
Biological Roles of Fibroblast Growth Factor-2*

ANDREAS BIKFALVI, SHARON KLEIN, GIUSEPPE PINTUCCI, AND

DANIEL B. RIFKIN

Department of Cell Biology (S.K., G.P), and the Raymond and Beverly Sackler Foundation Laboratory
(D.B.R.), and the Kaplan Cancer Center, New York University Medical Center, New York, New York
10016; and the Growth Factor and Cell Differentiation Laboratory (A.B.), University of Bordeaux I,
33405 Talence, France

I. Introduction
II. Structure of FGF-2

III. Mechanisms of Action of FGF-2: Extra- and Intracellular
Signaling
A. Exogenous 18-kDa FGF-2
B. Endogenous 18-kDa FGF-2 and HMW FGF-2

IV. Release of FGF-2
V. Roles of FGF-2 in Development and Differentiation in

Various Organ Systems
A. Mesoderm induction
B. Angiogenesis
C. Vessel wall
D. Lung
E. Hematopoiesis
F. Nervous system
G. Reproductive system
H. Skin
I. Eye
J. Muscle and skeleton

K. Digestive system
VI. Conclusions

I. Introduction

FIBROBLAST growth factor-2 [basic FGF (bFGF); FGF-2]
is a member of the FGF family that comprises nine

members (reviewed in Refs. 1 and 2). This FGF prototype has
pleiotropic effects in different cell and organ systems. FGF-2
is a potent angiogenic molecule in vivo and in vitro stimulates
smooth muscle cell growth, wound healing, and tissue repair
(1, 3). In addition, FGF-2 may stimulate hematopoiesis (re-
viewed in Refs. 4 and 5) and may play an important role in
the differentiation and/or function of the nervous system
(reviewed in Refs. 6–8), the eye (reviewed in Ref. 9), and the
skeleton (10, 11). In this review, we have focused on recent
observations that relate to the mechanism of action and func-
tion of FGF-2. First, we discuss the structure of FGF-2. We

then discuss the mechanism of action and the release of
FGF-2. Finally, we summarize recent findings on the role of
FGF-2 in embryonic and organ development.

II. Structure of FGF-2

FGF-2 was first identified as a 146-amino acid protein iso-
lated from the pituitary (12). When FGF-2 cDNAs were cloned
(13, 14), an AUG codon was found in the proper context to
initiate translation of a protein of 155 amino acids, and no
in-frame AUG codons were found upstream. Therefore, trans-
lation was predicted to initiate at this AUG codon. However,
FGF-2 molecules both longer and shorter than that predicted
from the cDNA sequence were found in guinea pig brain, rat
brain, liver, human placenta, prostate, and several types of
cultured cells (15–22). The shorter forms are derived from the
155-amino acid FGF-2 by proteolytic degradation (16). The or-
igin of higher molecular weight forms (196, 201, and 210 amino
acids) was elucidated by in vitro transcription/translation anal-
ysis that revealed that CUG codons, 59 to the AUG codon used
for the translation initiation of the 155-amino acid form, were
used as initiation codons for the larger species (23, 24). Alter-
native translation occurs by internal ribosomal entry sites in the
FGF-2 mRNA (25). When the FGF-2 cDNA is expressed in cells,
the AUG- and three CUG-initiated forms migrate on SDS-
PAGE gels with molecular masses of 18, 22, 22.5, and 24 kDa,
respectively. The forms initiated using the CUG codons (22,
22.5, and 24 kDa) are predominantly localized in the nucleus,
whereas the AUG-initiated form (18 kDa) is localized primarily
in the cytoplasm (26–29). This may depend, however, upon the
specific cells examined and the levels of FGF-2 expressed.

Using recombinant protein, several groups have deter-
mined the three-dimensional structure of crystalline 18-kDa
FGF-2 (30, 31). FGF-2 contains 12 anti-parallel b-sheets or-
ganized into a trigonal pyramidal structure. Several domains
may be important for FGF-2 function. Residues 13–30 and
106–129 are believed to represent the receptor-binding sites
(32, 33). The inverse RGD sequences PDGR and EDGR are
possibly involved in the modulation of mitogenicity (34).
Two potential phosphorylation sites occur; one at serine 64
and the other at threonine 112. Serine 64 and threonine 112
can be phosphorylated by protein kinase A and protein ki-
nase C, respectively (35). The cellular kinases responsible for
FGF-2 phosphorylation may be localized both in the nucleus
and at the cell surface (36, 37). FGF-2 contains four cysteines;
however, there are no intramolecular disulfide bonds (38).
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The unique feature of the high molecular weight (HMW)
FGF-2 forms, which distinguishes them from 18-kDa FGF-2,
is the amino-terminal extension. In the largest form, this
sequence contains nine Gly-Arg repeats. At least six of the
arginines in these Gly-Arg motifs are methylated (Refs. 39
and 40 and our unpublished data). Neither the exact number
nor the functional significance of the methylated arginines is
known, but these modified residues may be involved in
nuclear transport or retention. The nuclear targeting of
HMW FGF-2 resides in the amino-terminal extension as this
sequence, which when joined to other proteins, targets them
to the nucleus (26, 28). However, the nuclear targeting se-
quence of SV40 T-antigen joined to 18-kDa FGF-2 does not
allow nuclear accumulation of the fusion protein (41). This
indicates that 18-kDa FGF-2 per se contains inhibitory se-
quences for nuclear transport, which can be overcome by the
presence of the N-terminal extension.

III. Mechanism of Action of FGF-2: Extra- and
Intracellular Signaling

A. Exogenous 18-kDa FGF-2

FGF-2 interacts with specific cell surface receptors. Four
major receptor families have been identified; FGFR1 (flg),
FGFR2 (bek), FGFR3, and FGFR4 (1, 42). These receptors
share common features including a cytoplasmic conserved
tyrosine kinase domain, a transmembrane domain, and an
extracellular ligand-binding domain. Spliced variants exist
that differ in the composition of the extracellular ligand-
binding domain, which can contain two or three immuno-
globulin (Ig)-like loops (43, 44). Additional splice-variants,
containing sequence modifications in the intracellular por-
tions of the protein, have been described (43, 44). The nine
FGFs differ in their abilities to signal through the different
FGF receptor variants, which is an essential mechanism for
regulating FGF activity (45). The FGF receptor families are
well conserved as FGFR1 to FGFR4 have been identified in
species as primitive as Drosophila, C. elegans, and Medaka fish
(46).

The mechanism of FGFR interaction has been investigated
at three levels: 1) ligand specificity, 2) extracellular condi-
tions that modify ligand/receptor interaction, and 3) inter-
actions between the ligand-activated receptor and substrates
generating the intracellular signals.

The ligand specificity of FGFR1-3 resides in the C-terminal
half of Ig domain III. Whereas for FGFR4, one exon encodes
the C-terminal half of Ig domain III, for FGFR1-3, three al-
ternatively spliced exons, IIIa, IIIb, and IIIc, encode this re-
gion. The expression of IIIa leads to a secreted form, whereas
IIIb and IIIc encode membrane-anchored forms. For FGFR1,
there is a secreted receptor isoform containing IIIa and mem-
brane-anchored isoforms containing IIIb and IIIc (47). A pos-
sible role of the secreted FGFR1 is as a natural competitor for
FGF binding, which may regulate FGF-induced responses.
For FGFR2 and R3, receptor isoforms containing IIIb and IIIc
exons have been reported (48–51). Expression of the alter-
native exons in this position seems to regulate ligand spec-
ificity. The preferential usage of one of the exons over the
other may depend upon the presence of a titratable repressor.

This mechanism has been suggested for the FGFR2 gene that
is generated by splicing of the IIIb or IIIc exons (52). The
second Ig loop domain, for which there are no alternative
spliced forms, may also contribute to binding specificity (53).
In contrast, the first Ig loop domain, which is only present in
some receptor forms, may alter the affinity of the receptor
without changing its specificity (54).

A cell adhesion molecule (CAM) domain has been identified
in FGFR1 (55). CAMs such as neural adhesion molecule L1 or
neural CAM (NCAM) may signal via the FGFR by interacting
with the CAM domain (56–61). Antibodies to the acidic box
domain inhibit L1 and NCAM-induced neurite outgrowth. An-
tiserum raised against the CAM homology domain of the re-
ceptor also blocks outgrowth on L1- or NCAM-expressing sub-
strate cells. Moreover, peptides of the CAM domain in the FGFR
corresponding to a specific CAM block neurite outgrowth on
the appropriate adhesion molecule. Finally, neurite outgrowth
is induced by a soluble L1-Fc chimera. This effect can be in-
hibited by anti-FGF receptor antibodies and by pharmacolog-
ical reagents that interfere with the FGFR-dependent signal
transduction pathway.

A fifth FGFR has been described that is structurally distinct
from the other FGFRs (62). It is an integral membrane protein
containing an extracellular domain with 16 cysteine-rich re-
peats. The ligand specificity of this receptor subtype is not
known although it can bind FGF-1, -2, -3, and -4. The cysteine-
rich receptor does not have intrinsic signaling properties and its
function is not presently known. Another FGFR isoform is the
E-selectin ligand ESL-1 (63), which is 94% identical to the cys-
teine-rich receptor except for 70 amino acids at the N terminus.
Fucosylation of this receptor appears to be necessary for bind-
ing to E-selectin. Binding studies with FGF-2 and ESL-1 have
not been performed and it is, therefore, not known whether
fucosylation is also important for FGF-2 binding.

The major extracellular nonsignaling molecules involved
in FGF activity are heparan sulfate proteoglycans (HSPGs).
Several groups have reported that heparan sulfates are re-
quired for FGF signaling (64–70). This claim is based on a
number of experiments. First, mutant Chinese hamster ovary
(CHO) cells, which lack heparan sulfates, fail to bind FGF-2
when transfected with FGFR1 but bind FGF-2 when heparin
is added to the medium (64, 65). Second, the lymphoid cell
line BaF3, which does not synthesize heparan sulfates, nei-
ther binds nor responds to FGF-2 when transfected with the
cDNA encoding FGFR1 (66, 67). Cells expressing receptor
respond to FGF-2 when incubated in the presence of heparin.
Third, NIH 3T3 cells treated with chlorate, which blocks
heparan sulfate sulfation, no longer respond to exogenous
FGF-2 (68). Fourth, FGF-2 effects on myogenic differentiation
are dependent on heparan sulfate (68, 69). However, Roghani
et al. (71) reported that the myeloid cell line 32 D, which lacks
heparan sulfates, binds FGF-2 in the absence of exogenous
heparin or heparan sulfate when transfected with FGFR1.
FGF-2 addition to these cells also induces c-fos activation.
Other studies with the purified FGFR1 extracellular domain
have demonstrated that heparin is not required for FGF-2
binding to high-affinity receptors (72–74). Cell surface
HSPGs may modulate the action of FGF-2 by increasing its
affinity for its receptor (71, 74), thereby enhancing the FGF/
FGFR interaction. Further studies indicate that heparin and
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heparan sulfates may both increase the surface concentration
of FGF-2 as well as assist in ligand dimerization (67, 75–78).

FGF-2 is internalized via high- and low-affinity sites (79–
81). FGF-2 internalized by either high- or low-affinity bind-
ing sites may have different intracellular fates (82). FGF-2-
saporin chimeras are internalized in NMuMG cells by low-
affinity binding molecules without killing the cells.
However, when these cells, which normally do not express
high-affinity receptors, are transfected with FGFR1, FGF-2-
saporin kills the cells. Thus, the high-affinity FGFR1 targets
the chimera to a cytosolic compartment where the toxin kills
the cells, but the low-affinity sites do not permit toxin
internalization to the same compartment.

A heparin-binding site was identified proximal to the third
Ig-like loop of the FGFR1 (83). A point mutation in this sequence
abrogated both heparin- and ligand-binding activities of the
receptor. This suggests that a ternary complex of heparan-sul-
fate proteoglycan, FGF, and FGF receptor exists. N-Syndecan
from neonatal rat brain binds FGF-2 but not FGF-1 (84). N-
Syndecan and FGF-2 are both abundant in the neonatal rat
brain, suggesting that N-syndecan may function as a coreceptor
during nervous tissue development. Aviezer et al. (85) reported
that the basal lamina proteoglycan perlecan promotes FGF-2
receptor binding, mitogenesis, and angiogenesis suggesting
that perlecan may be a major FGF-2 low-affinity receptor. Nu-
gent and Edelman (86) measured the on and off rates for these
two classes of binding sites. Whereas the on-rate constants are
similar for high- and low-affinity binding sites, the off-rate
constant is 23-fold greater for HSPG than for the high-affinity
receptor. Therefore, differences in dissociation constant (Kd)
result from the faster off-rate for FGF-2 release from the HSPG
sites vs. the high-affinity receptor. Gao and Goldfarb (87) re-
cently reported that heparin and the heparin analogs fucoidan
and dextran sulfate directly activate FGFR4, but not FGFR1 (87).
Heparin binds with strong affinity to FGFR4 at loop 2 of the
extracellular domain.

The association of FGF-2 with FGF-binding proteins in the
blood or the matrix may influence FGF-2 activity and/or
bioavailability. In the blood, FGF-2 associates with a2-
macroglobulin or truncated FGFR1 (88, 89). In addition, two
truncated forms of FGFR1 of 85 and 55 kDa are associated
with the matrix (90). Taken together, the above data indicate
that FGF action is regulated extracellularly at 1) the plasma
membrane by cooperative interaction of heparan sulfates
and FGFR, 2) the matrix by either direct interaction or indi-
rect action via truncated FGFR1, and 3) the blood by inter-
action with a2-macroglobulin or truncated FGFR1.

FGF-2 stimulates receptor tyrosine-kinase autophosphor-
ylation and receptor association with putative substrates
such as phospholipase C-g (PLC-g). Mutation of a single
amino acid abolishes the association with PLC-g but not
mitogenesis (91, 92). Specifically, a point mutation at Tyr-766
in the FGFR1 expressed in PC12 cells eliminates FGF-induced
stimulation of phosphatidyl inositol hydrolysis (93). How-
ever, neither the ras-dependent activation pathway nor neu-
rite outgrowth are affected. Thus, phosphatidyl inositol hy-
drolysis does not seem necessary for cell differentiation in
PC12 cells. Similarly, the role of PLC-g activation after FGFR1
occupancy was examined in mesoderm induction in Xenopus
(94). Chimeras of the extracellular domain of platelet-derived

growth factor (PDGF) receptor and the intracellular and
transmembrane domains of either the wild type FGFR1 or the
FGFR1 mutated in the PLC-g-binding domain so as to inhibit
receptor association with PLC-g were constructed (94). Both
receptors mediated mesoderm induction in Xenopus animal
caps demonstrating that PLC-g activation by the FGF recep-
tor is not required for FGF-stimulated mesoderm induction.
In addition to Tyr-766, other autophosphorylation sites in
FGFR1 have been described (95). These include six sites at
Tyr-463, Tyr-583, Tyr-585, Tyr-653, Tyr-654, and Tyr-730.
Among these, only Tyr-653 and Tyr-654 are important for
biological activity. Both wild type and FGFR1 mutated at the
remaining four nonessential tyrosines phosphorylate Shc
and an unidentified Grb2-associated phosphoprotein of 90
kDa (pp90). Binding of Grb2/Sos complex to phosphorylated
Shc and pp90 may link FGFRs to the Ras-signaling pathway.
Another substrate of the activated FGFR1 is the phospho-
protein cortactin, which binds to filamentous actin, and is
phosphorylated by the src oncogene (96). Activated FGFR1
may associate with c-src that, in turn, phosphorylates cor-
tactin. Cortactin may act as a link between the FGFR1 signal
transduction pathway and the cytoskeleton.

A long-term mechanism of FGF-2 and FGF-1 action involv-
ing growth factor translocation into the nucleus has been pro-
posed (97, 98). To achieve maximal DNA synthesis, cells require
exposure to FGF-1 for at least 12 h (98). In cells stimulated by
FGF-1, FGFR1 is phosphorylated and translocated perinucle-
arly (99). This correlates with an accumulation of FGF-1 in the
nucleus. Thus, signaling through the FGF receptor may occur
at the plasma membrane and after receptor translocation to an
intracellular site. Mutation of the putative nuclear targeting
sequence of FGF-1 abolishes cell growth but retains the ability
to bind and activate the FGFR (100). However, further studies
suggested that this effect may result from the structural insta-
bility of the deletion mutant (101). FGF-1 fused to diphtheria
toxin and translocated into toxin-resistent cells, which lack
functional FGFRs, stimulates DNA synthesis (102). This result
supports a receptor-independent mechanism for FGF-1 stim-
ulation of proliferation. This may also be true for FGF-2 as both
growth factors bind to similar receptors. Therefore, signals im-
portant for cell proliferation may initiate at an intracellular
(nuclear) level either through the FGF receptor or independent
of it. Quarto and Amalric (103) reported that FGF-2 stimulated
plasminogen activator expression in L6 rat myoblasts devoid of
functional FGFR. They suggested that the signal is transduced
through heparan sulfate proteoglycans. How this might be
achieved is not understood.

Changes occur in FGFR expression levels during prolif-
eration, differentiation, or malignant transformation. Expo-
nentially growing cells generally express higher receptor
levels than do subconfluent or confluent cells. During dif-
ferentiation, FGFR expression may increase or decrease ac-
cording to the cell type. For example, Moscatelli (104) has
shown that cell surface FGFR increase in F9 teratocarcinoma
cells when differentiation is induced with retinoic acid or
cAMP. This increase may be due to a loss of FGF expression
in differentiated cells, thus inhibiting down-regulation of
FGF receptors. In contrast, Pertovaara et al. (105) reported
that retinoic acid-induced differentiation of human embryonic
carcinoma cells led to a loss of FGFR4 mRNA expression and
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a down-regulation of FGFR2 and FGFR3 mRNAs. However,
the level of FGFR1 remained unchanged. Mummery et al. (106)
observed down-regulation of FGFR2 but not of FGFR1, R3, or
R4 in differentiated human embryonic carcinoma cells. In em-
bryonic stem cells, however, FGFR1, R2, and R3 are up-regu-
lated during differentiation. FGFR4 was only expressed after
differentiation in cells resembling parietal endoderm. In skeletal
muscle, FGFR expression is greatly reduced after differentiation
(107). These examples illustrate that during differentiation,
changes in FGFR expression are variable and, therefore, no
general conclusion can be derived.

Another new isoform of the FGFR family that has been
cloned (108, 109) is the kinase named FREK (FGF receptor-
like embryonic kinase) that can be alternatively spliced in
two or three IgG forms (108). FREK is expressed during the
elongating primitive streak in the rostral and lateral epiblast
and in Hensen’s node. From day 2.5, FREK is expressed in
various ectoderm- and mesoderm-derived structures. It is
expressed at high levels in skeletal muscle, beginning in the
early myotome and later in all skeletal muscles of the em-
bryo. From day 9, FREK levels decrease dramatically. How-
ever, expression is maintained in satellite cells of the adult
muscle. The natural ligand for the FREK receptor is not
known, although it can bind FGF-2. Skeletal muscle satellite
cells express higher levels of FREK mRNA than do epiph-
yseal growth plate chondrocytes (109). Differentiation re-
duces the levels of FREK.

B. Endogenous 18-kDa and HMW FGF-2

The different subcellular localization of HMW and 18-kDa
FGF-2 supports the potential for different roles for these
FGF-2 isoforms. Cell fractionation and immunofluorescence
of either 3T3 or COS cells transfected with FGF-2 cDNAs,
BAE cells, or hepatoma cells expressing different FGF-2 iso-
forms indicated that HMW FGF-2 is predominantly localized
in the nucleus, whereas 18-kDa FGF-2 is primarily localized
in the cytoplasm (26–29).

Endogenous FGF-2 may play a role in cell growth, migration,
and differentiation. Sato and Rifkin (110) and Biro et al. (111)
demonstrated that migration of bovine capillary endothelial
cells is inhibited by FGF-2 antibodies, implying that endothelial
cell migration is affected by extracellular FGF-2. Mignatti et al.
(112, 113) showed that movement of NIH 3T3 cells transfected
with wild type FGF-2 cDNA is increased compared to that of
control cells and that movement is inhibited by FGF-2 antibod-
ies. BHK cells (114) and BALB/c 3T3 cells (115) transformed by
overexpression of 18-kDa FGF-2 also exhibit increased growth.
NIH 3T3 cells expressing HMW FGF-2 isoforms have altered
growth properties (116); cells with high copy numbers of HMW
FGF-2 cDNA grow like transformed cells, whereas cells with
low copy numbers are growth inhibited.

We have attempted to answer the question of whether
specific forms of FGF-2 induce specific phenotypes by ex-
amining cells expressing unique forms of FGF-2 (117). Cells
expressing only 18 kDa were more migratory than control
cells, whereas cells expressing only HMW FGF-2 migrated at
a level similar to control cells. Cells expressing only HMW
FGF-2 exhibited increased saturation densities, growth in
soft agar, and growth in low serum. Cells expressing only

18-kDa FGF-2 also grew to high saturation densities and
grew in soft agar but did not grow in low serum. An increase
in migration and receptor down-regulation correlated with
the presence of extracellular 18-kDa FGF-2. Supertransfec-
tion of cells expressing HMW FGF-2 with a cDNA encoding
18-kDa FGF-2 caused an increase in migration and cell sur-
face-associated 18-kDa FGF-2. Overexpression of a dominant
negative FGF receptor inhibited migration and decreased
saturation density and soft agar growth of cells expressing 18
kDa FGF-2 but did not inhibit growth of cells expressing
HMW FGF-2. These data demonstrate that endogenous 18
kDa and HMW FGF-2 can have different biological roles; the
former affects cell growth and cell migration; the latter affects
cell growth but not migration. Estival et al. (118) also showed
that adrenocortical cells transfected with the cDNA encoding
HMW FGF-2 display enhanced proliferation. Furthermore,
Biro et al. (111) demonstrated that FGF-2 accumulates in the
nucleus before the onset of DNA synthesis. In addition, the
presence of the 24-kDa FGF-2 form is present in human
pituitary adenomas, whereas in the normal pituitary gland
only the 18-kDa form is present (119). These data are con-
sistent with a role of HMW FGF-2 in cell growth and tu-
morigenesis. Another potential intracellular role of endog-
enous FGF-2 is trans-differentiation of neural crest-derived
Schwann cell precursors into melanocytes (120) as antisense
oligonucleotides for FGF-2, but not FGF-2 antibodies, inhib-
ited trans-differentiation. However, it has not been estab-
lished which form of FGF-2 is responsible for this effect.

The intracellular molecules that interact with endogenous
FGF-2 are not known. Nakanishi et al. (121) showed in vitro
that pgk gene transcription is regulated by high concentra-
tions of 18-kDa FGF-2. FGF-2 stimulates the phosphorylation
of nucleolin by CKII in an in vitro system (122). In addition,
Prats et al. (123) using the radiation inactivation method
showed that FGF-2 is present in the nucleus in two com-
plexes: HMW FGF-2 in a complex of 320 kDa and 18-kDa
FGF-2 in a complex of 130 kDa. These results indicate that
intracellular FGF-2 may associate with other molecules.

Several factors regulate the expression of endogenous
FGF-2. Phorbol-myristate acetate (PMA) enhances FGF-2
mRNA and protein expression in human umbilical vein
and bovine adrenal cells (124, 125), and forskolin induces
the expression of all FGF-2 isoforms in these cells. FGF-2
accumulates preferentially in the cytosol after PMA stim-
ulation, whereas forskolin induces nuclear accumulation.
Interleukin-1 and TGF-b regulate FGF-2 expression (126,
127). p53 May regulate FGF-2 expression as well because
cotransfection of p53 and FGF-2 cDNAs into human glio-
blastoma or hepatocellular carcinomas revealed that the
FGF-2 promoter is responsive to p53 (128). Whereas wild
type p53 represses FGF-2 expression, mutant p53 enhances
FGF-2 expression.

IV. Release of FGF-2

The mechanism of FGF-2 release remains one of the
more intriguing questions in FGF biology. Neither FGF-1,
-2, or -9 possesses a signal sequence and neither FGF-1 nor
-2 is released by the classic signal sequence pathway. One
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view of how FGF-2 is released from cells is through passive
processes such as cell death, wounding, or chemical injury
(129). Haimovitz-Friedman et al. (130) reported that FGF-2
can be released into the medium after irradiation. Factors
such as fibrin-split products also induce FGF-2 release
(131). In addition, endothelial cells exposed to polymor-
phonuclear leukocytes release FGF-2 by an undefined
mechanism (132).

A second view is that a nonclassic release pathway exists for
the release of proteins, such as FGF-2, that lack secretion signals.
Mignatti et al. (112) demonstrated that migration of an isolated
single cell expressing FGF-2 can be inhibited by FGF-2-neu-
tralizing antibodies. Thus, a mechanism other than cell death
can lead to FGF-2 release. Because FGF-2-dependent cell mi-
gration was not inhibited by drugs affecting the classic secretion
pathway, FGF-2 release may be via a novel mechanism (113).
Kandel et al. (133) demonstrated that an angiogenic “switch”
occurs in fibrosarcoma progression at a point when FGF-2 be-
gins to be released. Florkiewicz et al. (134) have shown that
FGF-2 is exported from COS-1 cells by an energy-dependent,
non-ER/Golgi pathway. COS-1 cells transfected with all four
FGF-2 isoforms only released 18-kDa FGF-2. Export was not
inhibited by brefeldin A. Data on FGF-1 support the view that
an alternative transport mechanism is involved in release as
heat shock induces release in NIH 3T3 cells transfected with a
cDNA encoding FGF-1 (135). Maciag et al. (136) reported that
mutation of cysteines abrogated the extracellular appearance of
FGF-1. These data suggest that FGF-1 may be released by a
mechanism involving heat shock proteins and disulfide bonds.
These requirements may also be associated with FGF-2 release
but need to be tested.

V. Roles of FGF-2 in Development and
Differentiation in Various Organ Systems

FGF-2 has been proposed to have an important function in
the development and function of numerous organ systems
(Table 1). The following is a summary of recent findings
emphasizing the pleiotropic role of this molecule.

A. Mesoderm induction

FGF plays a crucial role in mesoderm induction in Xenopus
(137–147). FGF signals are required for activin-mediated me-

soderm induction (141, 142), as injection of a dominant negative
FGFR1 mRNA into the Xenopus oocyte greatly diminishes the
ability of activin to induce certain markers of mesoderm for-
mation such as Xbra or Mix1. However, other markers are less
sensitive to the expression of the dominant negative FGFR,
suggesting that the activin signal is partly independent of FGF
activity. However, mesoderm formation in response to Xbra
may require FGF signaling (143) because mesoderm induction
by overexpression of Xbra is blocked by introduction of a dom-
inant negative FGFR (143). A different approach using trans-
genic mice lacking expression of FGFR1 shows the involvement
of the FGF signaling pathway in embryogenesis. The early
growth defects and aberrant mesodermal patterning in these
mutant mice suggest that FGFR1 is required during mouse
embryogenesis for both proper embryonic cell proliferation and
pattern formation (148, 149).

The intracellular signals required for mesoderm induction
are beginning to be identified. Protein kinase C (PKC) in-
duction alone is not sufficient for mesoderm induction (94,
144). Rather, PKC activation may be part of a negative feed-
back mechanism because PKC activation inhibits mesoderm
induction by FGF-2 (144). Mesoderm induction by FGF prob-
ably involves the mitogen-activated protein kinase (MAPK)
cascade (145). MAPK phosphatase-1 mRNA injection into
oocytes leads to severe defects in gastrulation and posterior
development and blocks FGF-dependent mesoderm induc-
tion. This can be overcome by simultaneous injection of wild
type MAPK. These data indicate that FGF induces two types
of signals: one that is dependent upon MAPK and stimulates
mesoderm formation, and one that involves PKC and may
shut-off FGF signaling, thus arresting the FGF effects on
mesoderm induction.

Although FGF signaling participates in mesoderm induc-
tion and in the maintenance of mesoderm during gastrula-
tion, the form(s) of FGF responsible is not known. Isaacs et
al. (146, 147) suggested that Xenopus-derived embryonic FGF
(eFGF) is the mesodermal inducer. Injection of eFGF or FGF-2
mRNA into oocytes revealed that eFGF is more potent than
FGF-2 in mesoderm induction, perhaps because eFGF con-
tains a signal sequence and is, therefore, more efficiently
released than FGF-2. FGF-2 is as potent as eFGF in mesoderm
induction when applied to embryonic caps. FGF-2 may play
a role in mesoderm induction because, first, FGF-2, like eFGF,

TABLE 1. Putative functions of FGF-2 in different organ systems

Organ Putative functions

Brain Neuronal differentiation and survival
Blood vessel Angiogenesis, smooth muscle cell proliferation

Atherogenesis, blood pressure control
Lung Branching morphogenesis, fibrosis
Limb Limb development
Muscle Myogenesis
Bone Osseous healing, chondrogenesis
Hematopoiesis Stimulation of granulopoiesis, megakaryocytopoiesis, stem cell

survival
Antiapoptotic effect

Reproductive system Spermatogenesis
Eye Photoreceptor survival and transduction
Skin Melanogenesis

Morphogenesis of the suprabasal keratinocytes
Tissue repair

In several organ systems other members of the FGF family may play the indicated roles.
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is expressed before and at the initiation of mesoderm for-
mation; second, FGF-2 may function intracellularly; third,
FGF-2 is exported via an alternative pathway that is activated
at selected times during embryogenesis.

FGFR1 and R2 homologs have been cloned in Drosophila
(150). Drosophila FGFR1 and R2 (DFR1 and DFR2) have three
and five Ig-like domains in the extracellular region, respec-
tively. DFR1 expression is specific to mesodermal primor-
dium and invaginated mesodermal cells. At later stages,
putative muscle precursor cells and cells in the central ner-
vous system express DFR1. DFR2 is expressed in endodermal
precursor cells, central nervous system (CNS) midline cells,
and certain ectodermal cells such as those of the salivary duct
and the trachea. The specific roles of DFR1 and R2 in me-
soderm formation are not known.

B. Angiogenesis

FGF-2 induces endothelial cell proliferation, migration,
and angiogenesis in vitro (for review see Ref. 1). FGF-2 reg-
ulates the expression of several molecules thought to mediate
critical steps during angiogenesis. These include interstitial
collagenase, urokinase type plasminogen activator (uPA),
plasminogen activator inhibitor (PAI-1), uPA receptor, and
b1 integrins (for reviews see Refs. 151–153). These molecules
may be involved in the invasive phenotype displayed by
endothelial cells during angiogenesis. Angiogenesis induced
by FGF-2 also involves avb3 integrin because antibodies
directed against this integrin subtype block angiogenesis in
vitro and in vivo (154). In addition, the extracellular matrix
provides tensional signals to the FGF-2-activated endothelial
cells to allow capillary cord formation (155).

Flamme and Risau (156) performed an interesting study to
determine how endothelial and hematopoietic cell lineages
emerge. They showed that FGF-2 induces differentiation of
both endothelial cells and hematopoietic cells from dissoci-
ated quail epiblasts in vitro. In long-term cultures, the in-
duced endothelial cells give rise to vascular structures. Based
on this study, FGF-2 may be important for embryonic vas-
cular development.

FGF-2 was initially regarded as the tumor angiogenesis
factor (for review see Ref. 1). This view was challenged by the
discovery of vascular endothelial cell growth factor (VEGF;
for review see Ref. 157). FGF-2 is present in many tissues,
tumor cells, and cell lines including rhabdomyosarcoma,
fibrosarcoma, and glioma cells (1, 133, 158–160). However,
FGF-2 is released by most cell types with low efficiency.
Therefore, it has been proposed that other factors such as
VEGF regulate tumor angiogenesis (161–163). VEGF may
induce the endothelium to produce FGF-2, which may con-
trol angiogenesis as a secondary autocrine or intracrine cy-
tokine.

Li et al. (164) reported that the cerebrospinal fluid of chil-
dren and adults with brain tumors contains an angiogenic
activity identical to FGF-2. The presence of FGF-2 in the
cerebrospinal fluid correlates with the amount of tumor mi-
crovessel formation. Thus, FGF-2 may mediate angiogenesis
in brain tumors and, together with microvessel quantifica-
tion in biopsied tumors, provide prognostic information for
the outcome of the disease. Nguyen et al. (165) analyzed

FGF-2 levels in urine samples from 950 patients with a wide
variety of solid tumors, lymphomas, or leukemias. Patients
with active local cancers had intermediate FGF-2 levels,
whereas patients with active metastatic cancer had high
FGF-2 levels. This indicates that urine levels of FGF-2 may be
of significance in monitoring cancer patients.

Tumor angiogenesis usually occurs in a hypoxic environ-
ment (166). This is in apparent contradiction with an inhi-
bition of endothelial cell proliferation, migration, and FGF-2
expression observed during hypoxia. However, during hyp-
oxia, macrophages release FGF-2, and this activity stimulates
the growth of hypoxic endothelial cells (167). This may ex-
plain neovascularization in tumor angiogenesis mediated by
paracrine FGF-2.

How can the action of FGF-2 in angiogenesis be modu-
lated? We have investigated the opposing effects of TGF-b on
FGF-2 activity in BAE cells (for review see Ref. 168). TGF-b
inhibits FGF-2-induced cell migration and protease produc-
tion. FGF-2 stimulates uPA expression, which, in turn, acti-
vates latent TGF-b. Activated TGF-b stimulates PAI-1 syn-
thesis, which inhibits uPA, shutting down subsequent TGF-b
formation. This creates a loop regulating both TGF-b acti-
vation and FGF-2 activity. In addition, TGF-b is a biphasic
regulator of FGF-2-induced angiogenesis (169, 170). At low
concentrations, TGF-b stimulates FGF-2 action in vitro,
whereas, at high concentrations, it inhibits FGF-2 action in
vitro.

Several inhibitors of angiogenesis have been described.
These include heparin (171), heparinase (171, 172), platelet
factor-4 (173, 174), suramin (175, 176), angiostatic steroids
(177), thalidomide (178), and angiostatin (179). Among the
heparinases, only heparinase I and III inhibit FGF-2-induced
angiogenesis in vitro and in vivo (172). Tissue inhibitor of
metalloproteinase-2 inhibits FGF-2-induced human micro-
vascular endothelial cell proliferation (180). Interferon-a and
-b down-regulate FGF-2 expression in human renal, bladder,
prostate, colon, and breast carcinomas (181). This might ac-
count for the benefit observed after interferon treatment in
these vascularized neoplasms. However, interferon-a and
interleukin-2, in combination, stimulate endothelial cell
growth and in vivo angiogenesis (182).

Like FGF-2, FGF-1 stimulates angiogenesis in vitro and in
vivo (183). However, FGF-1 is not significantly expressed in
endothelial cells, which suggests a paracrine mechanism of
action. Smooth muscle cells express FGF-1, which may play
a role in the induction of neovascularization within the ath-
erosclerotic lesion (183, 184). It is also possible that other
members of the FGF family, if expressed at appropriate levels
in specific sites, will be angiogenic as they can bind to the
same receptors as FGF-1 and -2.

C. Vessel wall

FGF-2 stimulates smooth muscle cell proliferation (for re-
view see Ref. 3). An elegant series of experiments on the role
of FGF-2 in neointimal cell proliferation and atherogenesis
were performed by Reidy and co-workers (185, 186), who
demonstrated that the infusion of neutralizing antibodies to
FGF-2 after balloon injury of the rat aorta inhibits neointimal
cell proliferation. By in situ hybridization, FGF-2 mRNA was
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detectable at the wound edge of the endothelial cell layer and
in migrating or proliferating smooth muscle cells. Expression
of FGF-2 mRNA and FGFR1 mRNA was observed in repli-
cating endothelial and smooth muscle cells. In agreement
with these results, Casscells et al. (187) observed that FGFRs
were up-regulated in smooth muscle cells after vessel injury.
Up-regulation of FGFR expression renders smooth muscle
cells susceptible to the lethal effects of FGF-2 coupled to
saporin. Furthermore, FGF-2 and FGFR1 mRNAs are up-
regulated in human atherosclerotic arteries, and increased
mRNA expression is specifically associated with neovascu-
larization of the atheromatous lesion (188). Thus, in injured
arteries, the FGF-2 ligand/receptor system may be involved
in neointimal formation. In support of this hypothesis, FGF-2
was found to be released after vessel injury (189).

Brogi et al. (190) showed that all cells of arteries contain
FGF-1 and FGF-2. However, FGF-1 mRNA was detected in
only one of five control arteries tested, whereas all five ath-
eromatous arteries contained FGF-1 mRNA. FGF-2 mRNA
was expressed in both control and atheromatous arteries.
Immunolocalization revealed abundant FGF-2 in control ar-
teries but little in plaque. FGF-1 immunoreactivity was ab-
sent in control arteries but was high in atheroma-containing
arteries. All arterial cells and arteries contained FGFR1. Only
smooth muscle cells and control vessels had FGFR2 mRNA,
although endothelial cells and some arteries contained
FGFR4 mRNA. These data suggest that FGF-1, but not FGF-2,
may be important in atherogenesis. However, FGF-2 may
play a role in the early stages of formation of the athero-
sclerotic lesion, whereas FGF-1 is active at a later stage.

The fate of FGF-2 applied to the vessel wall was examined
by Edelman et al. (191) who characterized intravenously in-
jected 125I-labeled FGF-2 vs. controlled perivascular released
growth factor. Whereas intravenously administered FGF-2
was rapidly cleared from the circulation, FGF-2 from slow
release polymers was delivered to the extravascular space
without transendothelial transport for longer periods of
time. The deposition of FGF-2 delivered by the slow release
system was 40 times greater than by intravenous adminis-
tration. Thus, an intact endothelium is not required for FGF-2
to reach the subendothelium, and this passage is not medi-
ated by transendothelial transport. Systemic administration
of FGF-2 in rats lowers the blood pressure (192). This hypo-
tensive action is due to the induction of nitric oxide synthesis
and/or ATP-sensitive potassium ion channels. Therefore,
FGF-2 may play a role in the regulation of blood pressure and
may be of therapeutic use in the treatment of hypertension.
FGF-2 improves myocardial function in chronically ischemic
porcine hearts (193). Periadventitial administration of FGF-2
in a gradual coronary occlusion model resulted in an im-
provement of coronary blood flow and a reduction in the
infarction size. Furthermore, intracoronary injection of
FGF-2 improved cardiac systolic function and reduced in-
farction size in a canine experimental myocardial infarct
model (194).

D. Lung

Lung development is another example of branching mor-
phogenesis. Expression of FGF-2 and FGFRs was studied in

the developing rat fetal lung (195). During development,
FGF-2 immunoreactivity is localized to cells of the airway
epithelium, basement membranes, and extracellular matrix.
FGFRs are also detectable in the airway epithelial cells,
mainly in the branching areas starting from day 13. During
the embryonic and pseudoglandular stages of lung devel-
opment, the expression of FGFRs increases. At the saccular
stage, no FGFRs are detectable. During postnatal develop-
ment, FGF-2 immunoreactivity is found in the developing
airway epithelium basement membrane (196). Peters et al.
(197) showed that lung development, specifically branching,
was impaired in transgenic mice when a dominant negative
FGFR mRNA was targeted to the lung by use of a surfactant
promoter. This receptor shows a high specificity for FGF-7;
therefore, a molecule identical or related to FGF-7 must be
responsible for branching morphogenesis during lung de-
velopment. However, targeted disruption of the FGF-7 gene
yields mice with normal lung structure (198). Drosophila
FGFR1 is required for the migration of tracheal cells during
embryogenesis (199).

The expression of a number of genes may be regulated by
FGF-2 during lung development. There is a burst of elastin
synthesis by interstitial fibroblasts that coincides with the
period of alveolar septal elongation during lung differenti-
ation. FGF-2 negatively regulates elastin synthesis, and the
inhibition of FGF-2 activity by neutralizing anti-FGF-2 anti-
bodies increases elastin synthesis (200). Thus, a decrease in
FGF-2 expression during lung development may stimulate
elastin synthesis and alveolar septal elongation. In the adult
lung, FGFRs seem to be expressed at low levels because
binding studies on lung tissue membrane preparations failed
to detect significant levels of high affinity FGFR (201).

Fuks et al. (202) demonstrated that the intravenous ad-
ministration of FGF-2 in C3H/HeJ mice before and after
irradiation inhibited apoptosis in endothelial cells and pro-
tected the mice against lethal radiation pneumonitis. Thus,
FGF-2 is an efficient radioprotector in nonhematopoietic tis-
sue and may prevent radiation-induced pneumonitis and
fibrosis.

In a model of acute intraalveolar granulation tissue for-
mation after lung injury, FGF-2 mRNA and protein were
detected in macrophages obtained after bronchioalveolar la-
vage (203). Tissue sections from a patient who died after lung
injury showed FGF-2 immunoreactivity in numerous mac-
rophages. In addition, FGF-2 expression can be increased in
lung fibroblasts by PDGF and TGF-b (204). Similar results
were reported by Henke et al. (205), who isolated FGF-2 from
bronchoalveolar lavage fluid from patients with acute lung
injury.

E. Hematopoiesis

Several groups reported that FGF-2 as well as FGF-1 stim-
ulates hematopoiesis in in vitro systems and, therefore, may
play a role in both normal and pathological hematopoiesis
(for review see Refs. 4 and 5). Wilson et al. (206) showed that
myelopoiesis is enhanced by FGF-2 in long-term bone mar-
row cultures. Low concentrations of FGF-2 (0.2–2 ng/ml)
increased the number of cells from the neutrophil-granulo-
cyte series, stromal cells, adherent hematopoietic foci, gran-
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ulocyte, colony-stimulating factor-, and granulocyte mac-
rophage-colony-stimulating factor-responsive progenitor
cells. The mechanism of the FGF-2 effect on granulopoiesis
is not understood. Several possibilities may be considered.
First, FGF-2 may stimulate granulopoiesis by inducing the
production of a secondary cytokine such as interleukin-1
(IL-1), IL-6, granulocyte macrophage colony-stimulating fac-
tor, or IL-3. Second, FGF-2 may suppress the action of growth
inhibitors such as interferons or TGF-b. Third, FGF-2 may
inhibit the expression of growth factor receptors as has been
described for IL-1 (207). Fourth, FGF-2 may directly stimulate
the growth and differentiation of stem cells or granulocytic
progenitors. This is supported by the observation that the
proliferation of peripheral blood stem cells is stimulated by
FGF-2 (208). More recently, Gabrilove et al. (209) demon-
strated that FGF-2 is synergistic with stem cell factor in
augmenting committed myeloid progenitor cell growth.

FGF-2 is a stimulator of megakaryocytopoiesis (4, 210–
213) and acts additively, if not synergistically, with IL-3. Han
et al. (210), Bikfalvi et al. (211), and Avraham et al. (213) found
this effect is mediated via IL-6, whereas Bruno et al. (212)
found that the regulation is mediated through IL-3. The
reasons for these differences are probably the different ex-
perimental conditions used and the different species studied.

FGFRs are detectable in bone marrow and on megakaryo-
cytic cells. [125I]FGF-2 binds to murine megakaryocytes as
visualized by a single cell autoradiographic assay and is
cross-linked to human erythroleukemic cells (HEL) (211). In
addition, FGFR1 and FGFR2 mRNA is detectable by North-
ern blotting in murine bone marrow and HEL cells and/or
by PCR in purified megakaryocytes, platelets, megakaryo-
cytic-like cells, T cells, B cells, and granulocytes. These find-
ings are supported by the work of Katoh et al. (214) who
identified FGFR2 transcripts in K562 cells and platelets. In
contrast, Armstrong et al. (215) demonstrated the presence of
only FGFR4 in megakaryocytic cell lines. These authors also
cross-linked FGF-2, but not other FGFs, to K562 cells.

The effect of FGF-2 on erythroid progenitors has not yet
been investigated, but results using K562 cells, which acquire
some erythroid characteristics upon differentiation, indicate
that FGF-2 may block differentiation. Burger et al. (216)
showed that FGF-2 antagonizes the induction of hemoglobin
synthesis by TGF-b and inhibits the expression of glycoph-
orin A. Allouche et al. (217) have shown that FGF-2 exhibits
an antiapoptotic effect in K562 cells differentiated with he-
min or PMA.

FGF-2 is a potent mitogen for human stromal cells and
delays their senescence (218). Also, macrophage-colony-
stimulating factor production and release in murine bone
marrow-derived stromal cells (TC 1) are stimulated by FGF-2
(219). Brunner et al. (220) showed that bone marrow stromal
cells are a storage site for FGF-2 and that treatment of these
cells with plasmin or phospholipase C (PLC) liberates FGF-2
in an active form. However, it is likely that in vitro endog-
enous phospholipase D and not PLC is responsible for FGF-2
release (221). Thus, the stromal cell layer and the matrix may
act as growth factor reservoirs.

Candidate cells in the bone marrow that produce FGF-2
are the fibroblasts, the stromal layer, or the cells of hema-
topoietic lineages. Brunner et al. (222) reported that FGF-2 is

expressed in platelets, megakaryocytes, and granulocytes
using immunofluorescence and immunological techniques.
Yet, FGF-2 is not detectable after metabolic labeling and
immunoprecipitation. Thus, megakaryocytes may only be a
storage site for FGF-2. However, FGF-2 mRNA has been
detected in peripheral mononuclear cells, platelets, and leu-
kemic cell lines with megakaryocytic features (223, 224). Fur-
thermore, the leukemic cell line K562 expresses HMW FGF-2
and 18-kDa FGF-2. More data are needed to clarify the cell
types involved in the expression of FGF-2 in the bone
marrow.

Among other FGFs involved in hematopoiesis, only FGF-1
has been investigated to some extent. Megakaryocytopoiesis
is stimulated by FGF-1 in a manner similar to that of FGF-2
and involves the same mechanism of action (4, 210, 211).

F. Nervous system

Several laboratories have analyzed the distribution and
function of FGF-2 and FGF receptors in the central nervous
system. However, a consensus on the distribution of FGF-2
or FGF receptors has not been reached. Although the neu-
rotrophic role of FGF-2 is established, no other function in the
nervous system has been assigned to FGF-2 with certitude.
In the following we summarize the work on the distribution
of FGF-2 and FGFRs during neural development, the puta-
tive functions of FGF-2 in the adult nervous system, and
potential roles for FGF-2 in neuropathology.

FGF-2 has been localized in the nervous system in a variety
of species (Table 2). The stage at which FGF-2 expression
appears varies according to the species studied. In the
chicken, FGF-2 immunoreactivity appears at stage E12 in the
spinal chord and ganglia. Neuronal FGF-2 expression in-
creases in intensity until the perinatal period and thereafter
remains unchanged (225). FGF-2 immunoreactivity is local-
ized at stage E2 in neuroepithelial cells (226). Specific staining
is observed in young sensory neurons as well as in nonneu-
ronal cells. In situ staining of the spinal cord and ganglionic
neurons appears at stage E6 and increases until E10. This is
followed by a subsequent decline in FGF-2 expression. In the
rat, strong immunoreactivity is detectable between stages
E16 and E17 in the cortex, the striatum, and in almost all
neurons of the brain stem, spinal chord, and spinal ganglia
(227). In the embryonic brain and hypothalamus, an abun-
dant FGF-2 mRNA species of 1.8 kb is detectable at stages
E13-E20, but little mitogenic activity is associated with the
prenatal brain (228). In the newborn rat, FGF-2 immunore-
activity is found in neural subpopulations of brain stem
nuclei, ventral spinal cord, and spinal ganglia. An earlier
appearance of FGF-2 mRNA expression was reported by
Nurcombe et al. (229), who showed that murine neuronal
precursor cells express FGF-2 mRNA at stage E9.

The pattern of expression of different molecular mass
forms of FGF-2 has been examined during the development
of the nervous system (230). In the rat embryo, only the
18-kDa and the 21-kDa FGF-2 forms are detected. Expression
of the 22-kDa form are first observed in the neonate and
steadily increase to adult levels by 1 month of age.

In human adult brain, strong staining for FGF-2 is observed
in central nervous system neurons and in cerebellar Purkinje
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cells (231). However, the most intense immunoreactivity is
found in branching capillaries. In the adult rat brain FGF-2
immunoreactivity is observed in astrocytes, in selected neural
populations, and occasionally in microglial cells (232). FGF-2
immunoreactive neuronal populations include septohip-
pocampal nucleus, cerebellar Purkinje cells, cerebellar deep nu-
clei, facial nerve nucleus, and the motor and spinal subdivisions
of the trigeminal nucleus and facial nerve nucleus (232).

In the adult brain all FGF-2 forms are found; the 18-, 21-,
and 22-kDa forms in the rat and the 18-, 22-, and 24-kDa
forms in the human (230). Tooyama and co-workers (233)
localized HMW FGF-2 to a subpopulation of calbindin-neg-
ative mesenchephalic dopaminergic neurons using a specific
HMW FGF-2 antibody. The immunolocalization of FGF-2
matches the distribution of the gap junction protein connexin
43 and is localized to gap junctions between astrocytes (234).
FGF-2 may regulate intercellular communication at such
junctions. FGF-2 is localized by immunohistochemistry and
in situ hybridization to the hypothalamic pituitary system
(235), where it is widely distributed in both the anterior and
neural lobes of the pituitary. Immunoreactive FGF-2 is de-
tected in basement membranes, pituicytes, and Herring bod-
ies. In the hypothalamus, magnocellular neurons of para-
ventricular and supraoptic nuclei contain immunoreactive
FGF-2. In the median eminence, immunoreactivity for FGF-2
is associated with fibers, glial, and endothelial cells. Ependy-
mal and subependymal cells of the third ventricle show high
levels of immunoreactivity and mRNA for FGF-2.

Different FGFR subtypes have been identified in the brain,
and the role of low-affinity binding sites has been investi-
gated. During mouse organogenesis, FGFR1, R2, and R3 are
expressed in the germinal epithelium of the neural tube at
day 9.5–16.5 post coitum (236, 237). However, at day 1 post-
partum, FGFR3 is expressed diffusely and localized in cells
with morphological characteristics of glia, whereas no ex-
pression of FGFR1 or R2 is found. FGFR1 exhibits a discrete
neuronal expression pattern. In the adult mouse brain,
FGFR1 is expressed in widespread, but specific, neuronal
populations, whereas FGFR2 is primarly expressed in the
fiber tracts suggesting that oligodendrocytes are the main
site of FGFR2 expression (238). FGFR4 mRNA is expressed
in the medial hubenular nucleus neurons, but not in other
locations (239). Powell et al. (228) found that the expression
of FGFR1 is temporally regulated. FGFR1 4.3-kb mRNA is

high in embryonic rat brain between E13-E19. In the pitu-
itary-hypothalamic system, the distribution of FGFR1 im-
munoreactivity matches that of FGF-2 immunoreactivity
(235). Nurcombe et al. (229) reported the developmentally
regulated interaction of heparan sulfates with FGFs. At stage
E9, when FGF-2 is expressed, heparan sulfates bind prefer-
entially to FGF-2. At stage 11, when mRNA for FGF-1 is first
detectable, there is a switch to FGF-1 in the binding speci-
ficity of heparan sulfate. Although both FGFRs and low-
affinity binding sites may undergo developmental regula-
tion, Fayein et al. (240) found developmental modulation of
high-affinity receptors but not of low-affinity binding sites.
The reason for these differences is not understood.

Several functions for FGF-2 in the nervous system have
been proposed. FGF-2 acts in vitro on both astroglial cells and
neurons. Mature oligodendrocytes are induced to dediffer-
entiate and to proliferate by FGF-2, suggesting a mechanism
for regeneration of the oligodendroglial lineage after demy-
elination (241). FGF-2 may have a trophic role in the nor-
adrenaline (NA), adrenaline (A), and 5-Hydroxytryptamine
cell groups of the rat brain (242). Indeed, FGF-2 immunore-
activity was shown in the perikarya of large numbers of NA
nerve cells of the locus coeruleus, the NA cell groups C1, C2,
and C3, 5-Hydroxytryptamine nerve cells, and all raphe nu-
clei. In vitro FGF-2 maintains the survival of single cultured
neurons (8), stimulates neurite outgrowth of hippocampal
neurons (243), promotes transmitter storage and synthesis in
chromaffine cells (244), and promotes the survival of cho-
linergic neurons from fetal cerebrum (245). FGF-2 may play
a role in regulating the generation of neurons and astrocytes
in the developing CNS (246) because cells that can generate
neurons and astrocytes contain protein and mRNA for
FGFR1. Exogenous FGF-2 induces the proliferation of two
progenitor cell types. The first gives rise to cells with only
neuronal characteristics. The second gives rise to cells with
neural and astrocytic characteristics. FGF-2 regulates the func-
tional state of neuropeptide Y neurons in the brain (247) and
induces a significant increase in neuropeptide Y production in
these neurons. Neural precursors isolated from adult rat brain
are induced to proliferate and to differentiate by FGF-2 (248).
Neuronal production is optimal under conditions in which
precursors are initially stimulated with FGF-2 and thereafter
exposed to serum-free medium conditioned by the astrocytic
cell line Ast-1. Finally, FGF-2 promotes long-term culture of

TABLE 2. Localization of FGF-2 in the developing and adult nervous system

During development Rodent Chicken Bird

Cortex Spinal chord Sensory neurons
Striatum Ganglia Spinal chord
Brain stem Ganglia
Hypothalamus
Spinal chord
Ganglia

In the adult Rodent Human

Septohippocampal Cortex (neurons)
Nucleus Cerebellum (Purkinje cells)
Cerebellum (Purkinje cells, deep nuclei) Branching capillaries
Hypothalamus
Pituitary
Facial nerve nuclei
Trigeminal nuclei
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primary neurons (249). These studies implicate FGF-2 in the
development of the nervous system. Although FGF-2 expres-
sion has been documented as indicated above, a role in brain
development has not yet been found for FGF-2. Crossley et al.
(250) have reported that the development of the midbrain is
induced by FGF-8. FGF-8 is expressed in the isthmic region of
chicken embryos and induces an ectopic midbrain when beads
soaked in recombinant FGF-8 are implanted into the forebrain.
Similar studies using FGF-2 would be necessary to ascribe a role
for this FGF in brain development.

FGF-2 may play an important role in regeneration after
injury of the CNS (251) as FGF-2 attenuates ischemic damage
in mice (252). Transgenic mice that overexpress 18-kDa
FGF-2 show a significantly higher number of surviving neu-
rons after ischemia than do nontransgenic mice. Systemically
administered FGF-2 in neonatal rats prevents neuronal dam-
age after ischemia induced by unilateral ligation of the ca-
rotid artery (253). FGF-2 may participate in a cascade of
neurotrophic events facilitating neuronal repair and survival
(254). After an entorhinal cortex lesion, FGF-2 immunoreac-
tivity increases in the outer molecular layer of the dentate
gyrus ipsilateral to the lesion. In the lesion, there is an in-
crease in FGF-2-producing astrocytes and in FGF-2 immu-
noreactivity. After transection of the fimbria-fornix, chronic
infusion of FGF-2 preserves nerve growth factor receptors on
neurons within the medial septal complex and prevents
death of medial septal neurons. After partial transection of
the fimbria, FGF-2 decreases cholinergic neuron disappear-
ance by 25%. Thus, FGF-2 seems to protect cholinergic neu-
rons from degeneration. In addition, a lesion of layer VIb of
the rat cerebral cortex induces FGF-2 immunoreactivity and
FGF-2 receptor expression (255). Furthermore, infusion of
FGF-2 into a lesion in the motor-sensory cortex stimulates
astrocyte proliferation (256). FGF-2 also reverses oxygen-
induced cell death of cultured basal forebrain neurons (257).
This effect seems to be specific as neither nerve growth factor
nor insulin-like growth factor-II prevents cell death. The
activity of choline acetyltransferase is also maintained when
FGF-2 is present in the basal forebrain cultures. These data
indicate that FGF-2 exhibits protective effects on different
neural cell types and may play an important role in the
regeneration after injury of the CNS.

Changes in FGF-2 levels and/or its receptors are associ-
ated with several pathologies of the nervous system includ-
ing the neurodegenerative diseases, Alzheimer’s, Hunting-
ton’s, and Parkinson’s. The senile plaques of Alzheimer’s
disease sequester FGF-2 (258, 259), and FGF-2 attenuates the
neurodegenerative effects of b-amyloid (260). In addition, a
functional relationship of b-amyloid precursor protein and
FGF-2 in the neuronal cells has been suggested (261). In
pyramidal and extrapyramidal cells of the hippocampus, in
large cells of the medial septal nucleus, and in the horizontal
limb of the diagonal band of Broca, b-amyloid precursor
protein and FGF-2 colocalize. These findings support the
concept that FGF-2 is stored in the plaques in a form that
activates neuronal cells. In Huntington’s disease, an increase
in FGF-2 expression correlates with the severity of the disease
(262). In Parkinson’s disease, there is a loss of FGF-2 in the
neurons of the substantia nigra (263).

Changes in FGF-2 or FGF receptors may be involved in the

genesis of certain brain tumors. FGF-2 immunoreactivity has
been shown in glioblastomas and astrocytomas (264). FGFR1
mRNA levels are significantly higher in human glioblastoma
cells than in normal brain tissue (160, 265). In addition, in-
tense immunoreactivity for FGFR1 is present in glioblastoma
cells, but only low levels of FGFR1 are present in normal
tissue (265). Endothelial cells of capillaries and large vessels
within the tumor are devoid of FGFR1 immunoreactivity.
Furthermore, antisense oligonucleotides for FGF-2 inhibit the
autonomous growth of glioma cells in culture (158). Human
astrocytomas undergo changes in their FGFR profile when they
progress to a more malignant phenotype (266). Normal human
brain and low-grade astrocytomas abundantly express FGFR2,
whereas FGFR1 is barely detectable. Malignant astrocytomas,
however, express FGFR1, including the alternatively spliced
form of FGFR1 (FGFRIb) containing two Ig loops. This may
indicate that malignant progression of astrocytomas is accom-
panied by a switch from FGFR2 to FGFRIb.

G. Reproductive system

FGF-2 modulates basal and LH/human choriogonadotro-
phin (LN/hCG)-stimulated Leydig cell function. This effect
may be mediated directly through the interaction of FGF-2 with
Leydig cells (267) as purified Leydig cells have FGFR. However,
the role of these receptors in Leydig cell function must be
established. Rat germ cells produce FGF-2 that may regulate
Sertoli cell function (268). FGF-2 was isolated from germ cell-
conditioned medium and stimulated transferrin expression in
Sertoli cells. The sizes of the FGF-2 immunoreactive proteins
were 24, 27, and 30 kDa. FGF-2 is thought to play a role in
prostatic cell growth. Fast-growing prostatic tumors exhibit
high FGF-2 expression and several spliced variants of FGFR
(44). During malignant progression of epithelial cells derived
from a rat prostate tumor, a switch occurs from expression of
exon IIIb to exon IIIc in the FGFR2 gene. This switch results in
the exclusive expression of FGFR2 (IIIc) isoform, which, unlike
FGFR2 (IIIb) isoform, has high affinity for FGF-2 (269). Con-
stitutive expression of FGF-2 and switched expression in FGFR2
isoforms may constitute an independent autocrine system driv-
ing prostatic tumor growth.

H. Skin

The proliferation and differentiation of normal human
melanocytes are dependent on FGF-2 (270). Melanoma cells
grow rapidly because of the overexpression of FGF-2 and the
activation of FGF-2-dependent tyrosine kinases. However,
melanocytes are normally not transformed by FGF-2 expres-
sion and, therefore, an additional factor must confer the
malignant phenotype to melanoma cells. FGFR1 is expressed
in normal human melanocytes and melanoma cells (271).
Antisense oligonucleotides to FGFR1 inhibit the proliferation
of normal human melanocytes and melanoma cells. This is
not observed with FGF-2 antisense oligonucleotides and sug-
gests a role for deregulation of the FGF-2 receptor and not of
its ligand in melanoma progression.

When a transgene encoding a dominant negative FGFR
was targeted to the suprabasal keratinocytes, the organiza-
tion of epidermal keratinocytes was disrupted, the epidermis
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was thickened, and keratin 6 was aberrantly expressed (272).
This suggests that FGF-2 or a member of the FGF family is
essential for the morphogenesis of suprabasal keratinocytes.

Kurita et al. (273) examined the localization of FGF-2 dur-
ing wound healing in the skin and demonstrated that during
mouse skin wound healing, the basal layer keratinocytes and
hair bulbs at the wound edge are strongly stained with anti-
FGF-2 antibodies. Several layers of keratinocytes are posi-
tively stained in the reepithelialized area. These findings
suggest that germinative keratinocytes express FGF-2. A
marked increase in extracellular FGF-2 immunoreactivity is
seen in the postburn specimens, whereas in controls, pri-
marily capillary endothelial cells are stained (274).

In healing-impaired diabetic mice, FGF-2 promotes
wound healing (275–277). FGF-2 promotes wound healing in
the pig partial-thickness skin excision model (278). Topically
applied FGF-2 decreases the time of wound healing (279). In
addition, fibroblasts seeded in an FGF-2-coated collagen I
sponge matrix facilitate early dermal and epidermal wound
healing (280). In wounds, FGF-2 induces a marked increase
in endothelium and neovessels and an increase in wound
collagenolytic activity (281). FGF-2 activity is detectable in
wound fluids from both full- and partial-thickness wounds
(282). FGF-2 encapsulated in red blood cell ghosts also ac-
celerates incisional wound healing (283).

I. Eye

FGF-2 is localized in the eye, retina, lens, photoreceptors,
aqueous and vitreous ocular media, and in the corneal ep-
ithelium (284, 285). During embryonic chicken development,
expression of FGF-2 is first observed at low levels at day 5
in the retina and lens (284). At day 12, significant FGF-2
expression is seen in the neuroepithelial cells, amacrine cells,
ganglion cells, photoreceptors, and the corneal epithelium.
Human lacrimal tissue expresses FGF-2 and FGFR1 (286).

Several functions have been proposed for ocular FGF-2.
FGF-2 induces retinal regeneration in vitro (287) and protects
photoreceptors from light damage (288, 289). FGF-2 induces
lens epithelial cells to proliferate, migrate, and differentiate
into fiber cells (285). Lens-differentiating activity identical to
FGF-2 and FGF-1 is found in the vitreous, but not in the
aqueous, ocular medium (285). Robinson et al. (290) showed
that FGF-1 transgenic mice express markers consistent with
lens differentiation. FGF-2 may also participate in the trans-
duction mechanism of the photoreceptor (291). FGF-2 stim-
ulates photoreceptor differentiation in newborn rat retinal
cells, increasing the expression of opsin (292). In addition,
Goreau et al. (293) showed that FGF-2 induces nitric oxide
synthase in retinal pigmented epithelial cells. Thus, FGF-2
may participate in photoreceptor transduction, in part, by the
regulation of nitric oxide production. The proliferation of
corneal endothelium is synergistically stimulated by FGF-2
and corneal endothelium modulation factor (294). A syner-
gistic inhibition of collagen IV synthesis and stimulation of
FGF-2 expression with FGF-2 and corneal endothelium mod-
ulation factor has been described. Thus, endogenous FGF-2
may play a role in the growth of corneal endothelial cells.

What role may FGF-2 have in ocular pathology? The retinal
pigmented epithelium is the site of the primary lesion in in-

herited retinal dystrophy in rats (295), a model for retinitis
pigmentosa. The failure to produce trophic factors may pro-
mote photoreceptor cell death. However, when the expression
of FGF-1 or FGF-2 is analyzed, no change in comparison to
control is found (296). Nevertheless, retinal pigmented epithe-
lium from rats with retinal dystrophy exhibit low FGFR num-
bers mainly in FGFR2 (296). The reason for the reduction in
FGFR in rats with retinal dystrophy is not known.

FGF-2 accelerates healing in laser-injured retinas of New
Zealand red rabbits (297). The healing of experimentally
induced corneal injuries is stimulated by FGF-2 (298–303).
Deepithelialized rabbit corneas heal significantly faster in the
presence of FGF-2 (303). Wound healing of serum-deprived
kitten corneal endothelial cells is promoted by FGF-2 but not
by insulin-like growth factor (304).

FGF-7 may also have a role in skin development and
differentiation as ablation of the FGF-7 gene yields mice with
abnormal hair (198). This result is consistent with the original
observation that FGF-7 is a growth factor for keratinocytes
(305).

J. Muscle and skeleton

FGF-2 may be involved in skeletal muscle growth and
differentiation. Templeton and Hauschka (306) showed that
both growth and differentiation are controlled by the inter-
action of FGF-2 with FGFR1. FGF-2 is an inhibitor of skeletal
muscle differentiation and operates by activating signaling
pathways independent of PDGF-signaling pathways (307).
In particular, stimulation of MAPK kinase, junB, or c-fos
expression is not sufficient to repress skeletal muscle differ-
entiation. In addition, heparan sulfates are required for the
induction of myogenic signals by FGF-2 (68–70).

Developmental studies indicate that FGF may play an
important role in muscle development. Disruption of FGF
signaling by expression of a dominant negative FGFR2 re-
sults in gastrulation defects that are reflected in the lack of
formation of the notocord and muscle (308). Even in embryos
that show mild defects, muscle formation is impaired. The
dominant negative receptor inhibits the expression of the
early gene Xbra throughout the marginal zone, including the
dorsal side. These data demonstrate that FGFs are involved
in the earliest events of mesoderm induction. FGF-2, as well
as several other FGF family members such as FGF-4 and -8,
stimulates limb development (10, 11, 309–313). Cohn et al.
(312) demonstrated that beads releasing FGF-2 induce com-
plete limb formation. It is, however, unlikely that FGF-2 is the
prime candidate for limb formation as its expression pattern
does not correlate with the temporo-spatial events occurring
during limb generation. FGF-4 and -8 seem to be better can-
didates for endogenous limb-forming molecules (312, 313).

The proliferation and differentiation of osteoblasts are
stimulated by FGF-2 (314). Bovine bone cells in culture syn-
thesize FGF-2 and store it in the extracellular matrix (315). In
addition, FGF-2 induces TGF-b production in osteoblasts.
This may reinforce the action of FGF-2 (316). FGF-2 enhances
osseous healing in bone previously exposed to high doses of
irradiation (317). In vivo overexpression of FGF-2 in trans-
genic mice results in shortening of the limbs consistent with
FGF-2 inhibiting bone growth (318). Targeted disruption of

36 BIKFALVI ET AL. Vol. 18, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/18/1/26/2530675 by guest on 20 August 2022



the FGFR3 gene yields mice with enhanced bone growth,
suggesting that FGFR3 also negatively regulates bone
growth (319, 320).

FGF-2 possibly plays a role in the genesis of muscular
disorders. The absence of dystrophin in skeletal muscle re-
duces the plasma membrane stability and may promote
FGF-2 release. Released FGF-2 may be responsible for several
of the abnormalities associated with muscular dystrophy,
including suppression of muscular skeletal differentiation
and excessive fibrosis. Indeed, MDX mice, which serve as a
model of Duchenne’s myopathy, display extracellular FGF-2
surrounding myofibers compared with normal mice (321). In
addition, plasma levels of FGF-2 are elevated in many mus-
cular dystrophy patients but are undetectable in control pa-
tients (322).

K. Digestive system

FGF-2 stimulates proliferation of several intestinal epithe-
lial cell lines (323). Thirteen human esophageal cancer cell
lines were shown to contain FGF-2 mRNA and FGFR1/N-
SAM (324). This suggests that FGF-2 may play an autocrine
role in esophageal cancer, whereas FGF-7 may act as a para-
crine mediator.

FGF-2 accelerates the healing of experimental duodenal
ulcers in rats (325). FGF-2 administered orally twice daily to
rats with chronic duodenal ulcers resulted in a significant
acceleration of healing (83% reduction in the size of the main
ulcer area and 62% complete healings). FGF-2 was more
potent than cimetidine under these experimental conditions.
In addition, FGF-2 is present in the human gastric or duo-
denal mucosa and in the bed of chronic ulcers in rats (326).
Sucralfate binds to FGF-2, protects it from degradation, and
elevates FGF-2 levels in the ulcer bed. This may explain the
clinical utility of sucralfate. These results also indicate that
FGF-2, especially the acid-stable form, is of potential use in
the therapy of ulcers.

VI. Conclusions

In this article we have summarized recent information on
the role of FGF-2 in a number of biological systems. What are
some general conclusions we can derive from these studies
on FGF-2?

At a basic functional level, there is evidence to suggest that
the different molecular weight forms of FGF-2 have distinct
functions. The 18-kDa form promotes cell migration and
mitogenesis, whereas HMW FGF-2 controls cell growth. At
the level of organs, the role of FGF-2 has been extended to the
hematopoietic system, where it may have an important func-
tion. FGF-2 has not been confirmed as a regulator of phys-
iological or pathological angiogenesis because of possible
questions as to its mechanism of release. Two mechanisms
may be considered. At the onset of the angiogenic switch,
cells may release FGF-2, which stimulates neovascularization
in a paracrine manner. Alternatively, paracrine factors such
as VEGF may stimulate FGF-2 production and, subsequently,
FGF-2-dependent autocrine activity. FGF-2 was identified as
an important neurotrophic factor. In addition, neural activity
regulates FGF-2 expression (327). In the skin, FGF-2 may

contribute to melanogenesis and to the morphogenesis of
suprabasal keratinocytes. In the eye, FGF-2 may be important
in photoreceptor survival and may participate in photore-
ceptor signal transduction. The importance of heparan sul-
fates in FGF signaling has been emphasized, but the contro-
versy over the extent of the involvement of heparan sulfates
in FGF signaling awaits resolution. The substrates of the
FGFR are beginning to be identified, and rapid progress
should be made in the near future.

Second, FGFs have been identified as major mesodermal
inducers and as the prime candidates for the chick limb bud
apical ridge growth signal. Although FGF-2 may not play the
principal role, in concert with other FGFs, it may provide
signals required for mesoderm induction or maintenance
and for limb bud formation.

Third, several groups have linked a deregulation of FGF-2
or FGFR to the genesis of several disease states. For example,
neointimal proliferation at the initial phase of the arterio-
sclerotic lesion is closely linked to a deregulation of FGF-2
expression. In addition, genetic defects in FGFR1, R2, or R3
that are linked to Pfeiffer syndrome (328–331), Crouzon syn-
drome (332–334), Jackson-Weiss syndrome (335), Apert syn-
drome (336), achondroplasia (337, 338), hypoachondroplasia
(339), and thanatophoric dwarfism (340) provide the first
examples of FGFR abnormalities in the genesis of human
diseases.

Fourth, FGF-2, or modified FGF-2s, may serve as potential
therapeutic agents. For example, in coronary stenosis or
myocardial infarction FGF-2 infusion improves the collateral
circulation and myocardial function. In addition, FGF-2 im-
proves the healing of duodenal ulcers and dramatically ac-
celerates wound healing in several experimental models
such as ocular or dermal wound healing. It is expected that
several therapeutic applications will result from these pre-
clinical experimental studies.

FGF-2 was initially studied by vascular biologists in an
effort to understand angiogenesis, but with the realization
that FGF-2 is a pleiotropic molecule, its importance in other
fields, such as neurobiology, is now being appreciated.
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