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Abstract. The potential to add significant value to the rapid advances in plant breeding technologies associ-

ated with statistical whole-genome prediction methods is a new frontier for crop physiology and modelling. Yield 

advance by genetic improvement continues to require prediction of phenotype based on genotype, and this re-

mains challenging for complex traits despite recent advances in genotyping and phenotyping. Crop models that 

capture physiological knowledge and can robustly predict phenotypic consequences of genotype-by-environment-

by-management (G×E×M) interactions have demonstrated potential as an integrating tool. But does this biolog-

ical reality come with a degree of complexity that restricts applicability in crop improvement? Simple, high-speed, 

parsimonious models are required for dealing with the thousands of genotypes and environment combinations in 

modern breeding programs utilizing genomic prediction technologies. In contrast, it is often considered that greater 

model complexity is needed to evaluate potential of putative variation in specific traits in target environments as 

knowledge on their underpinning biology advances. Is this a contradiction leading to divergent futures? Here it is ar-

gued that biological reality and parsimony do not need to be independent and perhaps should not be. Models struc-

tured to readily allow variation in the biological level of process algorithms, while using coding and computational 

advances to facilitate high-speed simulation, could well provide the structure needed for the next generation of crop 

models needed to support and enhance advances in crop improvement technologies. Beyond that, the trans-scale 

and transdisciplinary dialogue among scientists that will be required to construct such models effectively is con-

sidered to be at least as important as the models.

Keywords: Crop improvement; crop model; genomic prediction; phenotypic prediction; plant breeding.

Introduction

Based on current rates of yield improvement for major 

crops, comprehensive analyses have shown that by 

2050, there will be a significant shortfall in global food 

production capacity (Mueller et al. 2012; Ray et al. 2013; 

Fischer et al. 2014). It is imperative that we hasten yield 

advance. The world population can no longer take for 

granted an ability to feed itself in 2050 and beyond. This 

will necessarily involve the sustainable intensification 

of production systems requiring combinations of agro-

nomic and breeding interventions.

Dynamic crop growth and development models 

(CGMs) have the capacity to explore consequences 

of potential agronomic and breeding interventions in 
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design of crops for production systems (Hammer et al. 

2014, 2016a; Chenu et al. 2017). Using simplified math-

ematical representations of the interacting biological 

and environmental components of the dynamic soil–

plant–environment system, they can reliably predict 

trajectories of crop attributes through the crop life cycle 

(e.g. Soufizadeh et al. 2018). Environmental (E), genetic 

(G), and management (M) influences, and hence their 

dynamic interactions (G×E×M), can be incorporated via 

the nature and coefficients of the response and control 

equations in the model and aspects of its initialization. 

Messina et al. (2009) and Cooper et al. (2014b) highlight 

the potential role of crop models in crop improvement, 

particularly the G aspects via plant breeding, which will 

be our focus here.

Plant breeding provides the genetic foundation for 

achieving realized crop improvement for a defined target 

set of environments, commonly referred to as the target 

population of environments (TPEs). Plant breeders focus 

on predicting differences among genotypes for trait phe-

notypic performance to support selection of superior 

entries. While the details of individual breeding programs 

differ among crop species, and they will depend on the re-

sources available to the plant breeder, there are common 

elements that describe the core structure of a breeding 

program (Fig. 1). Each cycle involves:

 (1) testing of individuals sampled or selected from the 

reference population of genotypes for their trait 

values in a relevant sample of environments, re-

ferred to as multi-environment trials (METs),

 (2) selection of individuals, at a defined selection pres-

sure, based on their predicted superior phenotype 

from analyses of METs and

 (3) controlled mating of the selected individuals to 

produce a new generation of individuals.

The progeny obtained from the mating of the selected 

individuals form the base reference population of geno-

types for the next cycle. The genotypes selected to have 

superior trait performance are retained and advanced 

through the stages of the breeding program with some 

ultimately released for commercial use.

Figure 1. Schematic of the common elements of a breeding program cycle: Individuals are sampled from a reference population of geno-

types (RPGs) for testing within a sample of environments that represents the Target Population of Environments (TPE)-the Multi-Environment 

Trial (MET). Trait phenotypes are measured on the individuals within the MET and the trait phenotypes are analysed. If Single Nucleotide 

Polymorphisms (SNPs) have been assayed for the genotypes, the trait phenotypes from the MET can be used as a training data set to enable 

genomic prediction for all individuals in the RPG that have a SNP genome fingerprint. Based on the results of the analyses, the individuals are 

sorted into either a select or a reject group. The selected individuals are retained and used in a planned crossing scheme to create progeny. 

In this way the alleles of the genes that determine the trait phenotypes that are possessed by the selected individuals are passed on to the 

progeny of the next generation. The progeny become the individuals of the next cycle of the RPG.
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Applying the conventions of quantitative genetics the 

relationship between the phenotype (p) and genotype 

(g) of an individual i in environment (e) j is represented 

by the linear model:

pijk = ej + gi + (ge)ij + εijk (1)

where p
ijk

 is the measured trait phenotype for observa-

tion k on genotype i in environment j, e
j
 is the effect of 

environment j, g
i
 is the effect of genotype i, (ge)

ij
 is the 

genotype-by-environment interaction effect for gen-

otype i in environment j, and ε
ijk

 is the residual (error) 

effect associated with observation k on genotype i in 

environment j. The plant breeder seeks to create new 

genotypes within the breeding program, test them for 

trait phenotypic performance, and identify and select 

those with superior trait performance relative to the 

commercial genotypes already used by farmers. Testing, 

conducted to measure trait phenotypes for the geno-

types, is combined with selection methodology to sort 

the genotypes into a group predicted to have superior 

phenotypes.

The genetic principles on which crop breeding 

programs are designed and their operational details 

have been well documented (e.g. Fehr 1987; Hallauer 

et al. 1988; Comstock 1996; Allard 1999; Bernardo 2002). 

For quantitative traits controlled by many genes, it is as-

sumed that genetic improvement of the traits will be 

achieved by selection operating over multiple cycles of 

the breeding program. Selection theory provides a quan-

titative framework for genetic improvement of traits by 

breeding as represented in Fig. 1. Within each cycle, the 

alleles of the genes that determine the superior pheno-

types of the selected individuals are passed to their 

progeny to form the reference population of genotypes 

for the next cycle. In this way, response to selection is 

associated with the increase in frequency of the favour-

able alleles over cycles of breeding. Selection theory 

based on these principles has had a major influence on 

the design of breeding programs and the key elements 

are represented in the ‘breeder’s equation’, which in its 

most basic form can be written as

∆Gp = ih2σp/t (2)

where ΔG
p
 is the measure of genetic gain from a cycle 

of the breeding program, i is a measure of the selection 

pressure applied to identify the superior individuals from 

among those tested, h2 is the heritability of the target 

trait, which is defined as the ratio of the genotypic to 

phenotypic variance from analysis of METs (σ2
g
/σ2

p
), σ

p
 

is the standard deviation of the trait phenotypes in the 

reference population and t is the time it takes to com-

plete one cycle of the breeding program. Details and 

refinements for alternative breeding program designs 

and more advanced treatments of the basic breeder’s 

equation can be found in Falconer and Mackay (1996), 

Comstock (1996), Lynch and Walsh (1998), Holland et al. 

(2003) and Walsh and Lynch (2018).

Recently, the availability of low-cost genome sequencing 

technologies that have enabled high-throughput meas-

urement of DNA sequence polymorphisms among the 

individuals created within a breeding reference popula-

tion has opened up new opportunities to design and up-

scale breeding programs (Heffner et al. 2009; Ramstein 

et al. 2019). The phenotypic data collected in METs can 

be used in combination with the single nucleotide poly-

morphism (SNP) sequence data for the genotypes tested 

in the METs to develop a whole-genome sequence-based 

prediction model based on the SNPs to predict the trait 

phenotypic variation (Meuwissen et  al. 2001). Once the 

model is established in an appropriate training data set, 

the trait phenotypes can then be predicted for individuals 

in the reference population that have been genotyped 

with an appropriate set of SNPs without directly meas-

uring the trait phenotypes of those individuals (Fig. 1). For 

such prediction-based breeding strategies, the Breeder’s 

equation (2) can be redefined in terms of the prediction 

accuracy that can be achieved for the target trait pheno-

types based on the SNPs:

∆GA = irAσA/t (3)

where ΔG
a
 is genetic gain in terms of breeding value, i is 

a measure of selection pressure as for equation (2), r
a
 is 

the predictive accuracy, defined as the correlation be-

tween the estimated breeding value in the training data 

set and their corresponding true values in the TPE, σ
a
 

is the additive genetic standard deviation of the target 

trait for the selection unit in the reference population 

and t is the time to complete one cycle of the breeding 

program.

Motivations for applying genomic selection in-

clude increasing the scale of the breeding program 

when genotyping of individuals is cost effective rel-

ative to phenotyping, decreasing the time to com-

plete a cycle of the breeding program, and enabling 

the prediction of trait phenotypic performance for 

new genotypes or new environments expected in 

the TPE. Following the development of genomic pre-

diction methodology (Meuwissen et al. 2001) and its 

successful application to animal breeding (Garcia-

Ruiz et  al. 2016; Garner et  al. 2016), successful ap-

plications to crop breeding programs have followed 

(Cooper et al. 2014a, b).

It can be argued that there is little attention given 

to biological reality in the models of trait genetic archi-

tecture that are the foundation of quantitative genetics 

and genomic selection in plant breeding. The situation 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/in
s
ilic

o
p
la

n
ts

/a
rtic

le
/1

/1
/d

iz
0
1
0
/5

6
1
4
9
8
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Hammer et al. — Biological reality and parsimony in crop models

4 in silico Plants https://academic.oup.com/insilicoplants © The Author(s) 2019

is similar for more recent concepts on design of plant 

varieties based on use of DNA sequence data with high-

throughput phenotyping images and machine learning 

algorithms (Ramstein et  al. 2019). Nevertheless, the 

basic and more recent models of quantitative traits 

have and continue to work for predicting the effects of 

natural and artificial selection and generating genetic 

gain. However, it remains that context dependencies 

limit the predictive power of these quantitative statis-

tical methods. For example, the estimate of phenotypic 

variance for differences among genotypes (equation 1)] 

is confounded by genotype-by-environment (G×E) inter-

action effects. Voss-Fels et al. (2019) reviewed the ap-

plication of genomic selection methodology for plant 

breeding and considered some of the challenges. A key 

challenge was developing adequate levels of prediction 

accuracy for complex traits where strong non-additive 

effects restricted the extent of associations between 

the SNPs and the trait phenotypes in the training data 

sets. This limited the broader application of the genomic 

prediction models to the genotypes and TPE beyond the 

training data set. These situations can occur in the pres-

ence of strong non-additivity associated with G×E×M 

interactions.

It has been suggested (Chapman et al. 2003; Hammer 

et al. 2006; Cooper et al. 2014b; Messina et al. 2018) that 

introducing biological insight via using dynamic CGMs 

to bridge the genotype-to-phenotype predictability gap 

offers an avenue to address such context dependencies 

and generate significant advance in possible rates of ge-

netic gain. Technow et al. (2015) demonstrated how a 

process-based crop growth model could be used in com-

bination with genomic prediction to improve the predic-

tion accuracy achieved in the presence of non-additivity 

associated with G×E×M interactions. Cooper et al. (2016) 

applied this methodology to enable prediction for grain 

yield of maize in drought environments and Messina 

et  al. (2018) demonstrated extensions of the method-

ology to the challenge of predicting new genotypes in 

new environments in the presence of trait-by-trait inter-

actions and G×E interactions influencing yield of maize 

in drought and favourable environments.

While these advances are encouraging, there remains 

a range of views on the overall approach and on the 

nature and level of complexity of the CGM needed to 

achieve the predictive capability required to support crop 

improvement (Tardieu 2003; Hammer et al. 2004, 2006, 

2010; Yin and Struik 2010; Marshall-Colon et al. 2017). 

The community more focussed on guiding crop improve-

ment through plant engineering from gene network and 

metabolic pathway level are seeking plant models based 

on mechanistic details at lower levels of biological or-

ganization (Marshall-Colon et al. 2017). Although framed 

in a different manner, it is not clear if that perspective on 

the development of plant/crop modelling is incompat-

ible with that arising from the quantitative genetics and 

genetic gain perspective. Both require the prediction of 

phenotype in the TPE associated with variation at gene 

level to be effective in crop improvement, but the de-

gree of parsimony and level of biological reality needed 

are often viewed as conflicting—but are they? Hence, 

the objective of this paper is to consider and discuss the 

level of detail in plant/crop modelling needed to enhance 

the next generation of crop improvement. To reach this 

objective, we briefly review approaches to phenotypic 

prediction, the role of plant/crop scale models in crop 

improvement, integrating CGM with whole-genome pre-

diction (WGP) for enhanced genetic gain and the role 

of physiological process level plant models in crop de-

sign. This underpins a discussion of the implications this 

raises for developing the next generation of crop models 

needed to advance crop improvement.

Phenotypic Prediction

Phenotypic prediction remains at the core of genetic im-

provement of crops, which can be considered as a search 

strategy on the complex adaptation or fitness landscape 

formed from the myriad of phenotypic outcomes associ-

ated with all possible G×E×M combinations (Cooper and 

Hammer 1996; Messina et al. 2011; Hammer et al. 2014). 

Plant breeders are interested in using genetic informa-

tion to predict potential new genotypes with superior 

yield performance, usually employing statistical quanti-

tative genetics approaches to span the levels of biological 

organization (Fig. 2). Their interests in predicting pheno-

type focus on predicting differences among genotypes 

for trait phenotypic performance for selection rather 

than on the accurate prediction of trait phenotypes for 

individual genotypes within environments. Equations 

(1–3) above capture the essence of this approach. It is 

important to note that the variance among the environ-

ments for traits, which is usually large for traits such as 

grain yield, does not contribute directly to the phenotypic 

variance for comparisons among the individuals or to the 

heritability of the trait phenotypes. Therefore, gene-to-

phenotype (G2P) models that focus on accurate predic-

tion of phenotypes for one or a few genotypes across 

many environments will not be suitable for the prediction 

needs of the plant breeder unless they can be extended 

to predict trait phenotypic differences between geno-

types at the scale of the numbers of genotypes created 

and tested within the breeding program.

Alternatively, with the rapid progress in molec-

ular technologies for genome sequencing and func-

tional genomics, it had been widely expected that a 
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gene-by-gene engineering approach would enable en-

hanced efficiency in crop improvement. The prevailing 

paradigm was one of developing gene network or met-

abolic pathway models to span from gene sequence to 

crop phenotype (Minorsky 2003). There has been consid-

erable development of component process models with 

the advancing knowledge in plant science, such as for 

predicting transition to flowering (Salazar et  al. 2009), 

sucrose synthesis from photosynthesis (Zhu et al. 2013) 

and the consequences of some pathway manipulations. 

Indeed, at crop scale, there have been notable successes 

in developing plants that better resist pests or tolerate 

herbicides in field production environments (Edgerton 

2009). Those cases involved single-gene transform-

ations where plant phenotypic response scaled directly 

from the level of molecular action, making the response 

highly predictable. That is, there was a close connection 

of gene expression to phenotypic expression at plant/

crop scale or a short ‘phenotypic distance’ (Fig. 2B). 

There have been other examples where the engineering 

approach has generated promising leads, such as with 

modifying the photosynthetic pathway (Salesse-Smith 

et al. 2018; South et al. 2019), although claims of likely 

impact on field crop yield are often overstated. A recent 

detailed cross-scale modelling analysis of photosyn-

thetic manipulations suggested significant, but far more 

modest, likely impacts on crop yield (Wu et  al. 2019) 

due to confounding effects of environmental and crop 

scale interactions (Wu et  al. 2019). Nonetheless, with 

the advances in gene editing technology (Doudna and 

Charpentier 2014), notions of plant design by gene and 

metabolic network manipulation provide renewed im-

petus for constructing models from the gene upward 

(Marshall-Colon et al. 2017).

It remains, however, that little of the promise of the 

engineering approach has been realized in practice for 

Figure 2. (A) Approaches to G-to-P prediction, their association with levels of biological organization, and the concepts of (B) ‘short’ pheno-

typic distance where traits scale directly from molecular to organism scale and there is a likely greater role for genetic prediction and gene 

network models, and (C) ‘long’ phenotypic distance where traits do not scale readily from molecular to whole organism level and there is likely 

a greater role for ecophysiology and crop models (Hammer et al. 2016b: adapted with permission from Springer Publishing).
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key complex traits where relationships among compo-

nents and their genetic controls involve quantitative 

multi-gene interactions. There is a long ‘phenotypic 

distance’ due to the extent of the biological integra-

tion required from the causal polymorphisms at ge-

nome scale to the phenotype of interest at plant and 

crop scale (e.g. Sinclair et al. 2004) (Fig. 2C). Integrating 

gene effects across scales of biological organization for 

phenotypic prediction in such situations is not straight-

forward (Hammer et al. 2006). The predictive power of 

associations of genes/genomic regions with pheno-

typic responses for complex traits remains constrained 

by context-dependent gene/trait effects attributed to 

gene–gene and gene–environment interactions associ-

ated with the underpinning gene networks (Cooper et al. 

2005).

As noted earlier, the same issue restricts the extent 

of advance in plant improvement via approaches based 

on quantitative genetics and genomic prediction tech-

nologies (Voss-Fels et  al. 2019). Continuing advances 

in genotyping and crop genomics (Heffner et  al. 2009; 

Morrell et al. 2011; Morris et al. 2013) have now facili-

tated association mapping approaches that assess cor-

relation of phenotype with genotype in populations or 

panels of unrelated individuals. Such genome-wide as-

sociation studies rely on advanced statistical proced-

ures to identify associations between a phenotype and 

a genomic marker profile. Genomic selection involves 

the use of phenotypic prediction equations based on 

profiles of marker data from a training set of genotypes, 

which have been phenotyped. The predictions are then 

applied across breeding materials that are genotyped 

extensively but not phenotyped. This offers consider-

able potential for more rapid genetic gain in breeding. 

However, for complex traits, the procedure still suffers 

from context-dependent effects and the ‘phenotypic 

distance’ problem (Fig. 2). Association mapping and ge-

nomic selection rely on the stability of the relationship 

between a phenotype and the set of genomic markers 

found in the training set, which is strongly dependent 

on the relevance of the genotypes and environments 

sampled.

Biological and ecophysiological insight contained in 

dynamic crop models provides a means to alleviate con-

text dependencies associated with the long phenotypic 

distance issue that limits prediction in situations where 

traits do not scale readily from molecular to whole or-

ganism level (Fig. 2). The crop model captures some of the 

trait–trait and trait–environment effects associated with 

dynamic interactions of simpler component traits and 

the growing environment. The complex trait becomes 

an emergent consequence of these interactions among 

component traits with shorter phenotypic distance 

that are likely more highly heritable. For example, van 

Oosterom et al. (2011) present a framework for crop scale 

adaptation to post-anthesis drought stress in sorghum 

based on consequential effects of traits that influence 

water use and availability through the crop life cycle, such 

as maturity, canopy development, tillering, root architec-

ture and transpiration efficiency (TE). They demonstrate 

how variation in these traits can influence the dynamics 

of the crop water balance and ultimately the rate of post-

anthesis leaf senescence or ‘stay-green’ under terminal 

stress conditions. Stay-green is a complex trait known 

for its positive connection to adaptation to water-limited 

environments in sorghum breeding (Jordan et al. 2012). 

Borrell et al. (2014a) utilize this water balance framework 

to dissect the stay-green trait and show how positive ef-

fects of stay-green quantitative trait loci (QTLs) on grain 

yield under drought were explained as emergent conse-

quences of their effects on temporal and spatial water 

use patterns that result from changes in these compo-

nent traits. In essence, the biological insight of the trait 

and environment interactions inherent in the dynamic 

framework unpacks the context dependencies related to 

expression of the complex stay-green phenotype.

Biological insight contained in more detailed gene 

network/metabolic pathway models provides a means 

to target specific gene interventions (or inform genomic 

prediction) in cases of short phenotypic distance where 

traits scale more directly from gene expression to or-

ganism phenotypic expression with less effect of con-

text dependencies (Fig. 2B). However, prediction at this 

level requires detailed knowledge of regulatory mech-

anisms operating on expression dynamics of gene net-

works. For example, the transition to flowering is known 

to be regulated by expression of FLOWERING LOCUS T 

(FT) (Corbesier et  al. 2007). However, FT expression is 

linked to gene circuits regulated by the circadian clock, 

photoperiod and temperature (Salazar et al. 2009). The 

dynamics of these networks have been studied in de-

tail in arabidopsis and synthesized in a mathematical 

model (Seaton et  al. 2015) that enables simulation of 

network behaviour and prediction of flowering for dif-

ferent environments and genotypes (Chew et al. 2017). 

This provides an avenue to quantify how specific gene 

manipulations might influence timing of floral induction 

(Dong et al. 2012).

The Role of Plant/Crop Scale Models in 
Crop Improvement

CGMs that are structured to capture the dynamic 

interactions of the physiological determinants of crop 

growth and development (Fig. 3) can be employed to 

analyse and aid understanding of the physiological 
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and genetic basis of trait variation (Messina et al. 2009; 

Hammer et  al. 2016a). Crop performance, and hence 

the trait phenotypes we measure and map, is an emer-

gent consequence of the dynamic interplay of crop 

growth and development processes within an envi-

ronmental context over the crop life cycle. CGMs can 

thus both inform phenotyping for QTL detection and 

predict consequences of G×E×M interactions to assist 

crop improvement in general and molecular breeding 

in particular (Hammer et al. 2005; Cooper et al. 2009; 

Voss-Fels et  al. 2019). The value of the framework to 

assist plant breeding depends on the extent to which 

the algorithms included in the CGM adequately capture 

the physiological determinants of genetic variation for 

adaptive traits of interest to the breeder (Tardieu 2003; 

Cooper et  al. 2009; Messina et  al. 2009; Tardieu and 

Tuberosa 2010) and alleviate context dependencies. 

Chenu et al. (2009) integrated organ-level QTL effects 

on leaf expansion to form a G2P CGM capable of simu-

lating impact of the QTLs at the whole plant level and 

predicting their importance in terms of yield in various 

environments. The leaf submodel developed (Chenu 

et al. 2008) was based on environmental responses of 

leaf elongation rate that were characterized by stable 

QTL (Reymond et al. 2003, 2004). This approach avoided 

QTL–environment interactions often observed for more 

integrated traits such as whole plant leaf area produc-

tion, which was empirically related directly to environ-

mental conditions in early crop models (Sinclair 1986; 

Hammer et  al. 1993). Hence, fundamental plant/crop 

physiological and genetic studies are often necessary 

to improve CGM architecture for G2P studies (Tardieu 

Figure 3. Crop model schematic showing the key processes involved in crop growth and development and their interactions with the crop 

system (Chenu et al. 2017: with permission from Elsevier).
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2003; Messina et al. 2006; Chenu et al. 2008; Hammer 

et al. 2009; Messina et al. 2009; Bertin et al. 2010; Yin 

and Struik 2010). The issue of balancing biological re-

ality and parsimony in the level of detail needed for 

CGMs to be able to integrate processes across levels of 

organization while predicting emergent functional con-

sequences for the organism is the focus of later discus-

sion in this paper.

Two examples are presented to outline the role of 

plant/crop scale models in crop improvement:

(i)Modelling the physiology and genetics 
underpinning the stay-green trait in sorghum

As outlined earlier, stay-green is a complex trait known 

for its positive connection to adaptation to water-limited 

environments in sorghum breeding (Jordan et al. 2012). 

Sorghum hybrids that ‘stay-green’ for longer during 

grain-filling tend to have superior yield under terminal 

drought conditions. While this trait has been known to 

breeders for many years (Rosenow 1977; Rosenow et al. 

1983; Henzell et al. 1992), and phenotyped by them in 

METs, the underpinning genetics is not simple and the 

physiological mechanisms not well understood. Hence, 

while phenotypic selection for the trait has proceeded 

and resulted in improved yield in water-limited envir-

onments (Jordan et al. 2012), enhanced understanding 

of the physiological and genetic underpinning of the 

trait offers the potential to advance rates of genetic 

gain via molecular breeding and/or genomic prediction. 

Researchers have mapped the QTLs that contribute to 

stay-green in a range of populations (e.g. Xu et al. 2000), 

many of which were derived from crosses with BTx642, 

a derivative of an Ethiopian durra landrace in which the 

trait was discovered.

The ecophysiological framework set out by van 

Oosterom et  al. (2011) suggests that traits moder-

ating the water balance through the crop cycle so it 

is more favourable during grain-filling could underpin 

the presence of stay-green in terminal drought envir-

onments. There are a number of traits that could gen-

erate stay-green by influencing the temporal dynamics 

of the crop water balance. If soil water is limited, water 

availability at anthesis can be increased by either 

increasing water accessibility to the crop or restricting 

pre-anthesis water use. Accessibility of water can be 

manipulated through root architecture. Studies in sor-

ghum have identified variation in seedling nodal root 

angle as an indicator of capacity for the root system to 

be better distributed at depth and increase the amount 

of water extractable from deep soil layers via improved 

soil occupancy (Singh et al. 2011, 2012) as also found 

in wheat (Manschadi et  al. 2006). Mace et  al. (2012) 

found that the QTL associated with genetic variation 

for nodal root angle in sorghum co-located with known 

QTL for stay-green.

The amount of crop water use pre-anthesis can be 

reduced through early anthesis or restriction of canopy 

size, which can be manipulated via genetic regulation of 

leaf size and tillering. Turner (2004) and Hammer et al. 

(2006) highlight the concept of ‘shifting water’ from 

pre- to post-anthesis by regulating potential canopy 

size. Tiller production depends on internal plant compe-

tition for assimilates (Bos and Neuteboom 1998; Lafarge 

and Hammer 2002; Kim et al. 2010b) and genotypic dif-

ferences in tillering of sorghum have been associated 

with differences in leaf appearance and width, which 

affected vigour of the main shoot and restrict tillering 

(Kim et al. 2010a; van Oosterom et al. 2011). Alam et al. 

(2014a) presented a quantitative framework that ex-

plained the genetic and environmental regulation of til-

lering in sorghum breeding populations by incorporating 

a measure of surplus assimilate status of the plant and 

a genetic propensity to tiller. A subsequent QTL analysis 

using this framework (Alam et al. 2014b) on data from 

multiple sorghum populations identified QTL associated 

with these two main driving factors. QTL for propensity 

to tiller co-located with genes involved with hormonal 

control of tiller bud outgrowth, such as the biosynthesis 

of strigolactones (Beveridge and Kyozuka 2010). Other 

QTL co-located with factors affecting plant assimilate 

status, which is consistent with the hypothesis that 

availability of assimilate beyond the requirement of 

existing culms regulates tillering (Bos and Neuteboom 

1998; Lafarge and Hammer 2002; Kim et al. 2010a, b). 

This concept at whole plant scale pre-empts and sup-

ports the more recent findings from molecular studies 

on the important role of sugar signalling in bud release 

(Mason et al. 2014).

Pre-anthesis crop water use can also be reduced by 

limited maximum transpiration, whereby stomatal con-

ductance is reduced under conditions of high evapora-

tive demand and, hence, plant TE is increased. Genetic 

variation in this trait has been reported in sorghum 

(Gholipoor et al. 2010) and other species (Sinclair et al. 

2010). Variation in plant hydraulic conductivity associ-

ated with the role of aquaporins in water transport has 

been identified as a likely underpinning mechanism 

(Vadez et al. 2014). Preliminary simulation studies in sor-

ghum (Sinclair et al. 2004) have indicated the potential 

value of this trait for crop adaptation in water-limited 

situations and this has been reinforced with comprehen-

sive studies for maize in the USA (Messina et al. 2015).

Borrell et al. (2014b) utilize this water balance frame-

work to dissect the stay-green trait and show how pos-

itive effects of stay-green QTLs on grain yield under 

drought were explained as emergent consequences of 
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their effects on temporal and spatial water use patterns 

that result from changes in these component traits. In 

essence, the biological insight of the trait and environ-

ment interactions inherent in the dynamic framework 

unpacks the context dependencies related to expression 

of the complex stay-green phenotype.

Hammer et  al. (2016a) reported a simulation study 

with the APSIM-sorghum model in Australia that quan-

tified consequences of varying two component traits 

affecting stay-green—tillering and TE. Kholová et  al. 

(2014) reported a similar study using APSIM-sorghum to 

model the effect of plant water use traits on yield and 

stay-green expression in post-rainy season sorghum in 

India. In the Australian study, the tillering routine was 

adapted to generate a reduced tillering type when com-

pared with a standard hybrid, and a limited maximum 

transpiration rate was introduced to restrict water use 

in the middle of the day. The latter required invoking an 

hourly calculation and used the routine developed by 

Hammer et al. (2009), with transpiration limits imposed 

as set out by Sinclair et al. (2004). The simulated results 

for a single year (Fig. 4), chosen because of its terminal 

Figure 4. Simulated plant available soil water content (PAWC) and crop LAI through the crop life cycle for a terminal drought year from a sor-

ghum crop simulation at Emerald (NE Australia) for a standard hybrid (blue and orange lines) and a contrasting hybrid (red and green lines) 

with either (A) reduced tillering or (B) a limited maximum transpiration rate (Hammer et al. 2016a).
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moisture stress pattern, indicated the capacity of the 

model to generate stay-green as an emergent conse-

quence in this type of situation. The leaf area index (LAI) 

associated with reduced tillering type or limited max-

imum transpiration remained high for longer into the 

post-anthesis period of the crop cycle. This was due to 

reduced canopy size (LAI) causing reduced pre-anthesis 

water use in the case of reduced tillering, or enhanced 

TE causing reduced pre-anthesis water use in the case of 

limited maximum transpiration, despite similar canopy 

size. In both of these situations, there was increased 

simulated yield associated with the modified type (data 

not shown). In the case of reduced tillering, this was not 

linked to any increase in total biomass at maturity, but 

rather to increased harvest index as a consequence of 

the increased water availability and crop growth post-

anthesis. In the case of limited maximum transpiration 

rate, both total and grain biomass were simulated to 

increase as a result of the enhanced TE this effect gen-

erated. When viewed over the long-term climate for 

the location used in the study, there was considerable 

yield advantage to both reduced tillering and limited 

maximum transpiration for seasons where yield of the 

standard hybrid was below about 4.5 t ha−1 (Hammer 

et al. 2016a). This is consistent with observations from 

breeding trials for the stay-green trait (Jordan et  al. 

2012) and reflects the majority of farmer field situations 

in NE Australia, where the long-term average yield level 

is around 3 t ha−1 (Potgieter et al. 2016). However, there 

was yield reduction in high-yielding seasons associated 

with the conservative growth associated with these 

adaptations in seasons where water is not limiting.

This result highlights the value of these component 

traits and suggests phenotyping strategies to target 

them directly could be advantageous. This exemplifies 

the concept of dissecting a complex trait to component 

targets that might be more tightly linked to genetic con-

trol (higher heritability) and thus offer potential to en-

hance genetic gain if targeted and effective phenotyping 

and analysis systems are invoked (e.g. Chenu et al. 2018; 

van Eeuwijk et al. 2019).

(ii)Developing drought-tolerant maize hybrids for 
the US Corn-Belt

The development of the AQUAmax drought-tolerant 

maize hybrids (Cooper et  al. 2014a) was built on the 

legacy of long-term genetic improvement of maize by 

breeding (Duvick et  al. 2004; Smith et  al. 2014). There 

is a long history of yield improvement of maize for the 

diverse range of environments of the US Corn-Belt and 

the G×E×M interactions that have emerged as crop 

management practices have evolved; e.g. the transition 

from manual to mechanized harvesting, the long-term 

increases in plant population that followed mechan-

ized planting and harvesting and genetic improvement 

for standability. The long-term commercial breeding for 

yield of maize had resulted in genetic improvement of 

maize yield potential, drought tolerance, disease and 

pest resistance and agronomics for the environments 

and management strategies of US farming systems. 

Therefore, in context with the breeding program sche-

matic (Fig. 1), multiple cycles of breeding for increased 

yield in the TPE had been completed (Duvick et al. 2004) 

prior to the commencement of the recent focused ef-

forts to improve the drought tolerance of maize hybrids 

(Campos et al. 2004; Cooper et al. 2014a). Thus, the chal-

lenge was to further improve on the levels of drought 

tolerance that had already been achieved without pen-

alizing the yield potential of maize in the favourable 

high-input environments of the US Corn-Belt. Based 

on a series of experimental investigations into the his-

torical improvements that had been achieved through 

breeding, multiple hypotheses were proposed for poten-

tial pathways to further improve levels of drought toler-

ance (Campos et al. 2004; Barker et al. 2005).

Process-based CGMs, and the crop ecophysiological 

principles on which they are based, in combination with 

experimental investigations made important contribu-

tions to the testing of the hypotheses for pathways to 

enhanced levels of drought tolerance (e.g. Campos et al. 

2004, 2006; Hammer et  al. 2009; Messina et  al. 2011, 

2015; Reyes et  al. 2015; van Oosterom et  al. 2016). 

A key result that emerged from these studies was that 

for modern elite hybrids, there were important physi-

ological pathways to improved yield under drought 

conditions that did not require access to and acquisi-

tion of greater quantities of total available soil water  

(e.g. Reyes et al. 2015; van Oosterom et al. 2016). These 

results suggested that the rate and patterns of water 

use during crop growth and development were impor-

tant components that were contributing to the higher 

yield of some maize hybrids under important field 

drought conditions within the TPE. Following these find-

ings, a series of side-by-side field comparisons between 

drought-tolerant and sensitive hybrids with similar ma-

turity and development patterns revealed different rates 

and patterns of water use from the total soil profile, 

with the drought-tolerant hybrids frequently extracting 

water from the soil profile at a slightly lower rate, re-

sulting in greater measured total available soil water 

for the tolerant hybrids during the most sensitive devel-

opmental stages of flowering and early grain-filling. In 

environments where these differences were expressed 

and there were no rainfall events during the flowering 

period, the higher available soil water for the tolerant 

hybrids translated into a higher grain yield (Cooper et al. 
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2014a). Predictably in drought-prone environments, the 

yield effect of the differences in available soil water be-

tween the tolerant and sensitive hybrids was greater 

with increased plant population and conversely could 

be reduced by decreasing plant population (Cooper 

et al. 2014a). Decreasing plant population to conserve 

soil water is a common agronomic practice in the more 

drought-prone environments of the Western region of 

the US Corn-Belt (Lyon et al. 2003; Grassini et al. 2009).

Following the identification of improved yield in 

drought-prone environments that was associated 

with reduced rates of water use, investigations were 

undertaken to identify mechanistic bases. A  plant-

level mechanism identified to be important was the 

presence of limited maximum transpiration under 

high atmospheric vapour pressure deficit (VPD) (Yang 

et  al. 2012; Gholipoor et  al. 2013; Choudhary et  al. 

2014; Shekoofa et  al. 2015), with a potential role of 

aquaporins (Choudhary et al. 2015). The identification 

of a putative mechanistic basis for differences in hy-

brid yield under drought that was associated with the 

observed differences in water conservation provided 

direction for extensions to a process-based CGM for 

maize and modelling of the yield impact of trait varia-

tion for the limited maximum transpiration trait within 

the context of the TPE of the US Corn-Belt (Messina 

et  al. 2015). While the limited-transpiration trait was 

identified as one mechanism contributing to the yield 

differences associated with water conservation it was 

not the only mechanism considered, others included 

canopy size, which was itself associated with differ-

ences in leaf number and leaf size (Messina et al. 2018), 

and root system efficiency (van Oosterom et al. 2016).

Given the potential involvement of multiple trait 

mechanisms contributing to the observed hybrid varia-

tion for patterns of water use and yield in drought-prone 

environments, it was necessary to design a breeding 

strategy that allowed for the recognized and as of yet 

unknown multiple workable solutions (Messina et  al. 

2011) to achieve further improvements for drought tol-

erance without compromising yield potential. A  core 

component of the breeding strategy was to augment 

the METs conducted in the TPE (e.g. Fig. 1) with specifi-

cally designed field-based, managed-environments that 

allowed high-throughput precise phenotyping for yield 

under relevant drought conditions (Cooper et al. 2014a). 

When correctly designed, the managed-environments 

allowed consistent identification, phenotyping and 

modelling of multiple trait combinations that contrib-

uted to water conservation and yield variation within all 

stages of a breeding program. Further, complementary 

managed-environments that revealed yield variation for 

trait combinations associated with enhanced access to 

deep soil moisture were also established (Cooper et al. 

2014a). The resulting MET data sets from the combined 

phenotyping in the managed-environments and the 

TPE provided the necessary data to establish suitable 

training data sets to apply genomic prediction to accel-

erate breeding for enhanced drought tolerance with no 

reductions in yield potential.

Industry-scale comparisons between AQUAmax and 

non-AQUAmax hybrids within the US Corn-Belt over 

thousands of environment–management combinations 

over a period of 6  years (2008–13) demonstrated the 

higher yield of the tolerant hybrids in comparison to a 

large number of different non-AQUAmax hybrids used 

throughout the USA (Gaffney et al. 2015). Other studies 

based on smaller numbers of hybrid comparisons and 

small samples of environments and limited sets of 

management practices (e.g. 2–10 hybrids in 1–10 en-

vironments) have either demonstrated advantages of 

the drought-tolerant hybrids (Hao et al. 2015a, b, 2016; 

Mounce et al. 2016) or did not identify the differences 

(Roth et al. 2013) that were observed when larger num-

bers of comparisons were included in the studies.

Epilogue.  The two examples detailed indicate that crop 

design supported and/or enabled by a CGM is able to 

deal effectively with complex traits and does not re-

quire adoption of a classical ideotype breeding ap-

proach to direct the breeding outcomes. If the CGM is 

used to identify a functional target within the physio-

logical framework of resource capture × resource use 

efficiency × partitioning, then there may be, and it is 

likely that there are, multiple workable solutions to 

achieve the functional target. To clarify this point, con-

sider an example. If the functional target is to make 

an extra 25 mm of water available during reproductive 

development and/or grain-filling then as noted in both 

case studies above this can be achieved through mul-

tiple pathways. Thus, any one ideotype could represent 

one of the multiple workable solutions. Thus, alterna-

tive workable solutions (ideotypes) could be ranked on 

suitable criteria and for the purposes of maintaining ge-

netic and physiological diversity in the germplasm pool 

of the breeding program. To sustain long-term gain, we 

can prefer to design a breeding strategy that focuses on 

selecting multiple workable solutions for the functional 

target. This interpretation is consistent with both the 

sorghum stay-green and maize AQUAmax cases. For 

the AQUAmax case, specific steps were (i) identifying 

the functional target (an extra 25  mm of water post-

flowering), (ii) achieving this target through different 

trait combinations and (iii) selection conducted for yield 

in managed environments where drought was man-

aged to reveal yield differences that were associated 
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with that target through any of many trait combin-

ations that were possible given the trait diversity used 

in the breeding program. Some trait combinations 

were likely more reliable in achieving the 25 mm water 

shifting target and it seems that limited maximum 

transpiration was likely a frequent component, but re-

duced plant size was also exploited to some extent. The 

small plant stature pathway of conserving water may 

have been more risky overall in that it may have limited 

yield more severely in the favourable environments, as 

found for reduced tillering in sorghum. There are likely 

other pathways we still have to discover, such as root 

system efficiency (van Oosterom et al. 2016).

Integrating CGMs With WGP for 
Enhanced Genetic Gain

Recent developments (Technow et al. 2015; Cooper et al. 

2016; Messina et al. 2018) have suggested a pathway to 

progress beyond the examples above, which have a di-

rect focus on specific target traits, modelling and predic-

tion of their effects, and subsequent phenotyping and 

genetic analysis to link with crop improvement. Technow 

et al. (2015) merged the biophysical capability of a CGM 

with an approach to WGP using a Bayesian framework 

(Meuwissen et al. 2001). The resulting CGM-WGP meth-

odology provided a one-step approach to enhancing 

predictive power and capacity to deal with G×E context 

dependencies in breeding systems. Cooper et al. (2016) 

applied this methodology to enable prediction for grain 

yield of maize in drought environments and Messina 

et  al. (2018) demonstrated extensions of the method-

ology to the challenge of predicting new genotypes in 

new environments in the presence of trait-by-trait inter-

actions and G×E interactions influencing yield of maize 

in drought and favourable environments.

This CGM-WGP one-step approach incorporates bi-

ological insight directly within genomic prediction al-

gorithms, in this case a Bayesian methodology, to 

train models using data from multiple environments. 

Messina et  al. (2018) used virtual and experimental 

data from a maize drought breeding program to eval-

uate whether the CGM-WGP methodology enabled im-

proved phenotypic prediction when G×E interactions 

were an important determinant of performance. In the 

simulation study, they generated a virtual population of 

1,000 double haploid (DH) lines with dense genotyping 

and yield tested in two water-limited (WL) and one 

non-water-limited (NWL) environment. Table 1 shows 

the reported correlations of predicted with observed 

(simulated) in each prediction environment for both 

CGM-WGP and the more conventional BayesA methods 

given various sets of environments used for training 

the models. The highlighted contrasts indicate the en-

hanced prediction capacity of the CGM-WGP approach in 

environments outside the training set. For example, the 

CGM-WGP approach is able to maintain high correlation 

for the NWL environment when trained only on the two 

WL environments. This was not the case for the BayesA 

method. The latter relies on an additive linear model of 

genetic effects, which cannot capture this G×E effect. In 

contrast, the CGM-WGP approach, by connecting the ge-

netic profiles via key model coefficients, is able to cap-

ture the G×E effects as they emerge from the non-linear 

dynamics of the CGM. In this study, the CGM was opti-

mized for four key factors that influence both potential 

yield and stress responsiveness in maize—maximum 

leaf (and hence canopy) size, radiation use efficiency 

(RUE), initial assimilate partitioning to the developing 

ear and limited maximum transpiration rate (and hence 

variation in TE). The ability of the CGM-WGP approach 

to better capture the G×E effects in the simulation 

study was also reflected in the results of the empirical 

breeding experiment (Messina et al. 2018).

Two recent comprehensive reviews (van Eeuwijk et al. 

2019; Voss-Fels et al. 2019) have explored avenues for 

accelerating crop genetic gains by integrating advances 

in genomic selection, modelling and phenotyping 

Table 1. Mean prediction accuracy for yield, estimated by the correlation coefficient r (±SD), for CGM-WGP prediction methodology and the 

reference BayesA genomic prediction method for combinations of estimation and prediction environments.

Estimation environment Prediction environment

 WL1 (1988) WL2 (2012) NWL (2010) WL1 (1988) WL2 (2012) NWL (2010)

 CGM-WGP BayesA 

 WL1 + WL2 0.79 ± 0.04 0.75 ± 0.05 0.67 ± 0.08 0.77 ± 0.04 0.51 ± 0.13 −0.50 ± 0.15

 WL2 + NWL 0.72 ± 0.09 0.75 ± 0.06 0.81 ± 0.04 −0.39 ± 0.16 0.26 ± 0.25 0.75 ± 0.07

 WL1 + WL2 + NWL 0.76 ± 0.05 0.71 ± 0.06 0.77 ± 0.04 0.43 ± 0.13 0.53 ± 0.11 −0.01 ± 0.2

WL denotes water-limited environments and NWL is for the non-water-limited environment (Messina et  al. 2018: with permission from 

Elsevier).
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techniques. Both identify the significant potential of the 

approach outlined in the CGM-WGP study above to ex-

tend classical approaches and provide opportunities for 

the redesign of current plant breeding programmes. For 

example, the integral role of a CGM in the phenotypic 

prediction framework is identified as an avenue to focus 

field-based and high-throughput phenotyping effort, 

enhance characterization of target production envir-

onments along with choice of the model training set of 

environments (Rincent et al. 2017) and facilitate design 

strategies to access trait genetic diversity that would 

otherwise be difficult to access if the focus is restricted 

to additive genetic effects.

The Role of Physiological Process Level 
Plant Models in Crop Design

A finer level of granularity in modelling than found in 

advanced crop-level growth and development models is 

needed to predict consequences of manipulation at bi-

ochemical/metabolic pathway or more detailed process 

level. For example, Zhu et al. (2007) developed a com-

plete dynamic model of the C3 photosynthetic carbon 

metabolism pathway to explore whether photosyn-

thetic rate might be increased by altered partitioning of 

resources among the enzymes of carbon metabolism. 

By linking the model with an optimizing algorithm, and 

allowing partitioning between enzymes of a fixed total 

amount of protein-nitrogen to vary, they identified in-

stances where the manipulation of partitioning could 

likely greatly increase carbon gain without any increase 

in the total protein-nitrogen investment in the appa-

ratus for photosynthetic carbon metabolism.

Zhu et al. (2013) extended this model and described 

a detailed model of photosynthetic metabolism that 

includes each discrete process from light capture to 

carbohydrate synthesis in the cell. They demonstrated 

that the e-photosynthesis model effectively mimicked 

the typical kinetics observed in intact C3 leaves of leaf 

CO
2
 uptake, O

2
 evolution and other photosynthetic dy-

namics following perturbations in light, [CO
2
] and [O

2
]. 

Song et  al. (2017) extended this metabolic model to 

canopy level by linking it to a ray tracing model and 

aspects of canopy architecture to simulate light pene-

tration into the canopy at any instant. They explored the 

consequences of manipulating leaf chlorophyll concen-

tration ([Chl]) on canopy photosynthesis (A
c
) over a di-

urnal period and identified putative avenues to increase 

A
c
. The modelling revealed a modest ~3 % increase in 

A
c
 when [Chl] was reduced by 60 %. However, if the leaf 

nitrogen conserved by this decrease in leaf [Chl] were to 

be optimally allocated to other components of photo-

synthesis, A
c
 was increased by over 30 %.

While these process level modelling studies at met-

abolic pathway, leaf and canopy level suggest oppor-

tunities for significant advance in crop-level biomass 

and yield associated with photosynthetic manipulation, 

which is often asserted in these studies, cross-scale 

modelling analyses have identified many interactions 

that confound this simplistic extrapolation when ex-

tended to crop scale (Gu et al. 2014; Wu et al. 2019). Wu 

et al. (2019) identified effects of photosynthetic manip-

ulation on seasonal patterns of resource (e.g. water and 

nitrogen) capture and use on plant water and nitrogen 

status, along with effects on temporal dynamics of crop 

growth and partitioning to grain, that confounded ef-

fects of photosynthetic manipulation on biomass and 

yield. The consequences were dependent on the nature 

of the photosynthetic manipulation and the field pro-

duction environment involved.

The cross-scale model of Wu et al. (2019), constructed 

in the APSIM crop modelling framework, used the parti-

tion of the canopy into sunlit and shade leaves based 

on canopy architecture and solar geometry and quality 

of the indecent radiation (Hammer and Wright 1994; de 

Pury and Farquhar 1997). This was combined with the 

steady state assimilation-internal leaf CO
2
 (A–C

i
) rela-

tionship of the functional FvCB photosynthesis model 

(Farquhar et al. 1980), and consideration of diffusion of 

atmospheric CO
2
 through stomatal pores into the inter-

cellular space (C
i
) and to the Rubisco carboxylation site 

inside chloroplasts. Comprehensive tests on a wide range 

of field crop experiments with this cross-scale model in-

dicated good levels of prediction of crop biomass and 

yield. This suggests the use of the FvCB model combined 

with a biophysical model of gas (CO
2
 and water vapour) 

exchange and the simple and robust canopy upscaling 

approach as an effective avenue to integrate and ex-

plore the consequences of photosynthetic manipulation 

at crop scale (Wu et al. 2019). The link provides an av-

enue for assessing putative changes in photosynthetic 

pathways via their effects on the A–C
i
 curve and gas ex-

change attributes.

In C
3
 crops, such as wheat, photorespiration is a con-

tributor to loss of assimilated carbon and has been high-

lighted as a target for photosynthetic enhancement 

(Long et al. 2006, 2015). Photorespiration occurs when 

Rubisco oxygenates RuBP and generates by-products 

that require energy to process with concomitant releases 

of assimilated carbon. Recent studies with transgenic 

plants have demonstrated enhancements in leaf pho-

tosynthetic CO
2
 assimilation (South et al. 2019) in trans-

genic tobacco plants engineered to use an alternative 

photorespiration pathway. Assuming that the observed 

net effects on the A–C
i
 curves of the transgenic plants 

could be attributed to the alternative photorespiration 
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pathway, it is possible to simulate the anticipated con-

sequences on crop biomass and yield using the cross-

scale model of Wu et al. (2019).

The A–C
i
 curve reported for the transgenic tobacco 

plants by South et al. (2019) shows a 10 % decrease in 

the chloroplastic CO
2
 compensation point (Γ*), and a 20 

% increase in the maximum quantum efficiency (QE). 

However, there was also a concomitant 35 % increase 

in the maximum Rubisco carboxylation rate at 25  °C 

(V
cmax25

). It is possible to simulate the consequences 

of these effects on wheat yield if we assume that the 

same relative effects were to occur in a current elite 

crop cultivar. A simulation study was designed to quan-

tify how the three aspects of the modified A–C
i
 curve, 

when added sequentially, might affect wheat yield in a 

standard production environment. Wheat growth and 

yield simulations were conducted using standard agro-

nomic management practices and the long-term historic 

(1900–2015) weather data for Dalby, in the Australian 

wheat belt. This approach allowed sampling of a wide 

range of environmental conditions (i.e. solar radiation, 

temperature, rainfall) associated with annual climatic 

variability at this location. Simulations were conducted 

for each year of the climate record assuming a quick 

maturing variety was planted on May 15 every year with 

a plant density of 150 plants m−2 and a row spacing of 

40 cm. The soil was a representative 180 cm deep black 

vertosol as found in the region. Hundred millimetres of 

plant available water were assumed at planting and ini-

tial soil N status and applied fertilizer N were set to sim-

ulate non-limiting nitrogen conditions.

Simulated yields with standard photosynthetic at-

tributes for wheat varied from 1 to 7 tonnes per hectare  

(t/ha) with most years having yield of <4 t/ha (Fig. 5), 

which reflects the common incidence of water limita-

tion in this production environment. Incorporating the 

decrease in the chloroplastic CO
2
 compensation point 

(Γ*) associated with reduced photorespiration into the 

cross-scale model had only a small effect (~1.5 %) on 

the simulated yield (Fig. 5A). This was consistent with 

the experimental finding that Γ* alone was not the main 

contributor to anticipated improved crop performance 

(South et  al. 2019). It was also consistent with a the-

oretical analysis of modified photorespiration using an 

extended metabolic model based on Zhu et al. (2007), 

which showed only small changes in the A–C
i
 curve (Xin 

et al. 2015). The further addition of the increase in the 

maximum QE (+20 %) due to the lower energetic re-

quirement of the photorespiration modified plants (Fig. 

5B) resulted in a greater level of improved yield (~4 %), 

especially at yield levels >4 t/ha. The modelling sug-

gested that this effect enhanced the electron-transport 

limited rate of leaf CO
2
 assimilation and contributed to 

canopy biomass growth and crop yield via that effect. 

This was also consistent with the theoretical photosyn-

thetic light response analysis of photorespiratory mod-

ification by Xin et al. (2015). Adding the experimentally 

observed increase in V
cmax25

 (+35 %) had a slight further 

effect on yield (Fig. 5C), which is consistent with our pre-

vious findings that wheat canopy photosynthesis and 

crop biomass growth is predominantly limited by elec-

tron transport rate (Wu et al. 2018, 2019). Overall, the 

simulated change in yield differed among the reported 

effects on the A–C
i
 curve, ranging from a slight yield pen-

alty to the greatest increase of over 0.5 t/ha improve-

ment in some high-yielding (>4 t/ha) environments 

when the complete set of A–C
i
 attributes associated 

with the photorespiration transgenic lines was incorpo-

rated (Fig. 5C).

The simulation study suggests that the degree of 

yield improvement associated with changes to the A–C
i
 

curve observed from the engineering targeting photo-

respiration depends on the type of photosynthetic en-

hancement and the environmental context of the crop. 

Figure 5. Simulated change in wheat yield with sequential addition of effects on assimilation associated with photorespiratory pathway 

modifications described by South et al. (2019). (A–C) Scenarios indicating effects on simulated grain yield due to the additive effects of (A) Γ*, 

the chloroplastic CO
2
 compensation point, (B) QE, the maximum quantum efficiency and (C) V

cmax25
, the maximum Rubisco carboxylation rate 

at 25 °C. The slope of the dotted line in each panel indicates the average percentage change in yield for that combination. 
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Greater yield improvement occurred with enhance-

ments in the QE and only in high-yielding conditions. 

While there is a wide range of potential outcomes, sig-

nificant yield advance is predicted on some occasions. 

This result highlights the value of linking detailed under-

standing and modelling of biochemical/metabolic path-

ways to algorithms that can estimate the likely value at 

crop yield level of genetic manipulation of the pathway. 

Where this is possible, even with some degree of uncer-

tainty, it can add some realistic grounding to discussion 

in improvement programs contemplating use of genetic 

modification approaches.

Implications for Next-Generation Crop 
Modelling

The examples detailed above indicate a diversity of po-

tential roles for crop modelling in supporting advance in 

crop improvement. Crop models have potential to un-

ravel environmental and genetic context dependencies 

in pursuing more rapid genetic gain from quantitative 

genomic prediction via the development of CGM-WGP 

approaches. They have capacity to dissect complex 

adaptive traits to more amenable determinants and 

thus inform phenotyping for genetic analysis as well as 

providing the integrative framework to predict conse-

quences of G×E×M interactions in production environ-

ments (Hammer et al. 2016a, b; Chenu et al. 2017). This 

links with the ability to inform targets for crop design 

at both the plant trait level for quantitative approaches 

and at the gene network and metabolic pathway level 

for possibilities with plant engineering (Fig. 2).

So what does this mean for developing the next gen-

eration of crop models needed to advance crop improve-

ment? Do we require a range of models that reflect the 

varying levels of biological organization at play in these 

approaches to crop improvement? Future advances in 

crop improvement will be underpinned by significant in-

creases in genomic and phenomic data, and advances 

in analytical technologies (Ramstein et al. 2019), as well 

as advance in process understanding at various levels of 

biological organization. While the notion of linking trait 

genetic architecture with crop growth models to facil-

itate G-to-P prediction has already been significantly 

developed (Yin et al. 2005; Letort et al. 2008; Uptmoor 

et al. 2008; Chenu et al. 2009; Boote et al. 2016; Yin et al. 

2016), there is some concern that model structure is not 

adequate for this purpose. At the outset of the putative 

use of crop models in breeding, Hammer et  al. (2002) 

and Yin et al. (2004) noted the need for enhanced plant/

crop model structure if models were to play an integral 

role. There has been some progress towards redesign of 

crop models so that they incorporate more physiological 

feedback features and structural rigour so that processes 

can be better linked to genetics (Hammer et  al. 2010; 

Boote et al. 2016), but it is largely accepted that more 

is needed (Yin et al. 2016; Wang et al. 2019). However, 

there is also the need for parsimony and speed if models 

are to form integral components of the quantitative ap-

proaches embedded in modern plant breeding programs 

(Messina et al. 2018). Given that changes in yield associ-

ated with genetic gain in elite breeding populations are 

relatively small and often of uncertain origin, the issue 

becomes not one of predicting yield of each individual 

within that population, but rather of linking observed 

phenotypic variation with plausible differences in poten-

tially causal traits using a dynamic CGM.

In addition to the rapid advance in quantitative ge-

nomic prediction technologies, there has also been a 

commensurate development in the understanding of 

metabolic pathways and plant gene networks at the 

molecular level. This offers an opportunity to link the 

physiology of the plant to mechanisms at the mo-

lecular level, and potentially thereafter to genome 

sequences (Chew et  al. 2017). For example, for pho-

tosynthesis, Zhu et  al. (2007, 2013) have captured 

this enhanced process understanding in a detailed 

model of fluxes and used it to consider approaches 

to pathway optimization. Much of this advance in bi-

ological realism has occurred at the (sub)cellular level, 

although perspectives to develop integrative model-

ling platforms to facilitate whole plant simulations 

by linking gene networks, protein synthesis, meta-

bolic pathways, physiology and growth are emerging 

(Marshall-Colon et  al. 2017). However, there has also 

been advance in biological realism associated with rep-

resentation of ecophysiological mechanisms at plant/

crop level (Tardieu 2010). But attempts to connect the 

detailed (sub)cellular models with less complex mech-

anistic crop models at the supra-cellular scale remain 

limited. Hence, the downward control from the organ 

or plant level on the processes taking place within the 

cell, which is regulated via hormonal or other signalling 

cascades, is not well captured (Poorter et al. 2013).

Here, we argue that crop modelling for biological re-

alism and parsimony do not need to be independent 

and perhaps should not be. Biological realism in crop 

modelling requires formalisms based on insights on 

ecophysiological mechanisms at plant/crop scale as 

well as on insights on metabolic processes at cellular 

scale. Parsimony in crop modelling requires frugality of 

assumptions and detail in order to achieve robust pre-

dictions of crop growth and yield—as simple as possible 

but no simpler—across diverse genotypes and environ-

ments. Multiscale models that operate effectively across 

levels of biological organization provide an avenue for 
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advance. Chew et al. (2014) set out a multiscale model 

for arabidopsis that uses a modular approach to link 

component modules that are characteristic of different 

research domains, such as molecular systems biology 

(gene regulatory network), crop science (phenology, 

organ source-sink relations) and physiology (photosyn-

thesis, respiration, metabolism). Wu et al. (2019) set out 

a cross-scale model for major crop species that they 

used to assess effects of photosynthesis manipulation 

on crop yield across diverse production environments. 

These approaches capture the feed-forward and feed-

back interactions across levels of biological organization 

in a crop system that determine its functional dynamics.

Models structured to readily utilize algorithms oper-

ating at varying levels of biological organization, while 

using coding and computational advances to facilitate 

high-speed simulation, could well provide the next gen-

eration of crop models needed to support and enhance 

advances in crop improvement technologies. Hierarchical 

algorithm nesting is a means to link approaches oper-

ating at differing levels of complexity and biological or-

ganization while retaining biological realism at all levels. 

For example, the common use of RUE to drive crop 

growth in many crop models operating on a daily time 

step can be expanded to incorporate photosynthesis-

light and A−C
i
 responses of sunlit and shaded canopy 

components throughout the day (Hammer and Wright 

1994; Wu et al. 2019) or further to incorporate detailed 

light ray tracing and canopy architecture (Song et  al. 

2017). The finer resolution adds enhanced realism, and 

hence an ability to inform the simpler approaches, but 

it also adds complexity and difficulty in parameteriza-

tion that limits predictive capacity and utility. Models 

that integrate understanding of processes across levels 

of biological organization, providing insight into key phe-

nomena and responses that emerge at higher levels, will 

likely be most valuable. Messina et al. (2019) detail a dy-

namic model for cohorting of reproductive structures 

along the ear in maize while accounting for carbon and 

water supply and demand balances. While the model 

operates at an organ level, it can generate well-known 

emergent phenotypes such as the relationship between 

plant growth, anthesis-silking interval, kernel number 

and yield, as well as ear phenotypes under drought (e.g. 

tip kernel abortion). Hence, in addition to advancing 

our understanding of maize reproductive biology, this 

predictive capacity supports avenues for breeding and 

increasing productivity in maize. This interdependence 

between models formulated at different levels of com-

plexity exemplifies what is required to link biological re-

ality and parsimony in modelling. Simpler parsimonious 

models require the ecophysiological rigour to incorpo-

rate, or generate, observed phenotypic responses at 

plant/crop scale. Models that are more complex should 

be able to generate, or inform, the structure and parame-

terization of the simpler models. The dialogue generated 

across levels of scale provides the basis for co-learning 

and the opportunity for evolution of component algo-

rithms as knowledge advances at both molecular and 

ecophysiological levels. Chew et al. (2017) discuss how 

multiscale modelling might provide a bridge between 

plant systems biology and crop systems modelling at 

various levels with benefits for both fundamental and 

applied research.

Advanced software platforms capable of supporting 

this approach to crop modelling are emerging. Brown 

et  al. (2014) set out the design of the generic plant 

modelling framework (PMF), now operational in the 

APSIM cropping systems modelling platform (Holzworth 

et al. 2014), that utilizes a modular approach to max-

imize code reuse for model component processes and 

allow flexibility in model structure. The PMF can thus be 

used to develop models of different complexities and 

cater for the hierarchical algorithm nesting concept in 

achieving that. For model developers operating at dif-

ferent levels of complexity to have confidence in using 

such interdependent models for crop improvement, it 

must be demonstrable that the model is robust, accu-

rate and reliable. Rigorous validation and testing of pre-

dictive acumen need to be part of an ongoing model 

development and release process. Brown et  al. (2018) 

and Wu et  al. (2019) exemplify what is required using 

detailed examples for crop model improvement in the 

APSIM platform. The Arabidopsis Framework Model 

(Chew et al. 2017) was also developed using a modular 

approach that enabled evaluation of components de-

veloped at differing levels of resolution. Computational 

frameworks, such as OpenAlea (Pradal et al. 2008) and 

yggdrasil (Lang 2019), which have been specifically de-

signed to assist with integrating model components for 

plant models via user-friendly interfaces, provide an av-

enue to explore and compare modelling approaches.

Beyond the modelling platforms capable of operating 

technically across levels of biological organization, most 

likely the trans-scale and transdisciplinary dialogue en-

gendered in achieving them will drive the effective use 

of crop modelling in crop improvement. This requires a 

culture of connectivity, trust and mutual respect among 

diverse operatives operating at differing biological 

levels and in different disciplines. Sinclair et  al. (2004) 

noted that the successful efforts up to that time to use 

physiology to improve crop yield, all involved multi-

disciplinary effort. Chew et  al. (2017) noted that their 

integrative modelling operating at the interface of sev-

eral research communities had the potential to facilitate 

communication and draw together the different types 
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of understanding from fundamental plant research and 

crop models. Poorter et al. (2013) identified the need for 

connection between supra-cellular (phenotype down) 

and sub-cellular (gene network up) systems biology 

approaches to facilitate advance. Yin and Struik (2008) 

have advocated the need to operate across levels of 

biological organization to shape their ‘crop systems bi-

ology’. The need for effective transdisciplinary dialogue 

and connectivity is clear. Committed teams with shared 

vision and effective leadership targeting the building of 

cross-scale models with a clear purpose provide a means 

to achieve this. However, innovation in the funding and 

evaluation of scientific research will be required to sup-

port any move to operate with a true cross-disciplinary 

culture of connectivity.
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