and Raefaelli, 2014).

Isopods
Isopoda is an order of crustaceans with 10,000 species

represented in terrestrial, fresh water, and marine environ-

ments (King, 2004). Two species, Sphaeroma terebrans and S.

peruvianum, are wood-boring crustaceans that burrow into

hanging aerial roots of R. mangle. These marine isopods feed on

wood, cause extensive damage to manmade structures, and

have enzymes that digest cellulose (Benson, Rice, and Johnson,

1999). Sphaeroma terebrans was introduced in Florida in 1897

from Atlantic and Caribbean sources. It possibly arrived via

wooden-hulled boats (Perry and Brusca, 1989). Sphaeroma

peruvianum was introduced into the New World from the

eastern Pacific into the R. mangle intertidal zone on the Pacific

coast of Costa Rica (Perry and Brusca, 1989).

Brooks and Bell (2005a) found S. terebrans activity in all

seasons in Tampa Bay, Florida, and found that 60% of all aerial

rhizophores were occupied by burrows. Thiel (2000) noted that

juvenile forms of Sphaeroma quadridentatum may be found in

burrows unoccupied and occupied by S. terebrans. Isopods

cannot burrow in older roots (Perry, 1988). Isopod-infected

aerial rhizophores die and tend to break off at the highwater

mark (Brooks and Bell, 2001, 2005a,b; Perry and Brusca, 1989;

Thiel, 2000).

Brooks (2004) and Brooks and Bell (2001, 2005a) found that

S. terebrans caused root death, aerial rhizophore breakage,

reduced root production, reduced growth rates, and decreased

plant survivorship. Brooks and Bell (2001) reported that

epiphytic sponges have an indirect effect by preventing

colonization of S. terebrans.

A difference of opinion exists over the detrimental and

beneficial effects of wood-boring isopods. Simberloff, Brown,

and Lowrie (1978) found that damage caused by isopod and

insect borers stimulate root initiation. They found that for

every rhizophore damaged, 1.4 new roots reach the sediment;

however, Brooks and Bell (2002) found that the most common

response was repair of abandoned isopod burrows and that

lateral root production occurred at a lower frequency. Their

conclusion was that the most common response to damage is

root tissue replacement of the wound rather than initiation of

new root tissue.

Gastropods
The mollusk M. coffeus is an important invertebrate in the

decomposition of R. mangle leaf litter in Florida (Proffitt and

Devlin, 2005; Proffitt et al., 1993). Snails forage on leaf litter at

low tide and climb into the canopy during inundation at high

tide. Leaf litter ingestion estimates ranged from 70 to 90% of

individual leaves within 6 weeks of initial feeding, and 80% of

all brown leaves were completely consumed by the end of the

experiment (Proffitt and Devlin, 2005; Proffitt et al., 1993).

Insects
Wood-boring insects, such as some isopods (see previous

information), play an important role in structuring the mangal.

Wood borers include longhorn beetles, weevils, moths, and

other beetles (Feller and Mathis, 1997). Feller (2002) reported

that wood-boring insects killed 50% of the mangrove canopy at

a site in Belize. She also reported that wood-borer injury

promotes adventitious stem growth and floral initiation after

50% of the branches were girdled.

Larvae of the cerambycid beetle (Elaphidion mimeticum)

feeding on live wood is responsible for killing red mangroves in

Belize. Beetle predation produces small light gaps in the forest

canopy (Feller and McKee, 1999). Avicennia germinans is not

attacked by this species. Sousa, Kennedy, and Mitchell (2003)

reported that 86% of red mangrove propagules were girdled by

scolytid beetle larvae (Coccotrypes rhizophorae ¼ Poecilips

rhizophorae). The obligate parasite attacks the hypocotyl of the

propagule and causes mortality. However, if girdling is not

complete, seedlings may survive and grow at a slower rate

(Sousa, Kennedy, and Mitchell, 2003). Crickets and moth

larvae are generalist feeders. Feller (1995) found that 1% to 4%
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of red mangrove leaves were damaged by the leaf-mining

microlepidopteran (Marmara sp.) within a 6-month experi-

ment.

Fungi
Fungi serve not only as agents of decomposition of litter but

also as plant pathogens in the mangal (Elster, Perdomo, and

Schnetter, 1999). Wier, Tattar, and Klekowski (2000) found

that the imperfect fungus (Cytospora rhizophorae) causes

dieback and mortality of red mangroves in Puerto Rico.

Cytospora rhizophorae is a facultative pathogen that usually

enters stems through a wound and produces a gall that leads to

slow stem-diameter growth and causes further stem and

rhizophore wounds that may result in mortality. Rayachhetry

et al. (1996) reported the occurrence of branch and stem galls in

R. mangle produced by the parasitic imperfect fungus

Botryosphaeria ribis in south Florida.

Myxomycota, Ascomycota, Basidiomycota, and anamorphic

fungi play an important role in the decomposition of litter.

Cavalcanti et al. (2016) reported the occurrence of eight species

of slime molds in Brazilian mangal that are active on aerial red

mangrove leaf litter.

Numerous ascomycetes and anamorphic fungi are involved

in the decomposition of leaf litter and wood. These taxa are

obligate marine species that work optimally on submerged

dead branches (Kohlmeyer, 1981, 1986; Kohlmeyer and

Kohlmeyer, 1977; Kohlmeyer and Volkmann-Kohlmeyer,

1988).

Basidiomycetes species are less common and usually occur on

advanced stages of decaying red mangrove wood (Gilbert and

Sousa, 2002). Nogueria-Melo, Parreira Santos, and Baptista-

Gillertoni (2014) documented 13 species of basidiomycetes in

Brazilian mangals. They noted that their occurrence was

primarily in the rainy season.

IMPACTS OF STORMS
Hurricanes and tropical storms play an important role in

controlling structure of the mangal (Alongi, 2008; Lara-

Dominguez et al., 2005), but it is difficult to generalize about

the impacts. Mangroves act as buffers to the destructive effects

of tropical storms and storm surges and serve to protect human

life and property (Vogt et al., 2012). For Hurricane Andrew in

Florida, damage to the coastal forest was primarily confined to

within 200 to 300 m of the coasts with 94% mortality with

survivors being small trees or sprouts (Ross et al., 2006). In the

coastal fringe forest, R. mangle regained dominance after the

hurricane partly due to its shade tolerance (Ross et al., 2006).

Vogt et al. (2012) and Roth (1992) found that larger trees with

lower densities were more susceptible to hurricane damage and

that R. mangle became the dominant species in the mangal

that repopulated open gaps in the forest. Delays in mangrove

forest recovery may occur in severely impacted areas if delivery

of propagules is reduced or production of seedlings is reduced

by habitat fragmentation (Milbrandt et al., 2006).

Kovacs, Blanco-Correa, and Flores-Verdugo (2001) found

that R. mangle was less affected by a hurricane on the Mexican

Pacific coast than either L. racemosa or A. germinans.

Rhizophora mangle seedlings and saplings are more shade

tolerant than L. racemosa. On the other hand, Imbert, Labbé,

and Rosteau (1996) reported that red mangrove trees were

more heavily damaged than either L. racemosa or A. germinans

in the Caribbean. Laguncularia racemosa is better represented

in interior sites where canopy closing is delayed (Ross et al.,

2006). Roberts, Hedgepeth, and Gross (2011) found that tall L.

racemosa trees were heavily damaged by Category 2 and 3

hurricanes in Florida, but red mangrove trees were only

defoliated and marginally impacted. After leaf defoliation of R.

mangle, Barreiro-Gümes (1999) noted that leaf renewal

occurred 129 to 392 days after a major hurricane in Campeche,

Mexico.

Several investigators have found significant hurricane

damage to red mangrove stands. Proffitt, Milbrandt, and

Travis (2006) reported that the number of reproducing R.

mangle trees 1 km from the shoreline in Charlotte Harbor and

Tampa Bay, Florida, was significantly reduced after a

hurricane. More recruits of red mangrove were found at sites

that had higher densities of prestorm seedlings and greater

dominance by R. mangle.

In early 1992, Hurricane Andrew (Category 5 hurricane)

caused major damage to mangroves and property in Florida.

Smith et al. (1994) noted that red mangroves with diameter at

breast height (DBH) greater than 5 cm had significant initial

mortality and those with a DBH less than 5 cm DBH had 10%

mortality. Maximum mortality occurred in trees in the 15- to

20-cm size class. Mortality decreased for trees greater than 30

cm DBH. Baldwin et al. (2001) found high densities of

seedlings, seedling growth, recruitment, and resprouting of

red mangroves after Hurricane Andrew. Recruitment of red

mangrove propagules led to a monotypic stand of the species.

Bologna et al. (2019) looked at red mangrove genetic diversity

and to ascertain potential population bottlenecks two decades

after Hurricane Hugo. Two fringing red mangrove populations

had low observed heterozygosity and high inbreeding coeffi-

cients, whereas the fully forested sites showed higher hetero-

zygosity and lower inbreeding frequencies. The effective

population size of one site places it in risk of genetic

dysfunction, but future rehabilitation of the site may be

possible by the introduction of propagules from other regions.

Lightning, hurricanes, and tropical storms create gaps in the

mangal that allow rapid colonization of R. mangle. Sherman,

Fahey, and Battles (2000) noted greater sapling densities and

sapling growth rates in canopy gaps than in closed canopies in

the Dominican Republic. Annual mortality of red mangrove

saplings in the lightning-created gaps was only 9% compared to

mortality rates for L. racemosa and A. germinans in the gaps as

32 and 56%, respectively (Sherman, Fahey, and Battles, 2000).

Hurricanes and tropical storms may bring positive benefits to

the mangal, i.e. hurricanes may play an important role in the

distribution of mangrove propagules. Hurricane Donna (1960)

savaged the coast of Florida toppling, uprooting, and defoliat-

ing mangroves. Mangrove mortality ranged from 25 to 75%

over approximately 100,000 acres, with the black mangrove

having the highest mortality (Lugo and Snedaker, 1974).

Whereas propagules of both the red and black mangrove were

widely distributed, it was the red mangrove that formed the

greatest proportion of new mangrove community. Phosphorus

can be a limiting nutrient for red mangrove growth and

development. In phosphorus-limited, carbonate-dominated
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sites in southern Florida, storm-derived sediments had twice

the average phosphorus level than these normally phosphorus-

limited sediments (Castañeda-Moya et al., 2010).

REFORESTATION
Rhizophora mangle seedling recruitment, growth, and

survival can influence the rate and pathway of mangal

reforestation following disturbances (Sousa, Kennedy, and

Mitchell, 2003). Reforestation is enhanced by sufficient water

levels and optimal salinities and temperatures. A.M. Ellison

(2000) reviews mangrove reforestation from a global perspec-

tive. High light availability in forest gaps increases survival

and growth rates (Elster, Perdomo, and Schnetter, 1999). Red

mangrove and other mangroves may be slow to grow in

hypersaline sites hampering recovery (McKee, Rooth, and

Feller, 2007).

Artificial flooding often promotes reforestation (Vogt et al.,

2012). Die-offs in the mangal may be caused by hypersalinity,

and channeling may be required to reduce salinity. In

Venezuela, reforestation requiring this type of habitat en-

hancement may require more than 10 years to restore the

mangal (Rodrı́guez-Rodrı́guez et al., 2016).

Forest regeneration depends on habitat conditions adjacent

to cleared sites. Natural red mangrove reforestation in strip-

cleared cutting sites in Ecuador was enhanced by soil salinities

ranging from 23.3 to 26.3 ppt (Blanchard and Prado, 1995).

They found high R. mangle seedlings density within 5 m of

trees with a DBH of 25 cm or greater. Seedlings that develop

from large propagules grow more rapidly (Sousa, Kennedy, and

Mitchell, 2003). Rivera-Monroy et al. (2004) reported that

clear-cutting did not have a major effect on modifying soil-

nutrient concentrations. They predicted that preforest distur-

bance nutrient distributions would be reestablished 15 to 25

years following clear-cutting.

Shoreline stabilization using red mangroves has been

successful in Florida. Revegetation of red mangrove stands

has been successful in areas with low-velocity currents and low

wave-energy sites by placing saplings in full-length PVC pipes

(Salgado Kent, 1999). By using this procedure, they reported

seedling establishment success of 87% to 94% based on

seasonal plantings. Donnelly and Walters (2014) reported that

seedling establishment can be facilitated by planting seedlings

in perennial, halophytic ground cover of B. maritima and S.

perennis.

REMOTE SENSING AND MODELLING
Remote sensing technology has proven to be effective in

mapping and monitoring mangal vegetation. Wang et al. (2019)

provide a review of mangrove remote sensing literature.

Kovacs, Wang, and Flores-Verdugo (2005) used commercially

available high-resolution satellite imagery (IKONOS) and LI-

2000 plant canopy sensors to map mangrove vegetation. They

found that the combination of these technologies easily

discriminates between R. mangle and L. racemosa. Both

species were present in almost equal amounts on the coastline

of Baja California, Mexico. Visible infrared imaging spectrom-

eter data showed 40% accuracy for mapping R. mangle in the

Florida Everglades and 100% accuracy for mapping the

wetland sedge (Eleocharis cellulosa) in Florida marshes

(Hirano, Madden, and Welch, 2003). LIDAR shows promise in

nondestructive estimation of mangrove above-ground biomass

but has not yet been applied to red mangroves (Olagoke et al.,

2016).

Models are being used to estimate mangrove aboveground

biomass, but little modeling effort occurs for belowground

biomass. Various regression models were evaluated for

estimation of the aboveground biomass of R. mangle and L.

racemosa (Gomes Soares and Schaeffer-Novelli, 2005).

Greuters et al. (2014) developed an individual-based mangrove

dynamics model based on canopy plasticity and lateral stem

and rhizophore data. Smith and Whelan (2006) developed

allometric equations for R. mangle to estimate total biomass

and components of biomass. Their equations explained�93% of

the variance in total dry weight. The DBH was a better

predictor of dry weight than stem height.

ECONOMIC IMPORTANCE
Rhizophora mangle stands play an important role in

shoreline stabilization (Salgado Kent, 1999). Red mangrove

populations serve as natural barriers to coastal erosion caused

by tropical storms (Vanegas et al., 2019); as habitat for a wide

range of organisms in intertidal food webs; as carbon

sequestration reservoirs; and as a source of litter, detritus,

and organic material that is exported to neighboring ecosys-

tems (Schories et al., 2003). Coastal fisheries and wildlife

populations are supported by this species (Mumby et al., 2004;

Osland et al., 2014; Vovides et al., 2011).

Red mangrove bark and wood are valuable resources.

Tannins are extracted from the bark and are a source of dyes

that are used for tanning leather (Blanchard and Prado, 1995;

Mabberley, 1997; Proctor, 2012; Satyanarayna et al., 2012;

Zomlefer, 1994). The hard, durable wood is used for posts,

pilings, railroad ties, and other construction projects. In

Gambia, Satyanarayna et al. (2012) noted that wood is used

for constructing fish-drying racks and for conversion to

charcoal. Williams (1999) found that triterpinoids (taraxerol

and cinnamyoyl-lupeol) extracted from bark are effective as an

insecticide to control potato weevils (Cylas formicarius).

Wildlife Values
Red mangrove provides cover and nutrients for a wide

variety of wildlife and commercially important invertebrates

and vertebrates. Food, reproductive sites, and refuge are

provided for oysters, crabs, fish, reptiles, and birds (Freitas et

al., 2002). In the Caribbean, the mangal dominated by R.

mangle is the ecosystem that supports juvenile shrimp, spiny

lobsters, and over 200 species of fish (Ellison and Farnsworth,

1996b). In particular, the mangrove oyster, Crassostrea

rhizophorae, is of importance in the Caribbean as it is an

epiphytic species on R. mangle roots (Rodrı́guez-Romero and

Gasca-Montes de Oca, 1998).

Aburto-Oropeza et al. (2009) reported that juvenile yellow

snappers (Lutjanus argentiventris) spend at least 300 days

among benthic rhizophores and roots of red mangrove prior to

migration to open water. MacDonald, Shahrestani, and Weis

(2009) found that juvenile school masters (Lutjanus apodus)

use the same habitat listed above as a refuge. As this species

increases in size, less time is spent in the R. mangle zone. In
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Bonaire, mangroves, seagrass beds, and the shallow coral reef

serve as a nursery and as a refuge for juvenile schoolmaster,

mangrove snappers (Lutjanus griseus), and barracudas

(Sphyraena barracuda) (Nagelkerken et al., 2000).

In Florida, juvenile snook (Centropomis undecimalis) and

sawfish (Pristis pectinata) are common in the shallow intertidal

fringe (Barbour et al., 2012; Norton et al., 2012). Juvenile

sawfish undergo early development in less than 90 cm of

seawater in this zone (Norton et al., 2012).

The red mangrove community provides habitat for reptiles

including the endangered green sea turtle (Chelonia mydas).

Gut analysis showed that this species consumes propagules,

leaves, and marine algae in the Galapagos Islands and

Colombia (Amorocho and Reina, 2008; Carrión-Cortez, Zárate,

and Seminoff, 2010). Alligators (Alligator mississippiensis) and

crocodiles (Crocodylus acutus) use R. mangle sites for nesting

in Florida and elsewhere (LeBuff, 2014). Rosenblatt et al.

(2013) found that the mangrove salt marsh snake (Nerodia

clarkia compressicauda) forages on rhizophores but spends

most of its time in water (Mullin and Mushinsky, 1995).

The red mangrove canopy provides breeding, nesting, and

resting sites for water birds and migratory birds. In Florida,

red mangrove provides nesting sites for birds listed in Table 4.

Numerous overwintering nonbreeding migratory birds use the

red mangrove rookery. In Puerto Rico, Northern Water

Thrushes (Parkesia noveboracensis) forage on leaf litter and

R. mangle roots (Reitsma et al., 2002; Smith, Reitsma, and

Marra, 2011a,b).

Nearctic overwintering Blue-Winged Teal (Anas acuta) and

American Widgeons (Anas americana) use red mangrove for

resting and preening in Yucatan, Mexico (Thompson and

Baldassarre, 1991). Resident Scarlet Macaws (Ara cacao) nest

in trunk cavities in Costa Rica (Vaughn, Nemeth, and

Marineros, 2003), and Scarlet Ibis (Eudocimus ruber) use the

canopy as breeding sites in southern Brazil (Olmos and Silva e

Silva, 2002).

Medicinal Uses
Aqueous decoctions of R. mangle bark and leaves have been

used in a wide variety of traditional folk medical practices in

the tropics to treat eye ailments, diarrhea, leprosy, digestive

disorders, respiratory ailments, tuberculosis, venereal disease,

and sore throat (Berenguer et al., 2006; Melchor et al., 2001). In

Cuba, aqueous polyphenolic tannins extracted from bark have

been used as an antiseptic, astringent, haemostatic agent,

antibiotic, and as a treatment for gastric ulcers (Berenguer et

al., 2006; Melchor et al., 2001).

Sánchez Perera, Ruedas, and Gómez (2001) and Sánchez

Perera et al. (2004) used bark extracts to test tannins for

antiulcerogenic properties in rats. They found that these

polyphenolic compounds reduced gastric lesions in laboratory

animals. Cáceres et al. (1993) reported that decoctions of leaves

show promise as an antifungal agent to treat imperfect fungi

that include Candida albicans, C. krusei, and C. parapsilosis.

Melchor et al. (2001) reported antibiotic properties of red

mangrove decoctions. They found that seven species of bacteria

associated with wounds are inhibited by bark extracts. They

indicated that polyphenolic compounds probably confer antibi-

otic properties.

Alarcon-Aguilara et al. (1998) noted that aqueous bark

decoctions show promise in treatment of diabetes. They stated

that R. mangle compounds decreased the hyperglycemic peak

associated with diabetes and decreased the area under the

glucose tolerance curve in laboratory animals.
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and decomposition of Rhizophora mangle L. in a coastal lagoon in
the southern Gulf of Mexico. Hydrobiologia, 559, 101–111.

Alarcon-Aguilara, F.J.; Roman-Ramos, R.; Perez-Gutierrez, S.; Agui-
lar-Contreras, A.; Contreras-Weber, C., and Florez-Saenz, J.L.,
1998. Study of the anti-hyperglycemic effect of plants used s
antidiabetics. Journal of Ethnopharmacology, 61(2), 101–110.

Table 4. Water birds that use Rhizophora mangle as nesting sites in

Florida.

Ardea alba Great Egret

Ardea herodias occidentalis Great White Heron

Ardea herodias wardi Great Blue Heron

Bulbulcus ibis Cattle Egret

Coccyzus minor Mangrove Cuckoo

Dendrioca petechia grundlachi Cuban Yellow Warbler

Egretta caerulea Little Blue Heron

Egretta thula Snowy Egret

Eucocimus albus Reddish Egret

Haliaectus leucocephalus Bald Eagle

Melanerpes carolinensis Red Bellied Woodpecker

Pandion haliaetus Osprey

Patagioenas leucocephala White-Crowned Pigeon

Pelecanus occidentalis Brown Pelican

Phalacrorax auratus Double-Crested Cormorant

Platalea ajaja Roseate Spoonbill

Rostrhamus sociabilis* Snail Kite

Vireo altiloquus Black-Whiskered Vireo

*Endangered (Curnutt and Robertson, 1994; Drietz and Duberstein, 2001;

Lloyd and Doyle, 2001; Mackenzie, Schaeffner, and Swartz, 2015; Onuf,

Teal, and Valiela, 1977).

Journal of Coastal Research, Vol. 36, No. 4, 2020

Red Mangrove Review 875



Albrecht, M.; Kneeland, K.M.; Lindroth, E., and Foster, J.E., 2013.
Genetic diversity and relatedness of the mangrove Rhizophora
mangle L. (Rhizophoraceae) using amplified fragment polymor-
phism (AFLP) among locations in Florida USA and Caribbean.
Journal of Coastal Conservation, 17, 483–491.

Allen, J.A., 1998. Mangroves as alien species: The case of Hawaii.
Global Ecology and Biogeography Letters, 7(1), 61–71.

Allen, J.A. and Krauss, K.W., 2006. Influence of propagule flotation
longevity and light availability on establishment of introduced
mangrove species in Hawaii. Pacific Science, 60(3), 367–376.

Alleng, G.P., 1998. Historical development of the Port Royal
mangrove wetland, Jamaica. Journal of Coastal Research, 14(3),
951–959.

Alongi, D.M., 2008. Mangrove forests: Resilience, protection from
tsunamis, and responses to global climate change. Estuarine,
Coastal and Shelf Science, 76(1), 1–13.

Amorocho, D.F. and Reina, R.D., 2008. Intake passage time, digesta
composition and digestibility in East Pacific green turtles (Chelonia
mydas agassizii) at Gorgona National Park, Colombian Pacific.
Journal of Experimental Marine Biology and Ecology, 360(2), 117–
124.

Arbeláez-Cortes, E.; Castillo-Cárdenas, M.F.; Toro-Perea, N., and
Cárdenas-Henao, H., 2007. Genetic structure of the red mangrove
(Rhizophora mangle L.) on the Colombian Pacific detected by
microsatellite markers. Hydrobiologia, 583(1), 321–330.
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Guevara Carrió, E., 2014. Estimation of the carbon pool in soil
and above-ground biomass within mangrove forests in southeast
Mexico using allometric equations. Journal of Forestry Research,
25(1), 129–134.

Gunn, C.R. and Dennis, J.V., 1972. Stranded tropical seeds and fruits
collected from Carolina beaches. Castanea, 37(3), 195–200.

Gunn, C.R. and Dennis, J.V., 1999. World Guide to Tropical Drift
Seeds and Fruits. Malabar, Florida: Krieger, 240p.
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Pérez, M.A., and Oropeza Orozco, O., 2007. The mangrove
communities in the Arroyo Seco deltaic plain, Jalisco, Mexico,
and their relations with the geomorphic and physical-geographical
zonation. Catena, 70(2), 127–142.

Mendoza, U.N.; Cordiero da Cruz, C.; Menezes, M.P., and Lara, R.J.,
2012. Flooding effects on phosphorus dynamics in an Amazonian
mangrove forest, northern Brazil. Plant and Soil, 353(1), 107–121.

Menezes, M.; Berger, U., and Worbes, M., 2003. Annual growth rings
and long-term growth patterns of mangrove trees from the Barança
Peninsula, North Brazil. Wetlands Ecology and Management,
11(4), 243–255.

Menezes, M.P., Oliveira, D., and Mello, C.F., 1997. Pollination of red
Mangrove Rhizophora mangle in the northern Brazil. Acta
Horticulturae, 437, 431–434.

Middleton, B.A. and McKee, K.L., 2001. Degradation of mangrove
tissues and implications for peat formation in Belizean island
forests. Journal of Ecology, 89(5), 818–828.

Milbrandt, E.C.; Greenawalt-Boswell, J.M.; Sokoloff, P.D., and
Bortone, S.A., 2006. Impact and response of southwest Florida
mangroves to the 2004 hurricane season. Estuaries and Coasts,
29(6), 979–984.

Miranda, J.F.; Mendoza-Carranza, M.; Sánchez, A.J., and Barba, E.,
2017. Selective foraging of Aratus pisonii (Arthropoda: Sesarmidae)
on mangrove leaves in laboratory experiments. Journal of
Experimental Marine Biology and Ecology, 488, 38–43.

Mohammed, S., 2016. Online Guide to the Animals of Trinidad and
Tobago. Goniopsis cruentata (Mangrove root crab). https://sta.uwi.
edu/fst/lifesciences/sites/default/files/lifesciences/documents/ogatt/
Goniopsis_cruentata%20-%20Mangrove%20Root%20Crab.pdf

Mullin, S.J. and Mushinsky, H., 1995. Foraging ecology of the
mangrove salt marsh snake Nerodia clarkia compresssicauda:
Effects of the vegetation density. Amphibia-Reptilia, 162(2), 167–
175.

Mumby, P.J.; Edwards, A.J.; Aria-González, J.E.; Lindeman, K.C.;
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Moreira-Conti, M.; Wunderlin, D.A., and Dias Milanez, C.R.,
2015. Effect of pollution by particulate iron on the morphoanatomy,
histochemistry, and bioaccumulation of three mangrove plant
species in Brazil. Chemosphere, 127, 27–34.

Perry, D.M., 1988. Effects of associated fauna on growth and
productivity in the red mangrove. Ecology, 69(4), 1064–1075.

Perry, D.M. and Brusca, R.C., 1989. Effects of the root-boring isopod
Sphaeroma peruvianum on red mangrove forests. Marine Ecology
Progress Series, 57(3), 287–292.

Pezeshki, S.R.; DeLaune, R.D., and Meeder, J.F., 1997. Carbon
assimilation and biomass partitioning in Avicennia germinans and
Rhizophora mangle seedlings in response to soil redox conditions.
Environmental and Experimental Botany, 37(2–3), 161–171.

Pezeshki, S.R.; DeLaune, R.E., and Patrick, W.H., Jr., 1989.
Differential response of selected mangroves to soil flooding and
salinity: Gas exchange and biomass partitioning. Canadian
Journal of Forestry Research, 20(7), 869–874.

Phillips, S.; Rouse, G.E., and Bustin, R.M., 1997. Vegetation zones
and diagnostic pollen profiles of a coastal peat swamp, Bocas del
Tor, Panamá. Palaeogeography, Palaeoclimatology, and Palae-
oecology, 128(1–4), 301–338.

Piou, C.; Berger, U., and Feller, I.C., 2009. Spatial structure of a leaf-
removing crab population in a mangrove of North Brazil. Wetlands
Ecology and Management, 17(2), 93–106.

Primack, R.B. and Tomlinson, P.B., 1978. Sugar secretions from the
buds of Rhizophora. Biotropica, 10(1), 74–75.

Proctor, G.R., 2012. Flora of the Cayman Islands, 2nd edition.
Richmond Surrey, UK: Royal Botanical Gardens, Kew, 724p.

Proffitt, C.E. and Devlin, D.J., 1998. Are there cumulative effects in
red mangroves from oil spills to seedling and saplings stages?
Ecological Applications, 81(1), 121–127.

Proffitt, C.E. and Devlin, D.J., 2005. Grazing by the intertidal
gastropod Melampus coffeus greatly increases mangrove leaf litter
degradation rates. Marine Ecology Progress Series, 296, 209–218.

Proffitt, C.E.; Devlin, D.J., and Lindsey, M., 1995. Effects of oil on
mangrove seedlings grown under different environmental condi-
tions. Marine Pollution Bulletin, 30(12), 788–793.

Proffitt, C.E.; Johns, K.M.; Cochrane, C.B.; Devlin, D.J.; Reynolds,
T.A.; Payne, D.L.: Jeppesen, S.; Peel, D.W., and Linden, D.D., 1993.
Field and laboratory experiments on the consumption of mangrove
leaf litter by the macrodetritivore Melampus coffeus L. (Gastro-
poda: Pulmonata). Florida Scientist, 56(4), 211–222.

Proffitt, C.E.; Milbrandt, E.C., and Travis, S.E., 2006. Red mangrove
(Rhizophora mangle) Reproduction and seedling colonization after
Hurricane Charley: Comparisons of Charlotte Harbor and Tampa
Bay. Estuaries and Coasts, 29(6), 972–978.

Proffitt, C.E. and Travis, S.E., 2005. Albino mutation rates in red
mangroves (Rhizophora mangle L.) as a bioassay of contamination
history of Tampa Bay, Florida, USA. Wetlands, 25(2), 326–334.

Proffitt, C.E. and Travis, S.E., 2014. Red mangrove life history
variables along latitudinal and anthropogenic stress gradients.
Ecology and Evolution, 4(12), 2352–2359.

Pülmanns, N.; Diele, K.; Mehlig, U., and Nordhaus, I., 2014. Burrows
of the semi-terrestrial crab Ucides cordatus enhance CO2 export
from mangrove sediments. PLoS One, 9(10), 1–13.

Pülmanns, N.; Mehlig, U.; Nordhaus, I.; Saiñt-Paul, U., and Diele, K.,
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