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Abstract: Circular RNA (circRNA) is an intriguing class of RNA with covalently closed-

loop structure and is highly stable and conservative. As new members of the ncRNAs, the

function, mechanism, potential diagnostic biomarker, and therapeutic target have raised

increased attention. Most circRNAs are presented with characteristics of abundance, stability,

conservatism, and often exhibiting tissue/developmental-stage-specific manner. Over 30,000

circRNAs have been identified with their unique structures to maintain stability more easily

than linear RNAs. An increased numbers of circRNAs are dysregulated and involved in

several biological processes of malignance, such as tumorigenesis, growth, invasion, metas-

tasis, apoptosis, and vascularization. Emerging evidence suggests that circRNAs play impor-

tant roles by acting as miRNA sponge or protein scaffolding, autophagy regulators, and

interacting with RNA-binding protein (RBP), which may potentially serve as a novel

promising biomarker for prevention, diagnosis and therapeutic target for treatment of

human cancer with great significance either in scientific research or clinic arena. This review

introduces concept, major features of circRNAs, and mainly describes the major biological

functions and clinical relevance of circRNAs, as well as expressions and regulatory mechan-

isms in various types of human cancer, including pathogenesis, mode of action, potential

target, signaling regulatory pathways, drug resistance, and therapeutic biomarkers. All of

which provide evidence for the potential utilities of circRNAs in the diagnosis and treatment

of cancer.

Keywords: circRNA, cancer, miRNA sponge, protein scaffolding, gene splicing and

transcription, biomarker, therapeutic target

Introduction
CircRNA has a covalent closed-loop structure and is highly stable and conservative

special RNA, which exists widely in various tissues and organs with variable

expression levels, and broadly participates in the occurrence and development of

diseases including cancer in various ways. Currently, with the development of deep

RNA sequencing (RNA-seq) technologies and novel bioinformatic approaches,

over 30,000 circRNAs have been identified with the unique structures and have

attracted increasing attention given its high biological and functional interest.

CircRNAs are resistant to exonuclease RNase R and maintain stability more easily

than linear RNAs. Increasing evidences have shown that part of circRNAs contain-

ing miRNA binding sites may act as sponge to interact with miRNA and regulate

its biological functions, thereby affecting the expression and function of its down-

stream target genes.1,2 CircRNAs with binding sites of enzymes and substrates may

act as proteins scaffolding to mediate the interaction of protein-protein. For
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example, circFoxo3, containing the binding sites of mouse

double minute 2 (MDM2) and p53, was involved in the

interaction between MDM2 and p53 by functioning as

a protein scaffold.3,4 Moreover, circRNA also play impor-

tant roles in regulating biological functions of cancers

through involvement in gene alternative splicing, tran-

scription and translation, cell autophagy and interacting

with RNA-binding proteins (RBPs).4–6 In this review, we

describe the major biological functions and clinical rele-

vance of circRNAs, as well as its expression and regula-

tory mechanisms in various types of human cancer

including pathogenesis, mode of action, potential target,

signaling regulatory pathways, therapeutic biomarkers,

drug resistance and clinical application.

Major Features of circRNAs
CircRNAs, first identified in RNA viruses in 19767 and

once considered “splicing noise” in organisms, have

recently become interest research focus as the results of

improvements in high-throughput sequencing technology

and bioinformatics, circRNAs have become a research

hotspot.4 As a new type of RNA molecule, circRNAs are

single-stranded circularized RNA with no 5′ caps and 3′

poly(A) tails; and commonly generated from the precursor

mRNA (pre-mRNA) by a process called back-splicing in

which an upstream acceptor site is joined with a donor

site.8 Most circRNAs are evolutionarily conserved across

species.9 The vast majorities of circRNAs are often located

in the cytoplasm, which are derived from known protein-

coding genes containing one or several exons that are

toward the 5′ of the gene and are flanked by longer introns.

The long introns containing flank regions that will become

circRNAs usually contain specific sequences which induce

circRNA formation either by complementarity and/or by

binding to circRNA-promoting factors, and are generally

expressed in cell type-specific and tissue-specific

manners.10,11 Based on the different structures, and cycling

mechanisms, circRNA molecules are divided into four

categories: exonic circRNAs (ecRNAs), intronic

circRNAs (ciRNAs), exon-intron circRNAs (eIciRNAs),

and intergenic circRNAs. Unlike linear RNAs, circRNAs

are stable and resistant to exonucleases (including RNase

R) due to the lack of a poly(A) tail and have longer median

half-life than that of their linear mRNAs due to the lack of

free 3′ or 5′ ends, which makes them resistant to regular

mechanisms of linear RNA decay.10–12

Functions of cirRNAs

Acting as miRNA Sponges
Accumulating evidence has revealed that numerous

circRNAs regulate gene expression by functioning as

miRNA sponge molecules. Compared with other compet-

ing endogenous RNAs (ceRNAs) (such as lncRNA or

pseudogenes), circRNAs exhibit a greater preference to

bind to miRNAs and are called “super sponges.”13 Many

circRNAs contain miRNA response elements and binding

sites, therefore, acting as “miRNA sponge” is the most

important function and mechanism of regulating the

growth and progression of human cancer (Figure 1). For

example, circ_0004771 was identified to restrain cell pro-

liferation and accelerate cell apoptosis in breast cancer

cells. circ_0004771 acted as a miRNA sponge to decrease

expression of miR-653, this in turn targeted mesenchymal

marker zinc finger E-box-binding homeobox 2 (ZEB2)

gene expression by binding to its 3ʹ-untranslated region

(3ʹUTR) of ZEB2 mRNA.14 In addition, circAGFG1 was

correlated with advanced clinical stage, poor prognosis

and pathological grade of triple-negative breast cancer

patients, mechanistically, circAGFG1 might directly

sponge miR-195-5p, which targeted and repressed cyclin

E1 expression.15

Regulating Gene Splicing, Transcription

and Translation
Although most circRNA is located in cytoplasm, some are

still existed in nucleus. The part of circRNA retained in

nucleus acted as transcriptional or splicing regulators to

interfere with gene expression and involved in alternative

splicing and transcription process (Figure 2). For example,

circPOK, derived from the Zbtb7a gene in tumor cells,

was involved in gene transcription by encoding the poke-

mon transcription factor, thereby regulating the pro-

proliferative and pro-angiogenic factors through activating

the interleukin enhancer-binding factor 2 and 3 complex

(ILF2/3) complex.16 Moreover, circITGA7 was found to

increase the transcription of its host gene integrin alpha 7

(ITGA7) by inhibiting a transcription factor RAS-

responsive element-binding protein 1 (RREB1) through

Ras pathway.17 In addition, circ-UBR5 was significantly

decreased in non-small cell lung cancer (NSCLC) tissues

and associated with tumor differentiation. Mechanically,

circ-UBR5 might be involved in RNA splicing regulatory

process through binding to splicing regulatory factor QKI,

NOVA alternative splicing regulator 1 (NOVA1) and U1
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small nuclear RNA (snRNA) in the NSCLC cells.18

Furthermore, circRNA containing AUG sites and open

reading frame (ORF) could be driven by the internal ribo-

some entry site (IRES) and translated into the functional

protein (Figure 2). However, the relevance of role of

circRNA translational function needs to be further

explored in terms of mediating occurrence and progression

of human cancer.3,4 Overall, gene alternative splicing,

transcription and translation are important processes to

exert biological functions in cancers, while circRNA

plays a crucial role in these processes (Figure 2).

Acting as Autophagy Regulator
Autophagy is a highly conserved and successive self-

degradative process that plays an important role in cellular

stress responses and survival, which often occurs during

tumorigenesis, progression, metastasis and chemotherapy

leading to drug resistance in the treatment of cancer.19,20

Emerging evidence showed that circRNA was involved in

the tumor autophagy affecting occurrence and progression of

human cancer (Figure 2). For example, circHIPK3 was found

to act as an autophagy regulator in STK11 mutant lung

cancer cells. The results showed that missing expression of

circHIPK3 could induce cell autophagy through regulating

the miR124-3p/signal transducer and activator of transcrip-

tion 3 (STAT3)/protein kinase AMP-activated catalytic sub-

unit alpha 2 (PRKAA)/AMP-activated protein kinase

(AMPKα) signaling regulatory pathways. Moreover, the

ratio of circHIPK3 to linHIPK3 (liner HIPK3) reflected the

level of autophagy in cancer cells.21 Moreover, circ_104075

was correlated with apoptosis and autophagy of glioma cells.

Overexpression of circ_104075 neutralized the inhibitory

effects of matrine on proliferation and promoted the cell

autophagy in glioma U251 cells.22 Nevertheless, the research

of circRNA in the tumor autophagy process is still in the

initial stage, the true role and function, potential mechanism

underlying this required to be explored in the future.

Interacting with RNA-Binding Proteins

(RBPs) and Acting as Protein Scaffolding
RNA-binding proteins (RBPs) are a group of proteins

widely involved in gene transcription and translation.

Ago2

miRNAs

Target mRNA -UTR

Ago2

RBPs 

CircRNA

Complex

+

Protein

CircRNA

-UTR

miRNAs

Target gene

A

B

Figure 1 circRNAs involve in cancer progression by acting as “miRNA sponge” or protein scaffolding. (A) circRNAs competitively bind to miRNA with the participation of

Ago2 protein by acting as “miRNA sponge,” consequently release the target gene of miRNA. (B) circRNAs directly interact with RNA-binding proteins (RBPs), or mediate

the interaction between proteins by serving as protein scaffolding to regulate the expression of downstream targets.
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Increasing evidences suggested that circRNA could bind

RBPs and affect its function23 (Figure 1). CircRNA could

also sequester, store and sort RBPs and thus control the

intracellular localization.24,25 Conversely, RBPs could also

regulate the function and expression level of circRNA.

RNA-binding protein 3 (RBM3) dynamically regulated

the production of SCD-circRNA2, rooted in the 3ʹ-UTR

of the stearoyl-CoA desaturase (SCD) gene, thereby ulti-

mately regulating proliferation in hepatocellular carcinoma

cells.26 Recent studies have shown that RBP quaking

could also modulate the formation of circRNA through

forming RNA-protein complexes (RPCs).27 Moreover,

RNA-binding motif protein 20 (RBM20) was associated

with the formation of subset of circRNAs and formed the

class of RBM20-dependent circRNAs.28 Thus, circRNA

and RPBs are closely associated with each other in the

occurrence and development of cancer. Overall, circRNAs

are abnormally expressed and related to the occurrence

and progression of human cancer via influencing cell

growth, proliferation, migration, invasion, and other patho-

logical processes (Table 1). In addition, circRNAs were

also correlated with clinical relevance, such as TNM stage,

lymph node metastasis, differentiation, tumor size and

overall survival (Table 2). All of these provided evidences

for the potential biomarker and therapeutic target in the

diagnosis and treatment of human cancers. In addition to

interacting with RBPs, another function of circRNA is its

interaction with protein. It can function as protein sponges

by adsorbing one or more proteins via the binding sites,

thereby directly mediating the interaction between proteins

by acting as protein scaffolding, thus regulating gene

expression (Figure 1). For example, cyclin-dependent

Pol 

Gene sequence

Regulate Splicing

and transcription

IRES 

Proteins

Lysosome

Autolysosome

Complex

CircRNA

U1 snRNA

RAS-RAF-JNK pathway

Autophagosome

Substrate

Degradation

A B

Figure 2 circRNAs involve in cancer progression by regulation of gene splicing, transcription, translation and cell autophagy. (A) circRNAs influence the progression of

human cancers by regulating gene splicing, transcription and translation via interaction with U1 small nuclear RNA (snRNA), RNA polymerase II (Pol II), and alternative

splicing regulator. Moreover, circRNA containing AUG sites and open reading frame (ORF) driven by the internal ribosome entry site (IRES) may translate into the functional

protein. (B) circRNAs are associated with the tumor cell autophagy through regulating the autophagy-related signaling pathways.

Tang and Hann Dovepress

submit your manuscript | www.dovepress.com

DovePress

OncoTargets and Therapy 2020:132070

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Table 1 Expression and Functional Characterization of circRNAs in Cancers

Type of Cancers Name of

circRNAs

Levels Target

Genes

Mode of

Functions

Functional Phenotypes References

Lung cancer Circ-UBR5 Down QK/NOVA1/

U1 snRNA

Regulate

RNA splicing

Correlate with tumor differentiation [18]

CircNOL10 Down SCML1 Regulate

transcription

Inhibit cell proliferation and promote cell

apoptosis

[38]

CircPTPRA Down miR-96-5p MiRNA

sponge

Suppress EMT and invasion [39]

Circ_0012673 Up miR-22 MiRNA

sponge

Promote cell proliferation [53]

Circ_0007766 Up Cyclin Cell cycle

regulator

Induce the cell proliferation and

migration

[59]

Breast cancer CircRNA-MTO1 Down TRAF4/Eg5 Regulate

gene

translation

Suppress cell viability and reverse

monastrol resistance

[67]

CircTADA2A-E6 Down miR-203a-3p MiRNA

sponge

Suppress breast cancer progression and

metastasis

[68]

CircPLK1 Up miR-296-5p MiRNA

sponge

Promote cell growth and invasion [70]

CircBMPR2 Down miR-553 MiRNA

sponge

Inhibit cell proliferation migration and

invasion

[72]

Colorectal cancer CircITGA7 Down ITGA7 Regulate

gene

transcription

Inhibit cell growth and metastasis [17]

Circ_0009361 Down miR-582 MiRNA

sponge

Suppress colorectal cancer progression [81]

Circ_001569 Up miR-145 MiRNA

sponge

Promote cell proliferation and invasion [88]

Esophageal

Squamous Cell

Carcinoma

Circ-PRKCI Up miR-3680-3p MiRNA

sponge

Stimulate cell migration and proliferation [95]

CiRS-7 Up miR-7 MiRNA

sponge

Promote growth and metastasis [98]

Circ_0000337 Up miR-670-5p MiRNA

sponge

Promote cell proliferation, migration and

invasion

[99]

Gastric cancer CircYAP1 Down miR-367-5p MiRNA

sponge

Suppress cell proliferation and invasion [105]

Circ-NOTCH1 Up miR-637 MiRNA

sponge

Enhance cell proliferation and invasion;

reduce apoptosis;

[108]

Circ-DONSON Up NURF

complex

Protein

scaffolding

Facilitate gastric cancer growth and

invasion

[119]

CircAGO2 Up HuR protein Interact with

RBPs

Promote the tumorigenesis and

aggressiveness

[120]

Hepatocellular

carcinoma

Circ_0101432 Up miR-1258/miR-

622

MiRNA

sponge

Inhibit cell apoptosis, promote cell

proliferation and invasive

[126]

CircZNF652 Up miR-203/miR-

502-5p

MiRNA

sponge

Promote cell metastasis [127]

Circ_101280 Up miR-375 MiRNA

sponge

Promote cell proliferation and suppress

apoptosis

[134]

CircSLC3A2 Up miR-490-3p MiRNA

sponge

Promote cell proliferation and invasion; [135]

(Continued)
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Table 1 (Continued).

Type of Cancers Name of

circRNAs

Levels Target

Genes

Mode of

Functions

Functional Phenotypes References

CircARSP91 Down ULBP1 Immune-

association

Increase cell susceptibility to NK cell

cytotoxicity;

[137]

Bladder cancer CircBCRC-3 Down miR-182-5p MiRNA

sponge

Suppress cell proliferation [150]

CircUVRAG Up miR-223 MiRNA

sponge

Inhibit cell growth and metastasis [151]

CircGprc5a Up Gprc5a-

Peptide

Peptide-

dependent

manner

Promote Bladder Oncogenesis and

Metastasis

[156]

Pancreatic cancer Circ_0006215 Up miR-378a-3p MiRNA

sponge

Promote cell viability, apoptosis and

migration

[161]

CircRNA_100782 Up miR-124 MiRNA

sponge

Promote cell proliferation [162]

CircZMYM2 Up miR-335-5p MiRNA

sponge

Promote cell proliferation and induce cell

apoptosis

[163]

CircRHOT1 Up miR-26b/miR-

125a/miR-330

MiRNA

sponge

Promote cell proliferation and cell

invasion

[164]

Papillary thyroid

carcinoma

CircBACH2 Up miR-139-5p MiRNA

sponge

Promote cell proliferation, migration and

invasion

[172]

CircRAPGEF5 Up miR-198 MiRNA

sponge

Promote cell proliferation, migration and

invasion

[173]

CircRNA_102171 Up CTNNBIP1 Protein

scaffolding

Promote cell proliferation, migration and

invasion;promote cell apoptosis.

[175]

Circ-ITCH Down miR-22-3p MiRNA

sponge

Suppress cell proliferation and invasion;

Promote cell apoptosis

[176]

Osteosarcoma CircFAT1 Up miR-375 MiRNA

sponge

Promote cell migration, invasion and

tumorigenesis

[186]

CircTADA2A Up miR-203a-3p MiRNA

sponge

Promotes tumor progression and

metastasis

[188]

Glioblastoma Circ_0001946 Down miR-671-5p MiRNA

sponge

Reduce cell proliferation, migration [191]

CircNT5E Up miR-422a MiRNA

sponge

Promote cell proliferation, migration and

invasion

[193]

Circ-SHPRH Down SHPRH-146aa Protein

translation

Suppress tumor progression and

tumorigenesis

[196]

Ovarian cancer circPUM1 Up miR-615-5p

and miR-6753-

5p

MiRNA

sponge

Promote cell proliferation, migration and

invasion and inhibited cell apoptosis

[199]

circWHSC1 Up miR-145 and

miR-1182

MiRNA

sponge

Promote cell proliferation, migration and

invasion and inhibited cell apoptosis

[200]

circ_0061140 Up miR-370 MiRNA

sponge

Promote cell proliferation, migration and

the EMT

[207]

Prostate cancer circUCK2 Down miR-767-5p MiRNA

sponge

Inhibit cell invasion

and proliferation

[217]

circFOXO3 Up miR-29a-3p MiRNA

sponge

Promote cell cycle, proliferation and

inhibit cell apoptosis

[218]

(Continued)
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kinase 2 (CDK2) and p21 proteins were associated with

cell cycle regulation in tumor. CircFOXO3 could mediate

the formation of circFOXO3-p21-CDK2 ternary complex

by serving as scaffolding, which blocked the function of

CDK2, thereby affecting the cell cycle progression of

cancer.29

circRNAs in Human Cancers

Lung Cancer
Lung cancer is the leading cause of cancer death and

accounts for approximately 13% of all cancer cases and

23% of all cancer-related deaths worldwide.30 Increasing

evidence suggested that circRNA might participate in the

cell proliferation, migration and invasion of lung cancer,

and serve as an important diagnostic marker for the treat-

ment of lung cancer.31–37 For example, circNOL10

increased the expression of transcription factor sex comb

on midleg-like 1 (SCML1) by inhibiting ubiquitination and

regulating the humanin (HN) polypeptide family through

affecting multiple signaling pathways. This ultimately

inhibited proliferation and induced cell cycle arrest in lung

cancer cells.38 Recent study revealed that circPTPRA sup-

pressed the epithelial-mesenchymal transition (EMT) and

metastasis of NSCLC cells by sponging miR-96-5p, thereby

regulating the expression of downstream tumor suppressor

ras association domain family 8 (RASSF8) gene.39 In line

with this, other circRNAs, such as circP4HB, circMTO1,

circ_0026134, circ-FOXM1, circ_003645, circ_0006427,

circABCB10, circ-BANP, circFADS2, circ_103809,

circMAN2B2, circ_0012673 and circ_0020123 showed

similar roles that were served as sponge of miRNAs to

regulate the occurrence and development of lung

cancer.40–54 Emerging evidences demonstrated that cancer-

associated chromosomal translocations and encoding fusion

gene could generate circRNA, contributing to

tumorigenesis.55 For instance, SLC34A2-ROS1 fusion

gene could produce circRNA F-circSR, which promoted

cell migration of NSCLC cells.56 CircRNA F-circEA-2a,

and circRNAF-circEA deriving from oncogenic fusion gene

echinoderm microtubule-associated protein-like 4-anaplas-

tic lymphoma kinase (EML4-ALK), enhanced the cell

migration and invasion in NSCLC, and might act as

a novel liquid biopsy biomarker in NSCLC.57,58

Moreover, some circRNAs regulated cell pathogenesis,

development and prognosis of lung cancer by affecting the

cell cycle-related signaling pathway. Circ_0007766 induced

the proliferation and migration of lung cancer cells through

regulating and modulating the cyclin D1/cyclin E1/CDK4

regulatory axis.59 Also, others were involved in the influen-

cing the expression of apoptosis-related protein,

circVANGL1 contributed to proliferation, migration, inva-

sion, and progression of NSCLC via competing endogenous

RNA (ceRNA), becoming a sink for miR-195 thereby mod-

ulating the expression of Bcl-2 in NSCLC cells.60 Overall,

circRNA have been involved in the pathogenesis, develop-

ment and prognosis of lung cancer, and provided potential

biomarker and prospective targets for lung cancer treatment.

Breast Cancer
Breast cancer (BC) is one of the leading causes of cancer-

related mortality and the second most common cancer in

females. Recently, an increasing number of circRNAs have

been identified and correlated with clinical-pathological

characteristics in the progression of BC. CircRNAs also

participated in the biological functions and progression

of BC, such as tumorigenesis, proliferation, apoptosis, cell

cycle, vascularization, invasion, migration and metastasis.61–

65 For example, circ_001569 was identified to be associated

with clinical-pathological features and prognosis in BC

patients, and knockdown of circ_001569 remarkably

Table 1 (Continued).

Type of Cancers Name of

circRNAs

Levels Target

Genes

Mode of

Functions

Functional Phenotypes References

circHIPK3 Up miRNA-338-

3p

MiRNA

sponge

Inhibit the proliferative and invasive [220]

Myeloid leukemia circ_0009910 Up miR-20a-5p MiRNA

sponge

Promote cell proliferation and induced

apoptosis

[229]

circ_100290 Up MiR-203 MiRNA

sponge

Promote cell proliferation and inhibit

apoptosis

[230]

Note: The expression, molecular targets, functional phenotypes of cirRNA in different cancers were summarized.
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Table 2 The Roles in Clinical Relevance and Prognosis of circRNAs in Human Cancers

Type of Cancers Name of

circRNAs

Levels Clinical Relevancies References

Lung cancer Circ_0016760 Up Associated with advanced TNM stages, lymph node metastasis and adverse

prognosis

[42]

CircFADS2 Up Correlated with advanced TNM stage, lymph node metastasis, poor

differentiation, tumor size and shorter overall survival

[46]

Circ-FOXM1 Up Associated with lymph node invasion, higher TNM stage and unfavorable

prognosis.

[48]

CircMTO1 Down Associated with malignant features and prognosis [50]

Circ_003645 Up Related to advanced TNM stages, positive lymph node invasion and

unfavorable prognosis

[51]

Circ_0020123 Up Correlated with positive lymph node metastasis, advanced TNM stages, and

adverse prognosis

[54]

CircVANGL1 Up Associated with tumor size, TNM stage and overall survival [60]

Breast cancer CircANKS1B Up Associated with lymph node metastasis and advanced clinical stage [65]

CircKIF4A Up Associated with tumor size, lymph node metastasis and TNM Stage [69]

Circ-UBE2D2 Up Associated with tumor size, lymph node metastasis and TNM Stage and

differentiation

[71]

Circ_0025202 Down Correlated with lymphatic metastasis and histological grade [73]

Circ_001783 Up Correlated with tumor size, lymph node status, TNM stage, ER status, PR

status, molecular subtype and Ki-67 index

[76]

Colorectal cancer CircVAPA Up Correlated with tumor size, Lymphovascular invasion, Differentiation, Distant

metastasis lymph node metastasis and TNM stage

[82]

Circ_0026344 Down Correlated with CRC advance and lymphoid node metastasis [86]

CircHIPK3 Up Correlated with Pathological T category, Lymph node metastasis, Distant

metastasis and TNM stage

[87]

Esophageal Squamous

Cell Carcinoma

Circ-TTC17 Up Associated with TNM stage and Lymph node metastasis [94]

Circ_0006168 Up Associated with lymph node metastasis and TNM stage [96]

Circ-DLG1 Up Associated with TNM stage [97]

Gastric cancer CircNRIP1 Up Associated with Lymphatic invasion and tumor size [106]

Circ_006100 Up Associated with TNM stage, poor cell differentiation and lymphnode

metastasis

[107]

Circ-DCAF6 Up Associated with deeper tumor invasion, positive lymph node metastasis and

higher TNM stages

[109]

Hepatocellular

carcinoma

Circ-ZEB1.33 Up Associated with HBV infection, TNM stages and tumor size [124]

CircDAMTS13 Down Associated with cirrhosis, tumor size and stage [132]

CircTRIM33-

12

Down Associated with tumor size, encapsulation invasion, vascular invasion and

tumor number

[136]

Bladder cancer CircCEP128 Up Associated with tumor size, TNM stage and Lymphatic metastasis [149]

Circ-BPTF Up Associated with histological grade and prognosis [152]

Circ-cTFRC Up Associated with tumor stage, grade, number of tumors and Lymphatic

metastasis

[154]

CircUBXN7 Down Associated with tumor grade and Pathology stage [155]

Pancreatic cancer Circ-PDE8A Up Correlated with lymphatic invasion, TNM stage and survival rate [165]

Papillary thyroid

carcinoma

CircZFR Up Correlated with TNM stage and overall survival [177]

(Continued)
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inhibited the activation of PI3-K/Akt signal pathway,66

Moreover, circRNA-MTO1 (also known as circRNA-

007874) could significantly suppress cell viability and

reverse monastrol resistance in BC. Mechanistic studies

showed that circRNA-MTO1 reduced the Eg5 protein

expression but not mRNA level through preventing TNFα

receptor-associated factor (TRAF) 4 from activating Eg5

translation.67 CircRNAs were also widely involved in the

occurrence and development of BC by acting as “miRNA

sponge.” For instance, circTADA2A-E6 could sponge miR-

203a-3p to reduce the expression of miR-203a-3p; thereby

restoring the expression of suppressor of cytokine signaling 3

(SOCS3), a target gene of miR-203a-3p, resulting in sup-

pressed the progression and metastasis of BC.68 In addition,

circKIF4A promoted proliferation and migration of triple-

negative breast cancer (TNBC), cells by directly sponging

miR-375 to relieve the suppression of KIF4A target gene.69

Moreover, more circRNAs, such as circPLK1, circ-

UBE2D2, circBMPR2, circ_0025202, circ_0103552,

circ_0072309, circ_001783, involved in the occurrence and

development of BC by acting as miRNA sponge have been

reported.70–76 Together, circRNA is broadly expressed in BC

tissues and cells with variable levels associated with clinical

pathogenesis of BC, and could be used as a potential bio-

marker and therapeutic target in the treatment of BC.

Colorectal Cancer
Colorectal cancer (CRC) is the third most common

malignant cancer and the fourth leading cause of cancer

death around the world.77 In recent years, circRNA is

considered as an important regulator for the tumorigen-

esis and progression in CRC. CircRNA was reported to

be associated with the development of CRC, and acted as

potential biomarkers and therapeutic target for the diag-

nosis and treatment of CRC.78 Recently, circRNA expres-

sion profiles in CRC patients were performed through

high-throughput RNA sequencing (RNA-seq) and total

of 448 significantly dysregulated circRNAs were identi-

fied. Among those, 394 were up-regulated and 54 were

down-regulated, all of which were involved in cell pro-

liferation, migration, invasion and apoptosis in CRC.79

circRNA-0000523 activated the activity of Wnt/β-catenin

signaling pathway to regulate the proliferation and apop-

tosis of CRC cells by sponging miR-31.80 Also,

circ_0009361 acted as the sponge of miR-582 to enhance

the expression of adenomatous polyposis coli 2 (APC2)

and blocked the Wnt/β-catenin signaling; resulting in

suppressing cell growth and metastasis of CRC.81

Furthermore, many other circRNAs, such as circVAPA,

circ_0136666, circRNA_103809, circRNA_100290,

circ_0026344, circHIPK3, and circ_001569 were also

acted as sponge of miRNAs to regulate the tumorigenesis

and progression of CRC have been reported.82–88 In addi-

tion, circRNA was also associated with chemoradiation

resistance (CRR) of CRC. One study showed that among

71 circRNAs expressed in 5-FU chemo-resistant CRC

cells by microarray analysis, 47 circRNAs were increased

and 24 circRNAs were decreased significantly. The study

provided a useful database for further understanding of

CRR and presented potential targets to reverse CRR in

CRC.89 To this end, circRNA play an important role in

the occurrence and development of CRC, and could also

be involved in diagnosis and treatment of CRC.

Table 2 (Continued).

Type of Cancers Name of

circRNAs

Levels Clinical Relevancies References

Osteosarcoma CircCDR1 Up Correlated with tumor size, localization, stage and metastasis [187]

Glioblastoma Circ_0029426 Up Correlated with tumor grade [194]

Ovarian cancer circSETDB1 Up Associated with advanced clinical stage, lymph node metastasis and increased

chemoresistance

[209]

Prostate cancer CircITCH Down Related with preoperative PSA, tumor stage and Gleason score [216]

circABCC4 Up Correlated with advanced stage, metastasis and overall survival [219]

Myeloid leukemia Circ-Foxo3 Down Correlated with overall survival [233]

circ_100053 Up Associated with clinical stage, BCR/ABL mutant status and imatinib resistance [236]

Note: The role of cirNA in clinical relevance and prognosis in different cancers was summarized.
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Esophageal Squamous Cell Carcinoma
Esophageal squamous cell carcinoma (ESCC) is the glob-

ally predominant aggressive malignancies of the gastroin-

testinal tract.90,91 CircRNAs have been studied to serve as

biomarkers of diagnosis and treatment for ESCC and been

involved in the regulation of the cell proliferation, migra-

tion, invasion and metastasis of ESCC.92,93 Increasing

number of studies have shown that circRNA modulated

the occurrence and progression of ESCC via acting as

“miRNA sponge.” For example, circ-TTC17, deriving

from tetratricopeptide repeat domain 17 (TTC17) gene,

showed to promote proliferation and migration of ESCC

cells by serving as “miRNA sponge.” The bioinformatics

analysis observed a network of circ-TTC17 with its tar-

geted miRNA interactions and corresponding mRNAs, and

found that a total of 20 miRNAs were predicted to have

binding sites with circ_TTC17 suggesting that circ-TTC17

might regulate progress of ESCC by acting as a sponge for

miRNAs.94 Moreover, circ-PRKCI promoted cell migra-

tion and proliferation through enhancing the expression of

AKT serine/threonine kinase 3 by sponging miR-3680-3p

in ESCC cells.95 Circ_0006168 could regulate the mam-

malian target of rapamycin (mTOR) expression by spong-

ing miR-100 to facilitate ESCC cell proliferation,

migration and invasion. Thus, circ_0006168 has been con-

sidered to be a promising prognostic biomarker and effec-

tive therapeutic target for ESCC patients.96 In line with

this, other studies also found that circRNAs, such as circ-

DLG1, circular RNA ciRS-7, circ_0000337, could interact

with miRNAs by acting as sponge or competing endogen-

ous RNA in the progression of ESCC.97–99 Together, these

findings suggested that circRNA were involved in the

carcinogenesis and progression of ESCC, and could be

a promising diagnostic biomarker and potential therapeutic

target in patients with ESCC.

Gastric Cancer
Gastric cancer (GC) is one of the most common malignant

tumors in the digestive system and most GC is found at an

advanced stage, which poses a great challenge to the treat-

ment of this malignancy.100,101 An increasing number of

studies have suggested that circRNA play critical roles and

act as potential biomarker for the diagnosis and treatment of

GC.102–104 However, the functions and underlying mechan-

isms of circRNAs in GC remain to be further studied.

Likewise, “miRNA sponge” is also the main mechanism of

circRNAs to participate in the progression of GC. For

instance, circYAP1 was identified to suppress cell prolifera-

tion and invasion of GC by sponging miR-367-5p, then

inhibited the expression of p27Kip1.105 Also, circNRIP1

was found to sponge miR-149-5p to further regulate AKT/

mTOR signaling axis and effected the cell proliferation,

migration and invasion in GC.106 Likewise, several other

circRNAs such as circ_00610, circ-NOTCH1, circ-DCAF6,

circ_0008035, circ_0001368, circPSMC3, cir-NF1, circ-

SFMBT2, circFAT1(e2), circPDSS1, circ_0027599, and

circ-0081143, could also serve as “miRNA sponge” to mod-

ulate other gene expressions in GC.107–118

In addition, circRNA could also perform the biofunc-

tions by serving as protein scaffolding in the progression

pathogenesis of GC. For example, circ-DONSON was

identified to promote cell proliferation, migration and

invasion while inhibiting cell apoptosis in GC.

Mechanistically, circ-DONSON could significantly recruit

the NURF complex by acting as a protein scaffolding, to

regulate a transcription factor Sex-determining region

Y (SRY)-related high-mobility group box 4 (SOX4) pro-

moter activity and stimulate transcription.119 Moreover,

circAGO2, deriving from Argonaute 2 (AGO2), the core

component of miRNA-induced silencing complex, physi-

cally interacted with human antigen R (HuR) protein to

activate its activities and enrichment on the 3ʹ-UTR of

target gene, which significantly reduced the binding acti-

vation of AGO2 and thereby overcoming the effect of

AGO2/miRNA-mediated gene silencing that was asso-

ciated with the progression of GC.120 Overall, circRNA

played an important role in the tumorigenesis and progres-

sion through multiple mechanisms, and unveiled signifi-

cant potential for the prevention and treatment of GC.

Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is one of the most com-

mon cancers and the second cause of cancer mortality

worldwide; nearly two-thirds of all patients with HCC are

diagnosed at advanced stages.121–123 Growing evidences

indicated that the expression alterations of circRNAs have

a significant impact on biological characteristics of HCC.

Recent study showed that circ-ZEB1.33 was a potential

biomarker for the prognosis of HCC patients. They found

that the expression of circ-ZEB1.33 was related to different

TMN stages in HCC patients. Moreover, there were signifi-

cant interactions between circ-ZEB1.33 and miR-200a-3p,

as well as cyclin-dependent kinase 6 (CDK6) indicating that

circ-ZEB1.33-miR-200a-3p-CDK6 regulatory pathway

played a critical role in the progression of HCC.124
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Increasing number of studies have focused circRNA on

their functions as efficient miRNA sponges in HCC as

well. For example, circHIAT1 could act the miR-3171

sponge to further regulate the expression of PTEN that

was a target of miR-3171, thereby inhibiting cell growth

of HCC.125 Likewise, cirRNAs, such as circ_0101432

sponge miR-1258/miR-622,126 circZNF652 sponge miR-

203/miR-502-5p,127 circSETD3 sponge miR-421,128

circ_103809 sponge miR-620,129 circ_0000267 sponge

miR-646,130 circ_0008450 sponge miR-548p,131

circDAMTS13 sponge miR-484,132 circ_0078710 sponge

miR-31,133 circ_101280 sponge miR-375,134 circSLC3A2

sponge miR-490-3p,135 and circTRIM33-12 sponge miR-

191136 have also been shown. All of these circRNAs were

involved in the occurrence and progression of HCC by

acting as “miRNA sponge.” In addition, some circRNAs

could serve as immune-associated biomarker to regulate the

tumourigenesis and metastasis. For example, circARSP91

regulated the progression of HCC through enhancing the

activation of natural killer (NK) cells and increasing the

susceptibility of HCC cells to NK cell cytotoxicity asso-

ciated with cell immune surveillance.137 Overall, circRNAs

played key roles in tumorigenesis and development, epige-

netic regulation, drug resistance, and could be considered as

immune-associated biomarker and therapeutic target in

HCC.138–144 Regardless, more in-depth study of circRNA

biofunctions in HCC is greatly desired.

Bladder Cancer
Bladder cancer is the 9th most common cancer around the

world with an estimated 165,000 deaths per year.145,146

Increased number of studies indicated that circRNAs were

involved in the occurrence and development of bladder

cancer.147–150 For instance, circUVRAG derived from

the exon from the UV radiation resistance-associated

gene (UVRAG) was highly increased in bladder cancer

cells, and regulated the aggressive biological phenotype

through targeting the miR-223/fibroblast growth factor

receptor 2 (FGFR2) signaling pathway. Downregulation

of circUVRAG promoted miR-223, but suppressed

FGFR2 expressions.151 Circ-BPTF was also increased in

bladder cancer tissues compared with noncancerous ones,

and promoted the progression and recurrence of bladder

cancer by regulating the

miR-31-5p/RAB27A signaling pathway.152 Moreover,

circLPAR1 inhibited the activity of miR-762 by directly

binding to miR-762 thereby regulating invasion and

metastasis of muscle-invasive bladder cancer cells.153

circRNA-cTFRC regulated cell invasion and proliferation

through acting as a ceRNA for miR-107 to affect the

expression of TFRC expression in bladder cancer

cells.154 CircUBXN7 showed to inhibit the proliferation

and invasion of bladder cancer cells through binding to

miR-1247-3p to elevate the expression of β-1,

4-Galactosyltransferase III (B4GALT3), which is the

direct target gene of miR-1247-3p.155 Thus, circRNAs

were involved in regulation of bladder cancer progression

by serving as ceRNA. Interestingly, circRNAs could be

also involved in the bladder oncogenesis and metastasis

through regulating self-renewal function of cancer stem

cells (CSCs). For example, knockdown of circGprc5a,

a circRNA with peptide-coding potential and functions

through a peptide-dependent manner, impaired the self-

renewal and metastasis of bladder CSCs.156 Together,

data demonstrated that circRNA may provide a potential

biomarker and therapeutic target for the management of

bladder cancer.

Pancreatic Cancer
Pancreatic cancer is one of the most common malignancy

and the fourth leading cause of cancer-related death world-

wide with low 5-year overall survival rate of less than

7%.157,158 An increasing number of studies showed that

circRNAs were associated with the occurrence and pro-

gression of pancreatic cancer.157,159 Circ-LDLRAD3 was

reported to be increased in both cells and tumor tissues.

High expression of circ-LDLRAD3 was significantly asso-

ciated with venous invasion, lymphatic invasion and

metastasis, indicating that circ-LDLRAD3 might be

a critical biomarker in the diagnosis and treatment of

pancreatic cancer.160 Circ_0006215 was also regulated

the progression of pancreatic cancer cells through the

circ_0006215/miR-378a-3p/serpina family A member 4

(SERPINA4) signaling pathway.161 Moreover,

circRNA_100782 regulated the miR-124/IL6/STAT3 path-

way. Knockdown of circRNA_100782 significantly modu-

lated miR-124 expression, and reduced miR-124 target

genes interleukin-6 receptor (IL-6R) and STAT3 expres-

sions in pancreatic cancer cells.162 Similarly, knockdown

of circZMYM2 significantly repressed the tumorigenesis

through sponging miR-335-5p, followed by affecting the

expression of histone lysine demethylases jumonji

domain-containing 2c (JMJD2C), which is the target

gene of miR-335-3p in pancreatic cancer cells.163 In line

with this, the results of bioinformatics analysis showed

that miR-26b-3p, miR-125a-3p, miR-330-5p and miR-
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382-5p had binding sites for circRHOT1 suggesting that

circRHOT1 might act as “miRNA sponge” to promote

proliferation and invasion in pancreatic cancer cells.164

In addition, exosomal circRNAs also contributed to

tumor invasion and metastasis. For example, exosomal

circ-PDE8A stimulated cell growth and invasive ability

by acting as ceRNA to sponge miR-338 and regulated

miR-338/metastasis-associated in colon cancer-1

(MACC1)/MET or hepatocyte growth factor (HGF) recep-

tor regulatory axis in pancreatic cancer cells.165 Moreover,

exosomal circ-IRAS significantly promoted invasion and

metastasis of pancreatic cancer cells by down-regulating

miR-122 and ZO-1 levels, and up-regulating RhoA and

RhoA-GTP levels, F-actin expression, regulating endothe-

lial monolayer permeability.166 We believed that circRNAs

could provide a new promising biomarker for diagnosis

and therapeutic target for the treatment of pancreatic

cancer.

Papillary Thyroid Carcinoma
Thyroid cancer is one of the most common malignant

endocrine tumors, with an incidence of 1–2% of all types

of cancer, Despite of a good and overall prognosis, papil-

lary thyroid cancer (PTC), which accounts for 75% of

thyroid cancer, could still affect the quality of life of

PTC patients.167,168 A large number of circRNAs showed

promising as potential prognostic biomarkers for the PTC

patients, and played a critical role in the pathogenesis and

progression of PTC.169–171 For example, knockdown of

circBACH2 inhibited the cell proliferation, migration and

invasion of PTC cells in vitro and suppressed the growth

of PTC xenografts in vivo. Mechanistically, circBACH2

directly interacted with miR-139-5p and relieved inhibi-

tion of its target gene LIM-domain only protein 4 (LMO4).

Therefore, circBACH2/miR-139-5p/LMO4 regulatory axis

could be a promising treatment strategy for PTC

patients.172 Likewise, low expression of circRAPGEF5

plays an important role in suppressing the aggressive bio-

logical behaviors of PTC by sponging miR-198, this sub-

sequently downregulated the expression of fibroblast

growth factor receptor 1 (FGFR1), a target gene of miR-

198.173 Moreover, overexpression of circ_0025033 pro-

moted proliferation and invasion of PTC by directly

sponging miR-1231 and miR-1304, therefore,

circ_0025033/miR-1231/miR-1304 signaling pathway

was considered to be a new regulatory mechanism in

PTC initiation and progression.174 Recent study found

that knockdown of circRNA_102171 inhibited PTC

progression. CircRNA_102171 could interact with catenin

beta interacting protein 1 (CTNNBIP1) and block its asso-

ciation with the β-catenin/TCF complex to further activate

the activity of Wnt/β-catenin pathway in PTC cells.175 In

a similar way, circ-ITCH was also correlative with Wnt/β-

catenin pathway. Bioinformatics analysis and luciferase

reporter assays showed that circ-ITCH could sponge

miR-22-3p to increase the expression of CBL, an E3 ligase

of nuclear β-catenin. This led to suppress activation of the

Wnt/β-catenin pathway and consequently inhibited the

progression of PTC.176 Moreover, circZFR was negative

correlated with clinical severity of PTC patients.

Knockdown of circZFR significantly activated C8orf4

(chromosome 8 open reading frame 4), an activator of

Wnt signaling pathway via sponging miR-1261 thereby

inhibiting proliferation, migration and invasion of PTC

cells.177 In addition, circ_0058124 acted as a ceRNA to

directly regulate the expression of miRNA-218-5p and its

target gene NUMB, and consequently inhibited the activa-

tion of the NOTCH3/GATA zinc finger domain-containing

2A (GATAD2A) signaling axis. This let to promote cell

proliferation, tumorigenicity, invasion, and metastasis of

PTC, thus highlighting a novel therapeutic target for inter-

vening PTC.178 Growing evidences have also shown that

circRNA not only play an important role in carcinogenesis

and development of PTC, but also have great diagnostic

and prognostic value for PTC. One study showed the

expression of circRNAs in PTC tissues and adjacent non-

cancerous tissues, and assess the diagnostic value of

circRNAs through analyzing the correlation between

cirRNAs and aggressive clinic-pathologic characteristics

of PTC indicated that circ_0137287 had a potential diag-

nostic value in predicting severity of malignancy, extra

thyroidal extension and lymph node metastasis, and may

act as a novel biomarker for PTC.179 Taken together,

circRNA might play an important role in the progression

and pathogenesis and be considered as potential biomar-

kers of PTC.

Osteosarcoma
Osteosarcoma is a malignant bone tumor that has the

highest morbidity in adolescent and childhood with 60%

of patient aged under 25 years; however, there is a second

peak of incidence in later life with 30% of patients being

over 40 years of age.180–182 Several studies have indicated

the correlations between circRNA and occurrence and

progression of osteosarcoma.183–185 CircFAT1, deriving

from exon 2 of FAT atypical cadherin 1 (FAT1) gene,
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significantly inhibited the cell migration, invasion and

tumorigenesis of osteosarcoma by sponging miR-375 to

enhance the expression of yes-associated protein 1 (YAP1)

protein.186 Similarly, knockdown of circCDR1as signifi-

cantly suppressed tumor growth of osteosarcoma through

directly targeting miR-7 and subsequently reduced EGFR,

Cyclin E1 (CCNE1), phosphatidylinositol-4, 5-bispho-

sphate 3-kinase catalytic subunit delta (PI3KCD) and

RAF1 proto-oncogene serine/threonine-protein kinase

(RAF1) expressions.187 As we know, transcription factor

CREB3 is a driver gene in osteosarcoma. CircTADA2A

could upregulate the expression of CREB3 by sponging

miR-203-3p thereby significantly promoting the progres-

sion and metastasis in osteosarcoma cells.188 In addition,

circ_0081001 was highly expressed in the osteosarcoma

tissues and cells, which may be a potential biomarker for

diagnosis and therapeutic target of osteosarcoma.

Moreover, serum circ_0081001 might be a better diagnos-

tic and independent prognostic factor than alkaline phos-

phatase (ALP) and lactate dehydrogenase (LDH) in

osteosarcoma patients.189 More importantly, some of

circRNAs are closely related to chem-resistance of osteo-

sarcoma. For example, upregulation of circ_001569 not

only promoted cell proliferation, but also enhanced the

cisplatin resistance of osteosarcoma cells through activat-

ing the Wnt/β-catenin signaling pathway.190 Thus, the

abnormal expression of circRNAs is an important factor

in regulating the occurrence and development of osteosar-

coma. We believed that circRNA could be served as the

valuable biomarker for the prevention, diagnosis and treat-

ment of osteosarcoma in the future.

Glioblastoma
Glioblastoma is the most common and fatal primary

malignant brain tumor. The published data have shown

a strong association between circRNA and glioblastoma.

The results from microarray analysis showed that most

circRNAs were dysregulated in glioblastoma.

circ_0001946 was downregulated in glioblastoma and

overexpression of circ_0001946 significantly inhibited

cell proliferation, migration, invasion and induced apop-

tosis through upregulating the expression of cerebellar

degeneration-related auto-antigen 1(CDR1) by suppres-

sing miR-671-5p expression in glioblastoma cell.191

Obviously, circRNA could also act as “miRNA sponge”

to regulate glioblastoma progression. CircMMP9 could

regulate the expression of eukaryotic initiation factor

4A3 (eIF4A3) to further accelerate proliferation,

migration and invasion via sponging miR-124 in glio-

blastoma cells.192 Moreover, circNT5E, deriving from

ecto-5ʹ-nucleotidase (NT5E) gene and regulating by ade-

nosine deaminase, RNA-specific B2 (ADARB2), also

acted as the sponge of miR-422a and reduced its expres-

sion, thereby promoting glioblastoma tumorigenesis.193

Furthermore, circ_0029426 served as the sponge of

miR-197 to promote cell proliferation, migration and

invasion, inhibited cell apoptosis of glioblastoma cells

as well.194 Taken together, acting as “miRNA sponge”

is one of the most important functions and mechanisms

for circRNA to modulation of miRNA and downstream

target gene. Recently, comparative results of circRNAs

expression profiles showed that 254 circRNAs were up-

regulated and 361 circRNAs were down-regulated in

IDH-wt glioblastoma compared with the adjacent normal

brain tissues. Gene Ontology (GO) analysis revealed that

differentially expressions of circRNAs were correlated

with cell division, DNA damage repair, cytoskeleton,

and protein ubiquitination.195 Their results suggested

that differential expressions of circRNAs might serve as

biomarkers for prognosis and treatment targets for IDH-

wt glioblastoma.195 In addition, there was evidence that

endogenous circRNA was involved in gene translation.

CircRNA containing an ORF could translate a functional

protein through driving by Internal Ribosome Entry Site

(IRES) elements.196 For example, circ-SHPRH could

produce a 17 kDa protein, the circular form of the SNF2

histone linker PHD RING helicase (SHPRH) gene

encoded a novel protein that we termed SHPRH-146aa,

which was a tumor suppressor in human glioblastoma.

Excessive expressed SHPRH-146aa reduced malignant

behavior and tumorigenicity in U251 and U373 glioblas-

toma cells by protecting SHPRH from degradation

through the ubiquitin proteasome. An increased patient

survival was observed with elevated levels of SHPRH-

146aa in glioblastoma patients.196,197 Collectively, these

results showed that circRNA was a group of important

regulatory factor and related to the occurrence and pro-

gression of glioblastoma. Thus, circRNA could serve as

potential and valuable biomarker for diagnosis and treat-

ment for glioblastoma patients in the future.

Ovarian Cancer
Ovarian cancer is the leading cause of death from gyne-

cological malignancies worldwide. The overall 5-year sur-

vival rate was particularly low for patients with advanced

stages. In recent years, numerous studies focused on
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differentially expressed circRNAs and their function in

this malignancy indicating that circRNAs may act as

potentially novel biomarkers or therapeutic agents in this

cancer type.198 Increasing number of circRNAs have been

reported to be involved in the progression and tumorigen-

esis of ovarian cancer. One study revealed that circPUM1

promoted cell proliferation, migration, invasion, and

metastasis through increased the expression of nuclear

factor kappa B (NF-κB) and matrix metallopeptidase 2

(MMP2) by sponging miR-615-5p and miR-6753-5p in

ovarian cancer cells.199 CircWHSC1 increased prolifera-

tion, migration and invasion, and inhibited apoptosis by

sponging miR-145 and miR-1182 thereby increasing the

expression of downstream targets mucin 1 (MUC1) and

human telomerase reverse transcriptase (hTERT) in ovar-

ian cancer cells.200 Similarly, scores of circRNAs per-

formed their biological functions through acting as

sponge of miRNAs in ovarian cancer, such as

circUBAP2 sponge miR-144, circCDR1 sponge miR-

135b-5p, circ-CSPP1 sponge miR-1236-3p, circ_0051240

sponge miR-637, circEPSTI1 sponge miR-942, circ-ITCH

sponge miR-10a, circ_0061140 sponge miR-370, and

circGFRA1 sponge miR-449a.201–208 In addition, study

showed that circSETDB1 expression levels were closely

associated with advanced clinical stage and lymph node

metastasis of high-grade serous ovarian cancer patients.

Patients with higher levels of circSETDB1 had a shorter

progression-free survival time. Thus, circSETDB1 might

be a promising biomarker for the treatment and relapse in

high-grade serous ovarian cancer.209 Moreover, upregula-

tion of circ-FAM53B accelerated the proliferation, migra-

tion, and invasion of ovarian cancer via regulating the

miR-646/vesicle associated membrane protein 2

(VAMP2) and miR-647/mouse double minute 2 (MDM2)

signaling regulatory pathways.210 Also, circPLEKHM3

could inhibit cell growth, migration and EMT via miR-9/

BRCA1/DnaJ/Hsp40 homolog, subfamily B, member 6

(DNAJB6)/Kruppel-like factor 4 (KLF4)/AKT1 regulatory

axis in ovarian cancer suggesting that circPLEKHM3

might act as a prognostic indicator and therapeutic target

in ovarian cancer patients.211 In addition, circ-SMAD7

enhanced cell metastasis, proliferation and progression of

ovarian cancer via suppressing the expression of Krüppel-

like factor 6.212 Overall, the differentially expressed

circRNAs may participate in the pathogenesis of ovarian

cancer, and may be novel diagnostic and prognostic bio-

markers for ovarian cancer although more studies are still

needed to be evaluated.

Prostate Cancer
Prostate cancer (PCa) is one of the most common cancers

and the third leading cause of deaths with high mortality

and morbidity, especially for elderly men around the

world.213,214 CircRNAs play important roles in the reg-

ulation of cell proliferation, apoptosis, angiogenesis and

metastasis in a series of cancers including prostate cancer.

Most of them could be used for the promising biomarkers

and therapeutic target for the treatment of prostate

cancer.215 One recent study have found that circITCH

was significantly down-regulated in PCa cells and tissues,

and inhibited the malignant phenotype of PCa via

increasing the expression of homeobox protein B13

(HOXB13) through sponging miR-17-5p.216 Likewise,

circRNA-UCK2 inhibited cell proliferation and invasion

via increasing tet methylcytosine dioxygenase 1 (TET1)

expression by sponging miR-767-5p in prostate cancer.217

Similarly, circFOXO3 sponged miR-29a-3p, circABCC4

sponged miR-1182, circHIPK3 sponged miRNA-338-3p

and miR-193a-3p, and circAMOTL1L sponge dmiR-

193a-5p were also reported in other studies.218–222 This

may be one the main mechanisms of circRNAs to func-

tion as miRNA sponges in many cancers including pros-

tate cancer. Moreover, circ_KATNAL1 significantly

inhibited cell proliferation, invasion, migration of prostate

cancer through the miR-145-3p/Wnt1 inducible signaling

pathway protein 1 (WISP1) pathway, which might be

a new mechanism for the progression of prostate

cancer.223 More interestingly, recent study revealed that

some of circRNAs could perform their functions by

cooperating with their host genes. For example,

X-linked inhibitor of apoptosis protein (XIAP), a host

gene for circRNA0005276, showed to interact with

circ0005276 to mediate the progression of prostate cancer

through activating the transcription of XIAP via interact-

ing with FUS binding protein.224 Thus, circRNAs are

important regulators in gene expression and play

a crucial role in prostate cancer, however, the detailed

mechanisms for the tumorigenesis and progression should

be more explored in the future.

Myeloid Leukemia
There are two main types of myeloid leukemia, acute

myeloid leukemia (AML) and chronic myeloid leukemia

(CML). AML is one of the most common myeloid

malignancy in adults, characterized by the proliferation

of abnormal and immature myeloid blasts in the bone
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marrow and presented great biological and clinical

heterogeneity.225 CircRNAs were served as potential

biomarkers for the diagnosis and treatment of AML

because of their stability against exo-nuclear degrada-

tion, diversity of action modes, tissue specificity and

richness in body fluids.225,226 Through high-throughput

sequencing and bioinformatics analysis, 1824 circRNAs

were detected as differentially expressed in AML

cells.227 In addition, a total of 273 circRNAs were

increased and 296 were decreased in pediatric AML.

Among them, circ-0004136 was significantly increased

and promoted cell proliferation by acting as a sponge of

miR-142.228 Similarly, the following circRNAs also

function as a miRNA sponge in acute myeloid leukemia,

such as circ_0009910 sponging miR-20a-5p,

circ_100290 sponging to miR-203 and circ-ANAPC7

sponging to miR-181.229–231 Furthermore, recent studies

observed that circ-Foxo3 could compete with Foxo3 for

binding to some miRNAs and then regulated the expres-

sion of Foxo3.232 Circ-Foxo3 and Foxo3 were fre-

quently decreased in AML and positively associated

with each other. Circ-Foxo3 might be a promising bio-

marker for the prognosis and treatment of AML.233 In

addition, some circRNAs might be related to drug resis-

tance in acute myeloid leukemia. For example, silence

of circPAN3 significantly restored drug sensitivity to

ADM in the two ADM-resistant cell lines, and over-

expression of circPAN3 had the opposite effect. The

results suggested that circPAN3 might facilitate AML

drug resistance through regulating the AMPK/mTOR

signaling pathway.234 In chronic myeloid leukemia

(CML), recent study found that expressions of

circHIPK3 and circRNA_100053 were significantly

increased compared with healthy controls. Induced

circHIPK3 expression predicted a poor outcome of

CML patients, and circ_100053 might be associated

with imatinib resistance in CML.235,236 In addition,

circ_0080145 was found to be up-regulated in CML,

and silence of circ_0080145 significantly inhibited cell

proliferation of CML by sponging miR-29b.237 Taken

together, circRNAs were distributed broadly in myeloid

leukemia, and abnormal expressions of circRNAs were

closely related to the progression and tumorigenesis of

myeloid leukemia including AML and CML.

Nevertheless, further studies are still required to deter-

mine the potential roles of circRNAs in diagnostic bio-

marker and therapeutic targets.

circRNAs in Cancer Stem Cells
Cancer stem cells (CSCs), a small proportion of cells that

possess self-renewal and tumor-initiating capabilities, are

considered to be responsible for metastatic dissemination

and therapeutic failure. Several lines of evidence have

suggested that circRNAs might contribute to the stemness

of cancer.238 For example, around 27 dysregulated

circRNA were observed through high-throughput sequen-

cing to screen the circRNA expression profiles in breast

CSCs (BCSCs) and matched non-BCSCs. Among these,

expression of circVRK1 was reduced and was able to

inhibit the self-renewal capacity of BCSCs, thereby dis-

playing an inhibiting role in the stemness of BCSCs.

Breast cancer cells with silenced circVRK1 demonstrated

an enhanced capacity to form mammospheres and colo-

nies, and an increased expression of CSC-related markers

and core pluripotency genes (OCT4, SOX2, NANOG),

indicating that circVRK1 was involved in suppressing

the stemness of BCSCs.239 MiR-153-5p was one of the

targets of circVRK1 and was involved in stemness main-

tenance of breast cancer cells via reducing the expression

of KLF5. Thus, circVRK1 was negatively correlated with

stemness of BCSCs through the miR-153-5p/krüppel-like

factor 5 (KLF5) regulatory pathways.240 Stem cell plasti-

city and identity are also controlled by master regulatory

genes and complex circuits involving circRNAs as well.

One study showed that compared to differentiated meso-

dermal derivatives, circFOXP1 levels were enriched in

mesenchymal stem cell (MSC) and silencing of

circFOXP1 dramatically impaired MSC differentiation

in vitro and in vivo. A direct interaction between

circFOXP1 and miR-17-3p/miR-127-5p resulted in the

modulation of the epidermal growth factor receptor

(EGFR) and noncanonical Wnt pathways suggesting the

regulatory role for circFOXP1 as a gatekeeper of pivotal

stem cell molecular networks.241 In addition, the under-

lying correlation between circRNAs and cancer stem cells

(CSCs) has been reported in HCC. For example, the

absence of circZKSCAN1 endowed several malignant

properties including cancer stemness and closely corre-

lated with poor overall and recurrence-free survival in

HCC. Bioinformatics analysis and RNA immunoprecipita-

tion-sequencing (RIP-seq) experiments revealed that

circZKSCAN1 showed inhibitory role by competitively

binding RBP fragile X mental retardation protein

(FMRP), thereby blocking the binding between FMRP

and the downstream target gene cell cycle and apoptosis
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regulator 1 (CCAR1) mRNA, and subsequently retarded

the transcriptional activity of Wnt signaling resulting in

suppressing cell stemness in HCC cells.242 CD133+CD44

+ cancer stem cells (TDP cells) previously isolated from

laryngeal squamous cell carcinoma (LSCC) cells showed

strong malignancy and tumorigenicity. These TDP cells

were shown to highly express the stem-cell markers SOX2

and OCT4. Hg19_circ_0005033 was one of the upregu-

lated circRNAs in TDP cells promoted the proliferation,

migration, invasion, and resistance to chemotherapy of

TDP cells.243 The expression of stem cell marker Kruppel-

like factor-4 (KLF-4), which has been reported as the

target of miR7, increased significantly in ciRS-7 trans-

fected ESCC cells. Knockdown of KLF-4 also attenuated

over expression of ciRS-7 induced cell invasion.98 Overall,

the potential regulatory mechanism of circRNAs in CSC

phenotypes and potential clinical applications in CSC-

targeted therapy, including functioning as new biomarkers,

acting as vaccines and breaking the therapeutic resistance

of CSCs have been summarized.244 Researches regarding

the regulatory roles of circRNAs on CSCs are still in the

initial stages although the increased numbers of studies

have demonstrated that the aberrant expression of

circRNAs play a key role in the regulation and progression

of cancers and CSCs. Thus, the practical application of

circRNAs in clinic arena still remains to be determined.

Future studies are needed to explore how circRNAs

change in the CSC environment, among others.

Discussion and Prospective
CircRNAs have attracted increasing attention over the last

decade. With the rapid development of biotechnology,

bioinformatics analysis and publicly available high-

throughput RNA-Seq data from the ENCODE consortium,

a large numbers of circRNAs have been identified in

recent years. CircRNAs can be detectable in body fluids,

such as blood and saliva, urine, and breast milk including

membrane-bound vesicles, such as exosome, and has

widely involved in a variety of cancer-related physiologi-

cal and pathology processes, including cancer initiation,

progression and metastasis, drug resistance and played an

important role in the diagnostic and prognostic biomarker

and the therapeutic target in human cancer.245–247 It has

become increasingly clear that circRNAs regulate gene

expression through various actions and play diverse roles

in many fields of human cancer biology. Recently, inves-

tigating the presence and expression levels of exosomal

circRNAs could allow us to discriminate cancer patients

from healthy individuals, identifying new potential exo-

some-based cancer biomarkers.248 Exosomal circRNAs are

a novel frontier in cancer research and exploring the mys-

terious connection of exosome and circRNA may provide

a vital hint to understand the biological functions of exo-

somal circRNAs. New studies show that exosomal

circRNAs originating from tumor cells or other cells can

transfer biological information to the specific cells to

achieve the efficient transmission of phenotypical changes

and thereby promoting cancer metastasis. Taking advan-

tage of the stability and high specificity of exosomal

circRNAs, these molecules might serve as promising can-

cer biomarkers with early detection and powerful predic-

tion for patients to receive the most suitable therapy and

might have potential for monitoring cancer progression or

recurrence, and even to successfully develop therapeutic

methods for the treatment of cancer although gaps in our

current understanding of the connection of circRNAs with

exosome still remain, such as the mechanism by which

exosomal circRNAs travel in bodily fluids and the roles of

exosomal circRNAs in cancer. Upon complete elucidation

of exosomal circRNA functionality and molecular

mechanisms relevant to human cancer, avenues of new

insight will be opened, providing novel therapeutic

approaches in malignant tumors.11

CircRNAs may also play a key role in the development

of drug resistance. Recently, multiple studies have high-

lighted the key roles of ncRNAs in chemoresistance of

cancer, such as HCC,142,249 lung cancer,250,251 gastric

cancer,252,253 breast cancer,254,255 multiple myeloma,256

acute myeloid leukemia,234 prostate cancer,257 bladder

cancer,258 among others. The up-to-date information

regarding the role of circRNAs in the resistance of tumors

to chemotherapy has been recently summarized with mul-

tiple mechanisms, such as modulating various regulatory

pathways and processes including the ceRNA regulatory

network axis, EMT process, regulation of ABC transpor-

ters, apoptosis, autophagy, and CSCs, among others

although many physiological processes and biological sig-

naling pathways through which circRNAs are involved in

drug resistance still remained unknown.259 Thus, more

mechanisms of action of chemoresistance-related

circRNAs need to be explored in the future.

Importantly, the unique cellular stability and function

of circRNAs to sponge miRNA and proteins may also

indicate that circRNA is a promising vehicle for targeted

drug delivery.4 So far, there has been no preclinical data

demonstrating that circRNAs alone have been used as
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targets or therapeutic vectors for cancer treatment, but this

direction will likely show promising in the future. The

unique cellular stability and capacity of circRNA to

sponge miRNA and protein may place circRNA as

a promising vehicle for the delivery of cancer therapeutics.

It is reasonable to believe that circRNAs will bring a new

revolution for the diagnosis and treatment of human cancer

in the near future.

However, there are also a number of challenges that

need to be addressed. First of all, the expression level of

most circRNAs are relative low in human cancer, there-

fore, we will require more advanced and sensitive tech-

nologies and tools to detect the molecular function of

specific circRNA in the future.10 Secondly, owing to the

fact that the majority of circRNA sequence is shared with

the mRNA generated from the host gene. Hence, there

are some troublesome technical problems need to be

solved, such as circRNA quantification and validation,

as well as overexpression and silencing strategies.10,260

Thirdly, the names of many circRNAs have not yet been

standardized. As a result, many independent studies can-

not be unified and generalized, which were not conducive

to the sustainability and refer ability of circRNA

research.25 Finally, the study of circRNAs in cancer is

still in its infancy, and the functional role and mechanism

of circRNA in distinct human cancers remains unclear.

The current knowledge of circRNAs in tumorigenesis as

well as their potential in diagnostic and prognostic bio-

markers and possible therapeutic targets still remained to

be elucidated. Thus, the in-depth underlying mechanism

of circRNA in cancer biology needs to be explored

further. It also speculated that the aberrant expression of

circRNAs observed in cancer might also be explained by

genetic and/or epigenetic changes of genes involved in

their biogenesis. By addressing these issues and chal-

lenges with the advanced technology, improved experi-

mental approaches and further research, we believe that

circRNA could become a medically valuable diagnostic

tool and an effective biological target for various cancers

in the near future. Therefore, revealing cancer pathogen-

esis mechanisms and seeking novel potential diagnostic

biomarkers or therapeutic targets will be popular topics in

the future.261 Future detection of circRNA should also be

explored the utilities of some new technologies, such as

Oxford Nanopore sequencing, which can potentially pro-

vide information on the entire circRNA and could be an

important addition to the mammalian transcriptomics

toolbox262 and the NanoString nCounter Analysis

System, which can quantify RNA molecules quantitative

data output without amplification and reverse

transcription.4,263 In conclusion, this study describes

major features of circRNAs, summarizes the biological

functions and mechanisms of circRNA associated with

the occurrence, growth, progression, metastasis, drug

resistance of human cancers. CircRNA can be used as

potential diagnostic, prognostic biomarker and therapeu-

tic target for personalized therapeutic for human cancer.
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