
Biological networkmotif detection:
principles and practice
ElisabethWong, Brittany Baur, Saad Quader and Chun-Hsi Huang
Submitted: 28th February 2011; Received (in revised form): 13th May 2011

Abstract
Network motifs are statistically overrepresented sub-structures (sub-graphs) in a network, and have been recog-
nized as ‘the simple building blocks of complex networks’. Study of biological network motifs may reveal answers
to many important biological questions.The main difficulty in detecting larger network motifs in biological networks
lies in the facts that the number of possible sub-graphs increases exponentially with the network or motif size
(node counts, in general), and that no known polynomial-time algorithm exists in deciding if two graphs are topo-
logically equivalent.This article discusses the biological significance of network motifs, the motivation behind solving
the motif-finding problem, and strategies to solve the various aspects of this problem. A simple classification
scheme is designed to analyze the strengths and weaknesses of several existing algorithms. Experimental results
derived from a few comparative studies in the literature are discussed, with conclusions that lead to future research
directions.

Keywords: Network motifs; biological networks; graph isomorphism

INTRODUCTION
Biology of a living cell involves many intricate

networks of interdependent events and interactions

among biomolecules. Examples of such networks

include transcriptional or gene regulation networks,

protein–protein interaction (PPI) networks, meta-

bolic pathways, neural networks, etc. In 2002,

Milo et al. [1, 2] showed that networks from diverse

fields—biological and non-biological—contain sev-

eral small topological patterns that are so frequent

that it is unlikely to occur by chance. Different net-

works tend to have different sets of such frequent

local structures [1]. These patterns, referred to as

‘network motifs’, are recognized as ‘the simple build-

ing blocks of complex networks’ [1]. The discovery

spawned a multitude of research efforts in the past

decade and the area is fertile to this day. Network

motifs are also studied in such other networks as the

electronic circuits and power distribution networks,

ecological networks (food web), software engineer-

ing diagrams, molecular structures, World Wide

Web (the Internet), and social networks, etc [1, 3].

Biological network motifs are shown to perform

various computational tasks in the network. For ex-

ample, consider the motif called ‘Feedforward Loop’

or FFL [1, 4–7]. This motif is commonly found in

many gene systems and organisms [1, 2, 8–11]. The

motif consists of three genes and three regulatory

interactions. The target gene Z is regulated by two

transcription factors (TFs) X and Y and in addition

TF Y is also regulated by TF X. Since each of

the regulatory interactions may either be positive

or negative, there are possibly eight types of FFL

motifs [6]. Two of those eight types: the coherent

ElisabethA.Wong is currently a Biology/Mathematics major at the Bowdoin College, Brunswick, Maine. She was a recipient of the

2010 NSF Bio-Grid REU fellowship.

BrittanyBaur is currently a Biology/Mathematics major at the Manhattanville College, Purchase, New York. She was a recipient of

the 2010 NSF Bio-Grid REU fellowship.

Saad Quader is currently a graduate student at the Department of Computer Science and Engineering, University of Connecticut.

He received his BSc in Computer Science and Engineering from Bangladesh University of Engineering andTechnology in 2007.

Chun-HsiHuang received his PhD from the State University of New York at Buffalo in Computer Science in 2001. He is currently

an Associate Professor at the Department of Computer Science and Engineering of the University of Connecticut. He is affiliated with

the International Society of Computational Biology (ISCB) and the American Medical Informatics Association (AMIA).

Corresponding author. Chun-Hsi Huang. Department of Computer Science and Engineering, University of Connecticut, Storrs, CT

06269, USA. Tel: þ1-860-486-5472; Fax: þ1-860-486-4817; E-mail: huang@engr.uconn.edu

BRIEFINGS IN BIOINFORMATICS. page 1 of 14 doi:10.1093/bib/bbr033

� The Author 2011. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com

 Briefings in Bioinformatics Advance Access published June 20, 2011
 at W

eizm
ann Institute of Science on M

ay 31, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

Type 1 FFL (C1-FFL) (where all interactions are

positive) and the incoherent Type 1 FFL (I1-FFL)

(X activates Z and also activates Y which represses Z,

Figure 1) are found much more frequently in the

transcription network of Escherichia coli and yeast

than the other six types [6, 7]. In addition to the

structure of the circuitry, the way in which the sig-

nals from X and Y are integrated by the Z promoter

should also be considered. In most of the cases the

FFL is either an AND gate (X and Y are required for

Z activation) or OR gate (either X or Y are sufficient

for Z activation) but other input functions are also

possible.

There are many other prominent motifs like auto-

regulation, single input module, dense overlapping

regulons and feedback loops, etc [4, 5]. Each motif

has specific functions in the network. (The readers

are referred to the references [4] and [5] for the func-

tions and topologies of these motifs.) In many occa-

sions, multiple motifs are found to be working in

conjunction with one another, where output nodes

of one motif are used as input to other motifs

[12–15]. It is also shown that interactions in biologic-

al networks can be broken down into different levels

of modularity, where each level shows a different

distribution of network motifs [16, 17]. This is one

way that network motifs can act as building blocks of

biological networks, as proposed by Milo et al. [1].

Biologists are interested in knowing whether the

functional behavior of a motif can be predicted from

its structural topology as well as whether the abun-

dance in appearance of such a motif necessarily

implies biological significance. Some studies also

investigated how network motifs might be shaped

by evolution. For example, Kashtan et al. [17]

demonstrated that when a network is placed under

fixed environmental conditions, evolution optimizes

the network topology for some specific functions,

and no motifs form in this process. But, when the

same network is placed under varying environmental

conditions where each condition demands different

functional behavior from the network, several net-

work motifs emerge. This happens since motifs—

although having the same topology—are able to per-

form different tasks in different input conditions [5].

Yet other studies have argued that overabundance

of a network substructure might be a secondary

result of some other phenomena [18], or that net-

work motifs might not have evolutionary traces [19].

All in all, the ability to computationally determine

motifs in a given network is an essential step in

furthering these research efforts. Given a network

G and a set of random graphs, we need to identify

all k-node (equivalently, size-k, throughout the art-

icle) sub-graphs that are statistically overrepresented

in G. However, one of the difficulties is that deter-

mining if two graphs are topologically equivalent

requires ‘graph isomorphism’ checking, a highly

computation-intensive problem with no known

polynomial-time solution. This problem is com-

pounded by the fact that the number of sub-graphs

of a given size in a network is exponential in both

the network size and the sub-graph size. Moreover,

real-life networks tend to be large and dense in many

cases. The computations also need to be carried out

on a large number of random graphs, typically ran-

ging from hundreds to one thousand. By far,

even the best-known algorithms cannot find motifs

with more than 10 nodes in a large, dense network

within a practical time frame without doing heuris-

tics [20].

Motif finding algorithms use various strategies

in order to overcome these difficulties. One of the

notable strategies is the use of ‘sub-graph sampling’

through the target network instead of ‘exact enu-

meration’ to acquire an acceptable turn-around

time. Another strategy is to generate all possible

sub-graphs of a fixed size, and for each sub-graph

count its frequency in the target network. The

latter strategy, called ‘motif-centric approach’, can

lead to reduction in isomorphism-related computa-

tions when coupled with other strategies, namely

‘symmetry breaking’ and ‘mapping’ [21] (‘Mapping’

and ‘Symmetry breaking’ sections). However, this

strategy suffers when looking for larger motifs as

the number of sub-graphs of a given size grows ex-

ponentially [16, 22–24].

Reviews for network motif finding algorithms

exist in the literature [25, 26]. The review by

Ciriello et al. [25] is specifically focused on PPI net-

works. On the other hand, the review by Ribeiro

Figure 1: Incoherent Type 1 Feedforward Loop
(I1-FFL) motif can act as a pulse generator. FFLs, in
general, can work as an AND gate, OR gate, or even
perform the SUM function (addition) in biological
networks.

page 2 of 14 Wong et al.
 at W

eizm
ann Institute of Science on M

ay 31, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

etal. [26] centers on algorithmic details of three tools.

Our survey complements both with the following:

(i) We discuss, with sufficient generality, various stra-

tegies that are applied in seven motif finding tools

including two important algorithms, Kavosh [20]

and MOtif Discovery Algorithm (MODA) [27],

which have not been covered in those reviews. (ii)

We present a simple classification scheme of motif

finding algorithms based on the strategies these algo-

rithms use. (iii) We discuss various performance-

comparison experiments conducted in different pub-

lished studies, and thereby conclude the strengths

and weaknesses of different strategies. In addition, a

few research directions are pointed out for future

work.

NETWORK-MOTIF FINDING
PROBLEM
Tasks involved in finding network motifs typically

include the definition of frequency concepts, random

graph generation, determining statistical significance

of the frequency of a sub-graph and deciding sub-

graph isomorphism, etc. A few definitions follow.

Sub-graph frequency
Frequency here refers to the number of matches of a

query sub-graph in a network [27]. Three different

frequency concepts were discussed in Schreiber and

Schwöbbermeyer [28, 29], F1, F2 and F3, where F1
allows arbitrary overlapping of nodes and edges

between two sub-graphs; F2 only allows node over-

lapping; and F3 does not allow any overlapping

of nodes or edges. Figure 2, Figure 3, and Table 1

illustrate variations in sub-graph frequency based on

different frequency concepts.

Graph isomorphism
Two graphs are ‘isomorphic’ if there exists a

one-to-one mapping between their nodes such that

each edge in one graph can be mapped to an edge in

the other graph [30]. The graph isomorphism prob-

lem—checking if two graphs are isomorphic—is

one of a very small number of problems belonging

to ‘NP’ which are neither known to be ‘NP-

Complete’ nor known to be solvable in polynomial

time [31]. The best known algorithm has a run-time

of 2O
ffiffiffiffiffiffiffiffiffi
n log n
p� �

for graphs with n vertices [32, 33].

However, the sub-graph isomorphism problem—

checking if a network G contains an isomorph of

another graph gçis NP-Complete [34].

Isomorphism can be solved by using ‘Canonical

Labeling’ of its nodes [35]. Practical algorithms

such as the NAUTY [36] have been used in several

motif finding tools for isomorphism testing.

Statistical significance
When frequencies of all size-k sub-graphs are known

in both the input and random networks, different

thresholds and metrics are applied to determine

which sub-graphs are significantly frequent.

Thresholds
‘Frequency threshold’ requires that a motif occur at

least a certain number of times in the input network.

Sub-graphs with a lower frequency than the fre-

quency threshold cannot be a motif. MAVisto,

NeMoFinder and Kavosh (‘Network-centric

Figure 3: Instances of a candidate motif in the net-
work given in Figure 2 using frequency concept F1.

Figure 2: An example directed graph and a candidate
motif.

Biological network motif detection page 3 of 14
 at W

eizm
ann Institute of Science on M

ay 31, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

algorithms’ section) utilize this metric. A sub-graph is

‘frequent’ if

finput � F, ð1Þ

where F is the frequency threshold and finput is the

sub-graph frequency in the input network. On the

other hand, the ‘uniqueness threshold’ requires that

the frequency of a candidate motif in the input

network be at least a certain level higher than its

mean frequency in the random graph ensemble.

Let a size-k sub-graph gk occur finput times in the

input network. Let f random be the mean of fre-

quencies of gk in the random networks. Then, gk is

‘unique’ if

ð finput � �frandomÞ > U � �frandom, ð2Þ

where U is the uniqueness threshold.

Significance metrics
Let a size-k motif gk occur finput times in the input

network. Let f random and s2
random be the mean and

variance of frequencies of gk in a sufficiently large set

of random networks, respectively. The z-score is

defined as the difference of finput and f random, divided

by the standard deviation s2
random. Namely, the

z-score is calculated as,

zðgkÞ ¼
finput � �frandomffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
random

p : ð3Þ

The P-value represents the probability of a motif

to appear an equal or greater number of times in a

random network than in the given input network.

A motif is usually regarded as ‘statistically significant’

if the associated P-value is less than 0.01 or z >2.0.

If the probability distribution of frandom (which, in

many cases, is assumed to be Gaussian) is known, the

probability of getting any particular z-value can be

determined. If this probability is less than a given

threshold P, the deviation is considered to be

significant with confidence. Specifically, a value of

z is significant if,

Pr ðzÞ � P ð4Þ

If Equation (4) is true with P ¼ 0:01, frequency of gk
in G is significant with 99% confidence. Note,

it has been pointed out that many properties of

biological networks are non-Gaussian [25, 37], and

probability distribution of frandom should be estimated

from the input network through various estimation

techniques [38].

Statistical significance can be measured in other

ways. ‘Abundance’, �, is a metric similar to the

z-score [15] and is defined as,

�ðgkÞ ¼
finput � �frandom

finput þ �frandom þ "
, ð5Þ

where, " is a small positive number preventing

the ratio from approaching infinity when the fre-

quencies are small. The value of � usually ranges

between �1 (under-represented) and 1 (overrepre-

sented). Another metric, the motif ‘significance pro-

file’ (SP), is defined as a vector of z-scores of a

particular set of motifs, which is normalized to a

length of one [15]. Let n be the number of motifs

in the set, and zi be the z-score of the i-th motif.

The motif SP of the i-th motif in the set is thus

calculated as,

SPi ¼
ziffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

z2
j

s : ð6Þ

SP of the entire network gives a histogram of the

normalized z-scores of all possible motifs [15]. The

‘concentration’ of a candidate motif denotes how

frequent it is in the network compared to other

sub-graphs of the same size [39, 40]. Specifically, if

there are n sub-graphs of size k in the network, the

concentration of the i-th size-k sub-graph gk,i is

defined as

Cðgk,iÞ ¼
fk,iPn

j¼1

fk,j
, ð7Þ

where fk,i denotes the frequency of gk,i in the

network.

Random graphs
Sub-graph frequencies are computed in both the

input network and a set of topologically similar

random networks to determine if the sub-graph is

Table 1: Motif frequencies under different frequency
concepts applied to the network shown in Figures 2
and 3

Concept Node
overlap

Edge
overlap

Frequency Matches

F1 Yes Yes 5 {M1, M2, M3, M4, M5}
F2 Yes No 2 Either {M1, M4} or {M3, M4}
F3 No No 1 One of {M1, M2, M3, M4, M5}

page 4 of 14 Wong et al.
 at W

eizm
ann Institute of Science on M

ay 31, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

significantly frequent in the input network. Thus gen-

erating random networks is essential in network motif

discovery. The ‘Erdo00s–Rényi’ (ER) model creates

a random graph of n nodes by repeatedly and inde-

pendently placing an edge between two nodes. The

probability of picking any pair of nodes is uniform.

The ‘Barabási–Albert’ (BA) model is an algorithm

for generating random ‘scale-free’ networks using a

‘preferential attachment’ mechanism [41]. A scale-free

network is a network whose degree distribution fol-

lows a power law in the following form:

PðkÞ ¼ ck�r ð8Þ

where P(k) is the fraction of nodes in the network

with degree k, c is a normalization constant and r is a

parameter usually between two and three. Scale-free

networks are noteworthy because many empirically

observed networks appear to be scale-free, including

the World Wide Web, citation networks, biological

networks, airline networks and some social net-

works. A preferential attachment process ensures

that, when constructing a scale-free network, a

new edge is more likely to be distributed (adjacent)

to nodes that already have a higher degree.

It is essential for the generated random graph to

resemble the original graph in terms of global prop-

erties such as the average degree, diameter, average

path length, degree distribution and frequency of

particular topological sub-structures, etc [1]. (Note

the terms here follow the definitions in graph

theory. For example, the ‘average degree’ is the aver-

age number of adjacent edges of the nodes in a

graph; the ‘diameter’ of a graph is the maximum of

the shortest paths of all vertex pairs, etc.)

The most common random graph generation

technique used in motif finding algorithms is the

‘Switching Method’. It repeatedly selects two

random edges, a!b and c!d, in the network,

and exchanges the ends to form two new edges

a!d and b!c. The randomized graph has the

same node and edge counts as in the input network,

and the in- and out-degrees of the nodes are pre-

served. The switching method has also been widely

applied in studying such features of biological net-

works as modularity and degree correlation. This

method has a drawback that one cannot be certain

when the network is adequately randomized.

However, numerical studies have shown that, for

many networks, 100*E times of switching appear

to be adequate to achieve randomization, where

E is the number of edges [3].

An alternative algorithm for random graph gener-

ation is the ‘Matching Method’, where each vertex is

assigned a set of ‘stubs’—the sawn-off ends of incom-

ing and outgoing edges—according to the desired

degree sequence. The in-stubs and out-stubs are

then picked randomly in pairs and ‘fused’ to create

the network edges. Although minor adjustments are

needed to tend to real-world networks, where only

a rather minority of nodes have a high degree,

the matching algorithm usually correctly generates

random networks with the desired properties [3].

The network motif-finding problem is thus

defined as follows. Given the following inputs:

G : a network represented as a directed or undir-

ected graph.

K : the maximum size of motif to search in G.

P : the required confidence level.

F : frequency threshold.

U : uniqueness threshold.

N : number of random networks.

Find all k-node sub-graphs {gk} with 2� k�K
occurring in G such that the frequency (or other

metrics such as the concentration) of gk in G is:

(i) Above the given thresholds (Equations 1 and 2).

(ii) Significantly higher than that in the random

graphs with confidence level associated with P
(Equation 4) in terms of either

(a) z-score (Equation 3), or

(b) Abundance (Equation 5), or

(c) SP (Equation 6).

STRATEGIES FORMOTIF FINDING
ALGORITHMS
In this section, we discuss several solution strategies

for different parts of the motif-finding problem.

There are three major parts of the problem: perform-

ing sub-graph census, solving graph isomorphism and

ensuring that one sub-graph gets accounted for

exactly once. The ‘pattern growth’ method is

widely used in order to systematically explore or

generate possible sub-graph variations. Strategies

used in sub-graph census include exact ‘enumer-

ation’, ‘sampling’ and ‘mapping’. Some strategies

for isomorphism checking include ‘explicit checking’

(using canonical labeling or NAUTY [36]) and ‘sym-

metry breaking’ coupled with ‘mapping’. We present

some representative motif finding algorithms under a

Biological network motif detection page 5 of 14
 at W

eizm
ann Institute of Science on M

ay 31, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

simple classification scheme based on the strategies

the different algorithms use. These algorithms are

MAVisto [28, 42], NeMoFinder [43], Kavosh [20],

MFinder [39, 44], FANMOD [40, 45], Grochow

and Kellis [21] and MODA [27]. Table 2 illustrates

how different strategies can be combined to solve the

motif-finding problem. Note that some comparisons

made in this and the following sections are partially

based on experimental results reported by articles

accompanying the algorithms mentioned above.

Web-based tools of some algorithms are freely avail-

able for scientific use and can be accessed at the fol-

lowing sites:

� MFinder: http://www.weizmann.ac.il/mcb/Uri

Alon/groupNetworkMotifSW.html

� FANMOD: http://theinf1.informatik.uni-jena.de

/�wernicke/motifs/index.html

� MAVisto: http://mavisto.ipk-gatersleben.de/

Pattern growth tree
A systematic way of generating a large set of variants

from a base sub-graph is to extend it one step at a

time by modifying one of its nodes or edges, and use

the extended sub-graph to generate further variants.

This sequence of action can be viewed as a tree

(much like a search tree), where each node of the

tree holds one sub-graph, and its children hold

sub-graphs extended from that node so that a

graph at a parent node is a sub-graph of all nodes

in its sub-tree. This strategy, called ‘pattern growth

tree’, can be used to systematically generate all

possible size-k graphs starting with a size-k tree

(‘Generating all sub-graphs of a given size’ section).

It can also be used to systematically enumerate all

occurrences of size-k sub-graphs in the target

network.

Pattern growth strategy, when coupled with ap-

propriate constraints, yields several benefits. When

searching for size-k sub-graphs in the network, a

pattern growth tree built for size-(k-1) sub-graphs

can be reused. This may lead to significant improve-

ments in computational cost, which is exploited

by MODA (‘Motif-centric algorithms’ section).

Moreover, through a careful extension process one

can guarantee that each sub-graph appears only once

in the pattern growth tree, thus saving redundant

computation. This is exploited by Kavosh

(‘Network-centric algorithms’ section). Also, sup-

pose the sub-graph at any node of the pattern

growth tree violates a constraint. For example, its

frequency falls below the frequency threshold, or

becomes higher than the frequency of its ancestor

(thus breaking downward closure property, if applic-

able). This information can be used to prune

sub-trees rooted at that node, leading to increased

computational efficiency. This is exploited by

MAVisto (‘Network-centric algorithms’ section).

Sub-graph census: exhaustive versus
sampling
Sub-graph census is the process of scanning the target

network (node-by-node or edge-by-edge) and enu-

merating all occurrences of all sub-graphs of a given

size. Usually this is done using a pattern growth tree.

In general, the number of sub-graphs in a network

increases exponentially when the network size

increases: there are up to jEGj
jEgj matches for a

sub-graph g in the target network G under frequency

concept F1, where jEGj and jEgj are edge counts in

G and g, respectively [28]. The exhaustive census is

therefore a time-consuming process, especially when

the network or the sub-graph to be enumerated

is large.

One can adopt a probabilistic approach by taking

an adequate number of random size-k sub-graph

samples from the original network. As is the case

with probabilistic algorithms, with a good amount

of trials one can expect to get closely accurate yet

quick results, but with non-zero probability that

Table 2: Summary of strategies adopted by different algorithms

Network centric Sampling Pattern growth Mapping Symmetry breaking Isomorphism checking

MAVisto Yes No Yes No No Canonical labeling
NeMoFinder Yes No Yes No No Canonical labeling
Kavosh Yes No Yes No No NAUTY
MFinder Yes Yes Yes No No
FANMOD Yes Yes Yes No No NAUTY
Grochow No No No Yes Yes Sym-break, mapping
MODA No Yes Yes Yes Yes Sym-break, mapping

page 6 of 14 Wong et al.
 at W

eizm
ann Institute of Science on M

ay 31, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html
http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html
http://theinf1.informatik.uni-jena.de/wernicke/motifs/index.html
http://theinf1.informatik.uni-jena.de/wernicke/motifs/index.html
http://theinf1.informatik.uni-jena.de/wernicke/motifs/index.html
http://mavisto.ipk-gatersleben.de/
http://bib.oxfordjournals.org/

some potential motifs will be missed. This is called

the ‘sampling strategy’ for sub-graph census.

Sampling saves much computation, thus allowing

us to discover larger motifs. Moreover, sampling

makes the algorithm insensitive to the size of the

target network.

For each sub-graph in the pattern growth tree, an

‘edge-sampling’ strategy [39] randomly picks an edge

from the network and selects a size-k sub-graph

around that edge from the network for comparison.

MFinder (‘Algorithms with sampling—MODA’ sec-

tion) uses this strategy. However, it turns out that

this is ‘biased sampling’: the probability of picking

all size-k sub-graphs is not uniform in this strategy

because sub-graphs having more edge are likely to

be counted more, forcing the algorithm to assign

specific weight to each sub-graph (and remember

the sub-graph and the weight) to balance off the

recounting, which leads to excessive memory

usage. Edge extension in the pattern growth tree

also encounters the same sub-graphs multiple times,

causing redundant computation.

The ‘node-sampling’ strategy [40, 45], however, is

able to ensure uniform probability of picking any

size-k sub-graphs. It assigns to each level of its pattern

growth tree a probability that the nodes (of the pat-

tern growth tree) at that level will be further

explored. It then probabilistically traverses the pat-

tern growth tree, which guarantees that all the ter-

minal nodes (size-k graphs) will be explored with

equal probability, thus eliminating the memory

drawback of edge-sampling strategy. Also, careful

node extension in the pattern growth tree can

ensure that a particular sub-graph will be encoun-

tered exactly once, which avoids redundant compu-

tation. FANMOD (‘Network-centric algorithms’

section) uses this strategy, as it is significantly efficient

and faster than edge-sampling.

In some networks (termed scale-free) the

sub-graph aggregation around high-degree nodes is

higher than around low-degree nodes [46]. While

not all biological networks are scale-free, this case

was verified in empirical studies [27]. Thus, there is

a variant of node-sampling strategy which probabil-

istically picks a node depending on its degree.

MODA (‘Motif-centric algorithms’ section) uses

this strategy.

Generating all sub-graphs of a given size
Algorithms for computing frequency of any ‘given’

sub-graph over the target network (as opposed to

sub-graph census, which computes frequency of all

sub-graphs of a given size) must generate all possible

non-isomorphic variants of that sub-graph. This can

be done using a pattern growth tree, as in MODA

[27], or by generating all isomorphic classes of a

sub-graph using external tools [46], as in Grochow

and Kellis [21]. This strategy has the drawback that

when the size of the sub-graph gets >10, computa-

tions due to the number of possible variants become

intractable [23, 47–49]. Another disadvantage is that

this process generates and computes frequency for

sub-graphs that might not occur in the target

graph. One should note that isomorphism is partly

resolved even before enumerating sub-graphs in the

target network.

Mapping
The mapping strategy [21] of finding sub-graph in-

stances takes a size-k sub-graph (candidate motif) and

maps it onto the network in as many different places

as it can. This is the opposite view of enumerating all

size-k sub-graphs in the network and then comput-

ing frequency of a candidate size-k motif. A mapping

strategy ranks the nodes in the target network based

on their (and their neighbors’) degree properties, and

then looks for nodes in the input network that have

similar characteristics of nodes in the candidate motif

[21, 50]. This strategy is introduced by Grochow and

Kellis [21] and is also used by MODA (‘Motif-centric

algorithms’ section). Mapping, when used with

symmetry breaking (‘Symmetry breaking’ section),

resolves isomorphism without explicit checking [21].

Symmetry breaking
The symmetries of a graph are known as ‘auto-

morphisms’, or self-isomorphisms. The group of

automorphisms are in the same ‘equivalence class’.

One can specify a set of symmetry breaking condi-

tions [21] for each equivalence class. Checking if

these conditions hold between two graphs is easier

than checking the isomorphism. Algorithms that use

symmetry breaking while generating candidate

motifs can prevent many isomorphism computations,

thus increasing efficiency. This strategy is used along-

side mapping. It was introduced by Grochow and

Kellis,and was also used by MODA (‘Motif-centric

algorithms’ section).

Motif finding algorithms
We discuss a simple framework for describing a net-

work motif finding algorithm based on the strategies

Biological network motif detection page 7 of 14
 at W

eizm
ann Institute of Science on M

ay 31, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

it uses. Under this framework, we discuss some rep-

resentative algorithms (Table 3). Note these algo-

rithms are selected not by their performance, but

by the particular strategies they use. These algorithms

are classified into two broad classes—‘network--

centric’ and ‘motif-centric’ algorithms—which can

be further classified depending on whether a sam-

pling strategy is used while counting sub-graph

frequencies.

Network-centric algorithms
Network-centric algorithms start with the network.

They enumerate all sub-graphs with size k that occur

in the target network. Network-centric algorithms

have the benefit that sub-graphs that do not occur in

the target network are never encountered. However,

these algorithms cannot compute the frequency of a

given sub-graph without doing sub-graph census.

Algorithms with exact censusçMAVisto,
NeMoFinder and Kavosh
MAVisto stands for ‘Motif Analysis and Visualization

Tool’. Developed by Schreiber and Schwöbber-

meyer [42] in 2005, MAVisto is a network-centric

algorithm that uses a pattern growth method called

FPF (Flexible Pattern Finder) [28]. It uses the down-

ward closure property commonly used in data

mining, as well as a frequency threshold to prune

branches of the pattern growth tree.

The ‘Network Motif Finder’, NeMoFinder, was

developed in 2006 by Chen et al. [43]. Dedicated

to undirected, unlabeled PPI networks, the

NeMoFinder finds motifs that are maximal [51]

(i.e. not contained in any other motif), are unique

sub-graphs, but not necessarily induced. (Note H is

an ‘induced’ sub-graph of G if it has exactly the

edges that appear in G over the same vertex set.)

It uses frequency and uniqueness thresholds, and

the F1 frequency concept. Notably, the input net-

work is partitioned into smaller sub-networks for

enumeration of lower-level sub-graphs in the pattern

growth tree, which makes it less-sensitive to large

networks. The ‘Canonical Adjacency Matrix’ is

used to resolve isomorphism through a method

called ‘Graph Cousins’ [27]. This method, however,

is likely to produce some redundant isomorphic can-

didate motifs [27].

Kashani etal. [20] developed Kavosh in 2009. It’s a

network-centric algorithm using the pattern growth

tree (with node-extension) to enumerate all size-k
sub-graphs in the input network. Kavosh adopts

the ‘Revolving Door algorithm’ [52] for traversing

the pattern growth tree, ensuring that every candi-

date motif is encountered exactly once. The fre-

quency concept F1 is used, along with a frequency

threshold. In addition, Kavosh uses the NAUTY

algorithm [36] (‘Graph isomorphism’ section) for

isomorphism testing, which is efficient as the

NAUTY does not generate any redundant candidate

motif [36].

Algorithms using samplingçMfinder and Fanmod
MFinder was developed in 2005 by Kashtan et al.
[44], which showcases their edge-sampling algorithm

[39]. The pattern growth tree is used to enumerate

all sub-graphs in the network through edge exten-

sion. Frequency concept F1 is used, but motifs are

required to be induced sub-graphs. MFinder also

uses concentration as the significance metric.

MFinder is seriously handicapped with drawbacks

of edge-sampling, and is not suitable for finding

large motifs [26]. MFinder can also perform exhaust-

ive sub-graph census instead of sampling, as an

option. In this regard, the MFinder functions as the

enumeration algorithm [1].

FANMOD was developed in 2006 by Wernicke

et al. [40, 45], which uses a node-sampling strategy

and a pattern growth tree using node-extension.

FANMOD is fast, and can detect up to size-8

motifs in both directed/undirected networks. It

uses F1 frequency concept, and motifs are required

to be induced. FANMOD uses concentration as the

significance metric and NAUTY [36] for isomorph-

ism checking. FANMOD’s randomized enumeration

algorithm is known as Rand-ESU. FANMOD, like

MFinder, is also able to do exhaustive census over

the target network.

Motif-centric algorithms
Motif-centric algorithms are able to compute fre-

quency of any given sub-graph in the target

Table 3: Classification of network motif finding
algorithms

Network-centric Motif-centric

Exact Search MAVisto [28, 42] Grochow and Kellis [21]
NeMoFinder [43]
Kavosh [20]

Sampling MFinder [39, 44] MODA [27]
FANMOD [40, 45]

page 8 of 14 Wong et al.
 at W

eizm
ann Institute of Science on M

ay 31, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

network. This enables them to directly verify

whether the query sub-graph is a motif. In order

to compute frequencies of all size-k graphs, a

motif-centric algorithm first enumerates all possible

size-k graphs. As network-centric algorithms,

motif-centric algorithms can be further classified de-

pending on whether sampling is used over the target

network while counting sub-graph frequencies.

Algorithms with exact searchçGrochow
Devised by Grochow and Kellis [21] in 2007, this

algorithm is the first example of a motif-centric al-

gorithm. Grochow uses symmetry breaking with

mapping to count the frequency of a query sub-graph.

It uses the ‘geng’ and ‘directg’ packages by McKay

[53–55] to exhaustively generate all non-isomorphic

sub-graphs of size-k; it then checks if any of them is a

motif. Grochow is able to exhaustively find

seven-node motifs in the Saccharomyces cerevisiae PPI

network efficiently. Although mapping is an exact

strategy, it is possible to first use sampling to pick a

random (potentially large) sub-graph from the net-

work, and then use symmetry breaking and mapping

to determine its frequency.

Algorithms with samplingçMODA
MODA, was developed by Omidi et al. [27] in 2009.

This motif centric algorithm uses a pattern growth

tree, called ‘expansion tree’, which uses symmetry

breaking to generate unique extensions. It then

uses mapping for the first level of the expansion

tree. Information from the previous level is then

used to efficiently enumerate the extensions for

each subsequent level. Note that MODA imple-

ments an improved node-sampling strategy in

every level—even for mapping, as opposed to

Grochow. Moreover, the expansion tree enables it

to reuse computations done for smaller-size query

motifs, resulting in its high efficiency. Largely due

to this combination of efficient strategies, MODA is

fast and can handle rather large networks and motifs.

It also allows arbitrary overlap between sub-graphs,

using frequency concept F1.

PERFORMANCE COMPARISONS
Selected results from various comparative studies

of motif finding algorithms are presented in

Tables 4, 6 and Figures 4–7

Sampling strategies for sub-graph census
are faster
FANMOD is efficient in computation and tends

to produce results while other exact algorithms

(except Kavosh) struggle (Figure 5, Tables 4 and

6). Exact sub-graph census becomes slow as either

network or motif size increases, as demonstrated

in MAVisto on various occasions (Figures 4 and 5,

Table 4). However, NeMoFinder, which is a

network-centric tool doing exact census, shows

promise in finding large motifs in large PPI networks

(Figure 4) as the algorithm works by partitioning

the input network and thus effectively reducing

the problem size. Similarly, Kavosh, yet another

network-centric algorithm with exact census, is

sometimes faster than FANMOD and can find

larger motifs than FANMOD (Table 4), largely

due to the highly efficient sub-graph enumeration

strategy of Kavosh and its use of NAUTY [36] for

isomorphism checking (‘Network-centric algo-

rithms’ section). Both MODA and FANMOD use

Table 4: Execution times (in seconds) of Kavosh,
FANMOD, MAVisto and MFinder for sub-graphs of size
3^10 in various networks

Network k Kavosh FANMOD MAVisto MFinder
(exhaustive)

E. coli 3 1 1 14,000 30
4 2 3 300
5 15 16 23,000
6 140 130
7 1400 1200
8 13,000 9000
9 100,000
10 1,000,000

Social 3 1 1 400 10
4 1 1 1500 50
5 2 3 800
6 10 20 180,000
7 70 100
8 400 800
9 2600
10 15,000

S. cerevisiae 3 2 3 16,000 30
4 30 40 300
5 1000 1100 34,000
6 20,000 24,000
7 750,000 900,000
8 17,000,000 19,000,000
9 300,000,000
10 7,000,000,000

Note: Here k denotes a sub-graph size. Note that large numeric
values have been rounded to improve visualization (Courtesy of
Kashani et al. [20]).

Biological network motif detection page 9 of 14
 at W

eizm
ann Institute of Science on M

ay 31, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

the sampling strategy for sub-graph census.

FANMOD is faster than MODA (Figure 5) since

MODA, a motif-centric tool, considers more

sub-graphs than FANMOD. However, MODA

can find larger motifs than FANMOD (Figure 5),

partly because of a more efficient isomorphism-

checking strategy by mapping and symmetry

breaking, and partly because of its ability to reuse

Figure 4: Execution times (in seconds) of NeMoFinder, FPF algorithm (MAVisto), MFinder (sampling) and full enu-
meration algorithm for sub-graphs of sizes 3^13 in a PPI network of S. cerevisiae [54] with 1004 nodes and 957
edges, as reported by Chen et al. [43].

Figure 5: Execution times (in seconds) of MODA, MFinder,Grochow, FPF algorithm and FANMOD for sub-graphs
of sizes 3^9 in an E. coli transcription network used by Shen-Orr et al. [2], which is a directed graph of 116 nodes
and 477 edges (Courtesy of Omidi et al. [27]). Algorithms were executed on the input network only.

page 10 of 14 Wong et al.
 at W

eizm
ann Institute of Science on M

ay 31, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

results from earlier computations (‘Motif-centric al-

gorithms’ section).

Motif-centric algorithms tend to slow
down as sub-graph size grows
The effect is observable in all algorithms, but more

so in motif-centric algorithms such as the Grochow

(Table 6 and Figure 5). Grochow is more efficient

than the exact enumeration algorithm [1] due to

its symmetry breaking techniques that enables it

to reduce redundant counts of sub-graphs. Yet

Grochow is found to be slower than MAVisto

(Figure 5) and the exhaustive version of MFinder

(Table 6), highlighting the limitation of generating

all possible size-k sub-graphs. However, as men-

tioned previously, MODA could detect larger

motifs than does FANMOD, although FANMOD

is faster (Figure 5). Nevertheless, motif size is a

bottleneck for motif-centric tools.

Figure 6: How the combination of strategies affects performance of an algorithm. An arrow from algorithm A to
algorithm B implies that A usually outperforms B for larger networks and motifs. Each arrow is labeled with the
strategies used in A that contribute to the dominance.

Figure 7: Availability of information on the compari-
sons of different methods based on Figures 4 and 5,
and Tables 4 and 6. The thickness of lines between
each pair of algorithms indicates the number of experi-
ments involved to derive Figure 6.

Biological network motif detection page 11 of 14
 at W

eizm
ann Institute of Science on M

ay 31, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

MAVisto and MFinder are limited
in motif size
The MFinder stores all sub-graphs in memory and

considers the same sub-graph many times. Thus

MFinder scales poorly with motif size despite its use

of sampling for sub-graph census. Table 6 shows that

MFinder (exact census) takes more memory and time

than FANMOD (exact census), since FANMOD

counts a sub-graph only once. Similar observations

can be made in Figure 5 and Table 4. MAVisto, on

the other hand, performs poorly (Figures 4, 5 and

Table 4) mainly because it does exact census in a

less sophisticated way than Kavosh does.

Which tool should one use for larger
motifs?
Although current motif finding algorithms are able

to find only small motifs when the target network is

large and/or dense, one may argue that if an exact

result is necessary, Kavosh will be a desirable tool.

Otherwise, FANMOD or MODA will be a good

choice. In addition, NeMoFinder is a good choice

for large PPI networks.

What are the bottlenecks for
performance?
The most obvious bottleneck is the number of

random graphs used for comparison. While comput-

ing over a large number of random graphs will stat-

istically justify the overrepresentation of motifs, it is

clearly a time-consuming process. The second

bottleneck is the target network size. Real-world

networks tend to be large, and doing exact

sub-graph census is not always practical. The third

bottleneck is the sub-graph size. When looking for

motifs with more than 8–10 nodes, the number of

possible sub-graphs becomes prohibitively large (de-

pending on the available computational resources). It

affects motif-centric algorithms in particular, and all

algorithms in general when the target network is

large and dense.

Figure 6 illustrates which strategy makes an algo-

rithm better than others. In this figure, rectangles

denote algorithms and arrows denote the dominance

between two algorithms. Each arrow is labeled with

the strategies that result in the superior performance.

We placed MODA over FANMOD in Figure 6

since MODA can find larger motifs as shown in

Figure 5, although their execution times are com-

parable. From this figure one can get a quick under-

standing of how strategies discussed in ‘Strategies for

motif finding algorithms’ section affect the perform-

ance of algorithms. There are no arrows among

Kavosh, MODA, and NeMoFinder as they have

not been comparatively studied in the literature.

CONCLUSIONSAND FUTURE
DIRECTIONS
Solving the network motif-finding problem involves

several aspects in research—generating random

graphs, checking graph isomorphism, estimating

sub-graph frequencies in the network (by exact

enumeration or sampling) and generating the set of

candidate motifs, etc. Each has challenges and possi-

bilities of its own. While several algorithms exist in

the literature with experimental results available on

selected target networks, the relative performance

when varying other topological features of the net-

works such as clustering coefficient, scale-freeness,

etc need to be further studied to conclude their

strengths, weaknesses and the practical relevance.

Table 6: Execution times (in seconds) of MFinder,
FANMOD and Grochow, all with exhaustive census on
the input networks

Network k MFinder FANMOD Grochow

Circuit 4 0.10 0.05 0.36
5 0.36 0.14 15.79
6 2.45 0.67 2519.3
7 17.54 4.34 >4h
8 130.66 27.46 >4h
9 MEM 140.66 >4h

Yeast 4 2.42 0.77 2.25
5 55.67 15.21 107.82
6 MEM 260.38 >4h
7 MEM 5023.91 >4h

Social 4 40.44 11.22 16.98
5 MEM 281.40 1122.74
6 MEM 7951.47 >4h

Note: Here k indicates the motif size. MEM indicates the out-of-
memory situation (Courtesy of Ribeiro et al. [26]).

Table 5: Input networks used in the comparisons
made inTable 6

Network Nodes Edges Description

Circuit 252 399 Electronic circuit
Yeast 688 1079 S. cerevisiae transcriptional network
Social 1000 15541 Social network with heterogeneous

communities

page 12 of 14 Wong et al.
 at W

eizm
ann Institute of Science on M

ay 31, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

One research direction toward improving these

algorithms is to devise a robust, parallel algorithm

for a distributed computation platform that could

simultaneously analyze different parts of the net-

work, thus reducing the execution time and enabling

our reach to larger motifs and networks.

While checking isomorphism for general graphs

involves work in exponential time, polynomial-time

algorithms do exist for special graphs such as the

planar graphs, interval graphs, and the two-

connected series-parallel graphs, etc [55]. If some

biologically verified (large) motifs have similar topo-

logical characteristics that enable a fast isomorphism

test, one could prioritize expected outputs of a motif

finding algorithm to generate those with such topol-

ogies first. This will allow us to generate highly rele-

vant (large) motifs early, if they exist, during the

computation process.

Another improvement could be made by reducing

unnecessary computations over the random graphs.

After performing sub-graph census over the input

network, the set of possible motifs is already limited

to the sub-graphs found in the census. The same

computation over hundreds (or thousands) of

random networks is then performed to compute fre-

quencies for sub-graphs, many of which may not

occur in the target networks. Such computations

can be saved by a more efficient data structure to

keep track of candidate motifs.

Key Points

� Network motif finding algorithms can be divided into
network-centric andmotif-centric groups.

� Networkmotif finding algorithms canbe further classifiedbased
on their use of probabilistic sampling of the target network.

� Efficient combination of different strategies leads to a better
performance.

FUNDING
This work was supported by the National Science

Foundation [CCF-0755373 to E.W., B.B., S. Q. and

C.-H.H.]; and the National Institutes of Health

[R13-LM008619 to C.-H.H.].

References
1. Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs:

simple building blocks of complex networks. Science 2002;
298:824–27.

2. Shen-Orr S, Milo R, Mangan S, et al. Network motifs in
the transcriptional regulation network of Escherichia coli.
Nat Genet 2002;31:64–8.

3. Milo R, Kashtan N, Itzkovitz S, et al. On the uniform gen-
eration of random graphs with prescribed degree sequences.
Arxiv preprint, cond-mat/0312028v2, 2004.

4. Shoval O, Alon U. SnapShot: Network Motifs. Cell 2010;
143:326.e1.

5. Alon U. Network motifs: theory and experimental
approaches. Nat Rev Genet 2007;8:450–61.

6. Mangan S, Alon U. Structure and function of the
feed-forward loop network motif. Proc Natl Acad Sci USA
2003;100:11980–85.

7. Mangan S, Itzkovitz S, Zaslaver A, et al. The incoherent
feed-forward loop accelerates the response time of the gal
system of Escherichia coli. JMol Biol 2006;356:1073–81.

8. Lee TI. Transcriptional regulatory networks in Saccharomyces
cerevisiae. Science 2002;298:799–804.

9. Ratushny AV, Ramsey SA, Roda O, et al. Control of
transcriptional variability by overlapping feed-forward regu-
latory motifs. BiophysJ 2008;95:3715–23.

10. Kalir S, Mangan S, Alon U. A coherent feed-forward loop
with a SUM input function prolongs flagella expression in
Escherichia coli. Mol Syst Biol 2005;1:2005.0006.

11. Setty Y, Mayo AE, Surette MG, et al. Detailed map of a
cis-regulatory input function. Proc Natl Acad Sci USA 2003;
100:7702–07.

12. Dobrin R, Beg QK, Barabási A-L, et al. Aggregation of
topological motifs in the Escherichia coli transcriptional regu-
latory network. BMCBioinformatics 2004;5:10.

13. Kim J-R, Yoon Y, Cho K-H. Coupled feedback loops
form dynamic motifs of cellular networks. Biophys J 2008;
94:359–65.

14. Kashtan N, Itzkovitz S, Milo R, et al. Topological general-
izations of network motifs. Phys Rev E 2004;70:31909.

15. Milo R, Itzkovitz S, Kashtan N, et al. Superfamilies
of evolved and designed networks. Science 2004;303:1538–
42.

16. Itzkovitz S, Levitt R, Kashtan N, et al. Coarse-graining and
self-dissimilarity of complex networks. Phys Rev E 2005;71:
016127.

17. Kashtan N, Alon U. Spontaneous evolution of modularity
and network motifs. Proc Natl Acad Sci USA 2005;102:
13773–78.

18. Solé RV, Valverde S. Are network motifs the spandrels of
cellular complexity? Trends Ecol Evol 2006;21:419–22.

19. Bottani S, Vergassola M, Mazurie A. An evolutionary and
functional assessment of regulatory network motifs. Genome
Biol 2005;6:R35.

20. Kashani ZRM, Ahrabian H, Elahi E, et al. Kavosh: a new
algorithm for finding network motifs. BMC Bioinformatics
2009;10:318.

21. Grochow JA, Kellis M. Network motif discovery using
sub-graph enumeration and symmetry-breaking. Res Comp
Mol Biol 2007;4456:92–106.

22. Kuramochi M, Karypis G. Frequent sub-graph discovery.
In: Proceedings of IEEE International Conference on Data Mining
2001, San Jose, California, 313–20.

23. Sloane NJA, Plouffe S. Number of graphs on n unlabeled nodes.
(A000088, Formerly M1253 N0479).The Online Encyclopedia of

Biological network motif detection page 13 of 14
 at W

eizm
ann Institute of Science on M

ay 31, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

IntegerSequences 2010. http://oeis.org (15 January 2011, date
last accessed).

24. Han J, Kamber M. Data Mining: Concepts and Techniques.
2nd edn. Morgan Kaufmann (an imprint of Elsevier), 2006.

25. Ciriello G, Guerra C. A review on models and algorithms
for motif discovery in protein–protein interaction networks.
Brief Funct Genomics 2008;7:147–56.

26. Ribeiro P, Silva F, Kaiser M. Strategies for network motifs
discovery. In:Proceedings of the 5th IEEEInternationalConference
on e-Science 2009, Oxford, UK, 80–87.

27. Omidi S, Schreiber F, Masoudi-Nejad A. MODA: an effi-
cient algorithm for network motif discovery in biological
networks. Genes Genetic Syst 2009;84:385–95.

28. Schreiber F, Schwöbbermeyer H. Frequency concepts and
pattern detection for the analysis of motifs in networks.
Lect Notes Comput Sci 2005;3737:89–104.

29. Kuramochi M, Karypis G. Finding frequent patterns in a
large sparse graph. DataMin Knowl Disc 2005;11:243–71.

30. Fortin S. The Graph isomorphism problem. Technical report
1996, Department of Computing Science, University of
Alberta, Edomonton, Alberta, Canada, 1996.

31. Garey M, Johnson D. Computers and Intractability: AGuide to
theTheory of NP-Completeness. New York: W. H. Freeman
and Co., 1979.

32. Babai L, Codenotti P. Isomorphism of hypergraphs of
low rank in moderately exponential time. In: Proceedings of
the 49th Annual IEEE Symposium on Foundations of Computer
Science 2008, Philadelphia, PA, USA, 667–76.

33. Johnson DS. The NP-completeness column. ACM Trans
Algorithms 2005;1:160–76.

34. Cook SA. The complexity of theorem-proving procedures.
In: Proceedings of the third Annual ACMSymposium onTheory of
Computing 1971, Shaker Heights, OH, USA, 151–8.

35. Babai L, Luks EM. Canonical labeling of graphs.
In: Proceedings of the Fifteenth Annual ACM symposium on
Theory of Computing 1983, Boston, MA, USA, 171–83.

36. McKay B. The NAUTYPage. http://cs.anu.edu.au/�bdm/
nauty/ (5 February 2011, date last accessed).

37. Ziv E, Koytcheff R, Middendorf M, et al. Systematic iden-
tification of statistically significant network measures. Phys
Rev E 2005;71:016110.

38. Hastie T, Tibshirani R, Friedman J. TheElements ofStatistical
Learning: Data Mining, Inference and Prediction. 2nd edn.
Springer NYC, NY, USA: Springer Series in Statistics,
2009.

39. Kashtan N, Itzkovitz S, Milo R, et al. Efficient sampling
algorithm for estimating sub-graph concentrations and de-
tecting network motifs. Bioinformatics 2004;20:1746–58.

40. Wernicke S, Rasche F. FANMOD: A tool for fast network
motif detection. Bioinformatics, 2006;22:1152–3.

41. Barabási A. Emergence of scaling in random networks.
Science 1999;286:509–12.

42. Schreiber F, Schwöbbermeyer H. MAVisto: a tool for
the exploration of network motifs. Bioinformatics 2005;21:
3572–4.

43. Chen J, Hsu W, Le ML, et al. NeMoFinder: Dissecting
genome-wide protein–protein interactions with meso-scale
network motifs. In: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining 2006, Philadelphia, PA, USA, 106–15.

44. Kashtan N, Itzkovitz S, Milo R, et al. Network motif de-
tection tool Mfinder tool guide. Technical report 2005,
Departments of Molecular Cell Biology and Computer
Science and Applied Mathematics, Weizmann Institute of
Science, Rehovot, Israel, 2005.

45. Wernicke S. A faster algorithm for detecting network
motifs. Algorithms Bioinformatics 2005;3692:165–77.

46. Vázquez A, Dobrin R, Sergi D, et al. The topological rela-
tionship between the large-scale attributes and local inter-
action patterns of complex networks. ProcNatlAcadSciUSA
2004;101:17940–45.

47. Harary F, Palmer EH. Graphical Enumeration. New York:
Academic Press, 1973.

48. Inokuchi A, Washio T, Motoda H. An Apriori-based algo-
rithm for mining frequent substructures from graph Data.
Principles DataMining Knowl Disc 2000;1910:13–23.

49. Kuramochi M, Karypis G. An efficient algorithm for dis-
covering frequent sub-graphs. IEEE Tran Knowl Data Eng
2004;16:1038–51.

50. Ullmann JR. An algorithm for subgraph isomorphism.
JACM 1976;23:31–42.

51. Huan J, Wang W, Prins J, et al. Spin: mining maximal
frequent sub-graphs from graph databases. In: Proceedings of
the 10th ACM SIGKDD International Conference on Knowledge
Discovery and DataMining 2004, Seattle, WA, USA, 581–6.

52. Kreher DL, Stinson DR. Combinatorial Algorithms:
Generation, Enumeration and Search. Boca Raton, FA, USA:
CRC Press, 1999;329.

53. McKay B. Isomorph-free exhaustive generation. JAlgorithms
1998;26:306–24.

54. Uetz P, Giot L, Cagney G, et al. A comprehensive analysis
of protein–protein interactions in Saccharomyces cerevisiae.
Nature 2000;403:623–7.

55. Lepistö T, Salomaa A, Lingas A, et al. A polynomial-time
algorithm for sub-graph isomorphism of two-connected
series-parallel graphs. In: Proceedings of the 15th International
Colloquium on Automata, Languages and Programming (ICALP)
1988, Tampere, Finland, 394–409.

page 14 of 14 Wong et al.
 at W

eizm
ann Institute of Science on M

ay 31, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://oeis.org
http://cs.anu.edu.au/bdm/nauty/
http://cs.anu.edu.au/bdm/nauty/
http://cs.anu.edu.au/bdm/nauty/
http://bib.oxfordjournals.org/

