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The reliable development of highly complex organ-
isms is an intriguing and fascinating problem. The
genetic material is, as a rule, the same in each cell
of an organism. How do then cells, under the influ-
ence of their common genes, produce spatial pat-
terns ? Simple models are discussed that describe
the generation of patterns out of an initially nearly
homogeneous state. They are based on nonlinear
interactions of at least two chemicals and on their
diffusion. The concepts of local autocatalysis and of
long range inhibition play a fundamental role. Nu-
merical simulations show that the models account
for many basic biological observations such as the
regeneration of a pattern after excision of tissue or
the production of regular (or nearly regular) arrays of
organs during production of regular (or nearly regu-
lar) arrays of organs during (or after) completion of
growth.
Very complex patterns can be generated in a repro-
ducible way by hierarchical coupling of several such
elementary reactions. Applications to animal coating
and to the generation of polygonally shaped patterns
are provided. It is further shown how to generate a
strictly periodic pattern of units that themselves ex-
hibit a complex and polar fine structure. This is il-
lustrated by two examples : the assembly of photore-
ceptor cells in the eye of Drosophila and the position-
ing of leaves and axillary buds in a growing shoot. In
both cases, the substructures have to achieve an in-
ternal polarity under the influence of some primary
pattern forming system existing in the fly’s eye or in
the plant. The fact that similar models can describe
essential steps in so distantly related organisms as
animals and plants suggests that they reveal some
universal mechanisms.

1. INTRODUCTION

A most fascinating aspect of biological systems is the

generation of complex organisms in each round of the

life cycle. Higher organisms develop, as the rule, from a

single fertilized egg. The result is a highly reproducible

arrangement of differentiated cells. Many processes are

involved, for example cell differentiation, cell movement,

shape changes of cells and tissues, region-specific con-

trol of cell division and cell death. Development of an

organism is, of course, under genetic control but the ge-

netic information is usually the same in all cells. A crucial

problem is therefore the generation of spatial patterns

that allow a different fate of some cells in relation to oth-

ers.

The complexity of the evolving pattern seems to pre-

clude any mathematical theory. However, by experi-

mental interference with a developing organism it has

turned out that the individual steps are fairly indepen-

dent of each other. For instance, the organization of the

anteroposterior axis (i.e., the head to tail pattern) in a

Drosophila embryo is controlled by a completely different

set of genes than the dorsoventral axis. Shortly after its

initiation, the development of a wing is largely indepen-

dent of the surrounding tissue and can progress even at

an ectopic position after transplantation. Therefore, mod-

els can be written for elementary steps in development.

The linkage of these steps requires then a second ap-

proximation.

The necessity of mathematical models for morpho-

genesis is evident. Pattern formation is certainly based

on the interaction of many components. Since the inter-

actions are expected to be nonlinear, our intuition is in-

sufficient to check whether a particular assumption really

accounts for the experimental observation. By modelling,

the weak points of an hypothesis become evident and the

initial hypothesis can be modified or improved. Models

contain often simplifying assumptions and different mod-

els may account equally well for a particular observation.

This diversity should however be considered as an ad-

vantage : multiplicity of models stimulates the design of
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experimental tests in order to discriminate between the

rival theories. In this way, theoretical considerations pro-

vide substantial help to the understanding of the mecha-

nisms on which development is based (Berking, 1981).

In his pioneering work, Turing (1952) has shown that

under certain conditions two interacting chemicals can

generate a stable inhomogeneous pattern if one of the

substances diffuses much faster than the other. This

result goes against “common sense” since diffusion is

expected to smooth out concentration differences rather

than to generate them.

However, Turing apologizes for the strange and un-

likely chemical reaction he used in his study. Meanwhile,

biochemically more feasible models have been devel-

oped and applied to different developmental situations

(Lefever, 1968 ; Gierer and Meinhardt, 1972 ; Gierer,

1977 ; Murray, 1990). Chemical systems have also

been intensively investigated for their ability to produce

“Turing patterns” : some experiments present beautiful

reaction-diffusion structures in open reactors (Ouyang et

al., 1989 ; Castets et al, 1990 ; de Kepper et al., 1991).

In the first part of this article, after having shortly dis-

cussed the relevance of chemical gradients in biological

systems, we shall present simple models of pattern for-

mation and their common basis, local self-enhancement

and long range inhibition. The patterns that can be

generated are graded concentration profiles, local con-

centration maxima and stripe-like distributions of sub-

stances. In the second part we shall show how more

complex patterns can be generated by hierarchical su-

perimposition of several pattern forming systems. The

formation of a regular periodic arrangement of different

cell types or the generation of polygonal patterns will be

discussed. The models of that section are original and

so far unpublished.

Appendix 7 contains a complete discussion of the lin-

ear stability analysis in the case of the simplest models.

The parameters used for the simulations presented here-

after are listed in Appendix 8. A reader interested in nu-

merical simulations should feel no difficulty to reproduce

or improve the results.

Throughout the paper, comparisons of models with

experimental observations are provided. If necessary the

biological background is outlined in such a way that the

article should be understandable without previous knowl-

edge of biology.

2. GRADIENTS IN BIOLOGICAL SYSTEMS

In many developmental systems small regions play an

important role because they are able to organize the fate

of the surrounding tissue. The mouth opening of a hy-

dra or the dorsal lip of an amphibian blastula are well

known examples. Transplantation of a small piece of

such an organizing centre into an ectopic position can

change the fate of the surrounding tissue : these cells are

then instructed to form those structures that are induced

in the normal neighborhood of such an organizing re-

gion. Based on these observations, Wolpert (1969) has

worked out the concept of positional information. The lo-

cal concentration of a substance that is distributed in a

graded fashion dictates the direction in which a group of

cells has to develop. The organizing region is thought

to be the source of such a morphogenetic substance. A

famous example is the determination of the digits in the

chick wing bud (Cooke and Summerbell, 1980 ; Tickle,

1981). It occurs under control of a small nest of cells lo-

cated at the posterior border of the wing bud, the zone

of polarizing activity (ZPA). The results nicely fit with

the assumption of some hypothetical substance diffus-

ing out of the ZPA and producing a concentration gradi-

ent ; groups of cells form the correct digit by measuring

the local concentration within this gradient (Summerbell,

1974 ; Wolpert and Hornbruch, 1981). Many experiments

in which a second ZPA is implanted at various positions

of the wing bud confirm this conjecture : supernumer-

ary digits are then formed at abnormal positions but in

accordance with the pattern predicted by the assumed

gradient produced by the two ZPA. A possible candidate

for the morphogenetic substance is retinoic acid (Thaller

and Eichele, 1987, 1988). Indeed, small beets soaked

with this substance at low concentrations mimic all the

effects of a ZPA.

Nowadays there is a growing body of evidence that

chemical gradients play a key role in pattern formation

and cell differentiation. For instance, it has been ob-

served that the protein bicoid has a graded concentra-

tion distribution in the Drosophila melanogaster embryo ;

it organizes the anterior half of the fly and has been fully

characterized (Driever and Nüsslein-Volhard, 1988 ; Bor-

ing et al., 1993).

In this context, theoretical models have to give satis-

factory answers to the following two questions.

• How can a system give rise and maintain large

scale inhomogeneities like gradients even when

starting from initially more or less homogeneous

conditions ?

• How do cells measure the local concentration in

order to interpret their position in a gradient and

choose the corresponding developmental path-

way ?

The next two sections are devoted to the first question.

We shall discuss theoretical models having the ability

to produce graded distributions of chemical substances

and present their regulation characteristics. In the sub-

sequent section, we shall show how to use the positional

information contained in gradients in order to induce a

correct differentiation.
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3. SIMPLE MODELS FOR PATTERN

FORMATION

As mentioned, Turing (1952), was the first who realized

that the interaction of two substances with different dif-

fusion rates can cause pattern formation. Gierer and

Meinhardt (1972) and independently Segel and Jackson

(1972) have shown that two features play a central role :

local self-enhancement and long range inhibition. It is

essential to have an intuitive understanding of these two

requirements since they lay at the heart of pattern forma-

tion.

Self-enhancement is essential for small local inhomo-

geneities to be amplified. A substance a is said to be self-

enhancing or autocatalytic if a small increase of a over its

homogeneous steady-state concentration induces a fur-

ther increase of a.2 The self-enhancement doesn’t need

to be direct : a substance a may promote the production

rate of a substance b and vice versa ; or, as will be dis-

cussed further below, two chemicals that mutually inhibit

each other’s production act together like an autocatalytic

substance.

Self-enhancement alone is not sufficient to generate

stable patterns. Once a begins to increase at a given po-

sition, its positive feedback would lead to an overall acti-

vation. Thus, the self-enhancement of a has to be com-

plemented by the action of a fast diffusing antagonist.

The latter one prevents the spread of the self-enhancing

reaction into the surrounding without choking the incip-

ient local increase. Two types of the antagonistic reac-

tions are conceivable. Either an inhibitory substance h
is produced by the activator that, in turn, slows down the

activator production. Or, a substrate s is consumed dur-

ing the autocatalysis. Its depletion slows down the self-

enhancing reaction.

3.1. Activator-inhibitor systems

The following set of differential equations describes a

possible interaction between an activator a and its rapidly

diffusing antagonist h (Gierer and Meinhardt, 1972).

∂a

∂t
= Da △a+ ρa

a2

(1 + κaa2)h
− µaa+ σa (1a)

∂h

∂t
= Dh △h+ ρha

2 − µhh+ σh (1b)

where △ is the Laplace operator ; in a two dimensional

orthonormal coordinate system, it writes △ = ∂2/∂x2 +
∂2/∂y2. Da, Dh are the diffusion constants, µa, µh the re-

moval rates and ρa, ρh the cross-reactions coefficients ;

σa, σh are basic production terms ; κa is a saturation con-

stant.

As discussed above, lateral inhibition of a by h re-

quires that the antagonist h diffuses faster than the self-

2To simplify the notations, we shall use the same symbol to design a chem-

ical species and its concentration. This should not lead to any confusion.

Figure 1: Patterns produced by the activator-inhibitor model

(1). (a) Initial, intermediate and final activator (top) and in-

hibitor (bottom) distribution. (b) Result of a similar simulation

in a larger field. The concentration of the activator is suggested

by the dot density. (c) Saturation of autocatalysis (κa > 0) can

lead to a stripe-like arrangement of activated cells.

enhanced substance a : Dh ≫ Da.3 This is not yet suffi-

cient to generate stable patterns. We show in Appendix 7

that in addition the inhibitor has to adapt rapidly to any

change of the activator. This is the case if the removal

rate of h is large compared to the one of a : µh > µa.

Otherwise the system oscillates or produces travelling

waves.

Though not necessary for the capability of pattern for-

mation, the saturation constant κa has a deep impact on

the final aspect of the pattern. Without saturation, some-

what irregularly arranged peaks are formed whereby a

maximum and minimum distance between the maxima is

maintained (figure 1a,b). In contrast, if the autocatalysis

saturates (κa > 0), the inhibitor production is also limited.

A stripe-like pattern emerges : in this arrangement acti-

vated cells have activated neighbors ; nevertheless non-

activated areas are close by into which the inhibitor can

diffuse (figure 1c).

Embryonic development makes often use of stripe

formation. For example, genes essential for the segmen-

3Here are some orders of magnitude for the diffusion constants in cells.

Roughly speaking, the diffusion constants in cytoplasm range from 10−6

cm2s−1 for small molecules to 10−8 cm2s−1 for proteins. Diffusion from

cell to cell via gap junctions lowers these values by a factor 10 (Crick, 1970 ;

Slack, 1987).
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tation of insects are activated in narrow stripes that sur-

round the embryo in a belt like manner (Ingham, 1991).

In monkeys, the nerves of the right and the left eye

project onto adjacent stripes in the cortex (Hubel et al.,

1977). The stripes of a zebra are proverbial.

By convenient choice of the concentration units for a
and h, it is always possible to set µa = ρa and µh =
ρh (Appendix 7). Moreover, some constants involved in

(1) are not essential for the morphogenetic ability of this

system (they are useful if one needs “fine tuning” of the

regulation properties). In its simplest form, the activator-

inhibitor model writes:

∂a

∂t
= Da △a+ ρa

(

a2

h
− a

)

(2a)

∂h

∂t
= Dh △h+ ρh

(

a2 − h
)

. (2b)

Convenient length and time units can be found in which

ρa = Dh = 1. This reduces the number of essential

parameters to two, namely Da and ρh.

3.2. Activator-substrate systems

Lateral inhibition can also be achieved by the depletion

of a substance s required for the autocatalysis :

∂a

∂t
= Da △a+ ρa

a2s

1 + κaa2
− µaa+ σa (3a)

∂s

∂t
= Ds △s− ρs

a2s

1 + κaa2
+ σs . (3b)

The parameters Da, Ds, µa, ρa, ρs, κa, σa and σs have

the same meaning as in Eq. (1) ; a is the self-enhanced

reactant, while s plays the role of the antagonist : it can

be interpreted as a substrate depleted by a. For this

reason, we shall refer to this system as the activator-

substrate model. Lateral inhibition of a by s is effective if

Ds ≫ Da. The model has similarities with the well-known

Brusselator (Lefever, 1968 ; Auchmuty and Nicolis, 1975 ;

Vardasca et al., 1992).

Suitable concentration units for a and s allow to set

µa = ρa and σs = ρs. In its simplest form, the system

looks like

∂a

∂t
= Da △a+ ρa

(

a2s − a
)

(4a)

∂s

∂t
= Ds △s+ ρs

(

1− a2s
)

. (4b)

One can always adapt the time and length units so that

ρa = Ds = 1 ; only two parameters, ρs and Da, are then

remaining.

Figure 2 presents typical patterns resulting from such

a model. The activator-substrate and activator-inhibitor

models have some distinctly different properties. As can

be seen in figure 2, in (a, s) systems the activator forms

rounded mounds rather than sharp peaks as it is the case

for (a, h) models (figure 1a). In a growing field of cells,

an (a, s) system produces new maxima preferentially by

Figure 2: Patterns produced by the activator-substrate model

(3). (a) Initial, intermediate and final pattern. Upper and lower

plots show the concentration of a and s respectively. A high

level of a produces a pit in the distribution of the substrate s.

(b) Similar simulation in a larger field (the activator concen-

tration is shown). Fig. 1 and 2 have been calculated with cor-

responding parameters. Note that nevertheless the peaks are

here broader and more densely packed. (c) Saturation of the

autocatalysis (κa > 0) leads to the formation of stripes.

a split and shift of existing ones, while in (a, h) models

new peaks are inserted at the maximum distance from

the existing ones. The reason for the shift of maxima in

an (a, s) system is the following. With growth, the sub-

strate concentration increases in the enlarging space be-

tween the activated regions. This can lead to a higher ac-

tivator production at the side of a maximum if compared

with its centre. In such a case the maximum begins to

wander towards higher substrate concentrations until a

new optimum is reached. In (a, h) systems, a maximum

suppresses more efficiently the formation of other max-

ima in the surroundings. This is evident from Fig. 1 and

2. In the former case the distance between the maxima

is much higher although corresponding parameters have

been used for both simulations (see Appendix 8). We

shall often make use of these different properties. If a

maximum has to be displaced or to form a wave, one

will preferentially use an (a, s) system. In contrast, if an

isolated maximum has to be generated, we shall employ

an (a, h) system. The ultimate reason of this different

behavior is related to the inherent saturation in the (a, s)
system. The autocatalysis comes necessarily to rest if all
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Figure 3: Position-dependent activation of a gene by an exter-

nal signal simulated in a one-dimensional array of cells accord-

ing to equation (5). The concentration of the autoregulatory

gene product y (thin lines) is given as a function of position

and time. A primary gradient (boldface line) is used as exter-

nal signal σext. Despite of the shallow signal, a sharp threshold

exists ; if exceeded, the system switches irreversibly to the high

state.

the substrate is used up. An (a, h) system obtains similar

properties if the autocatalysis saturates moderately.

3.3. Biochemical switches

A monotonic gradient based on mechanisms as de-

scribed above can be maintained only if the size of the

tissue is small since otherwise the time required to ex-

change molecules by diffusion from one side of the field

to the other would become too long. Indeed, as Wolpert

(1969) has pointed out, all biological systems in which

pattern formation takes place are small, less than 1 mm

and less than 100 cells in diameter. In an organism grow-

ing beyond this size, cells have to make use of the signals

they have obtained by activating particular genes. Once

triggered, the gene activation should be independent of

the evoking signal. Similarly to pattern formation, this

requires either a direct or an indirect autocatalytic activa-

tion of genes (Meinhardt, 1978).

Here is a simple example of a switch system.

∂y

∂t
= ρy

y2

1 + κyy2
− µyy + σext . (5)

In this equation ρy, µy and κy are constants ; σext de-

scribes the external signal. In the absence of such a

signal the system has two stable steady states, the low

one at y = 0 and the high one at y = (ρy +
√
α)/2κyµy,

separated by an unstable steady state at y = (ρy −√
α)/2κyµy, where α = ρ2y − 4κyµ

2
y. If the external sig-

nal σext exceeds a certain threshold the system switches

from the low to the high state (Figure 3). Once the un-

stable steady state is surpassed, the high state will be

reached and maintained independently of the external

signal (which could even vanish).

Somewhat more complex interactions allow the

space-dependent activation of several genes under the

influence of a single gradient (Meinhardt, 1978). Mean-

while many genes have been found with a direct regu-

latory influence on their own activity (see, for instance,

Kuziora and McGinnis, 1990 ; a review is given by Ser-

fling, 1989), supporting the view that autoregulation is an

essential element to generate stable cell states in devel-

opment.

3.4. Other realizations of local autocatalysis and long

ranging inhibition

In the above mentioned models, self-enhancement oc-

curs by direct autocatalysis (the activator production term

in ∂a/∂t is proportional to a2). This direct feedback is

not necessary. As already mentioned, self-enhancement

may also result from indirect mechanisms. As an exam-

ple, consider the following system :

∂a

∂t
= Da△a+ ρa

(

c

1 + κab2
− a

)

+ σa (6a)

∂b

∂t
= Db△b+ ρb

(

1

1 + κba2c
− b

)

+ σb (6b)

∂c

∂t
= Dc△c+ ρc ( b− ac ) . (6c)

In this example the two substances a and b mutually

repress each other’s production. A small local advan-

tage of a leads to a decrease of the b production. If

b shrinks, a increases further, and so on. In this case,

self-enhancement results from the local repression of a

repression. The necessary long ranging inhibition is me-

diated by the rapidly diffusing substance c. The latter is

produced by b but is poisonous for it. Further, c is re-

moved with help of a. So, although a and b are locally

competing, a needs b in its vicinity and vice versa. There-

fore, the preferred pattern generated by such a system

consists of stripes of a and b, closely aligned with each

other.

The interaction given above is a simple example for

an important class of pattern forming reactions based on

long range activation of cell states that locally exclude

each other (Meinhardt and Gierer, 1980). According to

the theory, they play an essential role in the segmen-

tation of insects (Meinhardt, 1986). Molecular analysis

has confirmed this scheme ; the engrailed and the wing-

less genes of Drosophila have the predicted properties

[see, for instance, Ingham and Nakano (1990) or Ingham

(1991) ].

The examples discussed here have been picked out

of a large set of feasible morphogenetic models (Gierer,

1981). They have the advantage of conceptual simplic-

ity. Many other nonlinear systems have been proposed

(Lacalli, 1990 ; Lyons and Harrison, 1992 ; for a broad

overview, see Murray, 1990). But, to state it once again,

more important than the details of the equations are the
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Figure 4: Insertion of new maxima during growth. (a) During

isotropic growth, the distance between the maxima enlarges

and the inhibitor concentration drops in between. Whenever

the inhibition becomes too weak, a new maximum is triggered.

This can only occur if a minimum distance from existing max-

ima is respected. The figure is calculated with an (a, h) model

and shows the activator concentration. (b) Example for the

insertion of new structures during growth : the distribution of

bristles on the cuticle of a bug Rhodnius prolixus (after Wig-

glesworth, 1940) The drawings correspond to the fourth (left)

and fifth (right) larval instars respectively. Bristle positions are

marked with circles (◦) ; during growth, new bristles (•) appear

where the old ones are the most spaced.

basic principles on which all these models rely, on local

self-enhancement and long ranging inhibition.

Numerical simulations have shown that properties of

the systems discussed above are able to account for

many observations. As an example, the regeneration af-

ter tissue removal will be discussed further below.

The models presented describe biochemical reac-

tions and diffusion of the reactants. Other kind of inter-

actions are possible, mediated for instance by mechan-

ical forces (Lewis and Murray, 1992 ; Bentil and Murray,

1993), by electric potentials (Jaffe, 1981 ; Stern, 1986)

or by surface contact between cell membranes (Babloy-

antz, 1977). Cellular automata are also often used to

explain emergence of inhomogeneous patterns (Cocho

et al., 1987) ; they provide particularly elegant solutions

as long as only cell-cell contacts are involved (i.e., the

state of a cell affects only its direct neighbors). How-

ever, chemical interactions coupled by the exchange of

molecules (either by diffusion or by more complex signal-

ing mechanisms) are believed to be the main motor of

primary pattern genesis in biological systems.

4. SOME REGULATORY PROPERTIES OF

PATTERN FORMING REACTIONS

In the previous section, we discussed some simple mod-

els able to produce inhomogeneous concentrations of

chemicals out of a (nearly) homogeneous initial state. Let

us now observe the main characteristics of the resulting

patterns.

4.1. Insertion of new maxima during isotropic growth

Suppose that the initial field is large enough. If the pat-

tern is initiated by small random fluctuations, the inho-

mogeneous steady state of an activator-inhibitor model

consists of irregularly arranged activator peaks. Due to

lateral inhibition, each peak maintains a certain minimal

distance with its neighbors.4

If the field grows isotropically (Fig. 4), new activator

maxima emerge at positions where the inhibitor is too low

to further repress the local onset of autocatalysis from

the basic activator production. This requires a minimum

distance from existing activated centres. Therefore, the

average spacing and the overall density of maxima re-

main approximately constant.

Biological examples of such near-periodic patterns

are the distribution of stomata (special organs for gas

exchange) on the lower surface of leaves (Bünning and

Sagromsky, 1948) or the arrangement of bristles on in-

sect cuticle (Wigglesworth, 1940). In both cases, it has

been demonstrated that during growth new structures

arise where the old ones are the most widely spaced

(Fig. 4b).

4.2. Strictly periodic patterns

To get strictly periodic patterns, one needs more sub-

tle mechanisms. The simplest idea would be to achieve

strict periodicity by relaxation of a random structure.

However, this is unrealistic from a biological point of view.

Relaxation needs time. A misplaced maximum may al-

ready evoke a particular structure, for instance a bristle,

at the wrong position. This cannot be corrected by a later

shift of the maximum to the correct place.

Strictly regular structures are formed during marginal

growth. With the addition of new cells at the bound-

aries, the distance between these cells and the exist-

ing maxima increases and the inhibitor concentration de-

creases. Whenever the inhibitor concentration becomes

lower than a threshold a new maximum is triggered.

Therefore, each new maximum keeps a well defined dis-

tance from the previous formed ones and the arrange-

ment is very regular (figure 5).

A famous example for the generation of a strictly pe-

riodic structure is the initiation of leaves on a growing

shoot. As the shoot grows upward, new leaves (or florets,

4The mean distance d between two neighboring maxima can be evaluated

by use of the wave number kmax calculated in the linear approximation [see

Appendix 7, equation (??)] : d ≈ 1/kmax.
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Figure 5: Generation of periodic structures during marginal

growth. (a) In this simulation, the domain enlarges by addition

of new cells at the upper and left border ; a periodic structure

emerges. Plotted is the activator of an (a, h) model. (b) The

regular spacing of thorns on this cactus is achieved by apical

growth (see also section 5). The thorns are arranged along

helices that wrap around the stem. (c) Feather primordia are

regularly spaced on the back of the chicken. To position them

accurately, the chicken “simulates” growth by use of a deter-

mination wave that starts from the dorsal mid line and spreads

on both sides : only cells reached by the wave can initiate the

development of primordia. The wave motion simulates growth

by enlarging the region competent for feather production (pho-

tograph by courtesy of Dr. H. Ichijo).

scales, etc.) are added sequentially near the tip, so as to

maximize the spacing with the elder ones (Adler, 1975 ;

Marzec and Kappraff, 1983). Leaves emerge along spi-

rals (Fig. 5b) that wrap around the stem (Coxeter, 1961 ;

Rothen and Koch, 1989a, 1989b). We shall come back

to this particular pattern in section 5.

It may also happen that systems which have already

reached a large size need to position organs in a regu-

lar fashion. This can occur by a “simulated” growth. The

property of a tissue may change in a wavelike manner

from a state noncompetent to a state competent for pat-

tern formation. Although many cells are already present,

pattern formation can take place only in a small portion

of the field. With the enlargement of the competent re-

gion more and more maxima are formed that keep pre-

cise distances to the existing ones. An example is the

formation of the regularly spaced feather pattern in chick

(Fig. 5c). Feather primordia begin their differentiation

behind a competence wave that starts from the dorsal

Figure 6: Regeneration with polarity reversal. (a) Experimen-

tal observation : the early blastula of a sea urchin is cut in two

halves. Cells close to the wound are vitally stained (dotted

region) to determine later the original orientation. Both parts

regenerate a complete embryo. They are mirror-symmetric,

so that in one fragment the polarity must have been reverted

(Hörstadius and Wolsky, 1936). (b) Simulation by an activator-

inhibitor model. The abscissa scale gives the position along the

dorso-ventral axis of the blastula, in % of the animal length.

After separation, the high residual inhibitor concentration (- - -

) in the non-activated part (arrow) leads to regeneration of the

activator (—) at the opposite end of the field. The distribution

before and after cutting is shown, as well as the newly formed

steady state.

mid line and spreads to both sides of the back. Exper-

iments (Davidson, 1983a, 1983b) have clearly demon-

strated that lateral inhibition is involved in the formation

of the regularly spaced feather primordia. We shall meet

a similar phenomenon in section 5 when discussing the

formation of the Drosophila eye.

4.3. Regeneration properties and polarity

Many biological systems can regenerate missing parts.

The models discussed above are able to account for this

property. We shall use the activator-inhibitor model and

modifications of it to demonstrate this feature and com-

pare them with biological observations.

After partition of an early sea urchin embryo both

fragment regenerate complete embryos. By vital stain-

ing during separation it has been shown that both em-

bryos obtain a mirror-image orientation with respect to

each other (Fig. 6). According to the model, in the non-

activated fragment the remnant inhibitor decays until a

new activation is triggered. The polarity of the resulting

pattern depends on the distribution of the residual acti-

vator and inhibitor in the fragment. A polarity reversal,

as in the case of the sea urchin mentioned above, will

take place if the residual inhibitor gradient is decisive for

its orientation. It is the region with the lowest inhibitor
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Figure 7: Regeneration with maintained polarity. (a) After cut-

ting, fragments of Hydra regenerate. The original apical-basal

polarity is maintained. (b) Model based on Eq. (7). The ab-

scissa gives, in % of the full length, the position along the body

axis. The inhibitor is assumed to have a feedback on the source

density b (- - -) which describes the general ability of the cells

to perform the autocatalysis. This source density, having a long

time constant, does not change considerably during regenera-

tion of the activator-inhibitor pattern. Regions closer to the

original head have an advantage in the competition for head

formation and the new maximum of the activator a (—) is reli-

ably triggered in the region which was originally closest to the

apical side.

concentration, i.e., the region most distant to the origi-

nally activated site that wins the competition to become

activated.

In many other systems the polarity is maintained.

The fresh water polyp Hydra (Wilby and Webster, 1970 ;

Wolpert et al., 1971 ; Macauley-Bode and Bode, 1984)

and planarians (Flickinger and Coward, 1962 ; Goss,

1974 ; Chandebois, 1976) are examples. The mainte-

nance of polarity implies that the same tissue can regen-

erate either a head or a foot depending whether this par-

ticular tissue is located at the apical or the basal end of

the fragment which has to regenerate. Morgan (1904)

interpreted this phenomena in that a graded stable tis-

sue property exists. It provides a graded advantage in

the race to regenerate a removed structure. During head

regeneration, for instance, those cells will win that were

originally closest to the removed head.

In terms of the activator-inhibitor mechanism, a sys-

tematic difference in the ability to perform the autocatal-

ysis must exist. We call this property the source density.

Detailed simulations for hydra (Meinhardt, 1993) have

shown that the source density must have approximately

the same slope as the inhibitor. However, while time con-

stants of the activator and inhibitor are in the range of a

few hours, a major change of the source density requires

approximately two days (Wilby and Webster, 1970).

In the following model, a feedback exist from the in-

hibitor h onto the source density b. Therefore, in the

course of time, a long ranging gradient not only of h
but also of b will be established. Whenever the system

is forced to regenerate, the residual distribution of b en-

sures the maintenance of polarity.

∂a

∂t
= Da △a+ ρa

[

b

(

a2

h2
+ σa

)

− a

]

(7a)

∂h

∂t
= Dh △h+ ρh

(

a2 − h
)

(7b)

∂b

∂t
= ρb (h− b ) . (7c)

As can be verified in (7c), at equilibrium, b = h. Thus, the

self-enhancement term ba2/h2 in the activator equation

(7a) reduces to a2/h as in the usual activator-inhibitor

model (1). Since the removal rate ρb is small compared

to ρa and ρh, b preserves the polarity when the animal

is dissected : due to enhancement of autocatalysis by b,
the activator a builds up again in each half at the site

of highest b concentration. The position of the relative

highest source density plays the crucial role as to where

the new activator maximum will be formed. This insures

maintenance of the initial polarity (Fig. 7).

The feedback of h onto the source density b has an-

other very important effect, it helps to suppress the initi-

ation of secondary maxima. This is required if a single

structure, for instance a single head, should be main-

tained in a system despite of substantial growth. Since,

with increasing distance from the existing maxima, cells

have a lower and lower source density, it becomes less

likely that these cells overcome the inhibition spreading

from an existing maximum.

In Hydra, treatment with diacylglycerol (a substance

involved in the second messenger pathway) causes su-

pernumerary heads (Müller, 1990). From detailed obser-

vations and simulations one can conclude that this sub-

stance is able to increase the source density in a dra-

matic way. Since the source density becomes high ev-

erywhere, the so-called apical dominance of an existing

head is lost and supernumerary heads can be formed.

These heads keep distance from each other since the

spacing mechanism enforced by the inhibitor alone is still

working. The model agrees with many other experimen-

tal results, including the existence of a critical size (see

Appendix 7) below which the animal is unable to regen-

erate (Shimizu et al., 1993).

5. FROM SIMPLE GRADIENTS TO

COMPLEX STRUCTURES

So far we have considered models able to generate inho-

mogeneous distributions of substances out of an initially

uniform state. By combining several systems of this kind

very complex structures can be formed in a reproducible
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way. Central is the idea of hierarchy. A first system A es-

tablishes a primary pattern that is used to modify and trig-

ger a second system B. The feedback in the reverse di-

rection, of B onto A, is assumed to be weak (this greatly

simplifies the treatment of these nonlinear systems and

makes the comprehension of their properties easier).

To fix the ideas, suppose that both A and B are

activator-inhibitor systems (aA, hA) and (aB , hB). It

is then natural to assume that parameters ρaB
, ρhB

,

σaB
. . . of B are functions of the chemical concentrations

of A. The couplings which proved to be the simplest and

the most efficient in simulations consist to modify either

the cross-reaction parameter ρaB
or the basic (activator-

independent) production σaB
of the second activator aB .

The two following thumb rules are helpful.

• If the second system has to respond dynamically

to any change of the first one, one will preferen-

tially alter the value of ρaB
. This ensures that any

change in A is repercuted on B [in terms of the

figure ?? in Appendix 7, one would choose the cou-

pling function ρaB
in such a way that the system

B shifts under the pressure of A from the region

H of the stability diagram (where B has no pattern

formation ability) into the domain I (where inhomo-

geneities can be amplified) ].

• If A has just to trigger B, the coupling between the

two systems is achieved by the basic production

σaB
. The structure developed by B is then stable

even if, later, A vanishes.

Other kinds of interactions are conceivable as well. For

instance, cells could change the communication with

their neighbors by opening or closing gap junctions ; this

can be modeled by altering the diffusion constants un-

der the influence of a second patterning system. In the

four examples developed below we restrict, however, the

interaction between systems to the two rules mentioned

above. The two first systems are relatively simple models

of animal coat patterns and of reticulated structures. The

last two examples are more complex and describe inter-

action that leads to the precise arrangement of differently

determined cells in a strictly periodic way. The eye forma-

tion in Drosophila and organ genesis in a growing plant

will be used as biological counterparts.

5.1. Animal coat patterns

The variability and complexity of animal coat patterns has

attracted many biologists. Models can be found for the

coloration of butterfly wings (Nijhout, 1978, 1980 ; Mur-

ray, 1981), zebra stripes (Bard, 1981 ; Murray, 1981), pat-

terns on snake skin (Cocho et al., 1987 ; Murray and My-

erscough, 1991) or on sea shells (Meinhardt and Klinger,

1987 ; Ermentrout et al., 1989). We present hereafter

a simple reaction-diffusion mechanism which allows a

large variability of patterns, ranging from the spots of the

cheetah to the reticulated coat of giraffes.

� � � � � �

Figure 8: Analogy of the giraffe pattern with Dirichlet do-

mains. (a) Side of a giraffe (Giraffa camelopardalis reticu-

lata). The pattern is formed by convex polygons separated

by thin lines (photograph kindly provided by O. Berger). The

formal resemblance with Dirichlet domains is suggestive. (b)

Construction and definition of Dirichlet domains. Given a set

{P1, . . . , Pn} of points belonging to a surface S , one draws

the perpendicular bisectors between neighboring points. The

convex envelop surrounding a center Pi delimits its associ-

ated Dirichlet domain Di. By construction, Di contains all

the points of the surface S nearer to Pi than to any other Pj

(j 6= i).

In mammals, hair pigmentation is due to melanocytes

which are supposed to be uniformly distributed in the

derma. Whether they produce melanin (which colors

hairs) or not is believed to depend on the presence of

some unknown chemicals whose pattern is laid down

during the early embryogenesis (Bard, 1977).

Let us start with a short description of the giraffe

coat. Figure 8 show the similarity between the polygo-

nal shaped spots that cover the animal and Dirichlet do-

mains. This suggests that a reaction-diffusion system is

at work in the giraffe’s coat that is able to produce Dirich-

let polygons. Consider a surface S and points P1, . . ., Pn

randomly scattered on it. Suppose that each Pi initiates

at a given time a chemical wave which spreads uniformly

to all directions. The system should be so that, if two

waves encounter, they annihilate each other. The lines

along which annihilation occurs defines the envelops of

the Dirichlet domains around the initial centers Pi. The

following reaction-diffusion system fulfils these require-

ments :

∂a

∂t
= Da△a+ ρa

[

a2s

1 + κaa2
− a

]

(8a)

∂s

∂t
= Ds△s+

σs

1 + κsy
− ρsa

2s

1 + κaa2
− µss (8b)

∂y

∂t
= ρy

y2

1 + κyy2
− µyy + σya (8c)

One recognizes a modified activator-substrate model

(a, s) combined with a switching system y. Melanocytes

activity is given by y : y = 1 corresponds to cells produc-

ing melanin, while melanocytes with y = 0 don’t. The
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state y of each pigment cell is determined by its exposi-

tion to the morphogen a. To insure that a doesn’t produce

a stationary pattern but spreads like a wave, the diffusion

constant of s should not be too large when compared to

the one of a.

The system works in the following way : initially y = 0,

a = 0 and s = so everywhere, except on some randomly

scattered points5 Pi where a = ao ; this high value of

a switches y from 0 to 1 at Pi due to the source term

σya in (8c). On the other hand, due to the depletion of s
and to its low diffusion constant Ds, high a regions shift

toward zones where the substrate is abundant : a-waves

propagate over the surface. When two such waves get

close, they annihilate each other due to the depletion of

substrate s. Owing to its switching nature, y needs the

activator a just for being triggered. Once a has vanished,

the state of y remains stable. Note that y has a negative

feedback on the production of s in (8b) : in regions where

y has switched on, it is no longer necessary to waste

energy to produce the substrate s any more.

Figure 9a presents the result of a simulation. The

similarity with the coat of a giraffe is obvious. Straight

lines with nearly constant thickness delineate irregular

polygons ; earlier models proposed for giraffe patterns

(Murray, 1981, 1988) produce rather spots comparable

to Fig. 9c.

According to the parameter values, the model (8) pro-

duces a variety of patterns related to Dirichlet domains.

For instance, if the removal rate of s is low enough,

regions where a doesn’t vanish subsist ; the system

reaches then a stable configuration where the activator

a remains activated along circular rings or “half-moons”

centered on the initiating points Pi (Fig. 9b). Conversely,

if the consumption of s is too high, the a-waves cannot

spread very far and die before they meet : randomly scat-

tered spots are formed (Fig. 9c). In that situation, the

resulting pattern has much similarities with the one de-

scribed by Murray (1981, 1988).

The coats of mammals have been taken as illustra-

tions. Fishes, snakes and insects show similar patterns.

It is appealing to imagine that they may all be based on a

common mechanism involving Dirichlet domains, as dis-

cussed above.

5.2. Reticulated structures

Polygonal patterns are also common in other biological

systems. The fine veins of the wing of a dragonfly or the

projection areas of mice sensory whiskers on the brain

are examples (Fig. 10).

A crucial property of the system discussed in the pre-

ceding paragraph is that the pattern, once formed, is

fixed. For instance, no new lines can be inserted dur-

5In principle the centers Pi could be laid down by a primary pattern for-

mation mechanism (aP , hP ) like the one used to produce figure 1a . These

points would then activate the production of a by means of an additional term

σaaP in Eq. (8a). We skip this step.

Figure 9: Simulation with the system (8). The dot density is

proportional to the concentration of y. According to the pa-

rameter set, the resulting pattern will have similarities with the

one observed on the coat of giraffes (Giraffa camelopardalis

reticulata) (a), of leopards (Panthera pardus) (b) or of chee-

tahs (Acinonyx jubatus) (c).

ing growth to subdivide a large polygon into two smaller

ones. This is appropriate for the giraffe coating as in-

dicated by the large size of the polygons. For other sys-

tems such as the wing of the dragonfly mentioned above,

it is to be expected that the final pattern is not produced in

a single step at a particular moment of the development ;

it is rather likely that, at an early stage and in a small

field, a simple pattern is laid down. In analogy to the

Drosophila wing venation (Diaz-Benjumea et al., 1989 ;

Garcia-Bellido et al., 1992), we assume that the posi-

tions of the main veins of the dragonfly wing are genet-

ically determined ; the finer ones are presumably added

later in order to strengthen the growing structure and so

as to keep approximately constant the size of a domain

enclosed by veins.

The following model has this property. It relies upon

hierarchical interactions of two systems. A first (a, s)
activator-substrate system produces a pattern of activa-
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tor mounds (see Fig. 2a) :

∂a

∂t
= Da △a+ ρa

(

sa2

1 + κab2
− a

)

+ σa (9a)

∂s

∂t
= Ds △s− ρs

(

sa2

1 + κab2

)

+ σs . (9b)

This primary pattern triggers an activator-inhibitor system

(b, h) producing boundaries around the mounds of a.

∂b

∂t
= Db △b +

ρb

[

s2

1 + κbab2

(

b2

h
+ σb

)

− b

]

(10a)

∂h

∂t
= Dh △h+ ρh

(

b2 − h
)

. (10b)

The a-concentration modifies the saturation value of the

activator b in Eq. (10a). A high value of a makes this satu-

ration so strong that the (b, h) system is set off. In regions

of low a, it’s the other way round : the saturation becomes

weak enough so that the (b, h) system triggers the forma-

tion of a stripe-like boundary. This effect is enhanced by

the substrate s, through the term ρbs
2 in (10a). In other

words, the stripes will appear along sites with high con-

centration of s, in regions that are most distant from the

maxima of a. Due to the action of h, the stripes become

sharp. The weak feedback of b onto a in equation (9a) is

not absolutely necessary but speeds up the development

of the structure. The model has size regulation proper-

ties. New boundaries are inserted whenever a domain

becomes too large. This has the following reason. With

growth, the distance between the a maxima increases. If

a certain distance is surpassed, a maximum splits into

two and displacement towards higher substrate concen-

tration follows. Between these two maxima, a new region

with high substrate concentration appears that, in turn,

initiates a new b line. Such a process can be observed in

figure 10c.

As a possible application of the mechanism (9)–(10)

let us shortly mention the barrel formation in mouse brain

(Steindler et al., 1989 ; Jacobson, 1991). The facial vib-

rissae of the mouse project on the primary somatosen-

sory cortex (Fig. 10b). The mapping on the brain mirrors

the arrangement of whiskers on the mouse face : two ad-

jacent vibrissae project on neighboring sites in the cor-

tex ; the domain connected to a given whiskers is called

barrel. The shape of the barrels can be visualized by

a labelling with tenascin specific antibodies. During the

first postnatal days, the barrel pattern has dynamic prop-

erties : removal of vibrissae disrupts the formation of the

associated barrels. The model gives a good description

of such dynamic effects if one admits that the autocat-

alytic production rate of activator a is linked to neural ex-

citation by the whiskers. Destruction of the latter leads to

a reduction of neural excitation, to a decrease of a and

so, to the resorption of the associated barrel whose area

is then invaded by its neighbors.

Figure 10: Polygonal structures. (a) The left posterior wing of

a dragonfly (Libellula depressa) is strengthened by a fine and

elegant network of veins (picture after Séguy, 1973). The posi-

tions of the larger veins are presumably genetically coded. Ac-

cording to the model, finer veins are produced during the wing

development ; during growth, their insertion tends to keep con-

stant the size of the enclosed domains. (b) Experimentally ob-

served barrel pattern in the mouse somatosensory cortex. The

dotted regions correspond to domains labelled by an antibody

against J1/tenascin (after Steindler et al., 1989).(c) Simulation

based on the system (9)–(10) in a two dimensional domain.

The density of dots is proportional to the concentration of b.
One can see the completion of a new boundary between two

domains (arrow).

5.3. The facetted eye of Drosophila flies

As an example of a complex but very regular periodic

structure, we shall now discuss the formation of the

facetted eye of the fruit fly Drosophila melanogaster. The

eye is derived from the eye-antennal imaginal disk.6 It

consists of a very regular array of about 700 ommatidia

(Fig. 11a). Each ommatidium is formed by the precise ar-

rangement of 20 cells among which 8 are photoreceptor

neurons named R1, . . ., R8. These clusters of 20 cells

have well defined polarity and orientation in respect to

the main body axis.

The molecular basis of eye formation has been ex-

tensively studied over the last years. For comprehen-

sive reviews, see for instance Tomlinson (1988) or Basler

and Hafen (1991). The model presented hereafter repro-

duces essential aspects of this pattern formation.

The following steps play a crucial role (figure 11b).

a) A wave moves from posterior to anterior across the

eye imaginal disk. It causes a slight deformation in

the tissue, the morphogenetic furrow.

b) Within the furrow, a first morphogenetic event takes

6In Drosophila larvae, imaginal disks are nests of epithelial tissue which

differentiate at metamorphosis. Legs, wings, antennae, eyes derive from imag-

inal disks (Alberts et al., 1989).
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Figure 11: Overall structure of the Drosophila eye and its

genesis. (a) Scanning electron micrograph of the eye of a

Drosophila fly showing the regular array of ommatidia (photo-

graph kindly provided by J. Berger). (b) Pattern formation of

the Drosophila eye. A morphogenetic furrow F sweeps ante-

riorly across the eye-antennal imaginal disk (the arrows show

the direction of propagation). Behind the furrow, ommatidial

assembly begins with the differentiation of regularly spaced

R8 photoreceptors, each one associated with one or two mys-

tery cells M . Later R2 and R5 neurons are recruited, followed

by the formation of R3, R4, R1, R6 and, at last, R7 receptors ;

M cells are meanwhile eliminated by selective cell death. Af-

ter formation of all photoreceptors, 12 other cells are added in

every ommatidium (cone, pigment and bristle cells). Dots in-

dicate differentiating cells while hatches show differently dif-

ferentiated cells.

place. It leads to the formation of regularly spaced

clusters of 6 or 7 cells including one photoreceptor

neuron R8 and one or two mystery cells M .

c) In the cluster around R8, three pairs of photorecep-

tors differentiate sequentially, first R2 and R5, then

R3 and R4 followed by R1 and R6 ; at last, R7 is

formed. During this stage, the mystery cells M are

eliminated by selective cell death.

d) Finally the cluster of 8 photoreceptors recruits other

cells in order to form the cone, pigment and bristle

cells.

The eight photoreceptors R1–R8 belong at least to three

types, namely R1–R6, R7 and R8. Receptors R7 and

R8 have clearly distinct functions as appears from their

morphology (Tomlinson, 1988). Whether R1–R6 are dif-

ferent is unclear (Heberlein et al., 1991). At least, the

differentiation pathways shows that there are three cou-

ples of similar receptors, R1/6, R2/5 and R3/4. If the six

neurons R1–R6 are functionally identical, a plausible ex-

planation for their sequential differentiation is to achieve a

precise regulation of the number of photoreceptors con-

tained in each ommatidia (differentiating them in one step

could lead to an irreproducible receptor number).

The fate of a cell is only determined by the interac-

tions with its neighbors, and not by its lineage (Ready

et al., 1976). The system is therefore very convenient

to study the interactions required to achieve a complex

periodic structure. Moreover, the pattern formation takes

place in a monolayered epithelium ; it is a strictly two di-

mensional process.

We propose here a model which accounts for the first

morphogenetic steps up to the formation of the R1 and

R6 receptors. The cell fate is assumed to be hierarchi-

cally determined in a cascade :

furrow −→ R8 cells −→ M cells −→ R2/5 cells −→ · · ·

In the following, a model for each individual step will be

described. The hierarchical interactions postulated are

summarized in Fig. 12a.

5.3.1. The morphogenetic furrow

The differentiation of cells behind a spreading wave indi-

cates that, in the eye, the precise arrangement of struc-

tures is achieved by the scheme of simulated growth

mentioned in section 4. In this way, each subsequently

formed structure achieves a precise spacing with respect

to the structures already laid down.

The morphogenetic furrow is modeled as a wave-

like event which moves across the system. This is in

agreement with the experiments of White (1961) where

grafting of epithelium tissue in the eye imaginal disk of

mosquitoes allowed him to observe the furrow spreading

through holes of the grafted tissue or moving around it

like a wave.

The following equations have been used to simulate

the wave that generates the furrow :

∂f

∂t
= Df△f + ρf

sf2

1 + κff2
− µff (11a)

∂s

∂t
= −ρssf

2 . (11b)

Suppose that initially s = 1 and f = 0 everywhere, except

in one cell where f = fo. Due to diffusion, this cell ac-

tivates the production of f in its vicinity [the term Df△f
in Eq. (11a) plays the role of σext in (5) ]. But, since the

substrate s is depleted, f cannot remain in its high state

and goes back to zero. This produces a wave front of f
which spreads once over the eye disk.

The furrow model (11) is certainly a simplification. It

does not match all experimental data. A shift of fly em-

bryos to non-permissive temperatures causes a stop in

the motion of the furrow. When shifted back to normal

temperatures, the furrow continues as if nothing hap-

pened. The model is not well suited to reproduce this ex-

periment : it would require a simultaneous decrease of ρs
and of Df . The change of both parameters at the same

time by the temperature shift is unlikely and indicates a

more complex way of wave formation. For our purpose,
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Figure 12: Simulation of the eye development. (a) Scheme of

the hierarchical interactions used in the model. The furrow F
induces regularly spaced R8 neurons. These are needed to de-

velop M cells. Later, R8 and M cells cooperate to trigger the

differentiation of R2 and R5 neurons. At last, R8 and R2/5
neurons induce the formation of R3/4 and R1/6 receptors.

Except of the R8 spacing mechanism that involves long rang-

ing inhibition, all interactions are assumed to be mediated by

cell-cell contacts. (b) The structure resulting from the model.

The morphogenetic furrow F moves across the eye disk (the

arrows show the direction of spreading). It initiates the differ-

entiation of neural cells : a regular array of R8 photoreceptors

develops behind it. Mystery cells M differentiates immedi-

ately anteriorly to R8 receptors. Later R2 and R5 are formed.

The differentiation of R3/4 and R1/6 follows (these cells have

not been plotted for reasons of clarity).

however, the form (11) is sufficient since we only need it

as a signal for beginning the neuronal differentiation.

5.3.2. The R8 photoreceptors

The morphogenetic wave triggers the differentiation of

neuronal cells R8. Experimental data point out that lat-

eral inhibition is essential for proper R8 spacing (Baker

et al., 1990 ; Harris, 1991). So R8 cells are best modeled

by an activator-inhibitor couple (aR8, hR8) :

∂aR8

∂t
= DaR8

△aR8 + ρaR8

(

a2R8

hR8

− aR8

)

+σaR8
f (12a)

∂hR8

∂t
= DhR8

△hR8 + ρhR8

(

a2R8 − hR8

)

. (12b)

Cells begin to differentiate after they have been exposed

to the morphogenetic wave. In the model, activation de-

pends on the basic production term σaR8
f in Eq. (12a).

Due to the lateral inhibition via hR8 only some cells be-

come fully activated and differentiate into R8 photorecep-

tors (Fig. 12b). These cells have a precise spacing with

respect to the previously activated R8 cells.

The diffusion range of the inhibitor hR8 is supposed to

be of the order of several cell diameters. In the model this

is the only substance with such a long diffusion range.

All subsequently determined cells (M , R2, R5, etc.) dif-

ferentiate under the influence of local interactions re-

layed by direct contact with the R8 cells (Banerjee and

Zipursky, 1990).

5.3.3. Mystery cells M

The mystery cells M got their names because biologists

are, until now, unable to assign to them a role during

the eye formation ; some hours after their differentiation,

mystery cells die. The model suggests that M cells are

used in conjunction with R8 neurons to induce a local

polarity : like an arrow, the couple R8–M points to the

furrow. This local remembrance is thought to be crucial

for the correct positioning of subsequent photoreceptors,

especially of R2/5. According to the model, the M cell

acts, in conjunction with R8, as an initial organizer for

ommatidial development by determining the primary ori-

entation of the cell cluster and by restricting the number

of cells which can choose the R2/5 fate. Perturbations

of the furrow motion, as in White’s (1961) experiment,

should lead to observable alterations of the initial cluster

orientation. This could be a test for the model.

The following interaction allows the activation of the

M cell adjacent to the R8 cell.

∂aM
∂t

= DaM
△aM + ρaM

cM (aR8)
a2M
hM

−µaM
aM + σaM

f (13a)

∂hM

∂t
= DhM

△hM

+ρhM

(

a2M − hM

)

+ σhM
. (13b)

The function cM (aR8) simulates the transmission of a sig-

nal by cell-cell contact between the putative M cell and

the R8 neuron : this signal could, for instance, be relayed

by proteins laying on the cellular membrane of R8 neu-

rons. In the simulation, we chose

cM (aR8) =
aR8

1 + κMa2R8

.

Due to this function, aR8 is required for the initiation of

the mystery cell ; but in reason of a disfavoring effect at

very high aR8 concentrations, it is not the R8 cell itself

but a neighboring cell in which aM activation takes place.

The term σaM
f which couples the production of aM with

the furrow selects which of the R8 neighbors is chosen

to become a mystery cell. The trail of the f -wave makes

sure that M cells differentiate anteriorly to R8 neurons,

so that the couple R8–M is like an arrow pointing to the

furrow.

In the simulations, the precise positioning of M ante-

riorly to R8 is delicate ; fluctuations disrupt easily this or-

der. It could be that a similar sensitivity exists in nature.

Experimentally it has been observed that cell movements

play an important role in local rearrangement during the

eye genesis (Tomlinson, 1988). In this way, small errors

13



in the precise positioning of the M cells could be cor-

rected.

5.3.4. Recruitment of R2/5, R3/4 and R1/6 neurons

It is generally accepted that the subsequent differentia-

tion of the R2/5 and later of the R3/4 and R1/6 pho-

toreceptors is a consequence of cell-cell contacts. In the

model, interactions with the R8 and M cells directs an

undifferentiated cell to choose the R2/5 fate. Conversely,

newly formed R2/5 neurons inhibit their neighbors to fol-

low the same pathway. Later, other cells differentiate into

R3/4 and R1/6 receptors, due to contact with R8 and

R2/5 neurons. Again, R3/4 and R1/6 receptors prevent

other cells in their vicinity from choosing the same fate.

These considerations suggest that equations govern-

ing the R2/5, R3/4 and R1/6 neuronal pathway are of

the very same nature as those for R8 and M cells. For

instance, the R2/5 receptors are described by

∂aR2

∂t
= DaR2

△aR2 + ρaR2
cR2(aR8, aM )

a2R2

hR2

−µaR2
aR2 + σaR2

(14a)

∂hR2

∂t
= DhR2

△hR2

+ρhR2

(

a2R2 − hR2

)

+ σhR2
. (14b)

Cells with a high aR2 concentration become R2/5 neu-

rons (Fig. 12c). The function cR2 relays a signal from R8
and M cells to the presumptive R2/5 photoreceptors :

cR2(aR8, aM ) =
aR8

1 + κR2a2R8

· aM
1 + νR2a2M

.

Note that cR2 depends on the product of two signals.

Both interactions with R8 and with M are simultaneously

required to induce the differentiation of R2/5 receptors.

Further differentiation of R1/6 and R3/4 photorecep-

tors uses the same scheme except that cR2(aR8, aM ) is

replaced by a function cR3(aR8, aR2) which mimics sur-

face contact with R8 and R2/5 neurons.

5.3.5. Abnormal eye patterns

Many mutations are known which alter the structure of

the compound eye. Four of them, rap (Karpilov et al.,

1989), Ellipse (Baker and Rubin, 1989), Notch (Har-

ris, 1991 ; Markopoulou and Artavanis-Tsakonas, 1991)

and scabrous (Baker et al., 1989) affect the positioning

and differentiation of R8 cells. Based on the pheno-

types of Ellipse and scabrous flies, we suggest that El-

lipse is linked to the R8-activator aR8, while the diffusible

molecule encoded by scabrous may be the correspond-

ing inhibitor hR8.

In scabrous mutants, the R8-inhibition is reduced.

This is modeled by increasing the value of ρhR8
in

Eq. (12b). For a given concentration of aR8, more hR8

is produced and this, in turn, decreases the amount of

both aR8 and hR8 ; as a consequence, R8 cells are less

spaced, irregularly distributed and sometimes two R8
neurons are fused, as observed in scabrous mutants.

Notch mutants exhibit the same kind of reduced R8
spacing. Notch encodes for a transmembrane protein

that is believed to be a receptor for several extracellu-

lar signals. Among them is the signal relayed by the

scabrous protein. In this sense, the parameter ρaR8
has

to be a function of Notch. The model does not explicitly

take this Notch-dependance into account. But a mutation

making the Notch protein less effective for the reception

of the scabrous inhibition signal could decrease the value

of ρaR8
in Eq. (12a). Less activator is then produced ; this

decreases also the hR8 concentration and R8 are formed

too close to each other, as observed in Notch mutant.

The opposite result is achieved by increasing ρaR8
:

this enhances the production of aR8, leading this time

to an abnormally wide R8 spacing. It is interesting to

note that the Ellipse mutation is believed to overactivate

the gene responsible for R8 differentiation, in accordance

with the considerations above.

It should be noted that the regulatory behaviors men-

tioned above are nontrivial consequence of the model :

if more inhibitor molecules are produced per activator

molecules, one achieves a decrease of the inhibitor con-

centration. This results from the nonlinear cross-reaction

between these two chemicals. This kind of regulatory be-

havior is not unique to eye development. Mutants have

been found in hydra, where a decrease of the head in-

hibitor production rate induces surprisingly an increase

of the head-bud spacing (Takano and Sugiyama, 1983).

Another mutation that disrupts the eye assembly is

rough (Heberlein et al., 1991). In rough mutants, devel-

opment of ommatidia occurs normally up to R2/5. But

R3/4 neurons fail their differentiation. It has been sug-

gested (Tomlinson et al., 1988 ; Basler et al., 1990) that

rough controls in R2/5 photoreceptors the signal that in-

duces the R3/4 cell fate. In the model we would identify

the activity of rough with the signal cR3(aR8, aR2). Exper-

imentally it has been observed that rough expression is

high, first, in the morphogenetic furrow and, later, in R2/5
and R3/4 cells (Kimmel et al., 1990). This corresponds

to the expectation of the model.

The model is already quite complex but is certainly

an oversimplification. For instance, the exchange of in-

formation between the cells is much more sophisticated

than that just a substance leaking through some holes

into neighboring cells. A plausible mechanism would

rather involve signalling molecules that are inserted into

the membrane of one cell type and receptor molecules

exposed on other cells. “Relay molecules” will then trans-

mit the signal from the cell surface to the nucleus. There,

transcriptional regulation takes place that is ultimately re-

sponsible for the choice of the pathway. Nevertheless,

this signal transduction is presumably a more or less lin-

ear chain of events, so that the approximation by a single

substance exchanged by diffusion is reasonable.

Although the model seems complex, its building fol-
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lows a straightforward way, consisting of the successive

addition of elements whose properties are well under-

stood. These “building blocks” include wave formation,

production of regular structures by simulated growth and

fate induction in a neighboring cell. Though each single

element has well defined characteristics, one learns from

these models where the critical steps are. For instance,

it turned out that the generation of polarity in the periodic

array of receptors is a delicate step which is facilitated by

the addition of a mystery cell.

5.4. Positioning mechanisms during plant growth

As a last example of a complex structure, we describe a

model that allows the precise positioning of organs dur-

ing the development of plants.

Plant growth mainly occurs by cell division in special-

ized tissues called meristems. The shoot apex meristem

is a cone of undifferentiated cells located at the tip of

stems ; its cells undergo frequent mitosis. Somewhat be-

hind the tip, the primordia are formed (Fig. 13). These

will develop into leaves or flower organs. The determina-

tion of the positions at which primordia appear is believed

to involve some inhibition mechanism (Schoute, 1913 ;

Thornley, 1975 ; Marzec and Kappraff, 1983 ; Koch et al.,

1994). Several models have been proposed to explain

the precise positioning of primordia. They are based ei-

ther on the exchange of diffusible molecules (Meinhardt,

1982 ; Yotsumoto, 1993 ; Bernasconi, 1994) or on stress

and pressure in the tissue (Adler, 1974, 1977a, 1977b ;

Green and Poethig, 1982). A pattern very similar to phyl-

lotaxis can be generated by physical ingredients only.

Under suitable conditions, swimming and each other re-

pelling droplets of a magnetic fluid also produce helical

arrangement (Douady and Couder, 1992).

Although a single activator-inhibitor system is able to

account for the basic modes of leaf arrangement (distic-

hous, decussate, helical) (Mitchison, 1977 ; Richter and

Schranner, 1978 ; Meinhardt, 1982), it is easy to see that

more complicated systems are involved. We shall dis-

cuss the necessary extensions in several steps.

Leaf initiation can take place only in a small zone at

some distance from the tip of a growing shoot. Further,

a signal must be available which specifies where apical

meristem is located. This suggests that at least two pat-

tern forming systems are involved. The first one deter-

mines the position of the meristem. The second system

generates leaves. The latter is controlled by the first one :

on one hand, the meristem system represses leave ini-

tiation at the tip but, on the other hand, it generates the

precondition for this process in its vicinity (Fig. 13). This

is analogous to the Drosophila eye development where a

mystery cell M can only emerge in the neighborhood of

a photoreceptor R8. Therefore, leaf initiation is restricted

to a narrow zone at the border of the apical meristem. A

similar process takes place in the freshwater polyp Hy-

dra : initiation of tentacles takes place only in a whorl

around the mouth opening (Meinhardt, 1993).

However, even this more complex model is insuffi-

cient. After leaf initiation, axillary meristems are formed

adjacent to the leaf primordia. They are always located

on the side pointing towards the tip of the shoot. These

meristematic regions don’t lead immediately to cell pro-

liferation but they can give rise to a new shoot after the

original shoot is removed. Moreover, leaves obtain very

soon a polarity on their own in that their upper and lower

surface become different from each other [this process is

probably induced by the neighborhood of the leaf (Sus-

sex, 1955) ]. The situation is therefore similar to the one

described above for eye development since several dif-

ferent structures are generated in a precise periodic ar-

rangement and with a predictable orientation.

A key for the understanding of this complex pattern

is its modular character (Lyndon, 1990). The elemen-

tary unit (the module) produced by a growing shoot con-

sists of a node and internode segment associated with

a leaf primordium and an axillary bud (Fig. 13). Leaves

are always located at the top of a module, in the nodal

region ; axillary buds differentiate close to leaves and im-

mediately above them. Stem elongation takes place in

the internodal region (Zobel, 1989a, 1989b).

In the following, we shall propose a model based on

this modular structure that accounts for the precise ax-

ial and azimutal positioning of leaf primordia and axillary

buds on the stem. The model also includes a control of

meristematic activity after tip removal. Since most of the

primary morphogenetic events affect only one or two sur-

face cell layer(s), we shall idealize the plant as a hollow

cylinder.

5.4.1. The apical shoot meristem

The apical meristem located at the tip of stems represses

the activity of the buds in its vicinity. The apical domi-

nance decreases as the distance between the apex and

a given bud increases with growth. This regulation is

known to be mediated by phytohormones like auxins

(Snow, 1940 ; Kühn, 1965).

We take into account two properties of the meris-

tem. The first one, modeled by a switch system aM ,

tells whether a cell belongs to the apical meristem type

(aM = 1) or not (aM = 0). A second switching system

aA controls whether the meristem is active, i.e., whether

cells are undergoing frequent mitosis (aA = 1) or stay in

a latent state (aA = 0). A further substance hA mediates

the repression of axillary bud activity. It is produced in ac-

tive shoot meristems and could correspond to the phyto-

hormone mentioned above. It must be of very long range

in order to suppress the meristematic activity in distant

axillary buds. This rapid spread must not result from

diffusion. Indeed, auxin is actively transported from the

shoot towards the root (Snow, 1940 ; Kühn, 1965). The

(auxin) concentration hA has to sink below a given level

before an axillary meristem can become active causing
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Figure 13: The modular construction of a plant and its simulation. (a) Cross-section through the growing tip of a shoot. The apical

shoot meristem A is a tissue in which rapid cell division occurs. At its periphery the primordia P which will grow into leaves L
appear. Axillary buds B differentiate somewhat later, in proximity of a leaf. The shoot can be regarded as a periodic repetition

of an “elementary module” M formed by a node N and internode I region ; every nodal-internodal segment bears a leaf L and an

axillary bud B. Each module M acquires an intrinsic polarity thanks to the iteration of at least three subunits, m1, m2 and m3.

(b) Simulation of plant growth. The stem of the plant is idealized as a cylinder which is represented here unwrapped. The apical

meristem A contributes to the stem elongation by addition on new cells. These differentiate so as to produce the repetitive sequence

. . . m1 m2 m3 m1 m2 m3 . . . rendered here by three grey levels in the background. The m1 −m2 border acts as a positional signal

for the differentiation of primordia P , identified with regions of high ap concentration. The overlap of the primordium on the three

compartments (m1, m2 and m3) can be used to trigger the development of an axillary bud B (aM = 1) on the m1 segment and of a

leaf having its upper and lower face on the m2 and m3 segments respectively. Note that the primordia are placed along spirals with

a 2/3 phyllotaxis (the azimutal distance between two successive primordia is approximately equal to 2/3th of the stem perimeter).

Once an axillary bud is sufficiently distant from the apical meristem, it becomes active (aA = 1, rendered by black squares).

16



cell proliferation and a lateral shoot. This can occur ei-

ther after substantial growth or after removal of an exist-

ing dominant tip.

The apical shoot meristem is assumed to establish a

positional information system in its vicinity (Holder, 1979)

to account for the observation that leaf primordia always

appear at a fixed distance of the shoot apex. Such a

positional information is established if the active cells of

the meristem produce a diffusible substance bA. Its local

concentration provides a measure for the distance from

the meristem.

The previous considerations suggest the following

system to describe the shoot apex meristem.

a) Meristematic identity aM :

∂aM
∂t

= ρM

[

a2M
1 + κMa2M

− aM

]

+ σMm1ap. (15)

In the young plant, apical meristem is only found in

the shoot apex, so that initially aM = 0 everywhere

except at the top of the stem, where aM = 1. Dur-

ing apical growth, meristem is laid down in axillary

buds. The term proportional to σM will be explained

later ; it corresponds to an external signal inducing

the formation of an axillary bud.

b) Activity aA of the meristem:

∂aA
∂t

= ρA

[

a2A
1 + κAa2A

− aA

]

+σA

aM
1 + νAhA

. (16)

The meristem activity is initiated by the signal pro-

portional to σA. Due to the repression by hA (see

here after), a bud has to reach a given distance to

the apex before it can become active.

c) Long ranging inhibitor hA of meristematic activity:

∂hA

∂t
= DhA

△hA + ρhA
( aA − hA ) (17)

It is used to repress the bud activity until a given

distance is achieved between the bud and the

shoot apex [see the term proportional to σA in

Eq. (16) ].

d) Positional information system bA :

∂bA
∂t

= DbA△bA + ρbAaA − µbAbA. (18)

Due to bA, new cells begin their differentiation only

at a given distance of the shoot apex, on the meris-

tem periphery [see Eq. 19) and Eq. (20) ].

5.4.2. Building of the nodal-internodal module

Cells newly produced by mitosis in the apex “recede”

from the tip of the stem. As soon as they are far enough

from the meristem, they undergo differentiation. In the

model, they get the information on their distance to the

apical meristem from the local concentration of the sub-

stance bA. To account for the nodal character of leaf ini-

tiation we propose that there is a serial repetition of at

least three cell states, say m1, m2 and m3 ; the stem of a

plant corresponds then to a succession of cell states like

. . . m1m2m3 /m1m2m3 /m1 . . . The borders between m1

and m2, m2 and m3, m3 and m1, will be used in the fur-

ther elaboration of the model to initiate either polar leaves

or axillary bud meristems. The ordered succession of the

three states m1, m2 and m3 defines a module ; the jux-

taposition of m1 and m3 corresponds to the boundary of

such a module.

The following set of equations produces, under suit-

able growth conditions, such a repetitive sequence

(Fig. 13b).

∂mi

∂t
= ρmi

[

m2
i

hi

(

m2
i−1

+ κmi
m2

i +m2
i+1

) −mi

]

+σmi
(19a)

∂hi

∂t
= Dhi

△hi + ρhi

(

m2
i −mi+1hi

)

+ σhi
bA (19b)

where i = 1, 2, 3 and with the cyclic identifications m0 ≡
m3, m4 ≡ m1. Equations for (mi, hi) are of the activator-

inhibitor type. By construction, mi and mi±1 are locally

exclusive states due to the terms m2
i±1 in the denomi-

nator of (19a) ; mi+1 favors the appearance of mi in its

vicinity since it increases the removal rate of inhibitor hi.

The set of equations given above is, of course, only

an example of a system producing a repetitive sequence.

Important is that cell states locally exclude each other but

activate each other on long range (Meinhardt and Gierer,

1980). Such mechanisms have the tendency to form nar-

row stripes since in this arrangement cells of a particular

type are close to cells of the other types that are required

for their stabilization.

It is quite amazing to observe the similarity between

the above proposed model for modular growth of plants

and a model for the segmentation of insects (Meinhardt,

1986, 1991). In both cases, the iteration of at least three

cell states generates the periodic polar structure and the

borders between the elements are later used for accu-

rate positioning of organs (leaves and axillary buds in

plants, imaginal disks and segment borders in insects).

The model for insect segmentation has found meanwhile

much support from observation on the molecular level.

The system (19) also shares resemblance with the hy-

percycle concept proposed for prebiotic evolution (Eigen,

1971 ; Eigen and Schuster, 1979) : the “species” mi

are autocatalytic and compete with each other. But no
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species can outcompete the others since it depends on

them because of the help of mi+1 that enhances the pro-

duction rate of mi.

5.4.3. Leaf primordia and axillary buds

Once a repetitive pattern . . . m1 m2 m3 m1 . . . has been

laid down it provides a convenient framework to initiate

leaves and axillary buds along the axis. Two possibilities

exist :

a) either a given structure can only appear in cells with

a particular determination, for instance in m1, or

b) the boundary between two elements, say m1 and

m2, is required to initiate the development of that

structure.

These two ways lead to quite different predictions : sup-

pose that m2 is lost due to a mutation ; in the first case,

this will not affect the formation of a leaf while, in the sec-

ond situation, no leaves appears, due to the loss of the

m1−m2 border. The second solution insures in principle,

a finer positioning since a border is always sharp. But

most important, the border has a polarity. If, for instance,

the signal for primordia formation can be generated only

on a m1 − m2 border, one can use the overlap of the

primordium on m1 to produce the axillary bud, while the

overlap on m2 triggers the formation of a leaf. The rela-

tive position of a bud and a leaf, the one in front of the

other, is necessarily correct. Furthermore, if the signal

inducing the primordium is sufficiently broad, it can also

extend in the m3 region. Let us suppose that m2 cells

can only produce the upper side and the m3 cells only the

lower side of a leaf : the polarity of the leaf is then fixed.

If further proliferation is restricted to those cells that are

close to the m2 − m3 border, it is clear that the leaf will

become flat although the signal inducing the primordium

formation has a conical shape.

To account for the features of lateral inhibition in leaf

initiation we use an activator-inhibitor system (ap, hp)
coupled to the modular pattern in such a way that the

activator peaks are initiated on m1 −m2 borders :

∂ap
∂t

= Dap
△ap + ρap

h1m2

a2p
hp

− µap
ap + σap

(20a)

∂hp

∂t
= Dhp

△hp + ρhp
a2p −

(

ρhp
+ µhp

m3

)

hp + σhp
bA . (20b)

Due to the term ρap
h1m2 in (20a), leaves appear near to

the m1 − m2 borders (Fig. 13b). Moreover, the removal

rate of hp is increased in m3. This accounts for the ob-

servation that the inhibition of primordia is much more

effective along the shoot apex margin than axially along

the stem axis (the inhibitory effect is of the order of mag-

nitude of the apex diameter d but the axial separation of

primordia is much lower than d).

At last, each leaf induces the formation of an axillary

bud in its immediate upper neighborhood, in the m3 re-

gion (Fig. 13b). Apical meristem is laid down in buds un-

der the influence of the source term σMm1hp appearing

in Eq. (15) : this term is only high in m1 subsegments, in

the close vicinity of a leaf primordium.

The newly created apical meristem remains quies-

cent (i.e., aA ≈ 0) as long as the concentration of the

meristematic activity inhibitor hA remains high. Its activ-

ity starts only when the inhibition sinks below a threshold

[see the term proportional to σA in (16) ]. This can occur

after cutting the shoot apex (Bonner and Galston, 1952)

or after substantial growth that enlarges the distance be-

tween the active apical meristem and the quiescent bud.

The model is so far hypothetical. No gene system

is yet known that could be responsible for the nodal-

internodal structure. One reason could be that a corre-

sponding mutation would have a too severe impact on

the plant embryo since, for instance, no leaves would

be formed. Since the (at least) three elements depend

on each other, the loss of one element can eliminate

the others. Based on genetic observations Coen and

Meyerowitz (1991) have proposed a somewhat related

mechanisms for the determination of the character of flo-

ral structures (serpals, petals, carpals and stamen), but

not for their positioning.

The model provides a feasible mechanism for essen-

tial elements of plant morphogenesis. It gives clues how

polarity is established in the substructures. It predicts

that the modular nodal-internodal structure is laid down

before the initiation of leaf primordia and axillary buds.

The rapidly growing data on the molecular-genetic level

in plant morphogenesis will certainly provide a crucial

test in the near future.

6. CONCLUSION

We intended to show that simple reaction-diffusion equa-

tions describing the interactions of few chemicals provide

an efficient way to understand numerous aspects of pat-

tern formation in biology. Graded concentration profiles,

periodic and stripe-like patterns can be generated out of

an initially more or less homogeneous state. The regu-

latory properties of these mechanisms agree with many

biological observations, for instance, the regeneration of

a pattern with or without maintenance of polarity, inser-

tion of new structures during growth in the largest inter-

stices or the generation of strictly periodic structures dur-

ing marginal growth. By a hierarchical coupling of sev-

eral such systems, highly complex pattern can be gener-

ated. One pattern directs a subsequent pattern and so

on. Complex structures are well known from physics, for

instance in turbulence. But in contrast, the complex pat-

terns discussed here are highly reproducible (as well in

their time development as in their spatial organization), a

feature of obvious importance in biology.

Very distinct biological systems can be simulated by
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the assumption of basically similar mechanisms. For in-

stance, the regular initiation of new leaves with their in-

trinsic polarity during plant growth and the genesis of the

complex arrays of receptor cells in the developing eye of

Drosophila are achieved by marginal growth (either real

or “simulated” growth). A polarizing influence from the

structure that organizes the growth, i.e., the tip of the

shoot or the morphogenetic furrow, ensures the correct

arrangement of the many periodically arranged substruc-

tures.

The models suggest another example of such conver-

gence. Both the periodic pattern of insect segments and

the nodal arrangement of leaves in plants are presum-

ably achieved by the serial repetition of at least three cell

states. The corresponding model for insects has been

meanwhile experimentally verified. All this indicates that

very distantly related organisms have developed very

similar mechanisms for pattern formation.

Experiments indicate that biological systems are, as

the rule, much more complex than expected from the the-

oretical models. This has many reasons. On one hand,

to bring a molecule from one cell to the next and transmit

the signal to the cell’s nucleus is often realized in biology

by a complex chain of biochemical events, but described

in the model by the mere diffusion of a substance. On the

other hand, the autocatalysis of a substance may involve

several steps ; for instance, a small diffusible molecule

may be able to activate a particular gene, that, in turn,

controls the synthesis of the small molecule. The gene

goosecoid and the small molecule Activin (Izpisuabel-

monte et al., 1993), both involved in the generation of the

primary organizing region of Amphibians, may function in

this way.

Particular developmental steps have been treated as

if they were isolated from the rest of the organism. In re-

ality, they have to be integrated with many other events.

The whole process has to take place at a given position

within the complex organism and in a particular time win-

dow. Further, a particular developmental stage must be

reached before specific subsequent steps can start. For

instance, the pattern on the growing shoot must be com-

patible with its later transformation into a very different

structure : a flower. During evolution, only modifications

of existing mechanisms and the addition of new ones are

allowed ; a new rational construction from the beginning

is impossible.

Of course, there is a strong selective pressure to

make biological organisms reliable, not to make them

simple. Complexity is not a problem for biological sys-

tems. For instance, a particular step can be made safe

by a second parallel and independent process as is of-

ten the case in technical processes too (Goodwin et al.,

1993). That sometimes severe mutations, for instance in

Drosophila development, produce only a mild phenotype

supports such a view. If the corresponding models are

then more complex too, one should not blame the theo-

reticians !

So far, no biological system able to generate primary

pattern formation has been completely characterized at

the molecular level. However, molecular biology is mak-

ing tremendous progresses and we hope that the next

few years will bring more evidence for the models and ex-

plain how the postulated mechanisms are actually imple-

mented in the real systems. Nevertheless, we hope that

the reader is convinced that the theoretical treatment of

biological pattern formation is feasible and provides es-

sential insights into the beautiful processes of life.
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7. Stability analysis

The stability analysis is not included in the reformatting.

Please refer to the original paper:

http://rmp.aps.org/abstract/RMP/v66/i4/

p1481_1

8. Parameter sets

Numerical results described in this paper have been ob-

tained by implementing the models on a desktop com-

puter. Numerical integration of the partial differential

equations has been performed by use of standard dis-

cretization methods. The concentration of the various

chemical species a, h . . . is evaluated on a two dimen-

sional square grid with mesh δx ; any grid point is then

defined by a two indexes i and j : xi j = (i δx , j δx). In

two dimensions, the Laplace operator △ applied to any

function a(x, t) is taken as :

△a(xi j , t) = (a(xi+1 j , t) + a(xi j+1, t) + a(xi−1 j , t)
+a(xi j−1, t)− 4a(xi j , t) )/δx

2

Time is also discretized, tk = k δt, and the time derivative

is approximated by

∂

∂t
a(x, tk) =

a(x, tk+1)− a(x, tk)

δt
.

In all simulations, we have chosen δx = δt = 1. As a

consequence, the border lengths of the integration do-

main are directly equal to the number of cells along them,

and the time t is equal to the number of iteration steps.

In the simulations, spatial concentration fluctuations are

assumed ; their order of magnitude is between 3 and 10

per cent of the concentration value.

Hereafter are listed the parameter sets used to pro-

duce the various pictures presented in the text.
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Figure 1

We used equations (1). Periodic boundary conditions

are assumed. Initial conditions are given by the homo-

geneous steady state of the system. Fig. 1a and 1b are

calculated with the same constants but respectively in

fields of dimension 30 × 30 and 50 × 50. The parameter

values used for these two pictures are listed below.

α Dα ρα µα σα κα

a 0.005 0.01 0.01 0.0 0.0

h 0.2 0.02 0.02 – –

Fig. 1c is calculated in a 50 × 50 field with the same pa-

rameters except for κa = 0.25.

Figure 2

Equations used are (3). The boundary conditions are

periodic and the field size is 30 × 30 for picture (a) and

50 × 50 for (b) and (c). All computations start from the

homogeneous steady state. The parameters values for

the cases (a) and (b) are given here after.

α Dα ρα µα σα κα

a 0.005 0.01 0.01 0.0 0.0

s 0.2 0.02 – 0.02 –

Picture (c) is calculated with the same parameters except

for κa = 0.25. Note the correspondence with the param-

eters of figure 1.

Figure 3

The picture is computed with (5) in a one dimensional

field formed by 30 cells. Initially, y = 0 everywhere ; the

external source σext decreases linearly from 0.35 on the

left side, to 0.175 on the right side.

α ρα µα κα

y 0.05 0.05 0.2

Figure 4

The picture is computed with Eq. (1). The boundary

conditions are tight and the field grows from 21×21 to 31×
31 cells. One cell line and one cell column are added at

random positions after every 2000th iteration. The system

is initially in its homogeneous steady state.

α Dα ρα µα σα κα

a 0.0025 0.01 0.01 0.005 0.0

h 0.2 0.02 0.02 0.02 –

Figure 5

The picture is based on Eq. (1). The boundary condi-

tions are tight ; the field grows from 8× 8 to 52× 52 cells.

One line and one column of cells are added at the top

border and at the right side after every 2000th iteration.

The system starts initially out of its homogeneous steady

state.

α Dα ρα µα σα κα

a 0.006 0.01 0.01 0.001 0.0

h 0.2 0.02 0.02 0.0 –

Figure 6

The sea-urchin simulation uses Eq. (1). Boundaries

are tight ; the one dimensional field grows from 5 to 50
cells, one cell being added at a random position after ev-

ery 2000th iteration. The system is initially homogeneous.

When the system reaches a size of 50 cells, it is cut in

two parts having tight boundaries. After the cut, no fur-

ther growth is assumed.

α Dα ρα µα σα κα

a 0.005 0.0005 0.0005 0.00005 0.0

h 0.2 0.00075 0.00075 0.00025 –

Figure 7

Equation used are (7). The domain is one dimen-

sional, initially composed of 20 cells. Zero flux boundary

conditions are assumed and the system starts from its

homogeneous steady state. The field grows by addition

of one cell at a random position after every 5000th itera-

tion. When a size of 100 cells is reached, the domain is

cut in two equal parts with zero-flux boundaries and the

system is iterated without further growth until equilibrium

is reached.

α Dα ρα σα

a 0.002 2 ·10−4 1 · 10−5

h 0.2 2 ·10−4 –

b – 4 ·10−5 –

Figure 9

The three pictures are based on Eq. (8). The field

has a size of 120× 65 cells in (a), and 80× 80 cells in (b)

and (c). For the three plots, the boundary conditions are

periodic. The initial state is given by a = 0, s = 3 and

y = 0 everywhere except on some randomly scattered

point Pi where a = 5.

Here are the parameters used for the giraffe coat (a).
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α Dα ρα µα σα κα

a 0.015 0.025 – – 0.1

s 0.03 0.0025 0.00075 0.00225 20.0

y – 0.03 0.003 0.00015 22.0

To produce the leopard coat (b) we have replaced the

initial conditions on s by s = 2.5, and on a by a = 2 at the

positions Pi. The parameters involved are listed here.

α Dα ρα µα σα κα

a 0.01 0.05 – – 0.5

s 0.1 0.0035 0.003 0.0075 0.3

y – 0.03 0.003 0.00007 22.0

At last, the next data set produces the spots on the chee-

tah (d).

α Dα ρα µα σα κα

a 0.015 0.025 – – 0.5

s 0.1 0.0025 0.00075 0.00225 1.0

y – 0.03 0.003 0.00015 22.0

Figure 10

Equation (9)–(10) are integrated in a field of initial di-

mension 50 × 80 ; one line and one column of cells are

added at random positions after every 500th iteration, up

to a dimension of 70×100 cells. The boundary conditions

are periodic. One begins with the system in its homoge-

neous steady state.

α Dα ρα σα κα

a 0.01 0.0025 0.00025 0.1

s 0.2 0.003 0.003 –

b 0.0075 0.01875 0.00187 0.2

h 0.15 0.0375 – –

Figure 12

The simulation is based on the set of equation (11)–

(14). In this picture, the field size is of 19 × 24 cells.

Boundaries are tight. Initially, the furrow substrate s is

uniformly distributed (s = 1) and the furrow activator f is

everywhere zero, except on four regularly spaced cells at

the bottom of the field, where f = 2 (this initial regular-

ity is not necessary ; if f = 2 on the whole bottom line

of the field, a regular structure emerges too, but the R8
cells need three or four rows to find their optimal spac-

ing). The other activators and inhibitors have all a very

low initial concentration, say 0.01.

α Dα ρα µα σα κα να
f 0.0025 0.1 0.011 – 0.2 –

s – 0.04 – – – –

aR8 0.0025 0.04 – 0.02 – –

hR8 0.2 0.04 – – – –

aM 0.001 0.0125 0.01 0.0004 0.4 –

hM 0.02 0.02 – 0.0002 – –

aR2 0.002 0.75 0.01 0.0001 4.0 500

hR2 0.01 0.02 – 0.0001 – –

Figure 13

Figure 13 The simulation is based on the set of equa-

tion (15)–(20). Zero flux boundary conditions are im-

posed at the top and bottom border and periodic ones

at the left and right sides of the field. The initial field

size is 36 × 3. In the simulations, aM and aA have been

rescaled so that the upper stable steady state is found

at aM = aA = 3 instead of aM = aA = 1 as described

in the text. Initially, meristem (aM = 3) is only found on

the top line of the domain ; elsewhere, aM = 0. The

other activator and inhibitor have respectively 0.01 and

1.0 as initial concentrations. The domains grows by ad-

dition of one cell line after every 1500th iteration (the line

is inserted two lines below the apical meristem) up to a

size of 36× 87 cells.

The parameters used for the simulation are listed in

the following table.

α Dα ρα µα σα κα να
aM – 0.01 – 0.00015 0.2222 –

aA – 0.01 – 0.002 0.2222 75

hA 0.2 0.005 – – – –

bA 0.2 0.7 0.1 – – –

mi – 0.002 – 0.0004 0.1 –

hi 0.05 0.01 – 0.011 – –

ap 0.004 0.005 0.01 0.001 – –

hp 0.2 0.01 0.02 0.1 – –

For m3, the value of σm3
should be replaced by 0.0002.
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