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Biological interactions of 
biocompatible and water-dispersed 
MoS2 nanosheets with bacteria and 
human cells
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Two dimensional materials beyond graphene such as MoS2 and WS2 are novel and interesting class 

of materials whose unique physico-chemical properties can be exploited in applications ranging 

from leading edge nanoelectronics to the frontiers between biomedicine and biotechnology. To 

unravel the potential of TMD crystals in biomedicine, control over their production through green and 
scalable routes in biocompatible solvents is critically important. Furthermore, considering multiple 
applications of eco-friendly 2D dispersions and their potential impact onto live matter, their toxicity and 
antimicrobial activity still remain an open issue. Herein, we focus on the current demands of 2D TMDs 
and produce high-quality, few-layered and defect-free MoS2 nanosheets, exfoliated and dispersed 
in pure water, stabilized up to three weeks. Hence, we studied the impact of this material on human 
cells by investigating its interactions with three cell lines: two tumoral, MCF7 (breast cancer) and U937 
(leukemia), and one normal, HaCaT (epithelium). We observed novel and intriguing results, exhibiting 
evident cytotoxic effect induced in the tumor cell lines, absent in the normal cells in the tested 
conditions. The antibacterial action of MoS2 nanosheets is then investigated against a very dangerous 

gram negative bacterium, such as two types of Salmonellas: ATCC 14028 and wild-type Salmonella 

typhimurium. Additionally, concentration and layer-dependent modulation of cytotoxic effect is found 
both on human cells and Salmonellas.

�e advent of an extremely interesting novel class of two dimensional materials (2DMs) was triggered by the 
successful isolation of single atomic layers of graphene. �e unprecedented properties of graphene sparked a 
search for additional 2D materials with their own unique characteristics1. In general, 2DMs possess large surface 
areas combined with outstanding electronic, optical, electrochemical, mechanical and thermal properties that 
are opening new channels for fundamental scienti�c research and advanced technological applications2,3, there 
including sensing, catalysis, energy storage and functional nano composites4,5. �e feature of being some of the 
thinnest 2D structures among all known materials with very high speci�c surface area makes them indispensable 
for applications requiring high levels of surface interactions at the nanoscale i.e. into the frontiers between biol-
ogy and medicine such as antibacterial activity6,7, biosensors8,9, drug delivery10,11, cancer cell diagnosis and cell 
imaging12.

To exploit the full potential of 2D TMD nanosheets in applications, control over their production is very 
crucial. �erefore, the need for more versatile and scalable techniques for 2DMs exfoliation is apparent. A�er 
the era of mechanical exfoliation, many serious e�orts have been made to adopt new techniques to produce 2D 
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nanosheets which includes chemical vapour deposition13 and exfoliation in di�erent liquids or solutions14 such 
as chemical oxidation followed by reduction15,16, electrochemical exfoliation17,18, ion intercalation19,20 and liquid 
phase exfoliation (LPE)21,22.

Among the above cited techniques, LPE is the most versatile, scalable and cost e�ective technique for the pro-
duction of few-layer nanosheets (1–10 stacked monolayers), with low monolayer content23,24. Particularly in this 
technique, a careful optimization of exfoliation parameters such as, choice of green solvents, initial concentration 
of the solution, exfoliation time and controlled centrifugation for size and thickness selection of 2D nanosheets is 
very crucial to understand their environmental impact and behaviour in biological media21,25–27. Organic solvents 
such as ethylene glycol, Methyl-2-Pyrolidone and Iso-propyl Alcohol are substantially used for the large scale 
production of high monolayer content 2D nanosheets25,28. But their chemical fate and toxicological behaviour 
strongly limits their use for biomedical research onto live matter.

�erefore, water dispersed, defect free and biocompatible 2D MoS2 nanosheets are absolutely needed in place 
of nanosheets exfoliated in organic solvents. By the way, exfoliation of 2D nanosheets in water is a big challenge 
itself25,29–31. For example, Ma et al. reported the cavitation induced exfoliation protocol of MoS2 dispersion and its 
consequences based on Hemi-Wicking model32.

Toxicity, environmental impact and biocompatibility of MoS2 onto di�erent human cell lines is very impor-
tant to investigate, in view of the more and more massive use of these 2D materials in a number of practical 
applications and their increased presence in the human day-to-day life. Morphology, size and thickness of 2D 
nanosheets are some key parameters to induce and potentially control the surface interactions of MoS2 nano-
sheets onto live matter. Functionalized MoS2 nanosheets have been studied with di�erent human cell lines to 
tap the potential of 2D nanosheets in various biomedical applications such as drug delivery, cancer diagnosis 
and cell imaging33–35. For instance, Coleman and co-workers reported the size and concentration dependent 
toxicity of MoS2 nanosheets on three di�erent established cell lines36. Siepi et al. reported on the biocompatible 
lysozyme-functionalized exfoliated MoS2 nanosheets. �ey incubated MoS2 nanosheets on two di�erent cell lines 
(HeLa and HaCaT) with no cytotoxicity evidence at higher concentrations37. J. H. Appel et al. reported on the 
interactions of naked MoS2 nanosheets, obtained by mechanical exfoliation and chemical vapor deposition, with 
human epithelial kidney cells (HEK293f) observing low cytotoxicity and genotoxicity in their experimental con-
ditions38. P. Shah et al. probed the e�ect of MoS2 nanosheets produced by liquid exfoliation onto rat cells �nding 
a relatively good biocompatibility at high 2D material concentration39.

�e wide area of biomedical applications of MoS2 nanosheets also embraces its potential to exert antibacte-
rial e�ects against various pathogens through induction of physical damage and oxidative stress which leads to 
continuous disruption of bacterial cells and eventually to cell death40–43. �ese promising results have attracted 
MoS2 nanosheets as a potential candidate, better than graphene and its derivatives, for signi�cant antibacterial 
applications. Concentration dependent studies of MoS2 nanosheets with Escherichia coli44, Bacillus subtilis and 
Staphylococcus aureus42 revealed a decrease in the bacterial survival rate with increase in dispersion concentration. 
On the other hand, Salmonella typhimurium (S. typhimurium), a discretionary gastric pathogen which is respon-
sible for food poisoning in humans resulting in gastroentertitis45 and represents a very dangerous gram negative 
bacterium, was studied only quite recently until now in its interaction with bare MoS2 nanosheets38,42,46–48.

�erefore a thorough study on the di�erent interaction pathways of naked MoS2 nanosheets with di�erent 
human cell lines and various pathogens is highly needed and still missing in the most important case, namely for 
nanosheets produced by eco-friendly methods and dispersed into water based media that is the native context of 
biological matter.

To this aim, the present research is focused on the noticeable progress on green and scalable production of 
MoS2 nanosheets in water as a pure solvent, having stability up to three weeks by carefully optimizing critical 
exfoliation parameters26. Such a long stability time in water solvent, which is a non-trivial result, is crucial to test 
the impact of 2DMs with biological live matter in its native context, as experiments aimed at these goals may 
take a few days or even longer to be completed. �us, we stress that our innovative preparation of naked MoS2 
nanosheets in water solvent represents an essential step ahead for an appropriate characterization of 2DM - live 
matter interactions in its natural environment. Biological interactions of bare MoS2 nanosheets are investigated 
with three di�erent kinds of human cells, two tumoral, MCF7 (breast cancer) and U937 (leukemia), and one 
normal, HaCaT (epithelium), and two di�erent kinds of Salmonella- ATCC 14028 and wild type S.typhimurium. 
It is worth noting that while MCF749–52, and HaCaT37,53 cells have been already partly checked in their inter-
actions with MoS2 nanosheets, U937-MoS2 interactions are completely unknown so far. Yet, MCF7 (Breast 
Cancer), Hela (Human Cervical Cancer), PC3 (Human Prostate Cancer), SMCC-7721 (Human Hepatocellular 
Carcinoma), B16 (Mouse Melanoma) and A549 (Human Lung Carcinoma) as cancer cell lines have been also 
recently tested as models for the interactions between human cells and 2D functionalized nanomaterials of vari-
ous kind, there including 2D Black Phosphorus nanosheets54, 2D Boron nanosheets55 2D Antimonene quantum 
dots56 2D Antimonene nanosheets57 and Tin Sul�de nanosheets58. It is worth stressing, by the way, that in each 
of these cases the 2DMs, nanosheets and also quantum dots in one case56, are functionalized by forming a nano 
material-Polyethylene glycol (PEG) complex to which the speci�c Doxorubicin anti-cancer drug is added, dif-
ferently from what studied in our experiments, where the interactions between living cells and naked nano�akes 
are probed. As a matter of fact, in these cases the scheme of the interaction between 2DMs and cells is basically 
di�erent from our case, since the authors induce a cytotoxic e�ect of the nano-complex by photo-activation of 
the material due to illumination with near-infra red light (780–808 nm wavelength). �e near-infra red light is 
e�ciently absorbed by the nano-complex (2DM-PEG-Anticancer drug) and this induces a heat of the whole 
environment and a change in the pH in the neighbour of the nano-complex that causes the e�cient interaction 
of the anti-cancer drug with the cells. �erefore, while these studies have been focused on speci�c application 
of 2DMs mainly as a support for a photo-active complex containing also PEG and anti-cancer drug, resulting 
in an induced cytotoxic action useful in theranostics and therapeutics, our paper reports on the non-mediated 
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interaction of bare nano�akes with human cells of various types and possible applications due to the intrinsic 
observed cytotoxic action.

Diagnostics of the nanosheets is carried out based on several well established methods, such as Raman59,60 and 
UV-Vis absorption spectroscopy22 and ζ- Potential31. Antibacterial and cell viability studies were analyzed via 
Methylthiazolyldiphenyl-tetrazolium bromide (MTT) test to quantify the cell/bacterial viability at a given con-
centration. We found a very interesting and novel result: while tumoral cells exhibited an unexpected and strong 
reaction to MoS2 nanosheet treatment in the tested conditions, leading to cell death, even more striking in U937 
than in MCF7, no appreciable impact was observed on normal cells by nanosheets, even on the long term time 
scale of 96 h a�er treatment. SEM analysis was also performed to study the change in morphology of human cells 
and S.typhimurium. Colony counting images revealed an evident antibacterial e�ect even at low concentration of 
MoS2 nanosheets dispersion.

Results
Dispersion stability of water exfoliated MoS2 nanosheets. It is worth stressing that a number of 
parameters are vital for the success of green route exfoliation of MoS2, such as initial concentration of the disper-
sion, shape of the glass tube and of the probe (�at head or narrow cone shaped), sonication time, amplitude of the 
sonicator signal, centrifugation time and speed. Among these parameters, the concept of ‘dead zones’ as explained 
by J. L. Capelo et al. is of paramount importance to have a minimum distance between the probe and the bottom 
of the tube used for exfoliation. �e larger the contact area of the probe with the material the more e�ective the 
exfoliation and the transfer of acoustic energy and ultrasonic intensity through the probe. Rest of the parameters 
play a crucial role for high quality and highly stabilized nanosheets dispersion.

In our case, the exfoliation of bulk MoS2 powder was performed in elix water (as a pure solvent) using a tip 
sonicator for 3 h at 35 W. A�er optimizing a range of initial concentrations and various exfoliation constraints, a 
stable dispersion for up to three weeks was achieved. �is was in good consideration to utilize this material for 
biological applications without the use of any organic solvent or any stabilizer. Further experimntal details are 
reported in Materials and Methods section.

UV-visible extinction spectroscopy. In case of 2DMs, liquid processing of bulk materials via the green 
route of production results in few layered MoS2 nanosheets. �erefore, UV-Visible spectroscopy is a very basic 
measurement technique in general to extract the useful information from such colloidal dispersions. �e extinc-
tion spectra in the UV-visible region of MoS2 samples contain the contribution from both absorbance and scatter-
ing components. Both of these components are size dependent. In our experiment protocol, at lower centrifugal 
forces 40 g and 160 g, scattering component was more dominant with high extinction peaks at 750–800 nm. 
Whereas, at higher centrifugal forces 620 g and 1000 g, A-exciton peak shi�ed towards the lower wavelength 
region. With the increase in centrifugal force, number of layers per �ake decreases which results in few layered 
enriched dispersions. �e extinction spectra of MoS2 a�er the �nal steps of centrifugation at 620 g and 1000 g 
are shown in Fig. 1a. �e physical parameters of MoS2 dispersion at di�erent centrifugal forces are shown in 
Supplementary Table S1. Extinction parameters based on the formulation21 obtained immediately a�er the exfo-
liation of MoS2 nanosheets and a�er three weeks of storage are shown in Supplementary Table S2.

ζ- Potential Measurements. Generation of surface charges over the surface of 2D nanosheets plays a cru-
cial role to understand the stability of liquid exfoliated dispersions. To identify these surface charges, electropho-
retic mobility measurements (µ) are performed in general. �ese (µ) measurement works as a quantifying tool to 
understand the electrostatic stabilization between the nanosheets by estimating the zeta potential (ζ). In case of 

Figure 1. Material characterization. (a) UV-Visible extinction spectra of 2D MoS2 nanosheets dispersion at 
620 g and 1000 g. (b) Raman spectra of the two main vibrational modes ν g2

1  and A1g of MoS2 nanosheets 
centrifuged at 1000 g and 1400 g. Raman shi� in the region from 380–412 cm−1 range represents MoS2 
nano�akes in the range from 2–4 layers.
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2DMs, dynamic interactions among the nanosheets and their electrostatic stabilization play a fundamental role 
to anticipate the stability of liquid dispersions. It was observed that a�er the exfoliation, the MoS2 �akes exhibit 
high surface charge density depending upon the di�erent centrifugal forces applied as seen from the Table 1. �e 
experimental details of ζ-potential measurement are explained in Supplementary �le.

Raman Micro-spectroscopy of MoS2 nanosheets in absence of cells. Raman spectroscopy is a 
widely employed tool to estimate the thickness of TMD nano�akes21,59–61. �e Raman spectrum of MoS2 shows 
characteristic bands, E g2

1  and A1g, corresponding to in-plane and out-of-plane vibrational modes, that for bulk fall 
at about 380 cm−1 and 403 cm−1 respectively59. MoS2 nanostructuring modi�es the Raman features of the bulk 
with an increase for the E g2

1  frequency and a corresponding decrease of the A1g.

ν ν ν∆ = − (1)MoS A g2
1

g2 1

�e frequency shi� allows for an identi�cation of the number of layers in the nano�akes59,60. In Fig. 1b, Raman 
spectra of MoS2 nano�akes in absence of cells centrifuged at 1000 g and 1400 g (used to exfoliate MoS2 in nano-
sheets) are shown, with laser excitation at 514.5 nm. We observed similar modi�cation in the Raman spectrum 
compared to bulk for both centrifugal protocols, with a common range of frequency shi� ν∆ MoS2

 of peaks ranging 

in the 23–24.6 cm−1 window. �e ν∆
MoS2

 range observed via Raman micro-spectroscopy corresponds to a nano-

structuring spanning from 4 to 2 layers. �ese micro-Raman spectroscopy results look consistent with the range 
of nanostructuring indicated by UV-vis absorption.

Cytotoxicity study on different cell lines. Cytotoxicity experiments were performed using two cancer 
cell lines (U937 and MCF7) and one non-cancer cell line (HaCaT).

Effects of 2D MoS2 nanosheets on cellular growth. Cytotoxicity experiments were performed in two 
di�erent cell culture conditions: in suspension and in adhesion. �is approach allowed to examine the interaction 
between MoS2 nanosheets and cells under the condition in which bona �de either the entire cell surface - in case 
of suspension cultures - or part of it - cell monolayer of adherent cultures - resulted exposed to 2D nanomaterial. 
�e impact of di�erent concentrations (C), mean number of layers (N ) and mean lateral size (L) of MoS2 nano-
sheets dispersion was investigated upon their incubation with two tumoral cell lines (U937 and MCF7) and one 
normal cell line (HaCaT), as shown in Supplementary Table S3. It is worth noting that for cells the e�ective con-
centration of the nanomaterial is lowered by about a factor of four as compared to the concentration value of the 
initial preparation.

�e reason is, to avoid an excessive dilution of the culture media and nutrients therein. �e dispersion was 
drop cast into the cell medium and the incubation was carried out for 24, 48 and 72 h. At the end of incubation, 
the cell cycle progression was determined by �ow cytometer or �uorescence activated cell sorting (FACS), a tech-
nique that discriminates the cells at di�erent phases of cell cycle for their content in DNA (Fig. 2). �e cytometer 
processes the �uorescence intensity of a group of cells labeled with �uorescent dye (PI) that is able to bind DNA. 
�e data is displayed as number of cells versus �uorescence intensity, a number proportional to cell DNA content. 
�e cell scattering shows two peaks: G1 (gap 1), the gap between mitosis (nuclear division) and DNA replication, 
corresponding to cells metabolically active but that do not replicate their DNA and G2 (gap 2) corresponding to 
cells that grows and synthesize the proteins for mitosis. Between G1 and G2 there is the S phase in which the cells 
replicate their DNA. �e cell death is revealed as percentage of cells in pre-G1 phase, corresponding to a pick of 
fragmented DNA62,63.

Our data of Fig. 2a revealed that MoS2 dispersion did not a�ect MCF7 distribution along cell cycle phases 
within 48 hours even at the highest concentration. Only the longest incubation time was able to induce a decrease 
of S phase in dose-independent manner and increase in the progression to G2/M phase (Fig. 2a). Conversely, cell 
cycle distribution of U937 cell was strongly a�ected in time dependent manner (Fig. 2b). At 48 h, MoS2 dispersion 
at three di�erent concentrations was able to induce a block in S phase and an increase of cell death percentage. 
Notably, the lowest used concentration of MoS2 dispersion (0.5 µg/mL) induced the strongest e�ect on cell death 
a�er 48 h. However, the cell death (pre-G1) was attenuated at 72 h probably because of sedimentation of 2D MoS2 
dispersion. Similar trends were found in HaCaT cells as shown in Fig. 2c. In human keratinocyte cell line, the 
induction of both S-phase block and cell death were observed at 72 h. Delayed response on cell cycle progression 
accounted for the slower proliferation rate of this normal cellular model.

Effects of 2D MoS2 nanosheets on cellular viability. To better investigate the cytotoxicity, viability of 
the above mentioned three human cell lines was investigated a�er 24 and 48 h of exposure to MoS2 dispersion. 
MTT experiments were performed by growing cells onto plates coated with 50 and 100 µL drops of MoS2 nano-
sheets. �e exfoliation of MoS2 dispersion exhibit 14 µg/mL C  with 6 N  and L  of 220 nm. �e viability of U937 

Centrifugal 
force g

Zeta potential 
(ζ) mV

electrophoretic mobility 
(µ) µ

620 −23.9 ± 0.6 −1.88 ± 0.04

1000 −29.2 ± 1.3 −2.9 ± 0.1

Table 1. ζ- Potential values of MoS2 nanosheets dispersion at di�erent centrifugal forces.
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cells was not a�ected (Fig. 3a) by the presence of MoS2 nanosheets at the bottom of the cell plate even at the high-
est cell density (Fig. 3b). In fact, di�erently from what we observed for U937 cells, MTT analysis performed on 
the adherent MCF7 cells showed an interesting interference effect induced by 2D nanosheets as shown in 
Fig. 3(c,d). �e presence of MoS2 nanosheets coating on the plate mainly a�ected the viability (and/or adhesive 
properties) of the cells. A�er 24 h more than 50% of cell death was already observed (Fig. 3c). No signi�cant e�ect 
of both the quantity of MoS2 nanosheets and cellular concentration was noted. In Fig. 3d, taking twice the number 
of MCF7 cells present in 3c the cell viability in this case was much less a�ected than in 3c. We ascribe this �nding 
to the speci�c type of interaction between the adhered MCF7 cells and the nano�akes. In fact, in case of adhered 
cells the interaction always takes place through the interface surface between the cell medium and the nano�akes. 
�is interface, constituted by the most external cell layer, is approximately keeping the same size and involving the 
same number of cells regardless the actual entire volume of the growth cells below the separation surface. 
�erefore, simply increasing the number of cells while keeping the same interface results in minimizing the inter-
action between adhered cells and MoS2 nanosheets.

Similar effects were observed in HaCaT cells incubated with MoS2 nanosheets coated onto the plates 
(Properties of Exfoliated MoS2 nanosheets dispersion are shown in Supplementary Table S4). Like MCF7, HaCaT 
cell line viability was strongly a�ected by the presence of MoS2 nanosheets coated over the plates. Here we can also 
see that in the case of 14 µg/mL C , but with two di�erent N , 6 and 10, the induced evident reduction of cell viabil-
ity is not changing, suggesting that no major role is played in such a case by the C . �e above �ndings corrobo-
rated the idea that a prolonged physical proximity between 2D nanosheets and cells is required to induce the cell 
death. In fact, while this is certainly the case for MCF7 and HaCaT that grow up in adhesion, for U937 that grow 

Figure 2. Cell cycle analysis. (a) MCF 7, (b) U937 and (c) HaCaT cell lines at di�erent �nal concentrations 
of 2D MoS2 dispersion a�er 24 h, 48 h and 72 hours from the beginning of the treatment. Error bars indicate 
standard deviation of triplicate analysis.
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up in suspension MoS2 nanosheets can be much more diluted in the entire volume of the solution so to interact 
much more weakly with cells. Normally the interaction of nanomaterials with cells is studied with the latter being 
placed at the bottom of a culture plate. In vitro, cellular response to nano�akes can also be evidently in�uenced by 
the altered di�usion and sedimentation velocities of the nanostructured �akes64, as well as by electrostatic forces 
arising from the interaction between exfoliated MoS2 nanosheets that are negatively charged (Table 1) and cell 
membrane which is typically positively charged on the external side, thus generating a negative transmembrane 
potential65. Within the electrostatic forces that may play a role in the interactions between cells and MoS2 nano-
sheets it is worth mentioning also those driving the ion channels regulation through the cell membrane, as in case 
of potassium ion, that might be a�ected by the presence of 2DM nanosheets66.

Cell adhesion is an important aspect in cell proliferation, and can play a role in the interaction of cells incu-
bated with nanomaterials. Typically, cells are prepared so to adhere before the addition of the nanomaterial solu-
tion to the preparation67. In our case, cells are adhered onto the plates coated with two MoS2 dispersion drops 
having di�erent volumes. Since U937 cells by nature grow up in suspension, typically tend to a minor surface-like 
interactions resulting in a poor adhesion and thus a weaker interaction with the nano�akes. �erefore, the cell 
viability was not a�ected as in the case of the other cell lines. On the other hand, both MCF7 and HaCaT cells 
grow up in adhesion to a surface. �is property makes them more appropriate for surface-like interactions, there 
including those ones with the nanomaterial. �is leads MCF7 and HaCaT cells to exhibit a strong decrease in 
cell viability when incubated with 2D MoS2 nanosheets, in the range of ≈0–50% in our experimental conditions.

MTT assay on HaCaT and MCF7 cells pre-incubated with MoS2 nanosheets. Walking on this line, 
we exploited another interaction pathway of pre-incubation and rotation of 2D nanosheets with cells, so to 
increase their direct contact of interaction in the medium. In this setting, adherent HaCaT cell line was 
pre-incubated for 1 h in gentle rotation with the indicated quantities of MoS2 nanosheets and then cultured for 
next 24 and 48 h in standard growing conditions. In this condition, cells viability was profoundly impaired in the 
presence of MoS2 nanosheets as shown in Supplementary Table S4. Our data also revealed that cellular response 

Figure 3. MTT analysis. (a,b) MTT assay performed on U937 cell line with (a) 2000 and (b) 4000 cells at 
570 nm absorbance for 24 h and 48 h. (c,d) MTT assay performed on MCF7 cell line with (c) 2000 and (d) 4000 
cells at 570 nm absorbance for 24 h and 48 h. Error bars indicate three independent experiments in (a–d).
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was somehow dependent on C  and N  of MoS2 nanosheets, though the mechanism for interplay between N  and C  
on the induced biological e�ects in this peculiar geometry of interaction still needs to be more deeply investi-
gated. �e general behaviour here indicates that adding MoS2 nanosheets in the preparation as described above 
leads always to a strong cell viability decrease, even larger than 65%, and suggests to some extent that the lower 
the concentration the higher the cell viability decrease.

In Supplementary Table S5 we report the viability of MCF7 cells via MTT assay, pre-incubated with 2D MoS2 
nanosheets having di�erent C  and L . Even in this case there is a strong impact of the nanosheets over the cell via-
bility, even stronger than in HaCaT, in the same conditions. �e sample absorbance decreases in this case from 1 
(negative control) to a value in the 0.1–0.35 range, when checked at 24 h and 48 h a�er treatment. No clear depend-
ence is observed in this case on the C  and on the parameters characterizing the nanosheets such as N  and L .

Cell morphology by scanning electron microscope (SEM). To better characterize the microscopic 
structural features of the interaction between cells and MoS2 nanosheets, SEM experiments were performed. A�er 
the pre-incubation for 1 h with MoS2 dispersion, the three cell lines used were conventionally cultured on conver-
glasses. �en, cells were observed by SEM a�er 24 h of incubation with two dispersions of MoS2 nanosheets 
(having 10 µg/mL C  with 6 N , and 14 µg/mL C  with 3 N ). SEM images clearly revealed the deposition of some 
MoS2 �akes over the cell surface.

Figure 4 shows the interaction of MoS2 nano�akes with MCF7, U937 and HaCaT cell lines, the �akes having 
L  in the 0.5–10 µm range. MCF7 line of Fig. 4a represents the negative control case (absence of MoS2 dispersion) 
with two MCF7 cells exhibiting their typical epithelial morphology. MoS2 �akes from the two samples (10 µg/mL 
and 14 µg/mL) were added, 4b showing the typical structural aspect of a �ake. �e addition of the MoS2 nano-
�akes resulted in an alteration of the cell structure that appears seriously damaged as in 4c.

In the second line of Fig. 4(d–f), a strong cytotoxic e�ect of MoS2 nanosheets is revealed on U937 cells, result-
ing in a massive cell death of this hematological cellular system. 4d shows the typical appearance of a control 
U937 cell (in absence of MoS2 dispersion). �e cell death is associated to deposition of sodium chloride crystals 

Figure 4. SEM analysis of human cell lines. (a–c) MCF7 (top, the red arrows indicating the nano�akes onto the 
cell), (d–f) U937 (middle, the blue arrows indicating the damaged areas and the red the nano�akes) and (g–i) 
HaCaT cells (bottom, the blue arrows indicating the damaged areas and the red the nano�akes) untreated and 
treated with MoS2 dispersion at the indicated concentrations. �e N  was two at 10 µg/mL and six at 14 µg/mL.
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appearing both as little cubes and massive aggregates. In Fig. 4 In 4e, treated U937 cells are heavily damaged as 
compared to the control. �e presence of 2D nanosheets induced a complete distortion of the U937 cell structure 
upon their interaction, leading to complete cell death. Both sodium chloride types of crystals are visible as typical 
�nal product of cell decomposition induced by the stress due to MoS2 nano�akes reported in 4 f. In this case a 
fragment of decomposed U937 cell is shown, surrounded by the sodium chloride crystals that probably coat also 
the smaller MoS2 �akes.

In the last line of Fig. 4(g,h), untreated HaCaT cells represent a mesh-like structure with several �laments 
over the periphery of its cell membrane in 4g. MoS2 nanosheets treatment at 10 µg/mL caused a disruption of the 
cell structure with separation of the mesh into two parts. �e presence of 2D �akes, highlighted in the �gure by 
red arrows, resulted in destruction of the HaCaT cell membrane in 4h. MoS2 dispersion at 14 µg/mL shows the 
presence of 2D multilayer �akes over the cell surface, where craters also appear in the membrane as a result of the 
mechanical damage induced by the MoS2 nanosheets to HaCaT cells in 4i.

Taken together, these results provide evidences of the capability of MoS2 nanosheets to interact with the cellu-
lar surface and to trigger changes in cell morphology that likely evidence a strong mechanical damage.

MoS2 nanosheets and cells interaction pathway. Figure 5 explains a simple scheme of three di�erent 
interaction ways of 2D MoS2 nanosheets with adhesion and suspension human cells. Figure 5a shows the adhe-
sion interaction of MoS2 nanosheets over the cell surface. In such a case, MCF7 cells (adherent) were coated over 
the cell plate and then MoS2 dispersion was added for 72 h incubation. �e cell viability was not a�ected even a�er 
48 h of exposure with nanosheets. We observed a change in S phase of cells a�er 72 h of incubation because of 
slow sedimentation velocity of MoS2 nanosheets in cell medium (Fig. 2). A Similar e�ect was observed in case of 
HaCaT cells (again adherent). In Fig. 5b, the interaction scheme of MoS2 nanosheets with suspension cells (U937) 
is represented. A�er 48 h incubation with nanosheets, time dependent cell death was observed together with a 
high decrease in cell viability even at the lowest concentration of the MoS2 dispersion (in Fig. 2).

In Fig. 5c, MoS2 nanosheets dispersion was coated over the plates and then cells were exposed to the nano-
sheets surface. In case of adhesion cells (MCF7), a�er 24 h incubation, more than 50% cell death was observed at 
the lowest cell density because a better contact between �akes and cells takes place resulting in maximum damage 
(Fig. 3). In Fig. 5d, suspension cells exhibit less damage because of the smaller chance to interact with the coated 
plated surface treated with MoS2 nanosheets (Fig. 3).

Figure 5. Interaction pathway for adhesion (MCF7 and HaCaT cells) and suspension cells (U937) with 2D 
MoS2 nanosheets.
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In Fig. 5e, MoS2 dispersion and cells were pre-incubated and rotated for 1 h to have better mixing and maxi-
mum interaction in the dispersion. In this respect, we observed the exciting result of maximum damage to both 
the tumoral cell lines and negligible e�ect to the normal one. �is interaction between cells and MoS2 nanosheets 
resulted in more virulent nature for the cells already in suspension (U937). While in case of adhesion cells, as 
they adhere slowly to the bottom of the plate, their interaction resulted in a minor less damage for HaCaT cells 
(normal) compared to tumor MCF7 in Fig. 6a.

MoS2 mediated cell death evaluation. We integrated the qualitative morphological analysis of the MoS2 
nanosheets impact onto the above mentioned three cell lines, carried out by SEM images, by evaluating the cell 
death based on FACS. �en, a quantitative estimate of the induced cell death a�er 24 h is obtained as percentage 
of cells positive to the Propidium Iodide test, as shown in Fig. 6a. �e result is very surprising and somewhat 
striking: while MoS2 nanosheets were able to induce cell death in both of the cancer cell lines, they essentially 
did not in normal cell line, as shown in Fig. 6, where the Propidium Iodide positive cell level is even lower than 
the untreated control indicating no induction of cell death. In fact, in breast cancer MCF7 cell line, MoS2 dis-
persion incubated in both quantities induced a two fold increase of cell death. Acute myeloid leukemia U937 
cell line appeared the most sensitive to 2D nanomaterial treatment, with an increase of cell death of 8–12 folds 
as compared to the untreated cells. Negligible e�ect was instead observed in HaCaT cell line even when these 
cells were exposed to MoS2 nanosheets for longer duration of observation up to 96 h a�er treatment: a di�erence 
in favor of the untreated cells was observed here, demonstrating the ine�cacy of MoS2 nanosheets in such cell 
system in Fig. 6b. Interestingly, the anti-proliferative e�ect is obtained both in hematological and solid cancer 
cell lines, appearing at this stage to be a cell-type-independent cancer response, restricted to the only tumor cells. 
HaCaT cells in fact, here utilized as a model for non-cancer cells, are una�ected in each scheme of treatment 
(Fig. 5) but the case where MoS2 nanosheets dispersion was coated over the plates and then cells were exposed 
to the nanosheets surface in Fig. 5c, which resulted in a weaker e�ect as compared to the analog for tumor cells 
see Supplementary Table S4 and Fig. 3(a–d). Whether this feature is a general �nding characterizing cancer cells 
regardless their type or is cell-type-dependent, for instance because of the interaction between the negatively 
charged nanosheets and the cell membrane having an electrostatic potential varying from type to type, is a very 
intriguing question, whose response to is out of the scope of this paper and will be addressed in further investiga-
tions. �is �nding indicates MoS2 nanosheets as a possible promising atoxic tool in cancer therapy. If con�rmed 
this preliminary observation would be of extreme importance, and would open the route to concrete applications 
of MoS2 nanosheet treatment in living systems as possible targeted anti-cancer system. It is worth pointing out 
that this result is not at odd with morphological analysis based on SEM investigation of the treated cells, that 
indicated possible mechanical damage in all the three cell lines, since morphological analysis is not quantitative 
and basically enlightens only mechanical stresses.

Figure 6. Cell death analysis for long duration. (a) Cell Death induced by MoS2 nanosheets treatment in 
the same experimental setting of SEM experiment. (b) Cell Death induced by MoS2 nanosheets treatment 
with HaCaT cells checked at 24, 48, 72 and 96 h a�er treatment, in the same experimental conditions of SEM 
experiment. Error bars report standard deviation a�er three independent experiments in (a,b).
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Antibacterial effect by naked MoS2 nanosheets
Graphene and its derivatives have been explored a lot for their antibacterial activities, but there are few studies 
which re�ect the antibacterial mechanism of TMDs. Liu. X. et al. studied time and concentration dependent anti-
bacterial activity of WS2 nanosheets on gram negative E. coli and gram positive Staphylococcus aureus bacteria68. 
Shinde and co-workers demonstrated the inhibitory e�ects of WS2 and WS2-rGO composite nanosheets on gram 
negative (E. coli) and Salmonella typhimurium (S. typhimurium), and Gram positive Bacillus subtilis (B. subtilis) 
and Staphylococcus epidermidis (S. epidermidis) bacterial strains48. Na Wu et al. studied the toxicity of MoS2 on 
E. coli with its increasing concentration by utilizing metabolomics technology44. Studies on Salmonella bacteria 
using TMDs have generally been explored very little. Zhang X. et al. studied chitosan functionalized and antibi-
otic loaded MoS2 nanosheets to combat the S. aureus and gram negative Salmonella bacteria against the bacterial 
resistance and bio�lm formation42.

To utilize 2D TMDs in various antibacterial applications, it is important to study �rst the interaction of 2D 
nanosheets with the bacterial target. In this aspect, we have chosen S. typhimurium which is well known to be a 
pathogen causing nosocomial infections, o�en contaminating water or food69. �e latter case is very much timely: 
a number of applications are currently investigated one of the most interesting examples being the possibility to 
make new food packaging systems to avoid or to reduce Salmonella contamination of food. �e two di�erent 
categories of Salmonella bacteria (ATCC 14028 and wild-type (WT) Salmonella) were used to interact with liquid 
exfoliated MoS2 nanosheets. A clear antibacterial action of MoS2 nanosheets was observed in SEM images where 
MoS2 nanosheets acted as a sharp knife and cuts the outer membrane of Salmonella. �en MTT assay was per-
formed to study the bacterial viability a�er the interaction with MoS2 nanosheets.

Antibacterial activity: proliferation test. Laboratory prepared Salmonella ATCC 14028 and wild-type 
(WT) Salmonella were used as representative bacterial strains to study the bactericidal activities of MoS2 
nanosheets.

Incubation of S. typhimurium bacterial models was performed at two di�erent concentrations of 2D MoS2 
nanosheets dispersion (11.2 and 20 µg/mL) for 24 h. Bacterial viability was studied via a proliferation test. Samples 
incubated with MoS2 nanosheets dispersion (properties of MoS2 nanosheets dispersion mentioned in 
Supplementary Table S3) were checked a�er the �rst four hours from the treatment, and then re-checked a�er 
24 h to investigate the bacterial death (Fig. 7). Incubation of the bacterial models under the same conditions were 
used as a positive control for the experiment, without MoS2 nanosheets dispersion. From the colony counting 
images (Fig. 7) we can clearly see an antibacterial e�ect in all cases. �e antibacterial action of MoS2 nanosheets 
is due to both membranes mechanical injury, as imaged in Fig. 7(i–l) by SEM, and oxidative stress70. From 
Fig. 7(a–f), we observed a clear antibacterial e�ect of 2D MoS2 nanosheets on S. typhimurium. In 7a, SA+ denotes 
the control wild-type Salmonella with no incubation with 2D nanosheets �e bactericidal action is very clear and 
similar in 7b at 11.2 µg/mL with N  = 2 and in 3c at 20 µg/mL with N  = 4. From Fig. 7(d–f), we observed an even 
more evident bactericidal e�ect on the ATCC 14028 Salmonella, which resulted in complete death of bacterial 
cells upon incubation with sharp edged 2D MoS2 nanosheets. In 7d, SATCC+ denotes the positive control ATCC 
14028 lab Salmonella typhimurium other than the wild-type. Bactericide e�ect in ATCC 14028 Salmonella is 
much stronger than the corresponding case in wild-type, as somewhat expected. Moreover, di�erences between 
the two concentrations of the nano�akes as shown in 7e and 7f can be considered negligible, being the number of 
counted colonies in the range of some units in both cases. We interpret our �nding as, the MoS2 �akes could act 
as nano-knives or nano-blades on the Salmonella bacteria, being capable to cut the bacterial external cell wall 
since the flake has a smaller or approximately the same thickness as the wall, this latter being 10–12 nm71. 
Alternatively, sheets can wrap around the cell surface (wrapping) without penetrating it. In a further mechanism, 
called trapping, a net of MoS2 �akes traps bacteria. �is will be strikingly clear from SEM images of the bacteria 
treated with MoS2 nanosheets in the forthcoming section.

MTT assay
MTT plots of lab prepared Salmonella incubation with 2D MoS2 dispersion. In Fig. 7(g,h), we 
have demonstrated the e�ect of incubation of two di�erent C  of 2D MoS2 nanosheets with ATCC 14028 and wild-
type S. typhimurium. MTT analysis reveals the oxidative stress generated upon incubation of MoS2 nanosheets 
with bacteria. From Fig. 7g,h we can see that for both Salmonella types a relevant oxidative stress was induced, 
reducing the absorbance to about 40% of the untreated sample.

Scanning Electron Microscopy measurement (SEM)
Antibacterial activity: the action mechanisms of MoS2 nanosheets. In Fig. 7(i–l), we strikingly 
observe the role of direct contact of 2D MoS2 nanosheets, having sharp edges, with the bacterial membrane. 
In 7i, under the control experiment we can clearly see the normal rod shaped morphology with smooth and 
intact membranes of a ATCC 14028S. typhimurium. A�er incubating with 2D MoS2 dispersion, a stress in the 
membrane is visible, that causes bacteria fragmentation as in 7j and/or cuts in the bacteria membrane as in 7k, 
where we can �gure out the action of the 2D MoS2 nanosheets sharp edges as they acted as a sharp nano-knife. 
In 7l, leakage of the intracellular components results in complete distortion of the bacterial membrane caused by 
mechanical stress induced by the nano�akes laying nearby.

Conclusions and Future prospects
We have reported a novel green route for scalable production of defect-free and few-layered MoS2 nanosheets 
by direct exfoliation in pure water. Exfoliation of MoS2 nanosheets using water as a solvent via LPE is a big 
challenge itself. �erefore, a�er optimizing the most relevant parameters for exfoliation, we achieved a stable 
dispersion for up to three weeks. Additionally, by using di�erent centrifugal forces we attained size and thickness 
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selection of nanosheets possibly restricting our production in the 2–5 layer band. Samples were characterized by 
absorption measurements which revealed the �nal mean concentration of the dispersion, mean lateral size and 
mean thickness of MoS2 nano�akes. ζ- potential measurements estimated the negative surface potential of MoS2 
nanosheets. Interactions of few-layered MoS2 nanosheets on live human cells and bacteria were also investigated. 
Here, we found a very interesting and novel result: the impact of MoS2 nano�akes was found to be quite di�erent 
in normal from cancer cell lines. While the latter cells revealed a signi�cant cytotoxic e�ect based on a very large 
increase of cell death, the former were essentially una�ected in this respect and only showed some mechanical 
damage when morphologically analyzed by SEM microscopy. �is cytotoxic e�ect was also found to dependent 
on the concentration and layer number of 2D nano�akes. In the near future, this preliminary analysis might open 
up new routes for signi�cant applications of MoS2 nanosheets as targeted anti-cancer systems. �is analysis was 
further extended to bacteria. SEM images of S. typhimurium treated with 2D nanosheets revealed that the sharp 
edges of the nano�akes can cut and/or damage bacterial membrane leading to an evident bactericidal e�ect. 
Bacterial viability was studied by colony counting images and MTT assay that probed possible oxidative stresses 
induced by treatment with the nano�akes. �e results obtained by treating Salmonella bacteria with MoS2 nano-
sheets are interesting and will be further extended to higher concentrations of 2D MoS2 dispersions. One might 
see whether the interaction with nano�akes in such condition leads to an increase of intra-cellular metabolites or 
might investigate the e�ects on amino acids and pyruvate metabolism. �is could help in clarifying the mecha-
nism of the antimicrobial e�ect of MoS2 nanosheets. �e results obtained in studying the impact of water-based 
preparation of MoS2 few-layered nano�akes with live matter represent an important step to unveil the scenario of 
the interactions of these novel materials with bacteria, viruses and human cells. Moreover, further optimization 
of a number of parameters in the exfoliation can additionally improve the quality of the nano-samples in terms of 
biocompatibility and stability of the water-based dispersion. �is is essential from a practical point of view aiming 
at designing and realizing applications of this innovative 2DMs to biomedical sciences and food packaging. �is 
innovative preparation technique is versatile and can be easily extended to other 2DMs at large scale production.

Materials and Methods
Exfoliation of MoS2 powder. �e starting commercialized bulk MoS2 powder (Sigma Aldrich, 69860, par-
ticle size 6 µm, density 5.06 g mL−1 at 25 °C) was exfoliated in elix water as a pure solvent using a tip sonicator 
(Bandelin Ultrasound SONOPLUS HD3200, maximum power 200 W, working frequency 20 kHz, KE-76 probe, 
running at 15% amplitude) for 3 h in cylindrical glass tubes (2 cm diameter, 12 cm height and rounded bottom). 
�e temperature of the dispersion during sonication was controlled in an ice-water bath. Successive stepwise 

Figure 7. Proliferation test. Two di�erent concentrations of 2D MoS2 dispersion interacted with S. typhimurium 
represented as (a–f). (a) Positive control of wild-type Salmonella without 2D MoS2, (b) incubation at 11.2 µg/mL 
and C) at 20 µg/mL; (d–f) Salmonella bacteria grown in the lab (ATCC 14028), (d) positive control without 2D 
MoS2, (e) incubation at 11.2 µg/mL and (f) at 20 µg/mL. All the samples treated with MoS2 nano�akes were 
checked a�er 4 h from the treatment. (g) MTT plots of 2D MoS2 dispersion incubated with ATCC 14028 
Laboratory Salmonella and (h) wild-type Salmonella at 11.2 µg/mL and 20 µg/mL. �e absorbance of the 
incubation is presented at 450 nm (green) and 490 nm (red) wavelengths. Interaction of 2D MoS2 nanosheets at 
20 µg/mL with average thickness of N  = 4. (i) Control rod shaped ATCC 14028S. typhimurium (j) fragment of a 
bacterium cut by a nanosheet evidenced by the red arrow, (k) slight cut at the outer bacterial membrane as 
shown by red red arrow, and (l) leakage of intracellular components of Salmonella bacteria (red arrow) upon 
interaction with the sharp edges of the 2D MoS2 nanosheets present nearby (blue arrows).



www.nature.com/scientificreports/

1 2SCIENTIFIC REPORTS |         (2018) 8:16386  | DOI:10.1038/s41598-018-34679-y

controlled centrifugation steps were carried out (Eppendorf Centrifuge 5810 R, Rotor F-34-6-38) at 40 g, 160 g, 
620 g and 1000 g/1400 g for 45 minutes each to analyze the supernatants.

Controlled centrifugation. Liquid phase exfoliation (LPE) produces broad distribution of thickness and 
lateral sizes of nanosheets. �e polydisperse behaviour of the exfoliated dispersion makes it desirable to study its 
potential for fundamental applications in various areas of interest. Controlled centrifugation by optimizing its 
parameters (such as centrifugation speed, centrifugation time, rotation angle, inside temperature, acceleration 
and deceleration values) is performed to achieve the size selection21. Execution of controlled centrifugation is 
very versatile and can be achieved by benchtop centrifuges. In our experiment protocol, the un-exfoliated nano-
sheets were removed by low centrifugal force at 40 g for 45 minutes. �e remaining supernatant contains less 
monolayer content with wide distribution of thickness and lateral sizes. �e supernatant was then centrifuged to 
a higher centrifugal force of 160 g for same time and the sediment was discarded. �e obtained supernatant was 
again centrifuged with a higher centrifugal force at 620 g for 45 minutes. At this step, we separated half part of the 
dispersion for basic characterization of the material and the remaining was centrifuged at further higher centrif-
ugal force at 1000 g for 45 minutes each. �en, the �nal obtained dispersion was utilized to study the properties of 
MoS2. Supplementary Figure S1 shows the UV visible absorption spectra of MoS2 nanosheets at 620 g, 2700 g and 
3500 g a�er the immediate preparation and up to three weeks of storage. Higher centrifuged dispersions revealed 
much improved stability which was achieved by optimizing various parameters a�er a number of experimental 
trials. �e produced water exfoliated dispersions of MoS2 nanosheets, which are highly stable in pure water, are 
biocompatible and thus can be useful for various biomedical and biotechnological applications.

Visualization of cell morphology. �e HaCaT and MCF7 cells were cultured directly on coverslips. U937 
cells were coated on polylisined coverlips before the SEM procedures. �e cells were �xed with 2.5% glutaral-
dehyde in 0.2 M PBS at pH 7.2–7.4 for 2–4 h at 4 °C. �e cells were then washed three times with PBS 0.2 M for 
10 minutes. Additional �xing was performed by OsO4 1–2% in PBS 0.2 M at pH 7.4 for 2 h at 4 °C in dark. �e cells 
were then washed with PBS 0.2 M (3% for 10 minutes) at 4 °C. �e samples were dehydrated by EtOH 30%; 50%; 
70%; 80%; 95% for 10 minutes and 100% for 1 h at 4 °C. Morphological analyses of samples were performed with 
a scanning electron microscope (SEM) JEOL-JSM 5310 (CISAG laboratory, at University of Naples, Federico II). 
�e SEM operating at 15 kV, is equipped with energy dispersive X-Ray spectroscopy (EDS); data were processed 
with INCA version 4.08 (Oxford Instruments, 2006). �e samples were metalized with gold by using a sputter 
coater. Oxford Instruments (2006): INCA - �e microanalysis suite issue 17a + SP1 - Version 4.08. Oxford Instr. 
Anal. Ltd., Oxfordshire, UK.

Cell line culture, conditions and preparations. U937 (acute myeloid leukemia cell line) cells were 
grown in RPMI 1640 medium (EuroClone) supplemented with 10% heat-inactivated FBS (Sigma Aldrich), 1% 
glutamine (EuroClone), 1% penicillin/streptomycin (EuroClone) and 0.1% gentamycin (EuroClone), at 37 °C in 
air containing 5% CO2. MCF7 (human breast adenocarcinoma cell line) and HaCaT (immortalized non tum-
origenic human keratinocytes) cells were grown DMEM medium supplemented with the same components 
described above and in the same incubation conditions.

MTT- Cell proliferation assay. �e MoS2 nanosheets were dispersed in Elix water at di�erent concentra-
tions (8, 14 and 20 µg/mL). Dilutions by a factor of about four as compared to the concentration value of the ini-
tial preparation were performed. �e cell viability was evaluated using 3-[4, 5-dimethyltriazol-2-yl]-2, 5-diphenyl 
tetrazolium bromide (MTT) as substrate. MTT assay (Sigma Aldrich) was performed according to the protocol 
provided by Supplier. �e absorbance was measured with microplate reader (Tecan EVO M1000 PRO) at the 
wavelength of 570 nm and using 630 nm as reference wavelength. Experiments were performed in triplicate.

Propidium iodide staining: cell death evaluation. A�er the induction with MoS2 for di�erent times 
and at di�erent concentrations, cells were collected and centrifuged at 1200 rpm and then washed with cold PBS. 
Cell pellets were re-suspended in PI staining solution (0.2 µg/mL). PI positive cells were counted by �ow cytom-
etry (FACS). Experiments were performed in triplicate.

Cell cycle analysis. Cells were collected by centrifugation at 1200 rpm for 5 minutes and then re-suspended 
in 500 µL of a hypotonic bu�er composed of 0.1% NP-40, 0.1% sodium citrate, 50 µg/mL propidium iodide 
(Sigma Aldrich), RNAse A. �e samples were then incubated in the dark for 30 minutes. Analysis was performed 
by FACS-Calibur (Becton Dickinson) using Cell Quest Pro so�ware (Becton Dickinson) and ModFit LT version 
3 so�ware (Verity). Experiments were performed in triplicate.

Microbial strains, culture conditions and preparations. We used (S. typhimurium) ATCC 14028 and 
wild-type S. typhimurium as a model bacterium to evaluate the antibacterial activity of MoS2 nanosheets. Also all 
the bacterial samples without the incubation of nanosheets were used as a positive control in nuclease free water. 
�e bacterial cell suspension was diluted in isotonic saline solution to obtain cell samples containing 150 colony 
forming units (CFU). Cell growth was determined by measuring the optical density at 600 nm (Lambda-25 spec-
trophotometer, Perkin-Elmer, USA) in six parallel measurements for each time-point. S. typhimurium ATCC 
14028 and wild-type S. typhimurium were maintained on bu�ered peptone water (BPW) at 37 °C under constant 
orbital shaking at 220 rpm for up to 24 h. �e MoS2 nanosheets dispersion was diluted at two di�erent con-
centrations 11.2 µg/mL and 20 µg/mL, respectively, using culture medium with a �nal concentration of bacteria 
of 1 × 106 CFU mL−1. Both categories of S. typhimurium were cultured at the condition of 37 °C for up to 6 h. 
Antibacterial e�ect was evaluated by the colony counting method. In brief, the incubation bacterial solutions were 
initially diluted to 1 × 105 CFU mL−1. Later, 100 µL of the diluted bacterial cells were spread respectively on the 
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Salmonella Chromogen Agar plates. A�er incubation overnight at 37 °C for S. typhimurium, colonies on the plates 
were counted and compared with those on the control plates (without any MoS2 nanosheets) to calculate the loss 
of viability caused by the MoS2 nanosheets samples.

Bacterial cell growth. Bacteria were diluted up to 106 CFU/mL and exposed to MoS2 nanosheets at di�erent 
concentrations in a �nal volume of 100 µL. Experiments were made in duplicates. Di�erent �nal concentrations 
of MoS2 were tested at 11.2 µg/mL and 20 µg/mL. Aliquots were collected a�er four hours, conveniently diluted 
by serial dilutions 1:10 and plated in Salmonella Chromogen Agar plates. �e plates were incubated overnight at 
37 °C. CFU were counted the following day.

Determination of bacterial viability. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) reagent 
(Sigma-Aldrich,USA) was used for bacterial viability measurements. Two di�erent categories of Salmonella bac-
teria were exposed to 20 µg/mL and 11.2 µg/mL of MoS2 nanosheets in PBS. 10 µL of the 12 mM MTT stock 
solution was added to each well. A negative control of 10 µL of the MTT stock solution was added to 100 µL of 
medium alone. �en this solution was incubated at 37 °C for 4 h. At high cell densities the incubation time can be 
shortened to 2 h. �en, 100 µL of the SDS-HCl solution was added to each well and thoroughly mixed using the 
pipette. �en, the microplate was incubaed at 37 °C for 4 h in a humidi�ed chamber. Longer incubations generally 
decrease the sensitivity of the assay so short incubation time was more preferred in this experiment. A�er mixing 
each sample again using a pipette the absorbance was observed at 450 and 490 nm.

Visualization of bacterial morphology. Changes in the morphology of salmonella bacteria were studied 
using scanning electron microscopy (SEM). Obtaining acceptable SEM images with good ultrastructural pres-
ervation requires careful application of the SEM sample preparation methods. �e concentration of 2D MoS2 
dispersion and its incubation with Salmonella for SEM analysis was chosen at 20 µg/mL).

A�er incubation overnight at 37 °C for S. typhimurium with/without MoS2 nanosheets in bu�ered peptone 
water (BPW) for 24 h, preparation for SEM was carried out according to the following protocol:

 1. Bacterial broth was centrifuged.
 2. Pellet was washed with saline phosphate bu�er for 3 times.
 3. 0.25% gluteraldehyde was added in sodium phosphate at pH- 7.2.
 4. �en this mixture was incubated at room temperature for 30 minutes.
 5. �en the overnight incubation was performed.
 6. Sodium phosphate bu�er was washed for 3 times.
 7. A�er centrifugation, the pellet was collected.
 8. �e sample was dehydrolysed by di�erent ethanol volumes starting from 30%, 50%, 70%, 80%, 90% and 

100%.
 9. For each ethanol volume the sample was incubated for 10 minutes.
 10. Additionally, incubation of the sample was performed in 100% ethanol volume for 1 h.
 11. Sample preparation for SEM was performed by applying adhesive tape and then the bacterial sample was 

added over the adhesive tape.
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