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Abstract

Human activity has had the single largest influence on the global nitrogen (N)
cycle by introducing unprecedented amounts of reactive-N into ecosystems. A
major portion of this reactive-N, applied as fertilizer to crops, leaks into the
environment with cascading negative effects on ecosystem functions and con-
tributes to global warming. Natural ecosystems use multiple pathways of the
N-cycle to regulate the flow of this element. By contrast, the large amounts of N
currently applied in agricultural systems cycle primarily through the nitrification
process, a single inefficient route that allows much of the reactive-N to leak into
the environment. The fact that present agricultural systems do not channel this
reactive-N through alternate pathways is largely due to uncontrolled soil nitri-
fier activity, creating a rapid nitrifying soil environment. Regulating nitrification
is therefore central to any strategy for improving nitrogen-use efficiency.
Biological nitrification inhibition (BNI) is an active plant-mediated natural func-
tion, where nitrification inhibitors released from plant roots suppress soil-
nitrifying activity, thereby forcing N into other pathways. This review illustrates
the presence of detection methods for variation in physiological regulation of
BNI-function in field crops and pasture grasses and analyzes the potential for its
genetic manipulation. We present a conceptual framework utilizing a BNI-
platform that integrates diverse crop science disciplines with ecological princi-
ples. Sustainable agriculture will require development of production systems
that include new crop cultivars capable of controlling nitrification (i.e., high BNI-
capacity) and improved agronomic practices to minimize leakage of reactive-N
during the N-cycle, a critical requirement for increasing food production while
avoiding environmental damage.

1. INTRODUCTION

Agriculture is the single largest human activity altering the global N-

cycle (Liu ef al., 2010; Smil, 1999). Organic-N mineralization, nitrification,
and denitrification are important components of soil-N-cycle (Fig. 1).
Plants have the ability to utilize various forms of N: organic-N, ammonium
(NH4+) -N, and nitrate (NO3 ™) -N (Kielland, 2001; Nasholm ef al., 1998;
Nishizawa and Mori, 2001; Northup et al., 1995; Salsac et al., 1987,
Yamagata et al., 2001). However, NH," and NO; ™ are the primary N
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Figure 1 Nitrogen cycle in typical agricultural systems (i.e., neutral upland aerobic
soils) dominated by nitrification pathway where >95% of the N flows through and
NOj remains the dominant inorganic form absorbed and assimilated.

forms utilized by field crops (Haynes and Goh, 1978). In agricultural
systems, nitrification is the dominant pathway for N flow (Fig. 1). This is
reflected in typical production systems (i.e., neutral upland aerobic soils)
with NO; ™ accounting for >95% of the total N uptake. This makes N-
cycle prone to loss to the greater environment of reactive-N, making
agricultural systems the greatest source of environmental N pollution
(Galloway et al., 2008; Schlesinger, 2009).

The biological oxidation of NH," to NO;~ via nitrite is termed
“nitrification.” It is carried out primarily by two groups of chemo-litho-
trophic bacteria, ammonia-oxidizing bacteria (AOB) (Nitrosomonas sp. and
Nitrobacter spp.), which are ubiquitous components of soil microbial popu-
lation (Norton ef al., 2002). In addition, the ammonia-oxidizing archaea
(AOA) group of soil bacteria is believed to carry out nitrification as they
possess the same ammonia monooxygenase (AMO) gene as do Nitrosomonas
spp. The presence of archaea has been reported in most soils, but their
relative contribution to nitrification is unknown or uncertain (Leninger
et al., 2006; Taylor et al., 2010). Recent reports suggest that soil pH may be a
critical factor controlling the relative abundances of AOA and AOB com-
munities; for example, in some acidic soils AOA, not AOB, is the major
contributor to nitrification (Gubry-Rangin ef al., 2010). Nitrification and
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denitrification are components of the N-cycle critical to the removal of N
from organic waste systems (e.g., sewage treatment). However, in agricul-
tural systems, rapid and unchecked nitrification results in inefficient N-use
by crops, leading to N-leakage and environmental pollution (Clark, 1962;
Schlesinger, 2009; Subbarao et al., 20062, 20092). Most plants have the
ability to utilize either NH,* or NO3 ™ as a N source, and thus are not solely
dependent on NO;~ (Haynes and Goh, 1978). Reducing nitrification rates
in agricultural systems will not alter the availability of N to plants, but will
retain N in the root zone for an extended period due to the lower mobility
of NH, ", providing more time for plants to absorb soil-N, thus reducing
the amount of N liable to loss via leaching and denitrification.

1.1. Why regulate nitrification in agricultural systems?

Nearly 90% of the N-fertilizer applied worldwide is in the NH, " form (or is
converted into NH, " from urea hydrolysis), which is rapidly oxidized to
NOj; ™ by soil nitrifier bacteria (Mason, 1992; Sahrawat, 1980a; Strong and
Cooper, 1992). Being a cation, NH, " is held electrostatically by the
negatively charged clay surfaces and functional groups of soil organic matter
(SOM) (Sahrawat, 1989). This binding is sufficiently strong to limit NH, "~
N loss by leaching. In contrast, NO; ™, with its negative charge, does not
bind to the soil, and is liable to be leached out of the root zone. Several
heterotrophic soil bacteria denitrify NO3 ™ [i.e., convert NO; ™ into gaseous
N forms: N,O (a potent greenhouse gas), NO, and N,] under anaerobic or
partially anaerobic conditions. This often coincides with temporary water-
logging after heavy rainfall or irrigation, and/or improper drainage of fields
(Bremner and Blackmer, 1978; Mosier ef al., 1996). The N loss during and
following nitrification reduces the effectiveness of N fertilization and at the
same time can cause serious N pollution (Clark, 1962; Jarvis, 1996). In
alkaline soils, NH, " can be lost via volatilization, thus reducing somewhat
the advantage of nitrification inhibition (Rodgers, 1983; Sahrawat, 1989).
Rapid conversion of NH,; " to NO;3 ™ in the soil results in the inefficient
use of both soil-N and applied N. Soil organic-N is also subject to nitrifica-
tion, making it liable to N loss by the same pathways as fertilizer-N (Dinnes
et al., 2002; Subbarao et al., 20062, 2009a,b). Nitrification is the single most
important process in the N-cycle that leads to N losses (Barker and Mills,
1980; Clark, 1962) (Fig. 1). In addition, the assimilation of NO3 ™ by plants
requires more metabolic energy than is required for the assimilation of
NH," (20 mol of ATP per mole of NO3~ vs. 5 mol of ATP per mole of
NH, ") (Salsac ef al., 1987); thus NH, " assimilation is energetically more
efficient than NOj™ for plants. In addition, the assimilation of NO3 ™, but
not NH,4 ", results in the direct emission of N,O from crop canopies, further
reducing nitrogen-use efficiency (NUE) (Smart and Bloom, 2001). Conse-
quently, maintaining N in NH," form is advantageous even after taking
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into consideration the potential negative effects on rhizosphere acidification
from NH, " uptake and metabolism (caused by H™ excretion). Relatively
better utilization of NH, " also depends on N-preference of plant species or
cultivars and their plasticity. Many of these advantages especially enhanced
crop yield and quality and improved environmental quality have been
demonstrated using various chemical inhibitors of nitrification (Huber
et al., 1977; Sahrawat, 1989; Sahrawat and Keeney, 1984; Slangen and
Kerkhoft, 1984; Subbarao et al., 2006a; Wolt, 2004).

1.2. |s modern agriculture moving toward high-nitrifying
systems?

Nitrification plays a relatively minor role in many natural climax plant
communities where only a small portion of the N follows the nitrification
pathway. In contrast, nitrification is the major pathway in most agricultural
systems (Fig. 1) (Nasholm et al., 1998; Smolander et al., 1998; Subbarao
et al., 2006a; Vitousek ef al., 1997). Most modern agricultural systems rely
primarily on large inputs of external N (through chemical N-fertilizer) to
maintain their high productivity, as naturally fixed-N is seldom adequate for
optimum productivity (Dinnes et al., 2002). During the 20th century,
several changes took place in agricultural management practices that led to
high-nitrifying soil environments (Poudel ef al., 2002; Rabalais et al., 1996).
These include (a) decreased use of diversified crop rotations; (b) separation
of crop production from livestock production; (c) increased soil tillage; (d)
irrigation and drainage of agricultural fields; and (e) increased use of
N-fertilizers.

Alkalization and salinization of soils, often associated with irrigated
agriculture in the semi-arid tropics (SAT), can greatly influence soil nitrifi-
cation potential. For example, there has been an increase in soil pH from 5.5
in the mid-1970s to about 8.5 at present in Alfisols intensively cultivated
with full irrigation and fertilization at the International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT) research farm in Patan-
cheru, near Hyderabad, India. This is largely due to the accumulation of
salts from the irrigation water because of high evaporative demand in this
SAT environment (K.L. Sahrawat, unpublished data). Soil pH greatly
influences nitrification; greatest nitrifier activity (15-20 mg N kg~ ' soil
day ") is generally at a pH in the range of 8.0-9.0 (Sahrawat, 2008).

Current production systems that depend heavily on industrially pro-
duced inorganic N have replaced earlier production systems that relied
primarily on legumes and/or animal wastes for their N inputs (Dinnes
et al., 2002). The separation of crops from animal production has led to an
even greater dependence on mineral N-fertilizers, bypassing agricultural
systems for organic matter recycling. This has also resulted in the reduction
of SOM levels in croplands worldwide (Bruce ef al., 1999; Celik, 2005;
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Elliott, 1986; Neff et al., 2002; Ross, 1993; Tiessen et al., 1994; van
Wesemael ef al., 2010). The heavy dependence on mineral N-fertilizers
has contributed to the stimulation of nitrifier activity and the subsequent
development of high-nitrifying soil environments (Bellamy et al., 2005; Lal,
2003; McGill et al., 1981; Poudel et al., 2002). In addition, installation of
sub-surface drainage systems has further accelerated NOj; ™ leaching and
denitrification, leading to reduced NUE (Clark, 1962; Dinnes ef al., 2002;
Ju et al., 2009; Pratt and Adriano, 1973; Sahrawat, 1989).

1.3. Consequences of high-nitrifying systems on the
global environment

The Green Revolution, largely based on the application of the industrially
fixed-N to semi-dwarf rice and wheat cultivars, doubled global food grain
production, but at a large environmental cost (Hungate et al., 2003; Matson
et al., 1999; Ross, 1993; Tilman et al., 2001). The rapid and unrestricted
nitrification found in these intensive production systems, results in the loss
of up to 70% of N-fertilizer inputs (Peterjohn and Schlesinger, 1990; Raun
and Johnson, 1999; Vitousek and Howarath, 1991). With the worldwide
N-fertilizer application reaching 150 Tg year™ ' (Galloway ef al., 2008) and
the cost of urea-N reaching US$ 0.45 kg ' N, the direct annual economic
loss is estimated at nearly US$ 81 billion. Moreover, other costs such as
damage to the environment are difficult to quantify in economic terms and
have not yet been adequately addressed (Ryden et al., 1984; Schlesinger,
2009; Tilman et al., 2001; Viets, 1975).

Fertilizer-N use is expected to double by 2050 from the
150 TgN year ' currently used in agricultural systems (Galloway et al.,
2008; Schlesinger, 2009). This will further increase N-leakage from agri-
cultural systems, placing an even greater pollution load on the environment
(IFA, 2005; Ju et al., 2009; Schlesinger, 2009; Tilman et al., 2001; Vitousek
et al., 1997). The loss of NO3~ from the root zone and NO5;~ contamina-
tion of ground and surface waters are major environmental concerns asso-
ciated with nitrification (Galloway et al., 2008; Schlesinger, 2009; Tilman
et al., 2001). Moreover, close links among N-fertilizer usage, increased
groundwater NOj3 levels, and human health and environmental problems
(e.g., severe eutrophication) have been shown in several studies (Broadbent
and Rauschkolb, 1977; Schlesinger, 2009; Subbarao et al., 2006a; Vitousek
et al., 1997). Current estimates indicate that N lost by NO3 ™ leaching from
agricultural systems could reach 61.5 TgN year ' by 2050 (Schlesinger,
2009).

Globally, agricultural systems contribute nearly 30% of nitric oxide
(NO) and 70% of N,O emissions to the atmosphere (Bremner and
Blackmer, 1978; Hofstra and Bouwman, 2005; Smith et al., 1997); N,O is
a powerful greenhouse gas having a global warming potential 300 times
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greater than that of CO, (IPCC, 2001; Kroeze, 1994), while the Earth’s
protective ozone layer is damaged by NOs that reach the stratosphere
(Crutzen and Ehhalt, 1977). Current estimates indicate that nearly
17 TgN year ' is emitted to the atmosphere as N,O (Galloway et al.,
2008; Schlesinger, 2009). By 2100, the global N,O emissions are projected
to be four times greater than the current emissions, due largely to an increase
in the use of N-fertilizers (Burney et al., 2010; Galloway et al., 2008; Hofstra
and Bouwman, 2005; Kahrl, et al., 2010).

1.4. Options for regulating nitrification in agricultural systems

Several N-management strategies that utilize rate and/or timing of fertilizer
application such as fall versus spring, basal versus split, band versus broadcast,
deep versus surface application, point-injection placement of solutions, and
foliar applications of urea have been used to enhance the NUE of applied
fertilizer. Various strategies have been developed to synchronize fertilizer
application with crop N requirements to facilitate rapid uptake and reduce
N residence time in soil, thereby limiting losses due to denitrification and/
or NO; ™ leaching (Dinnes ef al., 2002; Newbould, 1989). Often, these
agronomic strategies have limitations associated with additional labor costs
and other practical difficulties (Dinnes ef al., 2002).

1.4.1. Synthetic chemical inhibitors

Nitrification inhibitors (NIs) are compounds that delay the bacterial oxida-
tion of NH, " by depressing the activities of soil-nitrifying bacteria. In
theory, reducing nitrification under conditions, where there is a high risk
of N loss by NO;™ leaching or denitrification, should improve NUE
(Bremner ef al., 1981; Hendrickson ef al., 1978; Hughes and Welch,
1970; Ranney, 1978; Rodgers, 1986). Reducing nitrification rates until
the primary crop is in its establishment phase would provide plants a better
opportunity to absorb the N that remains in the root zone. In addition,
rapidly growing crops absorb more water from the soil, which would lower
the risk of NOj ™ being leached out of the root zone (Dinnes ef al., 2002;
Liao et al., 2004).

Numerous compounds have been proposed and patented as NIs
(Malzer, 1979; McCarty, 1999; Subbarao ef al., 2006a). Only a few selected
NIs, for example, nitrapyrin, DCD (dicyandiamide), and DMPP (3, 4-
dimethyl pyrazole phosphate), have been thoroughly evaluated under field
conditions (Di and Cameron, 2002; Goring, 1962; Guthrie and Bomke,
1980; Subbarao et al., 2006a; Weiske et al., 2001; Zerulla et al., 2001). Soil
factors, in particular, soil type can have a major influence on the persistence
and effectiveness of NIs. For example, certain NIs may persist in the soil for
a long time but are not bioactive because they are adsorbed on soil colloids.
NIs such as nitrapyrin have high bioactivity for a short period of time but
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the inhibitor is rapidly degraded into 6-chloropicolinic acid, which is less
effective as a NI. Also, nitrapyrin is lost from the soil through volatilization.
Environmental factors supporting adsorption, hydrolysis, and volatilization
of NIs may largely modulate their effectiveness in production agriculture. In
addition, factors such as soil pH, temperature, and the level of soil-nitrifying
activity further limit the effectiveness of synthetic NIs. Synthetic NIs are not
widely used in production agriculture due to their inconsistent performance
across diverse agro-climatic and soil environments (Gomes and Loynachan,
1984; McCall and Swann, 1978; Subbarao et al., 2006a). Despite a great deal
of interest and research effort invested during the past 50 years, only a few
compounds have been adopted for practical agriculture in certain niche
production systems, such as nitrapyrin application for winter wheat produc-
tion systems in North America. Moreover, the major challenge for the
development of next-generation NIs remains the high costs of development
of NIs that are economical and have a stable performance in tropical and
sub-tropical production environments (Sahrawat, 1996, 2003; Sahrawat and
Keeney, 1985).

1.4.2. Slow and controlled-release nitrogen fertilizers

Slow and controlled-release (SCR) fertilizers are forms of N-fertilizers that
extend the time of N availability for plant uptake (Shaviv and Mikkelsen,
1993). The SCR fertilizers slow the release of N into the soil solution by
special chemical and physical characteristics. SCR fertilizers are produced
by providing a protective coating (water-insoluble, semi-permeable, or
impermeable with pores) or encapsulating the conventional soluble fertilizer
materials to control water entry and rate of dissolution, therefore, synchro-
nizing nutrient release and N availability with the plant N requirements
(Fujita et al., 1992). Due to the slow release of N, the availability of NH, " to
the nitrifiers is limited, thus N loss during and following nitrification is
reduced. Field evaluations with polyolefin-coated urea (POCU) indicate
that N losses associated with nitrification can be substantially reduced with
improvement in N recovery by the crop (Shoji and Kanno, 1994). Due to
reduction of N loss, the N application rates for POCU are often 40% less
than those for normal N-fertilizers (Zvomuya et al., 2003). However,
POCU is about four to eight times more expensive than normal urea and
hence is not cost-eftective, limiting its use to niche areas, such as high-value
horticultural and floricultural systems (Detrick, 1996).

1.5. Learning from natural ecosystems to regulate nitrification
in agricultural systems

Natural ecosystems have evolved a range of mechanisms allowing multiple
pathways for N uptake and conservation (“closing the cycle”) including
direct uptake of organic-N by plants, bypassing the mineralization process,



Biological Nitrification Inhibition 257

thus minimizing N losses from the system. For example, in certain pine
forest systems, polyphenols released from litter form a complex with dis-
solved organic-N, making it resistant to mineralization. Moreover, direct
uptake of N from this polyphenolic organic-N is facilitated through associ-
ation with certain mycorrhizae, bypassing the mineralization process and
several pathways of the N-cycle that are associated with N-leakage, result-
ing in tighter N-cycling in these pine forest ecosystems (Northup et al.,
1995).

Several studies indicate that soil nitrification potential differs among
ecosystems. These differences in nitrification potential do not seem to be
associated directly with soil-physical or -chemical characteristics (Clark
et al., 1960; Hattenschwiler and Vitousek, 2000; Lata et al., 2004;
Laverman ef al., 2000; Lovett et al., 2004, Montagnini et al., 1989;
Northup ef al., 1995; Robertson, 1982a,b; Schimel et al., 1998). Often in
these cases, NH, " levels exceed NO;~ concentrations by a factor of 10,
indicating that the availability of NH, ™" is not the limiting factor for nitrifi-
cation. The influence of vegetation in inhibiting nitrification has long been
speculated and suspected, but not directly proven (Christ et al., 2002;
Donaldson and Henderson, 1990a,b; Lewis and Likens, 2000; Lovett
et al., 2004; Smits et al., 2010a,b; Steltzer and Bowman, 1998). Certain
forest trees, such as Arbutus unedo, are reported to suppress soil nitrification
and N,O emission, which is hypothesized to be due to the release of
gallocatechin and catechin from the litter (Castaldi ef al., 2009). Several
researchers have observed a slow rate of nitrification in soils under certain
tropical pasture grasses and forests (Christ ef al., 2002; Cooper, 1986; Li
et al., 2001; Sylvester-Bradley ef al., 1988). This led to the hypothesis that
plant roots may influence nitrification by releasing certain phytochemicals
that affect soil nitrifier activity (Fillery, 2007; Jones ef al., 1994; Subbarao
et al., 2006a).

It has been suggested that selected mature (e.g., climax stage) grassland
ecosystems have the ability to inhibit soil nitrification (Boughey ef al., 1964;
Lata et al., 1999; Smits ef al., 2010a,b). In the natural grasslands dominated
by Andropogon spp., Brachiaria humidicola, and Hyparrhenia diplandra, most of
the inorganic soil-N is in NH," form, and this is considered to be an
indicator of the ecosystem’s maturity (Castaldi et al., 2009; Lata et al.,
1999; Lodhi, 1979; Meiklejohn, 1968; Subbarao et al., 2006a; Sylvester-
Bradley et al., 1988). There have been several attempts to test the hypothesis
of nitrification inhibition, but with little success, due to the lack of a suitable
methodology to collect, detect, and quantify the amount and type of
inhibitor(s) released from roots (Arslan et al., 2010; Moore and Waid,
1971; Munro, 1966a,b; Purchase, 1974; Rice and Pancholy, 1974;
Robinson, 1963).

Unlike most agricultural systems, some natural climax ecosystems are
known to retain large amounts of N through its incorporation into the
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SOM,; but the underlying mechanisms remain poorly understood (Magill
et al., 2000). The hypothesis that plants can suppress or stimulate nitrifica-
tion has been debated for a long time, but with limited evidence from in situ
studies (Fillery, 2007; Ishikawa et al., 2003; Knops et al., 2002; Lata ef al.,
1999; 2004; Lovett et al., 2004; Smits et al., 2010a,b; Stienstra ef al., 1994;
Sylvester-Bradley ef al., 1988).

Plant species that dominate some of these climax ecosystems with
relatively low nitrification were shown to produce organic compounds
that inhibit nitrifier activity (Basaraba, 1964; Courtney et al,, 1991;
Donaldson and Henderson, 1990a,b; Jordan et al., 1979; Likens et al.,
1969). These inhibitory compounds, when added to the soil, suppressed
nitrification in the rhizosphere (Jordan et al., 1979). The degree of nitrifi-
cation inhibition appears to increase with the ecosystem’s maturity (Baldwin
et al., 1983; Cooper, 1986; Erickson et al., 2000; Howard and Howard,
1991; Lata et al., 1999; Lodhi, 1982; Northup et al., 1995; Paavolainen et al.,
1998; Rice and Pancholy, 1972-1974; Schimel et al., 1996; Ste Marie and
Pare, 1999; Thibault ef al., 1982; White, 1991).

1.5.1. Is there ecological advantage for plants that
control nitrification?

Since NOj™ assimilation by plants requires four times more metabolic
energy than that needed for NH, ™, it is hypothesized that inhibition of
nitrification could be an ecological driving force for the development of low
NOj;  climax ecosystems (Lata ef al., 2004; Rice and Pancholy, 1972; Salsac
et al., 1987). However, it is difficult to predict what impact such a plant-
mediated inhibitory function has on the competitiveness of a species or
plant community. Part of the answer lies in the primary productivity
measurements made in natural ecosystems deprived of nitrification by
plant action; for example, West African savannas known to have very low
rates of soil nitrification (Robertson, 1989). These systems have high
primary production (20-30 Mg ha™' year ') under relatively low soil
mineral N and C (Boudsocq et al., 2009; Lata et al., 2004). This kind of
ecosystem is dominated by perennial grasses with high longevity (several
decades), and often show some of the highest plant productivity ever
recorded (Bate, 1981; Menaut and Cesar, 1979).

It can be hypothesized that by controlling nitrification, plants increase the
availability of N for their own survival and growth in an environment where
N is limiting. From an evolutionary viewpoint, a major question remains
regarding the conditions or perturbations that allow BNI-plants to outcom-
pete non-inhibiting plants. The hypothesis would be that the ability to
depress nitrification should provide a competitive advantage for N acquisi-
tion. Moreover, the success of African grasses in invading the South Ameri-
can and Australian Tropics suggests that BNI-function may provide a
competitive advantage in N acquisition to the nitrification inhibiting
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populations of grasses, and that this attribute may contribute to their out-
competing native grasses without the BNI-function (Barot ef al., 2007).
Recent modeling studies (Boudsocq ef al., 2011a,b) on the role of BNI
in controlling nitrification in temperate and tropical grasslands show that
contrasting preferences for NH, " or NO3 ™ between two plant species can
facilitate their coexistence. The ability of one species to control nitrification
(i.e., to stimulate or inhibit) could enhance their ability to compete for
mineral N with other species. In particular, a species’ ability to inhibit
nitrification allows it to outcompete other species without this ability.
This is consistent with the results of the studies suggesting that BNI strongly
affects plant invasions (Hawkes ef al., 2005; Lata et al., 2004; Rossiter-
Rachor ef al., 2009). The next step is to understand how the control of
nitrification plays a key role in the dynamics of plant communities.

2. BioLoGICAL NITRIFICATION INHIBITION

2.1. The concept of BNI-function and its potential
impacts on NUE

BNI is an active plant-mediated rhizosphere process where NIs are exuded/
released from plant roots that suppress soil-nitrifying bacteria (Subbarao
et al., 2006a,b, 2009a,b). A schematic representation of the BNI-concept
with various processes of the soil-N-cycle that are potentially influenced by
this plant function is presented in Fig. 2.

Nitrogen-use efficiency (NUE, g;onomic = yield per unit of applied N) isa
function of both intrinsic N-use efficiency (NUE;, insic = dry matter pro-
duced per unit of N uptake) and total N uptake. NUE;, insic of a plant is a
physiologically conserved function (Glass, 2003), thus may not be easy to
manipulate genetically. Improvements in NUE, ;4 nomic mostly come from
improvement in crop N uptake (Finzi ef al., 2007) or greater recovery of
applied N-fertilizer. As discussed earlier, the BNI-function can improve
N uptake due to its inhibitory effects on nitrification (Subbarao ef al., 2006a).

The results of recent modeling studies indicate that by inhibiting nitrifi-
cation, N recovery can be improved. A general theoretical ecosystem model
that considers both NO;~ and NH, " as N sources was used to investigate
the general conditions under which nitrification inhibition enhances pri-
mary productivity and its quantitative impact on N dynamics and utiliza-
tion. Primary productivity is positively impacted in the tropical savannas
dominated by native African grasses such as H. diplandra which appear to
have a significant ability to suppress nitrification (Boudsocq et al., 2009). For
natural and agro-ecosystems, which are subject to high-nitrifying and
denitrifying activities, this model predicts that nitrification inhibition by
plants is a process that can lead to better N conservation, and thus increase
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Figure 2 A schematic representation of the biological nitrification inhibition (BNI)
interfaces with the nitrogen cycle. The BNI produced by the root inhibits the process
that converts ammonium to nitrate. In ecosystems with large amounts of BNI such as
Brachiaria pastures, the flow of nitrogen from ammonium to nitrate is restricted and
ammonium accumulates in soil and root systems. In systems with little or no BNI such
as modern agricultural systems, nitrification occurs at a rapid rate and ammonium is
converted to nitrate-N, which is highly susceptible to loss from the soil and root systems
(source: Subbarao ef al., 2009b).

primary productivity as the NH, " pathway is more N efficient (i.e., more
conservative) than the NOj;  pathway. This would be the case if the
considered ecosystem is subjected to higher losses under NOj; ™ (leaching
and denitrification) than under NH," (volatilization). Moreover, this
model supports previous in situ measurements in savanna systems (Lata,
1999), which showed that grasses that inhibit nitrification exhibit a twofold
greater productivity in above-ground biomass than those that lack this
ability (see Section 2.8 for further discussion).

2.2. Methodology for the detection of BNIs in
plant-soil systems

Lack of a suitable methodology and experimental system to detect the
release of NIs in the rhizosphere, that is, BNI-activity, has been a major
hurdle for characterizing the BNI-function in plants (Subbarao et al.,
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2006a). However, recently a bioluminescence assay that uses a recombinant
strain of Nitrosomonas europaea has been developed that can detect and
quantify BNI-activity released from roots, a plant function termed BNI-
capacity (lizumi et al., 1998; Subbarao ef al., 2006b). The recombinant strain
of N. europaea carries an expression vector for the Vibrio harveyi luxAB genes
(Fig. 3) and produces a distinct two-peak luminescence pattern during a
30-s analysis period (Subbarao ef al., 2006b). The functional relationship
between bioluminescence emission and nitrite production in the assay has
been shown to be linear using the synthetic NI, allylthiourea (AT)
(Subbarao ef al., 2006b). The inhibition caused by 0.22 uM AT in assay
(about 80% inhibition in bioluminescence and NO5 production) is defined
as one allylthiourea unit (ATU) (Subbarao ef al., 2006b). Using the response
to a concentration gradient of AT (i.e., a standard dose—response curve), the
inhibitory effects of test samples, for example, root exudates, soil, or plant
extracts, are determined and expressed in ATU. These recently developed
research tools facilitate the characterization of plant BNI-capacity (Subbarao
et al., 2006b).

Determining the BNI-activity release from roots is, however, only the
first step toward the characterization of a plant species for BNI-capacity.
Moreover, the effectiveness of the released BNI-activity in suppressing soil
nitrification needs to be confirmed. There are a number of reasons why
inhibitors released from roots (i.e., BNIs; estimated as BNI-activity) may be
ineffective in certain soil environments. For example, the variability among
soils in indigenous populations of AOB (Matsuba ef al., 2003) can make
BNI-activity, which is determined using a single strain of N. europaea in the
bioassay, functionally ineffective in certain soils. In addition, the soil chem-
ical and physical properties could impair the BNI-activity from functioning

(BamHI/Bg/ll) BamHI pgt|

Pstl / st
Phao
Trm luxAB
pHLUX20 — (Bglv

BamH]I)
9763 bp kat

Figure 3 Physical map of recombinant luminous Nitrosomonas europaea (pHLUX20)
developed to detect and quantify nitrification inhibitors in the plant—soil system
(source: lizumi ef al., 1998).
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in some agro-ecosystems. Nitrapyrin, for example, is ineffective in some
soils due to the formation of biofilms around nitrifier populations, adsorp-
tion to the SOM, and chemical hydrolysis (Powell and Prosser, 1991, 1992).
Complementary evaluation of the BNI-function using soil-based assays,
that is, using soil from the target environment where the crop is to be
grown, is thus necessary to assess the BNI-capacity of a particular plant
genotype under investigation. Potential soil nitrification can be rapidly and
reliably determined by measuring ammonia-oxidizing activity (Belser and
Mays, 1980; Berg and Rosswall, 1987; Hansson et al., 1991; Hart et al.,
1994; Neufeld and Knowles, 1999) and has been successfully deployed to
assess the BNI-capacity of Brachiaria sp. and matgrass swards in the field
(Smits et al., 2010a,b; Subbarao et al., 2009a).

2.3. Variation in the BNI-capacity of major crops and
forage grasses

An evaluation of a range of tropical forage grasses, cereal, and legume crops
have indicated a wide range in the BNI-capacity (Table 1) (Subbarao ef al.,
2007b). The highest BNI-capacity was found in Brachiaria spp., and sub-
stantial genotypic variation was detected in BNI-capacity within B. humi-
dicola (Table 2). Forage grasses of B. humidicola and B. decumbens, which are
highly adapted to the low-N production environments of South American
savannas (Miles ef al., 2004; Rao et al., 1996), showed the greatest BNI-
capacity among the tropical grasses tested (Subbarao et al., 2007b). In
contrast, Panicum maximum, which is adapted to high N availability envir-
onments, showed the least BNI-capacity (Rao et al., 1996; Subbarao et al.,
2007b). Among the cereal crops evaluated, only sorghum [Sorghum bicolor
(L.) Moench] showed significant BNI-capacity. Other cereal crops includ-
ing rice, maize (Zea mays L.), wheat, and barley (Hordeum vulgare L.) did not
show any detectable BNI-capacity in these initial studies (Subbarao ef al.,
2007b; Zakir et al., 2008).

Inhibition of nitrification (i.e., BNI-capacity) is most likely part of an
adaptation mechanism for the conservation and efficient use of N in natural
systems having low-N availability (Lata et al., 2004; Subbarao ef al., 2006a).
Thus, N stress (i.e., sub-optimum levels to support normal growth) is likely
to be a driving force for the evolution of the BNI-function (Lata et al., 2004;
Rice and Pancholy, 1972). It is, therefore, not surprising that legumes do
not show appreciable BNI-capacity. In the case of legumes, it is likely that
BNI-capacity would have little or no adaptive value due to their ability to
fix N symbiotically. Conserving N may not offer much of a comparative
advantage for legumes to coexist with grasses since grasses tend to have more
abundant root systems than legumes (Rao ef al.,, 1995). Our preliminary
studies indicate that soybean [Glycine max (L.) Merr.] root exudates stimu-
lated nitrification in the laboratory soil incubation tests (Subbarao et al.,



Table 1 The BNI released from intact roots of various plant species grown in sand-vermiculite (3:1 v/v) culture for 6o days

Serial no.

NouhkLh-

0

11.
12.
13.

14.
15.

16.
17.

Plant species

Pasture grasses
Brachiaria humidicola (Rendle) Schweick.
B. decumbens Stapf
Melinis minutiflora Beauv.
Panicum maximum Jacq.
Lolium perenne L ssp. Multiflorum (Lam.) Husnot
Andropogon gayanus Kunth
B. brizantha (A. Rich.) Stapf
Cereal crops
Sorghum bicolor (L.) Moench cv. Hybrid Sorgo
Pennisetum glaucum (L.) R. Br. cv. CIVT
Oryza sativa L. cv. Sabana 6
Oryza sativa L. cv. Toyo
Zea mays L. cv. Peter no. 610
Hordeum vulgare L. cv. Shunrai
Triticum aestivum L. cv. Norin-61
Legume crops
Avrachis hypogaea L. cv. TMV 2
Glycine max L. Merr. cv. Orinoquia 3
Glycine max L. Merr. cv. Natsuroyosooi

Glycine max L. Merr. non-nodulating type—EN 1282
Vigna unguiculata L. Walpers ssp. unguiculata cv. Caupi

Phaseolus vulgaris L. (accession G 21212)
LSD (0.05)

Total BNI released from
four plants (ATU dayq)

51.1
37.3
21.4
12.5
13.5
11.7
6.8

Specific BNI (ATU g
root dry wt. day ')

13.4
18.3
3.8
33
2.6
7.7
2.0

Note: “0” activity indicates that the inhibitory effect is possibly below the detection limit of the assay system used.
Source: Subbarao ef al. (2007b).
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Table 2 Genotypic variation in the BNI-function from roots of seven Brachiaria
humidicola germplasm accessions and one genotype of Panicum maximum

Total BNI released from  Specific BNI (ATU g '

Serial no.  Accession no. four plants (ATU day ') root dry wt. day )
1. CIAT 26159 126.2 46.3
2. CIAT 26427 118.5 31.6
3. CIAT 26430 151.0 241
4. CIAT 679 68.8 17.5
5. CIAT 26438 93.5 6.5
6. CIAT 26149 223 7.1
7. CIAT 682 53.4 7.5
8. P. maximum 0.6 0.1

LSD (0.05) 21.7 6.0

Four plants per pot were grown for 180 days before collecting the root exudates.
Source: Subbarao et al. (2007b).

2007¢). Several forest systems dominated by leguminous trees (Acacia man-
gium Willd. and A. auriculiformis A. Cunn. ex Benth.) are on soils that did not
inhibit or even stimulated nitrification. In contrast, forests dominated by
non-legume trees such as Eucalyptus citriodora Hook., Pinus elliottii Engelm.,
and Schima superba Gardner & Champ. showed low-nitrification rates (Li
et al., 2001). Recent studies indicate that a wild relative of wheat, Leymus
racemosus (Lam.) Tzvelev, possesses BNI-capacity similar to that of Brachiaria
spp., with BNI-activity release rates reaching close to 30 ATU g~ ' root dry
wt. day " (Subbarao et al., 2007c¢).

2.4. Regulatory nature of BNI-function

The synthesis and release of BNIs is a regulated attribute in B. humidicola
(Subbarao et al., 2007a). To some extent, the release of BNIs from roots
is related to the plant N status (Subbarao ef al., 2006b). In addition, the
N-form applied (i.e., NH," or NO;37) has a major influence on the
synthesis and release of BNIs from roots in B. humidicola and in wild
wheat, L. racemosus (Subbarao et al., 2007a,c). Plants grown with NO3;™ as
their N source did not release BNIs from roots, whereas BNIs were released
from plants grown with NH, " as their N source (Subbarao et al., 2007a,c,
2009a,b). Even for plants grown with NH, ", the presence of NH4 " in the
rhizosphere was critical for the synthesis and release of BNIs from their roots
(Subbarao et al., 2007a,c). Despite high levels of BNIs detected in the root
tissues of NH, "-grown plants, the release of BNIs was observed only when
the roots were directly exposed to NH, " (Subbarao et al., 2007a,c, 2009a,b).
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In addition to the presence of NH4 " in the medium, the rhizosphere pH
may also influence the release of BNIs from roots. Recent results indicated
that sorghum plants do not release BNIs from roots in the presence of NH,™,
when the rhizosphere pH was 7 or higher. If the pH of the solution used for
collecting root exudate (1 mM NH,CI) was not controlled and allowed to
drop to 4, sorghum released substantial amounts of BNI-activity from roots
(about 15 ATU g~ ' root dry wt. day™ ') (G.V. Subbarao, unpublished data).
Moreover, it is likely that BNI-function is better expressed in plants when
grown on light-textured (e.g., sandy or sandy-loam) soils with a pH 6.0 or
lower. Such pH effects on the BNI release from roots are based on solution
culture studies and have not yet been evaluated using soil systems.

Further, the release of BNIs from plant roots appears to be a highly
regulated physiological function. The presence of NH," in the root envi-
ronment is necessary not only for an accelerated synthesis of BNIs and/or
precursors of BNI compounds in roots, but also for their release (Subbarao
et al., 2007a, 2009a). The physiological consequences associated with the
uptake of NH, ", such as activation of H pumps in the plasmalemma and
acidification of the rhizosphere, appear to facilitate BNI release from sor-
ghum roots (Zhu et al., 2010). Further, the release of BNIs from roots is a
localized phenomenon (Subbarao ef al., 2009a). The release of BNIs appears
to be confined to only part of the roots exposed to NH, " in the rhizosphere
and is not extended to the entire root system. Moreover, such localized
release of BNIs from roots ensures high concentrations of BNIs in the soil
pockets where nitrifiers are active, which is often associated with the pres-
ence of NH, " (Subbarao ef al., 2009a). The availability of NH, " in the soil
either from soil organic-N mineralization or through the application of
N-fertilizers such as urea or ammonium sulfate can enhance nitrifier activity
(Robinson, 1963; Woldendorp and Laanbroek, 1989). The regulatory role
of NH, " in the synthesis and release of BNIs suggests a possible adaptive role
in protecting NH, " from nitrifiers, a key factor for the successful evolution
of the BNI capacity as an adaptation mechanism (Subbarao ef al., 2007a).

2.5. Stability of BNIs in soil systems

The BNI-activity released from roots is quantified by an assay of their
inhibitory effects on the biological activity of a recombinant luminescent
Nitrosomonas sp. during a 30-min incubation period (Subbarao et al., 2006b).
However, nitrification in soil occurs over a much longer period of time,
often taking several weeks for the oxidation of soil-NH,"; the persistence
of the inhibitory compounds released from roots for several weeks may be a
requirement to ensure a stable inhibitory eftect on soil nitrification. This
hypothesis was tested by adding extracted BNI-activity (from root exudates
of B. humidicola) to soil at different levels (0-20 ATU g ' soil) along with
an NH, " source (200 mg N kg™ ') and incubating for 55 days at 20 °C.
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These studies indicated that for the inhibitory activity to be effective in
reducing soil nitrification, a threshold level of 5 ATU g ' soil was needed;
nearly 50% inhibition was observed when the BNI-activity level was
10 ATU g ! soil, and a nearly-complete suppression of soil nitrification
was achieved at 20 ATU g~ soil (Fig. 4) (Gopalakrishnan et al., 2009;
Subbarao et al., 2006b). Further, it was shown that certain BNIs (such as
linoleic acid and linolenic acid) partially lose their effectiveness in soil after
80 days, and their inhibitory effect was completely lost after 100 days
(Subbarao et al., 2008). In addition, preliminary measurements on mixed
tropical savanna soils showed that this inhibitory eftect can resist natural air
drying and storage in the dark (Lata, 1999).

The effectiveness of various synthetic NIs and natural BNIs can be
influenced by several soil and environmental factors (Gopalakrishnan et al.,
2009; Sahrawat, 1980b, 1996; Slangen and Kerkhoft, 1984; Subbarao ef al.,
2006a; Wolt, 2004). The most important among these include: (a) the
nature and characteristics of the inhibitory compound (especially its struc-
ture, C chain length and whether C is attached to aryl or alkyl moiety, and
easily degradable functional groups in the structure), water solubility,
mobility, volatility, degradation into biologically active products or not,
sorption of inhibitors on soil minerals and organic matter; (b) the soil-
physical (clay-content, soil-type, and -texture), -chemical (pH, chemical
immobilization, and chemical degradation), and -biological (microbial
activity and diversity) properties (Gopalakrishnan ef al., 2009; Raynaud,
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Figure 4 Effectiveness of the BNI-activity released from roots of Brachiaria humidicola
in inhibiting nitrate formation in the soil (during 55 days of incubation at 20°C)
(source: Subbarao et al., 2006b).
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2010; Sahrawat, 1980b, 1996; Slangen and Kerkhoft, 1984; Wolt, 2004);
and (c) environmental factors, including temperature and soil moisture
regimes, can greatly influence the persistence, degradation, and effectiveness
of inhibitors. For example, the high temperatures of tropical soils not only
increase the rate of soil nitrification (Sahrawat, 2008), but also enhance the
degradation of NIs (Sahrawat, 1980b; Slangen and Kerkhoff, 1984). In
addition, the soil water regime via redox-modulated effects differentially
influences degradation and effectiveness of NIs (Fiedler et al., 2007;
Laskowski ef al., 1974). There is a paucity of information on the fate and
efficacy of BNIs in soil-plant systems. Thus, intensification of research is
justified to generate information on the behavior of plant products, espe-
cially the emerging BNIs in different soil types under varying agro-climatic
conditions relative to their persistence and eftectiveness in soil-plant sys-
tems. Such knowledge will be helpful in targeting the use of BNIs to the
most appropriate agro-ecosystems (Sahrawat, 1996; Subbarao et al., 2006a;
Wolt, 2004).

2.6. Biological molecules with BNI potential and their mode
of inhibitory action

Plants are known to release a wide range of substances with biological
activity (Bending and Lincoln, 2000; Bremner and McCarty, 1988;
Raagymakers ef al., 2009; Subbarao ef al., 2006a). These include molecules
that belong to phenolic, alkaloid, fatty acid, isothiocyanate, and terpene
groups (Bending and Lincoln, 2000; Bennett and Wallsgrove, 1994; Bertin
et al., 2003; Choesin and Boerner, 1991; Flores ef al., 1999; Gopalakrishnan
et al., 2007; Kraus et al., 2003; Langenheim, 1994; Lewis and Papavizas,
1970; Putnam, 1988; Subbarao et al., 2006a, 2008, 2009a,b; Walker et al.,
2003; Zakir et al., 2008; Zucker, 1983). The compounds responsible for the
BNI-activity were only recently elucidated, despite the fact that the phe-
nomenon was first proposed in the early 1960s, from empirical field studies
(for review see Subbarao ef al., 2006a). Several BNIs belonging to different
chemical groups have been successfully isolated and identified from plant
tissue or root exudates using bioassay-guided purification approaches
(Fig. 5) (Gopalakrishnan ef al., 2007; Subbarao et al., 2006b, 2008, 2009a;
Zakir et al., 2008).

The compounds with BNI-activity in the aerial parts of B. humidicola are
the unsaturated free fatty acids, linoleic acid, and a-linolenic acid (Subbarao
et al., 2008). They are relatively weak inhibitors of nitrification with ICs,
values of 3x 1077 M; while the ICs5, value of the synthetic NI 1-allyl-2-
thiourea is 1x 10”7 M. However, other free fatty acids having different
chain lengths or number of double bonds, for example, stearic, oleic,
arachidonic, and ds-vaccenic acid, did not show inhibitory activity, indicat-
ing the requirement of specific chemical structure to inhibit Nitrosomonas sp.
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. . . a-Linolenic acid
Linoleic acid

Methyl 3-(4-hydroxyphenyl) propionate Karanjin

Figure 5 Chemical structures of compounds reported to show BNI-activity in plants.

tunction (Subbarao ef al., 2008). BNI compounds such as linoleic acid and
a-linolenic acid apparently possess the structure and chain length needed to
inhibit nitrification. These two BNI compounds released from plant tissues
possibly inhibit both AMO and hydroxylamine oxidoreductase (HAO)
enzymatic pathways, which catalyze essential reactions of the ammonia
oxidation process in Nitrosomonas sp. (Subbarao et al., 2008). When linoleic
acid and o-linolenic acid were added to soil, nitrification rates were sup-
pressed for several months (Subbarao ef al., 2008). The BNI-activity from
crude extracts of root exudates of B. humidicola and L. racemosus appears to
block both AMO and HAO enzymatic pathways with similar effectiveness
(Subbarao ef al., 2007a,c). Moreover, the BNIs could also disrupt the
electron transfer pathway(s) from HAO to ubiquinone and cytochrome
(which needs to be maintained to generate reducing power, i.e., NADPH)
that is critical to the metabolic functions of Nitrosomonas sp. (Fig. 6); further
research is needed to elucidate the mechanisms involved (Subbarao ef al.,
2009b). In contrast, synthetic NIs such as AT, nitrapyrin, and DCD inhibit
nitrification by suppressing only the AMO enzymatic pathway in Nitroso-
monas (Subbarao ef al., 2007a,c) (Fig. 6).
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Figure 6 The mechanisms involved in the inhibitory effects of selected synthetic
nitrification inhibitors and of the BNIs released from the roots of Brachiaria humidicola
(based on lizumi et al., 1998; Subbarao et al., 2007a).

From root exudates of hydroponically grown sorghum, a phenyl-pro-
panoid, methyl 3-(4-hydroxyphenyl) propionate (MHPP) has been identi-
fied as the BNI (Fig. 5), and this compound partially accounted for the
inhibitory activity released from roots (Zakir et al., 2008). The 1Cs( value
for MHPP is approximately 9 x 107® M (Zakir et al., 2008). In root tissues
of B. humidicola, two phenyl propanoids, methyl-p-coumarate and methyl
ferulate (Fig. 5), were identified as major BNIs (Gopalakrishnan et al.,
2007). The 1Cs Values for methyl-p-coumarate and methyl ferulate are
2x1077 and 4 x10~° M, respectively (Gopalakrishnan et al., 2007). The
corresponding free phenolic acids, namely p-coumaric acid and ferulic acid,
which are involved in lignin biosynthesis, showed no inhibitory activity at
concentrations of <1 x 107> M (Gopalakrishnan et al., 2007). It is hypothe-
sized that B. humidicola releases methyl-p-coumarate and methyl ferulate, or
simple metabolites derived from these BNI compounds into the soil envi-
ronment via the turnover of root tissues in pasture systems (Gopalakrishnan
et al., 2007), because these nitrification inhibitory compounds were not
detected in root exudates.

Karanjin (3-methoxy furano-2,3,7,8-flavone or 3-methoxy-2-phenyl
furo-[2,3-h]chromen-4-one) (Fig. 5) isolated from Pongamia glabra Vent.
seeds showed a strong inhibitory effect on soil nitrifier activity, and is
reported to be as effective as some of the most commonly used synthetic



270 G. V. Subbarao et al.

NIs, nitrapyrin, DCD, and AM (Sahrawat, 1981; Sahrawat and Mukerjee,
1977). By altering the chemical structure of the karanjin molecule, it was
shown that the furan ring present in the molecule is critical for the biological
activity (i.e., nitrification inhibition); this hypothesis was confirmed with
the synthesis of furfuraldehyde and furfuryl alcohol-based compounds that
showed varying levels of inhibitory effects on soil nitrification (Sahrawat
and Mukerjee, 1977; Sahrawat et al., 1977).

2.6.1. Discovery of brachialactone
The major NI released from roots of B. humidicola has been discovered and
named “brachialactone,” a cyclic diterpene. This compound has a dicyclo-
pentafa,d]cyclooctane skeleton (5-8-5 ring system) with a y-lactone ring
bridging one of the five-membered rings and the eight-membered ring
(Subbarao et al., 2009a) (Fig. 7). Similarly, 5-8-5 tricyclic terpenoids
(ophiobolanes and fusicoccanes) are found in both fungi and plants
(Muromtsev et al., 1994; Toyomasu et al., 2007). However, to the best of
our knowledge, a compound or a derivative having a lactone ring is novel to
the nitrification inhibitory groups. Fusicoccane-type cyclic diterpenes are
biologically synthesized from geranylgeranyl diphosphate by a two-step
cyclization catalyzed by terpene cyclases (Toyomasu et al., 2007) (Fig. 7).
The inhibition of nitrification in an in vitro assay with pure cultures of
N. europaea was linearly related to the brachialactone concentration in the

A B
[
Fusicoccins are produced
in some fungi

Prenyltransferase domain

PaFS

Terpene cyclase domain

Isoprene units.

Fusicocca-
2,10(14)-diene

A tricyclic terpenoid with a unique
5-8-5 ring system and a y-lactone ring

Similar 5-8-5 ring system

Figure 7 (A) The chemical structure of brachialactone, the major nitrification inhibi-
tor isolated from the root exudates of Brachiaria humidicola (source: Subbarao et al.,
2009a). (B) Synthesis of fusicocca-2,10(14)-diene from isoprene units by PaFS. This
enzyme is a diterpene hydrocarbon synthase possessing both prenyltransferase and
terpene cyclase activity (source: Toyomasu ef al., 2007).
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range of 1.3-13.3 uM (Fig. 8). Moreover, brachialactone with an EDgg
(effective dose for 80% reduction) of 10.6 uM should be considered a
potent NI when compared with nitrapyrin or dicyandiamide, two of the
most widely used synthetic NIs (EDgy of 5.8 pM for nitrapyrin and
2200 puM for dicyandiamide). Brachialactone inhibits Nitrosomonas sp. by
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Figure 8 Inhibition of nitrification by brachialactone and the contribution of brachia-
lactone to the BNI-activity released from roots. (A) Inhibitory effects of brachialactone
on Nitrosomonas europaea in an in vitro assay. (B) Contribution of brachialactone to the
BNI-activity released from roots (i.e., root exudates) of Brachiaria humidicola. Root
exudates were collected from intact plants using 1L of aerated solution of 1mM
NH,CI with 200uM CaCl, over 24h. Each data point represents the effects of the
root exudates collected from hydroponically grown plants in a glasshouse from March
to May of 2007 and of 2008 (source: Subbarao et al., 2009a).
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blocking both AMO and HAO enzymatic functions, but appears to have a
relatively stronger effect on the AMO than on the HAO pathway (Subbarao
et al., 2009a). Some 60-90% of the inhibitory activity released from roots of
B. humidicola is due to brachialactone (Fig. 8).

2.7. Potential for genetic manipulation in cereals and
pasture grasses

Cereals are known to release phenolic acids (p-hydroxybenzoic, syringic,
vanillic, ferulic, p-coumaric, chlorogenic, caffeic, p-hydroxybenzaldehyde,
gallic, and protocatechuic), hydroxamic acids, alkaloids (hordenine and
gramine), and quinines (sorgoleone and p-benzoquinones) (Walker et al.,
2003). These biologically active molecules have a diverse range of chemical
structures and have been identified in a number of cereal crops and their
wild relatives (Bennett and Wallsgrove, 1994). Moreover, these compounds
when released from roots are involved in a wide range of functions includ-
ing nutrient acquisition and pest and pathogen defense (Rengel and
Marschner, 2005; Walker et al., 2003). Some of these compounds have
BNI properties and are therefore important targets for characterization; such
knowledge is critical to the development of genetic strategies to enhance
BNI-capacity in economically important cereals such as maize, wheat,
sorghum, barley, and rye.

2.7.1. Extent of genetic variability in BNI-capacity

The existence of genotypic variability is a prerequisite for the genetic
improvement of any plant trait using a conventional and/or molecular
breeding program. Significant genetic variability exists for the BNI-capacity
in B. humidicola (Table 2). Specific BNI-activity (ATU g~ ' root dry wt.
day ") ranged from 7.1 to 46.3, indicating a significant potential for genetic
improvement of the BNI-capacity by selection and recombination
(Subbarao et al., 2007a). The on-going Brachiaria breeding program at the
International Center for Tropical Agriculture (CIAT) in collaboration with
Japan International Research Center for Agricultural Sciences (JIRCAS)
plans to identify genetic markers associated with BNI-function, using a
mapping population derived from crosses between apomictic and sexual
germplasm accessions of B. humidicola that have contrasting BNI-capacity.
The same mapping population will be useful to analyze the trade-offs
between BNI-function and other plant attributes such as forage productiv-
ity and quality in terms of digestibility and protein content.

Using two ecotypes of the tropical grass H. diplandra (high- and low-
nitrification ecotype), it was shown that nitrification can be stimulated or
suppressed depending on the ecotype, suggesting that the suppression of soil
nitrification by these tropical grasses could be a genetic attribute (Fig. 9)
(Lata et al., 2004). Such abilities of grasses to regulate soil nitrification are
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Figure 9 The experimental site in Lamto Savanna in Cote d’Ivoire, with the ecotypes
of Hpyparrhenia diplandra, a tropical grass, differing in their ability to influence
soil nitrification. Photographs were taken in April 1995. The sites are under similar
climatic and pedologic conditions, but exhibit different above-ground biomass:
270 + 55 g m 2 in the low-nitrifying site or 130 £ 30 g m™ > in the high-nitrifying site
(source: Lata, 1999).
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reflected in their growth and biomass production (Lata ef al., 2000); they are
also variable in population at the individual level. An attempt to correlate
this variability to markers such as plant microsatellites showed no clear
pattern (J.C. Lata, unpublished data). In addition, preliminary results have
indicated significant genotypic variability for the BNI-capacity in barley
germplasm (T.S. George and G.V. Subbarao, unpublished data). Sorghum,
which is one of the most promising field crops producing BNI-activity,
showed significant genotypic variation for the BNI-capacity in roots
(Fig. 10), suggesting opportunity to understand the genetic control of this
trait (Subbarao et al., 2009b).

2.7.2. Improvement of BNI-capacity in wheat and barley

Traditional varieties/landraces and wild progenitors of crop species often
have traits that do not exist in elite germplasm (Manske et al., 2000). Wild
progenitors and wild relatives have been used extensively as the source of
traits for disease resistance and tolerance to abiotic stresses in wheat breeding
(Friebe et al., 1996; Munns et al., 2000). The discrepancy between wild
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Figure 10 The system used to collect root exudates from sorghum plants; methanol
extracts of root exudates from three sorghum genotypes that differ in BNI-capacity
(i-e., the capacity to release inhibitors from roots) (G.V. Subbarao and N. Kudo,
unpublished data).

relatives and elite germplasm is often attributed to the impact of decades of
breeding and selection under favorable agronomic conditions (Buso and
Bliss, 1988). In cultivated wheat, preliminary results suggested a lack of
significant BNI-capacity (Subbarao ef al., 2006b). However, the research
with wild wheat relatives indicated that roots of L. racemosus possess high
BNI-capacity (Fig. 11) (Subbarao ef al., 2007¢). Inhibitors released from the
roots of L. racemosus eftectively suppressed soil nitrification for more than 60
days (Subbarao et al., 2007¢). Using chromosome addition lines derived
from the hybridization of L. racemosus with cultivated wheat (Kishii ef al.,
2004), it was shown that the genes conferring high BNI-capacity were
located on chromosome Lr#n and could be successfully introduced into and
expressed in cultivated wheat (Fig. 12) (Subbarao ef al., 2007c). These
results indicate that there exists a potential for developing future wheat
cultivars with sufficient BNI-capacity to suppress soil nitrification in wheat
production systems (Subbarao et al., 2007¢; Zahn, 2007).

As wheat utilizes nearly a third of the global N-fertilizer output (Raun
and Johnson, 1999), introducing high BNI-capacity into cultivated wheat
could have a large impact on reducing N-leakage from wheat production.
However, the alien chromosome of this chromosome addition line may also
carry many undesirable traits that could reduce the potential grain yield. For
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Figure 11 BNIs released from roots (i.e., root exudates) of two cultivars of wheat and
their wild relative Leymus racemosus; plants were grown with either NH; or NOJ3 as the
nitrogen source; root exudates were collected from intact roots in aerated collecting
solutions over a 24-h period (source: Subbarao et al., 2007c).

Figure 12 Karyotype analysis of DALr#n, a chromosome addition line derived from
Leymus racemosus X Triticum aestivum. (A) DAPI staining revealed 44 chromosomes. (B)
The probe of L. racemosus genomic DNA (green) and Tail and Afa family repetitive
sequences showed the presence of two Lr#n chromosomes; arrows indicate Lr#n
chromosomes conferring high BNI-capacity which was successfully expressed in
cultivated wheat addition lines (source: Subbarao et al., 2007c).

example, Preliminary field evaluations indicate that introduction of the
Lr#n chromosome into Chinese Spring (i.e., DALr#n) made them suscep-
tible to rust disease (K. Masahiro, unpublished data). It will be necessary,
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therefore, to transfer to wheat only a small segment of this L. racemosus
chromosome containing favorable alleles of genes linked to the BNI-trait to
minimize the negative linkage drag that is normally associated with intro-
gressions from wild relatives of wheat.

Various chromosomal manipulation methods can be deployed to induce
a translocation between wheat and alien chromosomes, including the use of
a gametocidal chromosome system (Endo, 2007), irradiation, and mutants
such as ph1b that reduce the stringency of pairing control mechanisms to
allow pairing of homeologous chromosomes (Sears, 1993). Reciprocal
exchange of alien chromosome segments with the corresponding wheat
chromosomes (maintaining homoeology) without disrupting the genetic
balance would be preferred. Centromeric or robertsonian translocations
could provide reciprocal or near-reciprocal translocations in which half of
the target L. racemosus chromosome (short or long arm) replaces the
corresponding wheat chromosome arms. Since the Lr#n chromosome of
L. racemosus that controls BNI-function has homoeology to both of wheat
homoeologous groups 3 and 7 (Kishii ef al., 2004), it will be desirable to
generate translocations with wheat chromosomes of the corresponding
groups. The production of such translocations has been achieved by cross-
ing the Lr#n chromosome addition line with 3B and 7B chromosome
monosomic lines of wheat, in which one of 3B or 7B chromosomes is
missing, to produce an F1 hybrid where chromosome breakage and re-
fusion at centromeric regions could be induced between Lr#n and 3B or 7B
chromosomes during meiosis (Kishii, 2011; Kishii et al., 2008).

Crosses of Lr#n addition and translocation lines with the Chinese Spring
ph1b mutant have also been made by the International Center for the
Improvement of Maize and Wheat (CIMMYT) in an effort to generate
additional translocations incorporating smaller segments of Lr#n that carry
BNI-trait but with a reduced risk of problems associated with linkage drag.
Homozygous translocation lines are currently available in the Chinese
Spring background but, due to poor agronomic background of this line,
these translocations are being transferred into elite CIMMYT bread wheats.
This should allow a realistic evaluation of BNI potential to reduce
N-leakage from wheat systems and increase grain yields at lower N-fertilizer
application. While a range of translocations including some with smaller
segments of Lr#n are being produced, small segments are not always
needed, as history has shown that one good centromeric translocation can
have a large impact on wheat breeding (Lukaszewski, 2000; Singh et al.,
2006). The best example of this is the 1BL.1RS translocation involving the
short arm of chromosome 1R from rye (Secale cereale), which is present in
most wheat cultivars in the Middle East and West Asia (most of these
CIMMYT derived), and in a significant proportion of cultivars in China,
USA, and East Europe (Stokstad, 2007). The wide distribution of these
wheats can be attributed to their high yield in diverse environments, despite
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all known disease resistance genes in the 1RS segment no longer being
completely eftective. However, if the original translocation is accompanied
by many undesirable traits, it will be necessary to perform further reduction
of the introgressed L. racemosus chromosome segment; a process currently
underway through use of the ph1b mutant that permits homoeologous
recombination between wheat and alien chromosomes (Lukaszewski,
20005 Sears, 1977). As N is an increasingly expensive input in agricultural
systems, both yield at low-IN and responsiveness to added-IN are important
in simultaneously reducing environmental pollution, increasing food pro-
duction, and reducing input costs. The material currently under develop-
ment in elite backgrounds could be utilized to rapidly develop new cultivars
if field trials indicate that translocations show high BNI-capacity.

Introduction of BNI-function from L. racemosus to barley would be
problematic following this strategy, because diploid barley is very sensitive
to chromosome manipulation (compared to tetraploid durum wheat [ Triti-
cum turgidum L.] or hexaploid bread wheat). Also, a gene to induce homo-
eologous recombination like that found in wheat has not been reported for
barley. One possible method to introduce L. racemosus chromosome to
barley could be through the use of a tetraploid barley line, which has its
chromosome number doubled with colchicine as this would be more
tolerant to the addition of alien chromosomes. Utilization of barley chro-
mosome addition lines of wheat is an alternative. A set of these addition lines
has been produced (Islam et al., 1975), and it may be possible to manipulate
the homoeologous barley and L. racemosus chromosomes in wheat first (by
crossing the corresponding barley and L. racemosus chromosome addition
lines and generating the required centromeric translocation) and then
transferring the translocation into barley by crossing the tetraploid barley
chromosome substitution line with cultivated diploid barley. The selected
case studies presented above suggest that the BNI-function merits exploita-
tion as a trait to introduce/improve/strengthen the BNI-capacity of major
food and feed crops (Subbarao ef al., 2009b).

2.7.3. Sorgoleone as a BNI and its potential role in genetic
improvement of BNI-capacity in sorghum

It was recently discovered that sorgoleone, a p-benzoquinone exuded from
sorghum roots, has a strong inhibitory effect on Nitrosomonas sp. and con-
tributes significantly to BNI-capacity in sorghum (Subbarao ef al., 2009¢).
Sorgoleone is a major root exudate component in sorghum, and preliminary
investigations indicate variability among sorghum genotypes in sorgoleone
exudation (Czarnota et al., 2003; Nimbal et al., 1996; Subbarao et al,
2009¢). Sorgoleone is reported to have bio-herbicidal properties
(Czarnota et al., 2001; Einhellig and Souza, 1992; Einhellig ef al., 1993;
Netzly and Butler, 1986; Netzly et al., 1988). Factors that regulate sorgo-
leone exudation (Czarnota ef al., 2001, 2003; Dayan, 2006), its biosynthetic
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pathway (Dayan et al., 2003), and mode of herbicidal action (Gonzalez et al.,
1997; Rimando et al., 1998) are known. Sorgoleone is also reported to
function as a germination stimulant for Striga sp. seeds (Hauck et al., 1992);
although sorgolactones (Sugimoto ef al., 1998) appear to be the most
important and effective Striga sp. germination stimulant exuded by sorghum
roots. Inheritance of sorgoleone production has been reported (Yang ef al.,
2004). Several genes controlling the biosynthetic pathway of sorgoleone are
known (Baerson et al., 2007; Pan ef al., 2007), and their positions on the
aligned genomic sequences of sorghum chromosomes SBI-04, SBI-05,
SBI-06, and SBI-08 are determined (Ramu ef al., 2010) (Table 3). Genomic

Table 3 Sorghum genes involved in the sorgoleone biosynthetic pathway, and QTLs
for the Striga seed germination stimulant and their approximate genomic positions

Genomic position:
Chromosome and

Gene location (bp) on

symbol Gene description aligned sequence  Reference

lgs Low germination stimulant SBI-06: long arm  Haussmann
et al., 2004
SbDES1 FAD3-type plant fatty acid SBI-08: 310,759  Pan et al., 2007
desaturatase
SbDES2 FAD2-type desaturatase SBI-04: Pan et al., 2007
associated with sorgoleone 59,930,467
biosynthesis; catalyzes
conversion of 16:1A° to
16:2A™"
SbDES3 FAD3-type desaturatase SBI-05: 216,583  Pan et al., 2007
associated with sorgoleone
biosynthesis; catalyzes
conversion of 16:2A”'% ¢
the unusual 16:3A%'>1>
fatty acid, which possesses a
terminal double bond
SbOMT3 O-methyl transferase SBI-06: short arm Baerson et al.,
associated with sorgoleone 2007
biosynthesis
SbSOR1 Omega-3 fatty acid desaturase Yang et al.,
expressed in sorghum root 2004
hairs and associated with
sorgoleone production;
shows homology with
SbDES3

(¢]

Source: Ramu et al. (2010).
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regions associated with production of sorgolactone may also be involved in
regulating sorgoleone production (Ejeta, 2007; Haussmann ef al., 2004).
Further research is needed to unravel the inter-connectivity in the biosyn-
thetic pathways and regulation of sorgoleone and sorgolactone exudation
(Akiyama and Hayashi, 2006; Gomez-Roldan ef al., 2008) and their func-
tional relationship to BNI-capacity in sorghum.

The discovery of sorgoleone’s BNI-function adds a new dimension to
the functional significance of its release from sorghum roots. The ICRISAT
has recently developed several populations of random inbred lines based on
sorghum parental lines that differ in sorgoleone exudation (G.V. Subbarao
and C.T. Hash, unpublished data). Since these populations are generally
based on elite germplasm, this approach has the advantage of easy deploy-
ment of traits into relevant high-yielding cultivars of sorghum. Association
mapping approaches could also be explored by evaluating the mini-core
subset (10% of the core collection and 1% of the entire collection, which
amounts to 242 accessions) of ICRISAT’s global sorghum germplasm
collection, the recently developed reference germplasm set of 384 wild
and cultivated accessions, for allele mining of traits linked to sorgoleone
exudation (Brown et al., 2008; Casa et al., 2008). The basic tools for the
identification of alleles that accelerate sorgoleone exudation as a strategy to
improve BNI-capacity in sorghum are thus available. Once superior alleles
that control sorgoleone exudation have been identified, they can be rapidly
transferred to genetic backgrounds of elite sorghum hybrid parental lines
and/or open-pollinated varieties by backcrossing. With the introgression of
favorable alleles of one or two major genes (to accelerate exudation of
sorgoleone) into elite genetic backgrounds, it should be possible to improve
the BNI-capacity in sorghum.

2.7.4. Deployable genetic tools and population approaches for the
introduction of high BNI-capacity into common crop species
With the plethora of forward and reverse genetic techniques at our disposal
to characterize genotypic variation and generate isogenic lines [transgenics,
mutants, RNA interference (RNAI), synthetic microRNA (smiRNA)] and
near-isogenic lines (NILs) differing in their capacity to modify the rhizo-
sphere environment (Caldwell ef al., 2004; Hash et al., 2002; Neumann
et al., 2009), it should be possible to analyze the genetic control of BNI-
function and deploy it as a trait into elite germplasm of a range of crops. This
will require (a) the availability of sufficient genetic variation in the BNI-
capacity of germplasm, (b) optional identification of candidate genes
controlling the trait and heterologous expression to verify their roles in
BNI-function, and (c) introgression of genes controlling the BNI-trait into
elite germplasm.
The availability of the entire genome sequences of Arabidopsis and a
range of crop plants [rice, sorghum, potato (Solanum tuberosum L.), barley,
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tomato (Solanum lycopersicum L.), and maize| could facilitate the use of tools
such as “genome-wide expression profiling” to identify candidate genes
controlling BNI (Caldwell ef al., 2004; Vij and Tyagi, 2007). Once verified,
the expression of the candidate genes in elite germplasm following marker-
assisted breeding or transgenic approaches may lead to crop varieties that can
reduce nitrification. While this process may seem straightforward, it is
important to note that despite a large number of transcriptomic studies on
interactions between plants and soils, to date, only a handful have identified
genes with functions that have been successtully deployed in elite germ-
plasm (Oh et al., 2007). With the rapid advances in sequencing and data
analysis capability (Varshney ef al. 2009), transcriptomic approach could lead
to identification of candidate genes associated with the BNI-function. In
addition, integrated map-based approaches can be adopted for traits where
high-throughput phenotyping systems are available (Magalhaes ef al., 2007,
Raman et al., 2006; Sasaki et al., 2004).

Another possibility for understanding the genetic control of BNI-trait in
crops would be to use association mapping population approach, which
would allow screening of genetically diverse elite cultivars for specific BNI-
traits and association of variation in these traits with chromosome maps of
cultivars annotated with several thousand single-nucleotide polymorphism
(SNP) and/or diversity array technology (DArT) markers. As the genomic
regions associated with BNI variation are likely to differ from cultivated
wheat for DArT, SNP, indel (insertion—deletion), and/or STMS
(sequence-tagged microsatellite) markers, high-throughput genotyping
and marker-assisted selection to transfer the trait should be highly efficient.
This could facilitate rapid identification of quantitative trait loci (QTLs) and
specific markers for genes. However, this is contingent upon the availability
of (a) a trait-phenotyping protocol that can handle a large number of
cultivars (e.g., >100), (b) significant genetic variation for the trait, and (c)
polymorphic marker density (across the entire genome or at least within
specific candidate genes and their regulatory regions) that is good enough to
detect linkage genetic disequilibrium between cultivars having high and low
values for the target trait. Use of association mapping populations has
previously elucidated potential QTLs for unknown NUE and P-use effi-
ciency mechanisms in wheat (Liao ef al., 2008) and for resistance or toler-
ance to yellow dwarf virus in barley (Kraakman ef al., 2006).

A complimentary approach would be to use populations saturated with
mutations. Such mutant populations exist in Arabidopsis, wheat, barley, and
sorghum, where their genomes are saturated with either mutations “knock-
ing-out” genes or up- or downregulating genes downstream of the muta-
tion. Currently, the available BNI phenotyping protocol, however, is
adequate only to evaluate a modest number of mutants (a few hundred at
most) in a particular candidate gene that might be identified from such
populations. Such an approach could be relevant in barley, as the extremes
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of an initial screen (G.V. Subbarao and T. George, unpublished data) for
BNI-capacity were in genotypes that have pre-existing mutant populations
(Caldwell et al., 2004; Kojima et al., 2006; Yuan et al., 2007). Genes
identified using these population screening approaches can then be validated
by overexpression using transgenic approaches, by coupling the gene with
specific promoters, or by monitoring their loss of function after down-
regulating the gene of interest by RNNAi or with the use of smiRNA
technologies (Alvarez et al., 2006; Delhaize et al., 1993; Magalhaes et al.,
2007; Miki and Shimamoto, 2004; Raman et al., 2006; Sasaki ef al., 2004). If
genetic control of BNI proves to be simple, then such transgenic, RNAI, or
smiRINA approaches would be appropriate for candidate gene validation.

2.8. Evidence for BNI-function in the field

Grass-alone pastures planted with B. humidicola in the acid soils (Oxisol) of
the Colombian Eastern Plains (Llanos Orientales) showed reduced nitrifi-
cation rates compared to legume-alone pastures or bare soil (Sylvester-
Bradley ef al., 1988). B. humidicola pastures develop abundant and highly
vigorous root systems that explore deep soil layers and sequester large
amounts of C in soil (Fig. 13) (Fisher ef al., 1994; Rao, 1998). A conserva-
tive estimate of the live root biomass from a long-term grass pasture was
1.5 Mg ha™" (Fisher et al., 1994), with a BNI-capacity of 17-50 ATU g~
root dry wtday ' (Subbarao et al, 2007a). We thus estimate that
BNI-activity of 2.6 x 10° to 7.5 x 10° ATU ha™' day~" could potentially
be released from B. humidicola roots, which amounts to an inhibitory

e
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Figure 13  Brachiaria humidicola cv. Llanero with abundant root system grown in a low
fertility acid soil of the Llanos in Colombia (source: I.M. Rao, CIAT, Cali, Colombia).
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potential equivalent to the application of 6.2-18 kg of nitrapyrin
ha™' year ' (based on 1 ATU being equal to 0.6 pg of nitrapyrin); this
inhibitory effect would be strong enough to have a significant influence on
the function of soil nitrifier populations and nitrification rates (Subbarao
et al., 2009a).

Field studies at the CIAT (Palmira, Colombia) (Mollisol) (Fig. 14)
indicated a 90% decline in soil-NH," oxidation rates (Fig. 15), largely
due to low nitrifier populations [AO bacteria and AO archaea; determined
as amoA genes| in B. humidicola plots within 3 years of establishment
(Subbarao et al., 2009a). Two other pasture grasses, P. maximum and
Brachiaria hybrid cv. Mulato, that have a low to moderate level of BNI-
capacity (310 ATU g~ ' root dry wt. day ') showed only an intermediate
level of inhibitory effect on soil-NH," oxidation rates (Fig. 15). The
inhibitory function of roots of these tropical pasture grasses appears to be
primarily targeted at reducing soil nitrifier activity rather than the general
soil microbial activity. Moreover, soil nitrifier activity as estimated from
AOB and AOA populations indicated a 90% decline in field plots planted
with B. humidicola within 3 years, but with no significant eftect on the total
soil bacterial population (Subbarao ef al., 2009a). Nitrous oxide emission
was also suppressed by >90% in field plots planted to B. humidicola CIAT

Figure 14 Testing the proof-of-concept for BNI-function in the field. The tropical
pasture grasses [Brachiaria humidicola (CIAT 679; CIAT 16888)], Brachiaria hybrid cv.
Mulato and Panicum maximum, and soybean were grown in the field for 3 years to
monitor the changes in soil nitrification potentials by the BNI-function and its effects on
nitrous oxide emissions.
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Figure 15 Soil ammonium oxidation rates (mg NO; kg ' of soil day ') in field plots
planted to tropical pasture grasses (differing in BNI-capacity) and soybean (lacking
BNI-capacity in roots) [over 3 years from establishment of pastures (September 2004 to
November 2007); for soybean, during planting seasons every year and after six seasons
of cultivation]. CON, control (plant-free) plots; SOY, soybean; PM, Panicum maximum;
BHM, Brachiaria hybrid cv. Mulato; BH-679, B. humidicola CIAT 679 (standard culti-
var); BH-16888, B. humidicola CIAT 16888 (a germplasm accession). Values are means
=+ SE from three replications (source: Subbarao ef al., 2009a).

16888, compared to the emission from plots of soybean, which lack BNI-
capacity (Fig. 16). There appears to be a negative relationship between the
BNI-capacity of roots of a species and N,O emissions, based on field
monitoring of N>O emissions over a 3-year period in tropical pasture
grasses having a wide range of BNI-capacity in their roots (Fig. 16).

Field studies made at Lamto Reserve (Ivory Coast) showed that savanna
cover of the African grass H. diplandra and some other species induced a
240-fold lower nitrification potential in their root zone (Lata, 1999; Lata
et al., 2004). This effect can be considered as permanent in this ecosystem as
the basal nitrate-reductase activities in plants grown in greenhouse are
linked to this capacity. Decimetric-scale experiments (Lata et al., 2000)
demonstrated a close negative relationship between the roots and nitrifica-
tion (in the 0—10-cm soil layer), showing an unexpectedly high sensitivity of
nitrification process to root density. This correlation between the roots and
nitrification decreased with depth and nearly disappeared in the 20-30-cm
soil layer. Finally, in situ experimental transplantations (Lata, 1999; Lata
et al., 2004) of individual grass plant (whether seedlings or vegetative
propagules) showed that grasses significantly modified nitrification rates
similar to those at their respective control sites. The inhibitory effect on
soil nitrification was stable (during the 3-year experimental period) and
enhanced biomass production. Moreover, low-nitrifying sites covered by
inhibiting grasses showed a 10-fold lower denitrification potential than
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Figure 16 The relationship between the BNI-capacity of plant species and the N,O
emissions from field plots. The N,O emissions were monitored over a period of 3 years,
September 2004 to November 2007 (adapted from Subbarao et al., 2009a).

high-nitrifying sites. This better conservation of the N-resource resulted in
doubling of the above-ground biomass of these grasses compared to grasses
of high-nitrifying sites (Fig. 9). This grass species impact must be high-
lighted by comparing it to the effect of trees present in this ecosystem that
stimulate nitrification under their canopy, by 6- to 100-fold (Lata, 1999)
compared to a grass cover. These opposite effects influence tree—grass
competition for resources in this type of highly constrained ecosystems.

2.9. Deploying the BNI-function in agro-ecosystems—A
systems approach to reducing nitrification in agriculture

Agro-climatic factors need to be considered for using the BNI-function as a
strategy to control nitrification. For example, alkaline soil pH limits the
expression and stability of the BNI-function. Heavy clay soils such as
Vertisols that are alkaline may not be suitable for the expression of BNI-
function. Also, a high bacterial activity in soils with relatively high organic
matter might enhance the degradation of BNIs. The influence of soil-
physical, -chemical, and -biological properties on the expression and stabil-
ity of the BNI-function is not adequately understood at present and requires
further research. Also, little information is available on the effects of soil
environmental factors, especially temperature and soil water status (linked to
inter- and intraseasonal variability or to stresses due to excess or insufficient
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moisture), in modulating the BNI-function. For instance, when modeling
the rhizosphere and associated exudate gradients, it was shown that adsorp-
tion properties, solute lifetime, and soil water content are the key determi-
nants of both the extent of the rhizosphere and the time to reach a steady
state, indicating their fundamental roles in the interactions between roots
and soil organisms (Raynaud, 2010).

In production systems, where the targeted crop’s BNI-capacity is lim-
ited, the BNIs may not reach the critical threshold levels to reduce soil
nitrification. Tropical pastures with high BNI-capacity coupled with a
perennial growth habit favor the accumulation of BNIs to a threshold
level sufficient to suppress soil nitrifier activity. The pasture component
could provide the required BNI-activity to improve the N-economy of annual
crops (a weak contributor of BNIs) that follow the pasture phase. For example,
Brachiaria pastures that have high BNI-capacity, but receive little fertilizer
inputs, can be rotated with annual crops (such as maize or upland rice that
have low- or very low-BNI-capacity, but receive substantial N fertilization)
in an agro-pastoral system to improve the recovery of applied fertilizer-IN
leading to overall N-economy. The stability of the residual BNI effects
on soil nitrification potential (determined as soi-NH," oxidation rate),
where an annual crop such as maize is grown after a Brachiaria pasture, is
depicted under various hypothetical scenarios (Fig. 17). However, it is assumed
that the relative stability of the residual BNI effects may differ depending
on the subsequent crop (e.g., maize vs. soybean) and also depending on
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Figure 17 Various scenarios of stability of the residual BNI effects from Brachiaria
humidicola (land under the B. humidicola pasture for several years) on soil nitrification
potential (expressed as soil ammonium oxidation rate) on a cereal crop grown in a
South American agro-pastoral system.
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the cumulative N-fertilizer application amount in an agro-pastoral system,
which needs to be characterized in a production system context.

In crop species where the production of NI is established in shoot tissues
but is not released from roots (e.g., in some crucifers; Bending and Lincoln,
2000), the incorporation of plant residues into the soil may be considered
part of a crop management strategy to control nitrification. Research on
BNI-function requires a multi-disciplinary approach where crop improve-
ment and agronomic management are combined to utilize this novel
biological trait effectively and economically in practical agriculture. More-
over, the boundaries of the agro-ecosystems where the BNI-function can
be effectively deployed will have to be defined with the help of crop
ecologists and agronomists. This will help breeders and molecular biologists
target BNI-traits in crops for genetic improvement from the perspective of
an entire agro-ecosystem. Deployment of the BNI-function, thus, requires
an understanding of both edaphic and climatic conditions of production
systems in the target region.

3. CONCLUDING REMARKS

Modern agricultural systems are dependent on large inputs of mineral
N as their primary N source (De Wit ef al., 1987; Subbarao et al., 2006a);
this along with changes in crop management practices has resulted in the
evolution of the present high-nitrifying soil environments (Celik, 2005;
Elliott, 1986; Poudel et al., 2002). Most high-yielding crop varieties bred for
these environments were also inadvertently selected for their preference for
NO;~ over NH,". Moreover most of our staple crops seem to lack any
functional BNI-capacity. These factors taken together seem to have pre-
sented a significant incentive for the development of the current nitrifica-
tion-dominated N-cycle in agricultural systems (Figs. 1, 2, and 18). Of
several approaches potentially available for reversing this trend, the intro-
duction of BNI-capacity into field crops and pastures would provide a
powerful new strategy for the regulation of nitrification in agricultural
systems. Genetic exploitation of BNI-capacity and the preference for
NH,", found in the wild relatives of some crops (such as wild wheat,
L. racemosus) and forage grasses (e.g., Brachiaria spp.), could provide
biological options for delivering the BNI-activity to agricultural systems.
The next generation of cropping systems should exploit the BNI-function
to improve the efficiency of N use in agriculture and to reduce the negative
impact of N-fertilizers on the environment.
Recent findings indicate that a number of diverse chemical molecules
with an inhibitory effect on Nitrosomonas sp. can be produced and released
by plant roots. The AMO enzyme has a high affinity for a wide range of
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Figure 18 Current agricultural production systems largely driven by industrially fixed
nitrogen with a very high risk for leaking reactive-N to the environment.

substrates in addition to NH, " (Hauck, 1980; McCarty, 1999). Moreover,
by interfering with the functioning of AMO enzymatic pathway, biological
molecules with diverse chemical structures can inhibit nitrifier activity. This
unique feature of the AMO enzyme has been exploited during the devel-
opment of synthetic chemical NIs (Subbarao ef al., 2006a). The unexplored
chemical diversity of root exudates is an obvious place to search for novel
NIs, which could be exploited to develop a range of biological and chemical
strategies for controlling nitrification in agricultural systems. Beyond this,
future research should also examine the second stage of nitrification occur-
ring in the Nitrobacter bacteria.

There is sufficient evidence from recent studies to indicate potential
differences in N,O emissions among plant species, linked to their differing
BNI-capacities (Fig. 16) (Subbarao et al., 2009a). The comparison of inhi-
biting and non-inhibiting grass ecotypes in the savanna ecosystems showed
that denitrification potential is nearly 10-fold lower in grasses from low-
nitrifying sites than in those in high-nitrifying sites (Lata ef al., 2004).
Presently, such differences are not considered by the Intergovernmental
Panel on Climate Change (IPCC) in their estimation of projected N,O
emissions from agricultural systems (Stehfest and Bouwman, 2006). For
example, there are >250 million ha of South American Savannas occupied
by native grass or by pastures of introduced grasses such as Brachiaria spp.
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(Fisher ef al., 1994), which have high BNI-capacity. These pastures are low-
nitrifying and low-N,O emitting systems, but if converted to crop produc-
tion using species that lack BNI-capacity (such as soybean, wheat, barley,
maize, rice), it could have major implications for N,O emissions (Subbarao
et al., 2007a, 2009a). Such conversion is taking place. Hence, there is an
increasing urgency to introduce adequate BNI-capacity into field crops and
pastures to facilitate development of production systems that are low-
nitrifying and low-N,O emitting, but these systems must remain highly
productive to meet the increasing food demands of the growing world
population.

4., PERSPECTIVES

The availability of large amounts of industrially fixed-IN (fertilizer-IN)
from the Haber-Bosch process has been a major driver of the Green
Revolution that has doubled global food grain production during the last
half-century. However, this high level of fertilization is responsible for the
transfer of massive amounts of reactive-IN (reduced forms of N, i.e., N-
fertilizer) (Liu et al., 2010) through agricultural ecosystems, even though
these represent only 11% of the Earth’s surface (Newbould, 1989) (Figs. 1
and 18). Currently, inputs from industrially fixed-N into agricultural sys-
tems (about 150 Tg year ') exceed the total biologically fixed-N in all
natural systems of our planet (about 100 Tg year ') (Tilman et al., 2001;
Vitousek et al., 1997). Further, fertilizer-N consumption is ex1pected to
double from the current levels by 2050 to reach 300 Tg year™ (Charles
et al., 2010; IFA, 2005; Schlesinger, 2009). N,O emissions from agricultural
systems are expected to reach 38.6 TgN year ' by 2050, contributing
significantly to global warming (IPCC, 2007; Kroeze, 1994; Schlesinger,
2009; Smith et al., 1997). There is also a growing concern about the
environmental damage that would result, given the pervasive inefficiency
of N-use by most crops (Hauck, 1990; Ju et al., 2009; Schlesinger, 2009;
Smil, 1999). The economic implications of this “wasted N” could be
enormous and are expected to reach close to US$ 81 billion at current
fertilizer prices (estimated at US$ 450 per Mg of urea-N) from the lost
fertilizer even without considering the economic cost of potential environ-
mental damage and the resulting ecological destruction. For example, for
the European Union, which consumes only 11 TgN year ' (fertilizer-N)
annually, the cost of damage from reactive nitrogen emissions on human
health and ecosystems is estimated at US$ 102-320 billion (Sutton et al.,
2011).

A major objective of this review is to increase awareness of inefficiency
in nitrogen use, which is largely attributed to the dominance of nitrification
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in the soil-N-cycle of current agricultural production systems. From a
broader ecological perspective, the BNI-function can be exploited to
tighten the N-cycle in agriculture. A fundamental shift toward an NH,"-
dominated crop N-nutrition could be achieved by using crops and pastures
with high BNI-capacity. The next generation of production systems will
require deployment of the BNI-trait as an integral part of a comprehensive
strategy to defend the rhizosphere from nitrifying bacteria and brings a
balance in soil-N forms (i.e., organic-N, NH, ", and NO; ™) absorbed and
assimilated by crops and pastures to reduce N pollution and improve NUE.
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