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Abstract

Chromogranin A (CgA (CHGA)) is the major soluble protein co-stored and co-released with

catecholamines and can function as a pro-hormone by giving rise to several bioactive

peptides. This review summarizes the physiological functions, the pathogenic implications,

and the recent use of these molecules as biomarkers in several pathological conditions.

A thorough literature review of the electronic healthcare databases MEDLINE, from January

1985 to September 2013, was conducted to identify articles and studies concerned with CgA

and its processing. The search strategies utilized keywords such as chromogranin A,

vasostatins 1 and 2, chromofungin, chromacin, pancreastatin, catestatin, WE14, chromos-

tatin, GE25, parastatin, and serpinin and was supplemented by the screening of references

from included papers and review articles. A total of 209 English-language, peer-reviewed

original articles or reviews were examined. The analysis of the retrospective literature

suggested that CgA and its several bioactive fragments exert a broad spectrum of regulatory

activities by influencing the endocrine, the cardiovascular, and the immune systems and by

affecting the glucose or calcium homeostasis. As some peptides exert similar effects, but

others elicit opposite responses, the regulation of the CgA processing is critical to maintain

homeostasis, whereas an unbalanced production of peptides that exert opposing effects can

have a pathogenic role in several diseases. These clinical implications entail that CgA and its

derived peptides are now used as diagnostic and prognostic markers or to monitor the

response to pharmacological intervention not only in endocrine tumors, but also in

cardiovascular, inflammatory, and neuropsychiatric diseases.
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Introduction

Granin family includes a group of acidic soluble proteins

expressed by a variety of endocrine, neuroendocrine, and

neuronal cells. They are co-stored in secretory granules

and co-released with resident peptide hormones, neuro-

transmitters, or amines in response to a variety of

physiological and pharmacological stimuli. Ninemembers

of the granin family have been presently described:

chromogranins, namely chromogranins A (CgA) and B

(CgB), and secretogranins, namely SgII, 1B1075 gene

product (SgIII (Scg3)), HISL-19 antigen (SgIV), 7B2 (SgV),
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neuroendocrine secretory protein ofMr 55 000 (NESP55 or

SgVI), VGF (SgVII), and proSAAS (SgVIII) (1). CgA, as well

as the other granins, is characterized by i) an acidic pI due

to high percentage of acidic amino acids (glutamic acid

and aspartic acid), ii) heat stability due to its high

hydrophilic nature, iii) the presence of multiple dibasic

cleavage sites, and iv) the capacity to form aggregates and

to bind calcium.

Chromogranin A

CgA (CHGA) is an acidic proteinwith amolecularweight of

48 kDa that is composed of 439 amino acids and expressed

by several normal or neoplastic cells of the diffuse

endocrine and neuroendocrine systems or by some cancer

cells that can undergo neuroendocrine differentiation. Its

name is derived from the original discovery in adrenal

medulla (2). CgA is co-stored and co-released with

catecholamines from storage granules in the adrenal

medulla, or with the parathyroid hormone in response to

hypocalcemia in the parathyroid gland (3) (in this context,

it is also referred as parathyroid secretory protein 1). It

represents the most abundant protein among the phos-

phorylated proteins released by the parathyroid glands and

its secretion and phosphorylation levels are inversely

proportional to extracellular calcium concentration (4).

Chromogranin A processing and derived

peptides

The humanCgA gene is located on chromosome 14q32.12,

spans 12 192 bp, and is organized in eight exons and seven

introns. The derived transcript of 2 kb is translated into the

457 residues CgA protein ofw48–52 kDamolecular weight

thatundergoespost-translational processes andproteolytic

cleavages by pro-hormone convertases. The CgA cleavages

generate several biologically active peptides: vasostatins 1

and 2, chromofungin, chromacin, pancreastatin, catesta-

tin, WE14, chromostatin, GE25, parastatin, and serpinin.

The scheme depicted in Fig. 1A represents the exonic

regions of CgA DNA sequence and the corresponding

derived peptides. The 5 0-UTR (259 bp) of the CgA mRNA

and most of the signal peptide of CgA correspond to the

exon I. The b-granin represents the highly conserved

amino-terminal domain of CgA encoded by exons II–V

and few amino acids encoded by the exon VI. It

encompasses several bioactive peptides: vasostatin 1

(VST1: hCgA1–76) and vasostatin 2 (VST2: hCgA1–113) have

vasorelaxant and cardiosuppressive properties. Chromo-

fungin corresponds to the sequence Arg (47)–Leu (66) of

the whole protein, interacts with the cell wall, crosses the

plasmamembrane, accumulates in themicro-organism, and

inhibits calcineurin activity. Chromacin, the most variable

across species, inhibits the growth of both Gram-positive

and Gram-negative bacteria in bovines, and represents a

general marker of neuroendocrine tumors (NETs) (5).

Exon VII encodes for the dysglycemic hormone

pancreastatin (PST: hCgA250–301), the catecholamine

release-inhibitory and antihypertensive peptide catestatin,

a 20 amino acid cleavage product that seems to be involved

in pancreatic b-cell functions chromostatin, and the

14 amino acid peptide WE14 (hCgA324–337). The name of

this molecule is derived from the presence of tryptophan

(W) at the N-terminal position and of glutamic acid (E) at

C-terminal position; it modulates histamine release from

rat peritoneal mast cells and acts as auto-antigen in type 1

diabetes (6). Exon VIII encodes GE25, parastatin, and

serpinin. GE25, whose bioactivity has not yet been

determined, is expressed by the pituitary gland, gut, and

pancreas. Parastatin corresponds to residues 347–419 ofCgA

and is secreted together with various sub-fragments by the

parathyroid glands. It seems to be involved in a negative

feedback loop, as it inhibits both parathyroid hormone and

CgA secretion. Serpinin that corresponds to the C-terminal

end of CgA (hCgA403–428) regulates granule biogenesis in

endocrine and neuronal cells by inhibiting granule protein

degradation in the Golgi complex and exerting a protective

effect against oxidative stress. Serpinin’s influence on

cardiac activity has recently been reported (7).

Both pattern and rate of CgA processing vary in a

tissue-specific manner. In adrenal medulla and anterior

pituitary gland, rate and processing are low, while CgA is

processed faster and more extensively in the endocrine

pancreas and in gastrointestinal tissues. Proteolytic pro-

cessing of CgA may also occur after its release from

neuroendocrine cells.

Physiological roles and clinical implications

of CgA and its cleavage products

CgA intracellular functions

Granule biogenesis " In vitro (8) and in vivo studies (9)

demonstrated that CgA is the driving force for the

biogenesis of secretory granules, because it aggregates in

the acidic environment of the vesicles and induces the

budding of the trans-Golgi network membranes forming

dense-core granules. Moreover, CgA N-terminal region

tightly binds the lipid-rich microdomains of trans-Golgi

network membranes, thus influencing the pro-hormones
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transport into the secretory granules (the large dense-core

vesicles) or, in the adrenal medulla, into the chromaffin

granules (10) (Fig. 1B). CgA plays an important role also

in replenishing the cells of secretory granules after the

exocytosis. In particular, it seems to be up-regulating the

biogenesis of dense-core granules through the serpinin-

mediated inhibition of the degradation process.

Calcium homeostasis " CgA exerts a crucial role in

calcium homeostasis, as it has high binding capacity

but low affinity for Ca2C. The abundance (w2–4 mM)

of CgA inside the granules contributes to make dense-

core granules the major intracellular calcium reservoir

(11). At the same time, CgA properties facilitate the

ready exchange of bound and free Ca2C within

secretory granules and the Ca2C mobilization into

the cytoplasm, through the activation of IP3R/Ca2C

channels that are present on the membranes of granules

(Fig. 1C).
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Figure 1

(A) Scheme of exonic regions of CgA and derived peptides. The human CgA

gene is organized in eight exons and seven introns. The derived transcript is

translated into the CgA protein with a molecular weight of 48–52 kDa. The

proteolytic cleveages of specific CgA sequences by the pro-hormone

convertases generate several bioactive peptides. Roman numerals indicate

the exon sequences of the mRNA, whereas Arabic numerals identify the

amino acids in the mature protein minus the signal peptide. (B) Schematic

model of the role of CgA in the biogenesis of secretory granules. CgA

aggregates with proteins co-stored into secretory granules in a Ca2C-

dependent manner (phase 1); then, it interacts with SgIII present in the

lipid-rich microdomains of the trans-Golgi network favoring the vesicle

budding (phase 2); secretory granules are finally released into the cytosol

(phase 3). C. IP3-dependent Ca
2Cmobilization from intracellular stores. The

binding of agonists (hormones and neurotransmitters) to the G-protein-

coupled receptors determines the PIP2 hydrolysis and the inositol trispho-

sphate (IP3) generation. IP3 binds to specific receptors (IP3R), a family of

Ca2C channels responsible for the intracellular Ca2C mobilization from

intracellular stores, such as the endoplasmic reticulum (ER) or the secretory

granules. The IP3R/Ca
2C channels present on the intracellular store

membranes show different sensitivities and respond to different IP3
concentrations: low IP3 levels that are not sufficient to activate the IP3R of

ER trigger the more sensitive IP3R/Ca
2C channels present on the membrane

of secretory granules with the consequent release of Ca2C from the

granules into the cytoplasm.

E
n
d
o
cr
in
e
C
o
n
n
e
ct
io
n
s

Review M A D’amico, B Ghinassi
et al.

Chromogranin A and derived
peptides

3–10 3 :R47

http://www.endocrineconnections.org

DOI: 10.1530/EC-14-0027
� 2014 The authors

Published by Bioscientifica Ltd

This work is licensed under a Creative Commons

Attribution 3.0 Unported License.

Downloaded from Bioscientifica.com at 08/22/2022 08:59:32PM
via free access

http://www.endocrineconnections.org
http://dx.doi.org/10.1530/EC-14-0027
http://creativecommons.org/licenses/by/3.0/deed.en_GB
http://creativecommons.org/licenses/by/3.0/deed.en_GB


CgA extracellular function

It is widely recognized that the adrenalmedulla is themain

source of circulating CgA, while adrenergic nerve endings

and neuroendocrine cells secrete CgA in peripheral tissues.

Present in the diffuse neuroendocrine system, it has also

been detected in rat and human cardiac secretory granules

where it is co-stored with natriuretic peptide hormones

(12) and released mainly under stress conditions (13).

Even if logical and clinical evidences indicate a

certain CgA involvement in the homeostasis control, a

clear ‘endocrine role’ for CgA remains to be established.

Knockoutmice forCgA expression are viable and fertile

and do not show developmental abnormalities (9), even

if they develop a severe hypertension (14). Their neural

and endocrine functions are not grossly impaired and

adrenal glands present regular structures with normal sizes

and numbers of chromaffin cells. However, epinephrine,

norepinephrine, and dopamine secretion rises signi-

ficantly and the adrenal medullary expression of other

dense-core secretory granule proteins including CgB

(CHGB) and various secretogranins (SgII (SCG2)–SgVI

(GNAS)) is up-regulated, suggesting that increased

expression of other granins may compensate for the CgA

deficiency (9). In humans, naturally occurring variation at

the CgA gene contributes to alterations in autonomic

function, and hence hypertension, as a consequence of

changes in storage and release of CgA. It was reported that

plasma CgA concentration positively correlates with

catecholamine release rates and consequent blood pressure

increase, probably for its essential role in granule size,

number, density, and cargo storage regulation (14).

At the CNS level, CgA may play an autocrine role as a

glucocorticoid-responsive inhibitor regulating the

secretion of peptides derived from proopiomelanocortin

in the pituitary gland (15).Moreover, CgA indirectly causes

neuronal apoptosis by inducingmicroglial cells to produce

both heat-stable diffusible neurotoxic agents and TNFa

(16). Recent studies evidenced lower CgA (K44%) levels in

amyotrophic lateral sclerosis patients compared with

healthy individuals (17), whereas data on CgA involve-

ment inpsychiatric diseases arenotunivocal and studieson

schizophrenic patients gave contradictory results (18, 19).

CgA-derived peptides

CgA can be cleaved into several bioactive fragments, which

exertabroadspectrumofregulatoryactivitiesby influencing

the endocrine, the cardiovascular, and the immune systems

andbyaffecting theglucoseorcalciumhomeostasis (Fig. 2A)

(20). Some peptides exert similar effects, but others elicit

opposite responses. For this reason, the regulation of the

CgAprocessing inorder to generate diversemolecules under

different physiological conditions is critical for counter-

balancing the effects and maintaining homeostasis.

Vasostatins 1 and 2 " Vasostatins 1 (CgA1–76) and 2

(CgA1–113) represent the N-terminal fragments of CgA and

exert a large spectrum of homeostatic actions, including
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Figure 2

(A) Physiological effects of human CgA proteolytic fragments. The scheme

summarizes the main physiological functions of CgA cleavage products.

(B) CgA and its derived peptides as biomarkers. The scheme summarizes

the current use of CgA and of the different cleavage products as

biomarkers in neuroendocrine tumors and neurological, cardiovascular,

and inflammatory diseases.
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vasodilation, antifungal and antimicrobial effects, modu-

lation of cell adhesion, and inhibition of parathyroid

hormone secretion. The CgA processing into vasostatin

peptides occurs both at the cell membrane level and in the

extracellular matrix (21). Vasostatins 1 and 2 are structu-

rally very similar and induce comparable effects acting

through autocrine, paracrine, and endocrine mechanisms

(22). Their mechanisms of action are only partially

elucidated. So far, classical, high-affinity receptors have

not been identified, while receptor-independent cell

penetration (e.g., antimicrobial action) or membrane

perturbation (cardiac inotropism)-associated mechanisms

have been postulated in endothelium and heart (23, 24).

Vasostatins have been linked to vasculogenesis and

remodeling (12). In contrast to catestatin, vasostatin

inhibits VEGF-induced endothelial cell proliferation and

migration and the formation of capillary-like structures

(25). However, similar to catestatin, vasostatin has vasor-

elaxant properties and exerts negative inotropic and

lusitropic effects on the heart, particularly in the presence

of intense adrenergic stimuli. These cardiosuppressive

effects (26) seem to be due to a non-competitive counter-

action of the b-adrenergic-mediated positive inotropism

(27). Together, the cardiotropic and vasoactive properties of

vasostatins suggest that these peptides may play a role as

homeostatic stabilizers of the cardiovascular system,

particularly under conditions of sympathetic overstimula-

tion, such as those occurring under stress response (22, 28).

In addition to cardiovascular effects, a regulatory

role in the immune system has also been described.

Recent studies have demonstrated that vasostatin

modulates the innate immunity by inducing calcium

entry into human neutrophils, an effect similar to that

evoked by catestatin (29). Moreover, vasostatin directly

inhibits growth of yeast, bacteria, and fungi by penetrat-

ing through their membranes. These effects are probably

due to that part of the peptide that encompasses the

chromofungin sequence.

Finally, vasostatins modulate pro-adhesive interaction

of fibroblasts and smooth muscle cells with extracellular

matrix proteins (30) and exert autocrine inhibition of

parathyroidhormone secretion in theparathyroid cells (31).

Pancreastatin " Pancreastatin was the first identified

CgA-derived peptide (32). The major form detected in

human plasma consists of 52 amino acids (hCgA250–301)

and requires C-terminal amidation to be active. Released

with catecholamines from the sympathetic nervous system

in stress situations, pancreastatin appears to be involved in

the modulation of energy metabolism. Moreover, it

influences multiple facets of both carbohydrate and lipid

metabolism decreasing glucose uptake (by w50%) and

increasing spillover of free fatty acids (by 4.5- to 6.4-fold)

(33). This counter-regulatory function on insulin action can

be directed to reinforce catecholamine action and extend its

effect. In a situation of unbalanced sympathetic activation,

an excess of catecholamines alongwith increased pancreast-

atin levels could contribute to the development of insulin

resistance. This hypothesis is supported by the observation

that pancreastatin levels rise in human hypertension and in

gestational or type 2 diabetes. In addition to a direct

dysglycemic effect, pancreastatin modifies the insulin:

glucagon ratio stimulating glucagon and inhibiting insulin

secretion stimulated by physiological activators (34).

Nonetheless, the exact role of pancreastatin in the patho-

genesis of the insulin-resistant states anddiabetes remains to

be elucidated.

The pancreastatin region of CgA gives rise to three

genetic variants, one of which (Gly297Ser) substantially

increases the peptide’s potency to inhibit cellular glucose

uptake. These observations suggest that hereditary altera-

tions in pancreastatin’s primary structure may give rise to

interindividual differences in glucose and lipidmetabolism.

Pancreastatin also inhibits pancreatic and gastric

exocrine secretion and also the parathormone release.

Catestatin " Catestatin consists of a 21 amino acid

peptide and acts at nicotinic cholinergic receptors as a

potent autocrine inhibitor of catecholamine secretion.

Targeted ablation of CgA locus in a mouse model results in

severehypertension that canbe rescuedbyadministrationof

the catestatin fragment. Moreover, patients with hyperten-

sion display increased CgA (35) and reduced catestatin

plasma levels (36). These observations suggest that catestatin

deficiency might play a role in the development of

hypertension, whose pathogenesis has a significant neuro-

genic component based on a sustained overactivity of the

sympathetic nervous system. Moreover, the individual

genetic profile seems to influence the catestatin activity. In

addition, the Gly364Ser genetic variant of catestatin seems

to offer protection against the development of hypertension

(37), whereas the CgA processing to catestatin appears to be

more effective in women than in men (38).

Catestatin can induce cardiovascular responses at

local as well as at systemic levels (39). In particular, it

induces vasorelaxant and antihypertensive effects by

means of the induction of histamine release from mast

cells (40, 41). Catestatin also exhibits pronounced

angiogenic and vasculogenic activities, as it induces

migration and proliferation of endothelial cells and
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stimulates chemotaxis of vascular smooth muscle cells

(42). Effects comparable to that of VEGF were identified

in vitro in tube formation assays, as well as in vivo in the

mouse cornea system (43, 44).

The catestatin involvement in inflammation has

recently been highlighted in terms of chemotaxis and

induction of pro-inflammatory cytokines (45, 46). These

findings suggest a role in the neurodegenerative disease, as

CgA represents an important constituent of the plaques in

Alzheimer’s disease (47) and the derived catestatin has a

chemotactic effect on the monocytes that invade and

surround the plaques (48). In addition, catestatin directly

inhibits growth of fungi, yeast, and bacteria, including

Gram-positive and Gram-negative, likely because of its

highly cationic nature, a characteristic feature of the

antibacterial compound (49).

Parastatin " Parastatin (CgA347–419) consists of a highly

conserved CgA domain, described for the first time in the

porcine parathyroid. Parastatin modulates parathormone

release by porcine parathyroid cells at low plasma Ca2C

through an autocrine mechanism.

CgA and its cleavage products as biomarkers

Plasma CgA and derived peptides are now commonly used

as diagnostic and prognostic markers or to monitor the

response to pharmacotherapeutic intervention in several

diseases, such as endocrine tumors, heart failure, hyper-

tension, and neurodegenerative and neuropsychiatric

diseases (e.g., depression, schizophrenia, and bipolar

disease) (50, 51, 52, 53) (Fig. 2B).

Tumors

NETs represent a heterogeneous family of tumors with

different morphological and clinical features originating

from a variety of neuroendocrine cell types distributed

ubiquitously throughout the body. To date, CgA level,

representing a constitutive neuroendocrine secretory

protein, is the most widely accepted biomarker, being

elevated in 60–80% of patients with NETs (54). Elevated

CgA levels correlate with disease burden and poor out-

comes (55) and, in pancreatic NETs, an early decline during

treatmentwas associatedwith improved prognoses (56, 57,

58). However, the utility of serial CgA for monitoring

treatment response still remains to be prospectively

established (59). Recently, it has also been supposed that

CgA is differentially regulated in primary and metastatic

small intestinal NETs (60).

Cardiovascular diseases and hypertension

As CgA is much more stable than catecholamines in the

circulatory system, its plasmatic levels reflect the sym-

pathetic tone and adrenomedullary system activity, that

are altered in chronic heart failure, acute coronary

syndrome, and hypertension. High CgA plasma levels are

strictly associated with mortality risk after myocardial

infarction or acute coronary syndrome as well as heart

failure while increased catestatin concentrations appear

to improve post-ischemic recovery by reducing the

myocardial infarct size and the increment of diastolic

left ventricular pressure (27, 61, 62).

Inflammatory diseases

Serum CgA has been used as an early biomarker of disease

severity in patients admitted with systemic inflammatory

response syndrome (63), whereas a relation between TNFa

andCgAhasbeendemonstrated in rheumatoidarthritis (64).

Stress situations are considered as a significant predisposing

factor for immunediseases, andCgA levels have been related

to the onset and progression of periodontal diseases.

Neurological diseases

The potential utility of CgA as a biomarker in neurological

disorders has been only recently established. In particular,

decreased CgA levels have been detected in the cerebrosp-

inal fluid of canonical, but not late-onset type II Alzheimer’s

disease, patients (65), and decreased level of vasostatin is

characteristically observed in a cohort of patients with

Alzheimer’s disease compared with those suffering from

frontotemporal dementia and healthy controls (66). These

data suggest the potential utility of granin fragments in the

differential diagnosis of neurodegenerative diseases.

Recently, CgA has been supposed to be a potential

biomarker of multiple sclerosis as cerebrospinal fluid from

these patients evidenced a significant increase in

CgA194–213 fragment (67).

Other pathological conditions

Silent atrophic gastritis and gastritis due to Helicobacter

pylori infection may determine increased CgA levels, as a

consequence of chronic elevation in serum gastrin levels

(68, 69). In these patients, especially in those treated with

proton pump inhibitors, measurement of serum CgA

could be useful to monitor hyperplasia of entero-

chromaffin-like cells of the stomach.
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In organ dysfunction such as renal and liver failures,

the CgA levels in serum or plasma may also be markedly

increased while slightly increased concentrations of CgA

have also been observed in ulcerative colitis and Crohn’s

disease, hyperparathyroidism, hyperthyroidism, and

during menopause (probably due to the increased sym-

pathetic tone) and pregnancy (52, 70, 71).

Measurement of salivary CgA as a biomarker of

psychophysical stress

It has recently been reported that CgA is released from

human submandibular glands and secreted into saliva

(72). Salivary CgA levels are considered as a reliable non-

invasive marker of psychological stress (73, 74), such as

exposition to situation of anxiety (75, 76, 77) and

depressive mood (78, 79). Moreover, salivary CgA changes

during the menstrual cycle in women with different

degrees of premenstrual psychoemotional symptoms; in

particular, a significant late-luteal increase in salivary CgA

level was detected, reflecting an increase in sympathetic

nerve activity in women experiencing a substantial

increase in a cluster of negative psychoemotional symp-

toms premenstrually (80).

Physical activity is associated with enhanced adrenergic

tone. Recent studies have shown that high-intensity exercise

significantly increasesplasmaandsalivaryCgA levels (81,82).

Moreover, the elevation of salivary CgA levels in basketball

players before competition can have a perceived functional

effect with respect to the upcoming performance (83).

CgA sampling and detection

Plasma or serum sampling is broadly used for the

laboratory determination of CgA in a wide variety of

endocrine and NETs. However, recent studies have

analyzed the hypothesis that detection of salivary CgA

level may have a higher analytical and diagnostic

performance, as salivary sampling is non-invasive, rapid,

and, different from the circulating form, CgA in saliva is

not bound to other proteins. Even though only few papers

are available on this topic, data appear to suggest that,

in physiological conditions, circulating and salivary CgA

have different routes of secretion: indeed, salivary CgA

peaks upon awakening and then quickly decreases to nadir

after 1 h and is maintained at a low level throughout the

day, whereas plasma CgA did not show any circadian

rhythm (84). On the other hand, salivary and plasma

concentrations have been found to be correlated in

epilepsy cases and in pheochromocytoma (85, 86).

These observations suggest that salivary and circulating

CgA can be used for clinical application as complementary

markers. When salivary CgA is utilized in order to monitor

a psychosomatic or physical stress, the sampling time is

critical for a correct analysis (82, 83, 87).

Effects of the in vivo administration of CgA

and derived peptides

The pleiotropic effects and the pathophysiological impli-

cations ofCgA and its derived peptides seem to suggest that

these molecules bear all the potentials to be therapeutic

agents for several diseases. Nevertheless, no clinical trials

on the effects of their in vivo administration have been

registered to date. Experiments performed in genetically

modified mice evidenced that catestatin inhibited the

nicotine-induced catecholamine secretion, whereas its i.v.

administration in rats reduced pressure responses to the

sympathetic activation and evoked a potent vasodilation

(88). This vasoactive effect has been confirmed in healthy

human subjects by infusing catestatin into dorsal hand

veins after pharmacological venoconstrictionwith phenyl-

ephrine (38). This vasodilatory effect of catestatin was

more important in females, indicating that catestatin may

contribute to sex differences in endogenous vascular tone

and influence the complex predisposition to hypertension.

Conclusions

This review summarizes the knowledge about CgA and

functions of its cleavage products emphasizing their

importance in physiological and pathological conditions.

It is worth noting that some of the CgA-derived peptides

can exert opposing effects, and therefore, the regulation of

the CgA processing to generate diverse molecules under

different physiological conditions is critical in order to

counterbalance the effects and to maintain homeostasis.

The potential use of CgA as a pharmacological agent needs

to be investigated to fill the current knowledge gap.

Finally, the application of salivary samples could

substitute CgA detection in plasma, for clinical purpose.
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