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RESEARCH ARTICLE

Biological Significance of Photoreceptor

Photocycle Length: VIVID Photocycle

Governs the Dynamic VIVID-White Collar

Complex Pool Mediating Photo-adaptation

and Response to Changes in Light Intensity

Arko Dasgupta1, Chen-Hui Chen1, ChangHwan Lee2, Amy S. Gladfelter2, Jay C. Dunlap1,

Jennifer J. Loros1,3*

1 Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States

of America, 2 Department of Biological Sciences, Dartmouth, Hanover, New Hampshire, United States of
America, 3 Department of Biochemistry, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire,
United States of America

* Jennifer.J.Loros@dartmouth.edu

Abstract

Most organisms on earth sense light through the use of chromophore-bearing photorecep-

tive proteins with distinct and characteristic photocycle lengths, yet the biological signifi-

cance of this adduct decay length is neither understood nor has been tested. In the

filamentous fungus Neurospora crassa VIVID (VVD) is a critical player in the process of

photoadaptation, the attenuation of light-induced responses and the ability to maintain

photosensitivity in response to changing light intensities. Detailed in vitro analysis of the

photochemistry of the blue light sensing, FAD binding, LOV domain of VVD has revealed

residues around the site of photo-adduct formation that influence the stability of the adduct

state (light state), that is, altering the photocycle length. We have examined the biological

significance of VVD photocycle length to photoadaptation and report that a double substitu-

tion mutant (vvdI74VI85V), previously shown to have a very fast light to dark state reversion

in vitro, shows significantly reduced interaction with the White Collar Complex (WCC) result-

ing in a substantial photoadaptation defect. This reduced interaction impacts photoreceptor

transcription factor WHITE COLLAR-1 (WC-1) protein stability when N. crassa is exposed

to light: The fast-reverting mutant VVD is unable to form a dynamic VVD-WCC pool of the

size required for photoadaptation as assayed both by attenuation of gene expression and

the ability to respond to increasing light intensity. Additionally, transcription of the clock

gene frequency (frq) is sensitive to changing light intensity in a wild-type strain but not in the

fast photo-reversion mutant indicating that the establishment of this dynamic VVD-WCC

pool is essential in general photobiology and circadian biology. Thus, VVD photocycle

length appears sculpted to establish a VVD-WCC reservoir of sufficient size to sustain

photoadaptation while maintaining sensitivity to changing light intensity. The great diversity

in photocycle kinetics among photoreceptors may be viewed as reflecting adaptive
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responses to specific and salient tasks required by organisms to respond to different photic

environments.

Author Summary

Sensing light from the environment using a variety of photoreceptors is of great adaptive

significance for most eukaryotes. A key feature of photoreceptors is the photocycle length,

the time taken to decay from the initial signaling light state back to the receptive dark

state; however, the significance of photocycle length, or adduct decay length, has not been

tested in a biological setting. The photocycle length is determined by the chemical environ-

ment of the active site where a photon absorbing chromophore forms an adduct with a

conserved amino acid. There is clear evidence of evolutionary selection for a particular

photocycle length even between photoreceptors containing the same prototypic light-sens-

ing domains suggesting functional relevance. Using defined in vitromutations that change

the photocycle length of the VIVID (VVD) protein over 4 orders of magnitude we were

able to ascribe a pivotal role of the native photochemistry of the protein in its function as a

photoreceptor in the light and circadian biology of Neurospora crassa. This study links in

vitro photochemical studies with in vivo function and provides evidence that the true evo-

lutionary and functional significance of native photochemistry of photoreceptors can be

enhanced by studying photocycle mutants in their native systems.

Introduction

Most organisms and nearly all eukaryotes respond to light in their environment, and do so

through the use of proteins specially adapted to respond to light. Such photoreceptor proteins

most often sense light through the use of prosthetic groups, chromophores, chosen by evolu-

tion for their ability to absorb light of particularly relevant wavelengths, flavins for UV-A and

blue light, trans-p-coumaric acid for yellow, retinals for green, and tetrapyrroles for red and in-

frared [1]. Absorption of light elicits photochemical changes in a chromophore resulting in

conformational changes in the photoreceptor protein that initiate the intracellular signaling

leading to a biological response, while at the same time leaving the photoreceptor itself unable

to respond to a second light stimulus. In most cases, however, this loss-of-response is reversible

through photochemistry [2,3] or via a photocycle in which thermal decay of the activated state

restores the receptor to the ground (receptive) state. The kinetics of a particular photocycle is

highly variable both among classes of photoreceptor domains and even within a class of photo-

receptor domains. Although the general biochemistry of photoreception is well understood [1]

and insights into the determinants of photocycle length are emerging as described below, much

less is known regarding the functional and adaptive significance of the wide range of known

photocycle lengths.

The structural basis of adduct decay length has been probed in great detail among photore-

ceptor proteins using LOV (Light, Oxygen, Voltage)-domains to sense blue light as commonly

found in bacteria, plants and fungi [4–10]. These domains bind a flavin (FMN or FAD) that

when photoactivated associates with, usually covalently, the LOV domain causing it to undergo

a light induced conformational change [11–13]; propagation of the structural change within

the photoreceptor initiates signaling that leads to the photoresponse [11,14–17]. Intriguingly,

although the initial photochemical reaction (light-induced adduct formation at conserved
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residues within a LOV domain) is virtually identical in all LOV domains examined, the lifetime

of the photo-adduct signaling state shows extremely broad variation. For example, the photo-

adduct stability of fungal (e.g. WC-1 and VVD) and bacterial (e.g. YtvA) LOV domains ranges

from hours to days [4,16,18–20] whereas the photo-adduct stability of plant Phototropin-1

LOV2 domains is on the order of seconds [21,22]. Recent studies have begun to elucidate the

structural bases of photocycle length among LOV domain proteins [3,23,24], including studies

focused on VVD [20] which governs photoadaptation in Neurospora [19,25], providing the

ideal model for examining the adaptive significance of photocycle length.

Vivid (VVD) is a blue light photoreceptor protein consisting of a LOV domain and an N-

terminal cap [16,26] and displays prototypic reversible changes upon light activation [27]. Ex-

pression of VVD itself is light-induced [26] through the action of the photoreceptive transcrip-

tion factor WC-1 in association with WC-2, the White Collar Complex (WCC) [28–30]. Light

activates WC-1 and the WCC drives the expression of hundreds of light-responsive genes

when N. crassa is exposed to blue light [31–33]; light-activation also destabilizes WC-1 which

is lost via phosphorylation-associated turnover [28]. Light-activated VVD dimerizes in vitro

and also interacts with PAS domains in the WCC in vivo [25,27,34–36]. Light-activation and

subsequent conformational changes have been shown to be important for VVD’s primary

function which is to interact with and attenuate the transcriptional activity of the WCC

[16,26,37]. This explains the biological role of VVD in the cell, to modulate phase-setting of the

Neurospora circadian clock that is initiated by the WCC [26,38] and to attenuate light-induced

gene expression and regulate responses to changing intensities of light (photoadaptation)

[19,25]. Recent structural and biochemical analyses of the VVD protein have provided molecu-

lar details of the determinants impacting photocycle kinetics of this protein [16,20,27], reveal-

ing that the in vitro adduct decay length of VVD is remarkably plastic and can be adjusted over

four orders of magnitude – from 28 seconds to 50 hours- primarily by influencing the chemical

environment of the active photo-adduct formation site [20]. Given that the light-response and

the core-circadian machinery in N. crassa are well defined [39,40] and VVD’s role in these pro-

cesses is appreciated, we applied knowledge from the recent structural advances in a biological

context to see how an altered photocycle length as defined in vitromight influence biological

responses in vivo. The surprising results show that VVD photocycle length plays a dominant

role in determining the utility of this photoreceptor such that mutants with inappropriately

fast photocycles display severe defects in photoadaptation, this despite their ability to sense and

respond to light, and also display impaired circadian rhythmicity under quasi-normal light-

dark cycles. In a broader sense the results suggest strong selective pressure to adjust photocycle

length to specific biological tasks, and in turn imply that photocycle length can be informative

regarding the mechanism of the intracellular task for which a photoreceptor has evolved.

Results

A photoadaptation phenotype is associated with the alteration of the
VVD photocycle

The normal photocycle length of VVD is 5 hours, and Zoltowski et al.[20] have described ad-

duct decay rates of twenty distinct mutants that cause VVD to cycle faster or slower in vitro.

Choosing three of the most extreme, we carried out in vivo functional, genetic and biochemical

analysis of vvdI74V and vvdI74VI85V whose photocycles are reduced to 730 seconds and 28 sec-

onds respectively, and vvdM135IM165I whose photocycle is lengthened to 50 hours [20].

Deprotonation (via a base in solvent, or the conserved glutamine, or Cys 108) of N5 in the flavin

isoalloxazine ring, in adduct state with Cys108, regulates the lifetime of the adduct state. The

I->V substitutions at position 74 and 85 leads to the steric destabilization of the photo-adduct

Adaptive Significance of Photoreceptor Photocycle Length
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state by increasing the solvent accessibility of the active site (Cys 108). The M->I substitutions

at 135 and 165 position alter the steric and electronic environment (electron rich methionine

changed to relatively electron poor aliphatic amino acids) of the flavin molecule to lead to stabi-

lization of the photo-adduct state. To test whether mutations altering the photochemical prop-

erties of the VVD photocycle (Fig 1A) influence VVD function in vivo, DNA constructs

encoding the V5 tagged (C-terminal) versions of the wild-type (WT) and mutant VVD protein

were targeted to the cyclosporin-resistance-1 (csr-1) locus in a vvd gene deletion [25,41] strain

(vvd null strain). For simplicity we will henceforth call the vvd null,csr-1::vvdI74V-v5 strain as

the fast photocycle mutant, the vvd null,csr-1::vvdI74VI85V-v5 strain as the fastest photocycle

mutant, the vvd null,csr-1::vvdM135IM165I-v5 strain as the slowest photocycle mutant and the

vvd null,csr-1::vvd-v5 strain as theWT strain (Fig 1A). The fastest photocycle mutant displays a

hyper-carotenoid synthesis phenotype when exposed to constant bright light for 4–6 days (Fig

1B). This phenotype is similar to but not as intense as the vvd null strain which is characterized

by bright orange coloration of its hyphae when exposed to constant bright light, indicating a

partial loss of photoadaptation in the fastest mutant. No significant color phenotype was ob-

served with the fast and the slowest photocycle mutants. To test if the phenotype is a result of an

aberrant light response we exposed our mutants and theWT strain to a 15 minute white light

(~40 μMm-2 s-1) pulse (LP15’) and studied the mRNA levels of the al-3 (albino-3) gene. The al-

3 gene encodes geranylgeranyl pyrophosphate synthase in the carotenoid biosynthetic pathway

and is expressed immediately after N. crassa is exposed to light [42]. We found the al-3 gene ex-

pressed to similar levels in all mutants as well as theWT strain after a light pulse (Fig 1C) sug-

gesting that the initial light response driven by theWCC is intact in all these strains. We then

exposed the strains to 60 minutes of white light (LL60’) and studied al-3 mRNA levels in order

to test if the phenotype of the fastest photocycle mutant was indeed due to a partial loss of

photoadaptation. In N. crassa the levels of al-3 mRNA drop significantly after 60 minutes of

constant light exposure as a result of a photoadaptation mechanism where VVD interacts with

WCC and inhibits its transcriptional activity [25,35,36]. As anticipated from the observed caro-

tenogenesis phenotype, the fastest photocycle mutant shows a partial loss of photoadaptation in

this assay. As expected al-3 mRNA levels show no repression in the vvd null control while the

fastest photocycle strain displays a partial repression compared to theWT strain after 60 min-

utes of exposure (LL60’) to white light (Fig 1D). We examined VVD protein synthesized after

60 minutes of light exposure byWestern analysis, finding all strains expressing equivalent

amounts of VVD protein (S1A Fig), demonstrating that the observed phenotype was not due to

differences in the amounts of VVD. Additionally, we tested other light-induced genes including

sub-1, cryptochrome and al-1 and observed the same partial loss of photoadaptation in the fast-

est photocycle mutant as seen in the case of the al-3 gene (S1B, S1C and S1D Fig).

The photoadaptation defect is independent of light intensity and
photoreversion and is not a result of aberrant sub-cellular localization

To further characterize the phenotype we examined photoadaptation under a very low light in-

tensity (~1.5 μMm-2s-1) of blue light as well as monitored the cellular localization of the VVD

mutants. Blue light was used here to remove the effect of light-driven photoreversion of activat-

ed VVD [2,3] that has been a confounding variable in all prior work on VVD. Briefly, the

photoactivated form of the LOV domain photoreceptors retains the covalently bound FAD.

When this chromophore absorbs near-UV light, which constitutes a portion of the white light

used in all prior studies, some of the light-activated VVD is reverted to the dark state [2,3]. As

a result, under white light VVD is a mixture of dark state and light (activated) state whose pro-

portions reflect both light intensity and the inherent thermal stability of the activated form.

Adaptive Significance of Photoreceptor Photocycle Length
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Fig 1. Altering VIVID (VVD) photocycle through site-directed mutagenesis reveals a photoadaptation mutant. (A) Cartoon showing in vitro

photochemistry of VVD light-activated dimer and the influence of specific mutations on the photo-adduct stability/life-time [20]. Blue crosses represent
chromophores, and light activated chromophores are shown with orange halo. (B) WT, vvd null and three photocycle length variants were grown on solid
minimal medium slants, exposed to constant light (40 μMm-2s-1) for 4–5 days and the mutants visually compared to theWT for carotenoid biosynthesis. (C)
Strains (n = 3) exposed to a 15 minute light pulse (LP15’) were subjected to RT-PCR to determine al-3 gene expression levels as a measure of the integrity of
the light response in the photocycle mutants. (D) Strains (n = 3) were exposed to bright white light for 60 minutes (LL60’) to study photoadaptation response
using al-3 gene expression as a readout. The fastest photocycle mutant shows a partial loss of photoadaptation at the gene expression level when compared
to theWT strain as seen by the higher levels of al-3 mRNA after 60 minutes of light exposure (LL60’). Asterisks indicate statistical significance as determined
by an unpaired t test. **P<0.01, ***P<0.001.

doi:10.1371/journal.pgen.1005215.g001

Adaptive Significance of Photoreceptor Photocycle Length
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Blue wavelengths of light do not result in light driven reversion [2] so the effect of photocycle

length can be studied without this uncontrolled variable.

Under low intensity blue light the fastest photocycle mutant again showed a partial loss of

photoadaptation after a 60 minute exposure (Fig 2A) suggesting that the defect does not re-

quire chromophore saturation. It has been previously shown that VVD localizes to the nucleus

after synthesis independent of light-exposure [25] and hence is in a subcellular compartment

where it can interact with the WCC and bring about photoadaptation [25,35,36]. To confirm

the VVDmutations were not interfering with nuclear localization of VVD, we engineered an

additional GFP tag (N-terminal) to the constructs and conducted microscopic subcellular

Fig 2. Photoadaptation defect exists at low light intensity andmutations do not effect nuclear localization of VVD. (A) Strains (n = 3) were exposed
(after 48 hours in dark) to very low light intensity blue light (~1.5 μMm-2s-1 of blue light) for 15 minutes and 60 minutes to study light response and
photoadaptation via al-3 gene expression. (B) N-terminal GFP tagged VVDmutant strains were created for sub-localization studies and photoadaptation
defect was tested after 60 minute bright white light(40 μMm-2s-1) exposure in these strains using al-3 expression as readout (n = 3). (C) Fixed cell microscopy
qualitatively shows that the mutants retain the ability to localize VVD protein to the nucleus after exposure to white light (40 μMm-2s-1) induces expression.
Asterisks indicate statistical significance as determined by an unpaired t test. *P<0.05, **P<0.01, ***P < 0.001.

doi:10.1371/journal.pgen.1005215.g002

Adaptive Significance of Photoreceptor Photocycle Length
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localization studies as previously described [25]. The GFP-tagged fastest photocycle mutant

strain recapitulated the phenotype (S2 Fig) shown before with the V5-tagged version, showing

a partial loss of photoadaptation at the level of gene expression (Fig 2B). We found that the

GFP-tagged VVDmutants were able to localize to the nucleus at levels comparable to the GFP-

tagged WT protein (Fig 2C).

The fastest photocycle mutant is unable to inhibit WCC activity due to
reduced VVD-WCC interaction leading to the partial loss of
photoadaptation

The primary function of the VVD protein is to physically interact with WCC and bring about

repression of transcriptional activity resulting in photoadaptation [25,35,36]. We tested if

VVD-WCC interaction was altered in the mutants when compared to the WT strain. We first

exposed the strains to a 15 minute white light pulse (LP15’) to generate VVD in the system.

This was followed by transfer to dark for various times (allowing dark-reversion) before expos-

ing the cultures to a second 15 minute light pulse (Fig 3A), a so-called 2-pulse experiment. The

rationale was if the mutants had increased or decreased interaction between VVD andWCC a

difference in the response (WCC transcriptional activity) to the second light pulse would be ex-

pected. The fastest photocycle mutant shows significantly higher WCC activity on exposure to

the second light pulse after dark exposures from 30 to 120 minutes, as assayed by al-3 mRNA

levels compared to other mutants and the WT strain (Fig 3B). This suggested that VVD-WCC

interaction is impaired in the fastest photocycle mutant and that VVD protein in this mutant is

unable to inhibit WCC transcriptional activity in response to the second light pulse. To directly

test the physical interaction betweenWCC and VVD in the mutants we performed a previously

described DSP cross-linking co-immunoprecipitation assay [25] to study the amount of WCC

that was bound to the VVD mutants. We saw significantly reduced interaction between WCC

and VVD in the fastest photocycle mutant when compared to the WT strain and the other mu-

tants (Fig 3C and 3D). We also routinely saw slightly increased VVD-WCC interaction in the

slowest photocycle mutant; however, this difference was not significant unlike the difference in

VVD-WCC interaction between the fastest photocycle mutant and the WT strain (Fig 3D).

These results strongly suggested it was the reduced VVD-WCC interaction in the fastest photo-

cycle mutant that was responsible for the partial loss of photoadaptation.

Reduced VVD-WCC interaction has been previously shown to be involved in photoadapta-

tion defects in two well described VVDmutants (vvdC71S and vvdC108A) [25,43]. However,

these mutants do not have altered photocycle kinetics in vitro thus making the vvdI74VI85V

mutant unique. The reduced VVD-WCC interaction in turn allows for a greater fraction of the

WCC to be activated by a light pulse even in the presence of the mutant VVD protein in the

fastest photocycle mutant (Fig 3B). Thus the interaction between the proteins can be modulat-

ed simply by altering the photocycle of one.

WC-1 stability is reduced in the fastest photocycle mutant even in the
presence of FRQ as a second stabilizing factor

During the process of photoadaptation, the interaction between VVD andWCC has been re-

ported to play a role in stabilizing light-activated WC-1 [19,35]. In constant light levels of WC-

1 are reduced in a vvd null strain when compared to a wild-type strain, suggesting possible in-

creased WC-1 turnover in the absence of VVD. The core clock protein FRQ (FREQUENCY)

also plays a role in stabilizing both dark and light-activated WC-1 independent of VVD [44–

46]. WC-1 activates the transcription of the frq gene and after translation FRQ physically inter-

acts with WC-1, inhibits WC-1 transcriptional activity in the dark and promotes the

Adaptive Significance of Photoreceptor Photocycle Length

PLOS Genetics | DOI:10.1371/journal.pgen.1005215 May 15, 2015 7 / 23



accumulation of WC-1 [47–50]. Because the fastest photocycle mutant showed reduced

VVD-WCC interaction we asked if this reduced interaction influences WC-1 stability in a

background where FRQ is present. To test this, we grew mycelia from our strains in the dark

for 48 hours, exposed them to bright light (~30 μMm-2s-1) for 4 and 6 hours, using blue light

to avoid photoreversion, and then isolated protein in the presence of phosphatase inhibitors.

As expected, WC-1 was hyperphosphorylated compared to WT and its levels were constantly

low at both exposure times in the vvd null strain (Fig 4A). Tellingly, we saw statistically signifi-

cantly reduced WC-1 levels in the fastest photocycle mutant compared to the WT and slowest

strains at both the 4 and 6 hour time points, indicating that the extent of interaction between

Fig 3. The fastest photocycle mutant is unable to inhibit White Collar Complex (WCC) activity due to reduced VVD-WCC interaction. (A) Two-pulse
experimental design for testingWCC transcriptional activity in response to a second light pulse. Strains (n = 3) were exposed to a 15 minute white light pulse
(LP15’, 40 μMm-2s-1) resulting in the induction of VVD then followed by dark transfer (DD) and a subsequent 15 minute light pulse (LP15’, 40 μMm-2s-1)
after various times in the dark (DD30’,DD60’, DD90’, DD120’). (B) WCC activity after second light pulse as determined by al-3 gene expression shows that
the fastest photocycle mutant is able to reactivateWCC to a greater extent when compared to WT and other mutants. (C) VVD-WCC interaction using DSP
cross-linking under white light (40 μMm-2s-1) conditions [25]. VVD-V5 co-IP pull down products (WCC and VVD) were analyzed usingWestern Blotting
techniques. Membranes for Anti-V5 IP were developed using more sensitive Femto reagent and thewc-1,wc-2 null strain was used as a background control
for the Western Blots. (D) Blots (n = 3) were quantified by densitometry using NIH Image J software to measure VVD-WCC interaction in the WT and mutants.
* non-specific band/ loading control on Western blots. Asterisks indicate statistical significance when compared with WT as determined by an unpaired t test.
***P < 0.001, **P<0.01 *P<0.05, N.S.- difference not significant.

doi:10.1371/journal.pgen.1005215.g003

Adaptive Significance of Photoreceptor Photocycle Length
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VVD andWCC in this strain is influencing the level of WC-1 even in the presence of FRQ as

an independent stabilizing factor (Fig 4A and 4B).

Transcriptionally active WC-1 is associated with phosphorylation and subsequent degrada-

tion [44,51]. In Figs 1D and 3B we showWCC to have enhanced activity in the fastest photo-

cycle mutant. Our stability data (Fig 4A and 4B) suggests that under the condition of reduced

VVD-WCC interaction not only is a greater portion of WC-1 transcriptionally active but the

post-transcriptional accumulation of WC-1 may also be reduced, possibly because light-in-

duced, newly synthesized WC-1 is more prone to being transcriptionally active and destined

Fig 4. Reduced VVD-WCC interaction influencesWC-1 stability in the fastest photocycle mutant and the system’s ability to respond to changing
light intensity. (A) Strains were exposed to constant blue light (~30 μMm-2s-1) for 4 and 6 hours. Protein samples were harvested in the presence of
phosphatase inhibitors andWC-1 stability was examined usingWestern blotting techniques. 6% Tris-Glycine gels were used instead of 3–8% Tris-Acetate
gels for greater resolution. (B) 3 blots from the 6 hour time point were quantified via densitometry using NIH Image J software. (C) Experimental design to
examine theWT and fastest photocycle strains response to an increase in light intensity. Strains were either exposed to low light (blue) intensity (a), high light
(blue) intensity (c) or low light intensity (blue) followed by exposure to high light (blue) intensity (b). (D) Co-IP experiments (duplicate biological replicates
shown) were performed after cross linking as previously described in Fig 3 legend to examine VVD-WCC interaction after light treatments shown in (C); a,b
and c on the blots correspond to conditions in (C) * non specific band /loading control. Asterisks indicate statistical significance when compared with WT as
determined by an unpaired t test. ***P<0.001, **P<0.01.

doi:10.1371/journal.pgen.1005215.g004
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for degradation in the absence of appropriate levels of interaction with the stabilizing factor

VVD.

The fastest photocycle mutant fails to establish a “dynamic” VVD-WCC
pool that can respond to changing light intensity

VVD has also been described as playing a role in maintaining sensitivity to changes in light in-

tensity during daytime [19,35,52]. We sought to understand biochemically how the

VVD-WCC interaction is influenced in the WT strain and the fastest photocycle mutant when

the strains are exposed to two different light intensities, or when they are exposed to a higher

light intensity after being photoadapted at a lower light intensity. The strains were exposed to

either (a) 2 μMm-2s-1 or (c) 24 μMm-2s-1 of blue light for 2 hours or (b) 2 μMm-2s-1 of blue

light for 2 hours then exposed to 24 μMm-2s-1 of blue light for 1 hour (Fig 4C) followed by

DSP cross-linking and Co-IP analysis (Fig 4D). In the WT strain more WC-1 was pulled down

with V5 tagged VVD after a 2 hour exposure to the higher light intensity when compared to a

2 hour exposure at the lower light intensity (Fig 4D) due to a combination of more WC-1 syn-

thesis and the presence of more light-activated WC-1 at the higher light intensity [35]. Impor-

tantly these data are not complicated by an unmeasured accumulation of light-reverted VVD

due to the presence of white light. After an initial low light exposure for 2 hours, the WT strain

is able to respond to an increase in light intensity to 24 μMm-2s-1 and attain a new VVD-WCC

interaction state as seen by increased VVD-WCC interaction. This is in stark contrast to the

VVD-WCC pool in the fastest photocycle mutant which appears to maintain a largely equiva-

lent, quite low level of interaction under all light intensities including when the light intensity

is changed from low to high (Fig 4D). This is due to a combination of reduced WC-1 stability

in this mutant (Fig 4A) and the inherently reduced VVD-WCC interaction that makes mutant

VVD unable to interact with WC-1 even at higher light intensity with more WC-1 available.

Thus, accelerating the photocycle causes reduced VVD-WCC interaction and leads to an aboli-

tion of responsiveness to changing light-intensity, thus hampering the establishment of a dy-

namic VVD-WCC pool.

frq transcription is responsive to changing light intensity in the WT but
not in the fastest photocycle mutant

We have shown biochemically how sensitivity to increasing light intensity might be achieved

through a dynamic VVD-WCC pool (Fig 4D) so we followed how the system responds to in-

creasing light intensities at the transcriptional level. The context we used was the clock gene frq

as little is known about how the clock responds to changing light intensity during day-light

hours. Using an externally controlled blue light LED panel we mimicked increasing light inten-

sity during the first half (6 hours) of a 12 hour light: 12 hour dark cycle and assayed frqmRNA

and protein levels under these conditions. The WT strain is responsive to increasing light in-

tensity as seen by the increase in frqmRNA levels resulting from several step increases in flu-

ence levels (Fig 5B). In contrast, after an initial response to the first light treatment after

darkness similar to the WT strain (0630 time point in Fig 5B), the fastest photocycle mutant

shows no significant increase in frq transcript in response to increases in light intensities. The

difference in WT frq amounts is statistically significant at the 12:00 hour sampling point and

we also see significantly higher FRQ protein levels in the WT strain when compared to the fast-

est photocycle mutant at this time (Fig 5B and 5C). We interpret these data to indicate that as

light intensity is increased, both auto-regulatory WC-1 and VVD are increased such that each

step yields a greater pool of VVD-WCC in combination with that carried over from the previ-

ous lower light intensity; in contrast, the fastest photocycle mutant pool is unable to
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accumulate so the response is always similar to that seen upon dark to light. In WT under

white light, unlike in the fastest photocycle mutant, more WCC from the VVD-WCC pool is

being made available to respond to each new light intensity step (through the combination of

photoreversion and transient dissociation, see model) following which a new VVD-WCC equi-

librium pool is established. In contrast, the fastest photocycle mutant has reduced WC-1 stabil-

ity combined with the inability to respond to changing light intensity and this translates into

an aberrant frqmRNA and protein profile. In addition, we were unable to detect VVD (WT

and mutant) at the frq locus using chromatin-immunoprecipitation, suggesting that the

VVD-WCC pool might be the main functional unit for maintaining sensitivity to increasing

light (S3 Fig).

Fig 5. TheWT strain increases frq transcription in response to increasing light intensity whereas the fastest photocycle mutant does not and
exhibits marked circadian defects in quasi-normal LD cycles. (A) Experimental design to examine frqmRNA and FRQ protein levels in response to
increases in light. Yellow arrows indicate times of harvest. Blue light intensity was increased using an externally controlled LED incubator to mimic increasing
blue light intensity during the first half of a daily light cycle. (B) frqmRNA levels (n = 3 for each strain) in WT(blue) and fastest photocycle mutant strain (red)
was determined using RT-PCR at time points shown in panel (A). (C) Western blot showing FRQ protein levels in theWT and fastest photocycle mutant
strain at time points corresponding to panel (A). (D) Averaged densitometric traces of race tubes for WT (n = 2) and the fastest photocycle mutant (n = 4)
grown under quasi-normal 12 hour light: 12 hour dark (LD) cycles with maximum light intensity limited to ~10 μMm-2s-1. Asterisks indicate statistical
significance as determined by an unpaired t test. ***P<0.001, **P<0.01, *P<0.05, N.S. difference not significant.

doi:10.1371/journal.pgen.1005215.g005
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The fastest photocycle mutant shows marked defects in circadian output
under quasi-normal light-dark cycles

Apart from photoadaptation, VVD plays an important role in the circadian system. Although

not required for rhythmicity in constant conditions per se, VVD influences the turnover of frq

RNA and impacts phase setting [26] at the light-to-dark (dusk) transition [38]. A strain that

lacks VVD shows a ~4 hour phase delay and is unable to take cues from the photoperiodic his-

tory preceding the point of lights off [38]. We studied the dynamics of frqmRNA decay after a

light (20 h bright white light)-to-dark transition in our photocycle mutant strains to see if frq

mRNA turnover is altered in these mutants. As expected, the vvd null strain showed a delay in

frqmRNA turnover when compared to the WT strain (S4A Fig). However, the fastest and the

slowest photocycle mutants did not show any significant difference in bulk frqmRNA decay

when compared to WT. This was not due to a difference in turnover rates of VVD itself (that

might have resulted from the mutations introduced) (S4B and S4C Fig), ruling out the possi-

bility that the fastest photocycle variant is more stable. Rather, the delayed disappearance of frq

mRNA in the vvd null strain is thought to reflect sustained WCC transcriptional activity after

the light-to-dark transfer, and this extended period of elevated frqmRNA explains the ob-

served phase delay [38]. These data suggest that although the fastest photocycle mutant shows

reduced VVD-WCC interaction, the interaction that persists is apparently sufficient to main-

tain a normal frqmRNA decline in this strain following dusk. Reduced overall WC-1 activity

in the fastest photocycle mutant, because of decreased WC-1 stability and degradation on con-

stant light exposure, could also help compensate reduced VVD-WCC interaction at the light-

to-dark transition. To confirm that there are no circadian phase defects under constant condi-

tions associated with our photocycle mutants we crossed the strain into a ras-1bd background

[53] and repeated the light-to-dark synchronization experiment in a growth (race) tube. The

ras-1bd mutation is a mildly activating point mutation of ras-1 that makes it easier to observe

rhythmic circadian-driven asexual spore formation when it is present in the genetic back-

ground. As we predicted, the fastest photocycle mutant did not show any kind of phase delay

when compared to the WT while the vvd null strain presented the previously described approx-

imately 4h phase delay (S5A and S5B Fig, [26]). The photocycle length of VVD does not ap-

pear to play a role in phase determination of the circadian system at least under constant (free-

running) conditions.

It has been previously reported using “artificial moonlight conditions” (0.24 μMm-2s-1) that

VVD plays a role in attenuating light-resetting by low light during night. In the previous study,

exposing the vvd null strain to this low light intensity was reported to lead to progressive loss of

rhythmicity (after day 3–4) whereas the WT showed persistent rhythms [35]. We were, howev-

er, unable to replicate these results (S6A Fig). Moonlight is typically 0.2 lux, up to 1 lux on

mountaintops with clear air [e.g. http://en.wikipedia.org/wiki/Moonlight,[54]], the equivalent

of 0.002–0.01 micro moles photons m-2 sec-1 for the cool white fluorescent lights used here

(e.g. http://www.apogeeinstruments.com/conversion-ppf-to-lux; http://en.wikipedia.org/wiki/

Talk%3ALumen_%28unit%29). We found that the vvd null strain maintains rhythmicity be-

yond 3–4 days under bright artificial moonlight conditions (0.02 μMm-2s-1) and does so at

light levels even tenfold higher than natural moonlight (0.2 μMm-2s-1) (S6B Fig).

VVD plays a role in maintaining the circadian clock in the light phase of the cycle and the

main function of VVD is to prevent clock resetting at dawn [38]. This implies a role for VVD

during the day phase of a light:dark (L:D) cycle and we have shown that photocycle length does

affect frqmRNA levels under a quasi-normal daytime increase in light intensity (Fig 5B).

Therefore we tested whether the fastest photocycle mutant has an associated circadian pheno-

type under increasing light intensity conditions. Strains were grown on a 12:12 light:dark (L:D)
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cycle in which the light (blue wavelength) intensity changed during the day phase from low

(dawn) to high (mid-day/noon) and back to low (dusk) but with a maximum intensity of

10 μMm-2s-1 (Figs 5D and S7A). Under these conditions circadian output in the fastest photo-

cycle mutant dampened initially and became arrhythmic. We saw similar dampening of

rhythms in the vvd null strain under these conditions (S7A Fig) but no complete arrhythmicity

suggesting that the vvd null strain might perceive the light phase of the LD cycle as a complete

resetting cue. This is most likely due to the vvd null being phase-locked to dusk irrespective of

the photoperiodic history. It has also been shown that the clock is broken (constantly reset) in

the light phase of full photoperiods in the vvd null strain [38], a result that we have replicated

here (more details below, Fig 6). In contrast, we think that the fastest mutant does not

completely reset like the vvd null strain in the light phase but has aberrant phase resetting (due

to partially functional VVD) which is carried over to the next LD cycle. Similar dampening and

phase defects were seen in the fastest photocycle mutant when the maximum light intensity

was 2.4 fold higher (~24 μMm-2s-1) although fewer strains became arrhythmic (S7B Fig). Bio-

chemical dissection of this phenotype is difficult as the strains start losing rhythmic conidiation

only after day 4 or 5 thereby precluding protein and mRNA analysis in liquid cultures; howev-

er, the data shown in Figs 4A and 5B indicate that the fastest photocycle mutant has an aber-

rant response to light (reduced WC-1 stability and aberrant frq transcription) and these defects

may accumulate over 3–4 days leading to defects in phase and rhythmic conidiation.

To further confirm that the photocycle alterations in the fastest photocycle mutant were af-

fecting the clock during the day phase of an LD cycle the strains were entrained for 2 days to

12:12 L:D cycles using ~30 μMm-2s-1 blue light followed by release into either constant dark-

ness (DD) or low intensity blue light (~2μMm-2s-1, LL) (Fig 6). If the VVD in the system is

able to prevent clock resetting and maintain the clock after release into constant light then we

expect to see an overlap between the first conidiation peaks in LL and DD as has been previous-

ly described [38]. It can be clearly seen that the first conidiation peak in LL and DD overlap in

Fig 6. Photochemical alterations in the fastest photocycle mutant affect the circadian clock during the day phase of an LD cycle.Densitometric
traces of WT (A), vvd null (B), fastest (C) and the slowest (D) photocycle mutant (race tube images in S8 Fig). Traces are an average of 3–6 race tubes. The
strains were entrained to 12:12 LD cycles for 2 days using blue light (30 μMm-2s-1) followed by release into either constant low blue light (~2 μMm-2s-1) or
constant dark. Arrows in blue show the expected phase of peak conidiation during the first day in constant light as determined by phase of the peak during the
first day in constant dark. TheWT and the slowest mutant strains maintain the expected phase of conidiation whereas the vvd and the fastest mutant strain
do not.

doi:10.1371/journal.pgen.1005215.g006
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the case of the WT and the slowest photocycle mutant (Figs 6A, 6D and S8). However, this is

not the case for the vvd null strain and the fastest photocycle mutant. In the fastest photocycle

mutant we see a much reduced peak in constant light (compare peak height of LL peak with

preceding peak) (Fig 6B and 6C). This strongly suggests that photochemical alterations in the

fastest photocycle mutant affect VVD function and its ability to maintain the clock during the

day phase of full photoperiods.

Discussion

Although in vivo studies have probed the biology of photoreceptors utilizing null or blind mu-

tants [5,8,55], and in vitro physicochemical studies have framed questions and raised hypothe-

ses [3], the functional relevance and adaptive significance of the conservation of a wide range

of photocycle lengths in different photoreceptors has not before been tested experimentally.

Good context for this effort, however, is provided by studies showing that thermal reversion

rates are genetically manipulable in photoreceptors including both LOV domain proteins such

as VVD [20] and in phytochrome [56,57]. For instance, mutations surrounding the bilin bind-

ing pocket in PhyB can speed or slow the rate of thermal reversion as well as independently im-

pacting photochemistry and nuclear localization patterns [56]. These data establish the

mutability of these characteristics, but interestingly there is no evidence for natural variation in

photocycle length of phytochromes suggesting that evolutionary selection has not tuned the ki-

netics of photo-adduct decay in phytochromes to specific tasks as it has for LOV domains in

which natural variation has provided a rich repertoire of orthologous photoreceptors whose

dark (thermal) reversion rates vary over several log orders. Given this natural variation the

LOV domain photoreceptors seemed an excellent framework in which to probe the biological

significance of photocycle length, and the tractable photobiological and circadian model N.

crassa provided the perfect context for studying photocycle mutants. We have shown here that

reducing the photocycle length of the blue light photoreceptor VVD has dramatic conse-

quences on light and circadian biology that are phenotypically separable from the null pheno-

type. While current models of VVD function emphasize the formation of a VVD-WCC pool

that provides light- activatable WCC through thermal reversion of the VVD-WCC heterodi-

mer [25,35,36,58], these models ignore the contribution of near UV-driven photoreversion of

both VVD and WC-1 photoreceptors. By considering and controlling this variable, and by tun-

ing the magnitude of the photoreversion-generated VVD-WCC pool using defined in vitro

guided VVDmutations, we show how a dynamic VVD-WCC pool is important for VVD func-

tion, and link VVD photochemistry with the size of this pool. However, it is important to note

that despite the phenotype and its clear dissection using molecular and biochemical techniques,

we cannot confirm with absolute certainty that the mutant proteins retain the in vitro photo-

cycle characteristics in an in vivo setting.

The VVD-WCC interaction is transient [25,35] suggesting that WCC from the VVD-WCC

pool can be made available for transcription. Even in the photo-adapted state a fraction of

WCC is required to be transcriptionally active, because blocking total protein synthesis includ-

ing that of VVD, leads to loss of photoadaptation [19]. This active fraction of WCC can induce

the synthesis of WC-1 [59,60] and hence replenish the fraction lost through transcription-in-

duced degradation [44,50]. The second source of activated or light-activatable WC-1 is through

thermal reversion of the activated VVD, the VVD photocycle that has been examined here.

The third source of light-activatable WC-1 is through the process of near-UV stimulated

photoreversion [2] which generates dark VVD andWC-1 that can then be light-activated to

drive expression of more WC-1 and VVD. Thus, WC-1 is the primary sensor of light intensity

in the system; light drives WC-1 and VVD expression, activates them to heterodimerize, and
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also stimulates the photoreversion of the complex. So long as a single WC-1 results in synthesis

of more than just one WC-1 and one VVD, the size of the protected VVD-WCC pool must in-

crease with light intensity. The magnitude of the VVD-WCC pool plays a pivotal role in deter-

mining the amount of WCC available for transcription as well as the amount of light-activated

WC-1 available for reversion to the dark form.

In this study we have shown that a double mutation (I74VI85V) that dramatically reduces

the photocycle length of VVD in vitro [20] has a profound effect on VVD biological function,

whereas another mutation (M135IM165I) [20] that dramatically lengthens the photocycle ap-

pears essentially wild type in the assays we have used. This suggests that under normal light

conditions photo-reversion dominates thermal reversion in determining the ratio of the light

to dark forms [3]. In VVD, I74VI85V increases the light to dark thermal reversion rate (de-

creased photocycle length); this accelerated thermal reversion comes to dominate the rate of

photoreversion and affects the steady state ratio of the light:dark form (53:47 in mutant vs. 92:8

in WT) [20]. The result is that this fastest photocycle mutant shows a partial loss of photoadap-

tation which we confirmed at the level of gene expression (Fig 1B and 1D). VVD physically in-

teracts with WCC to attenuate its transcriptional activity [25,35,36] and a 2 pulse experiment

and subsequent protein cross-linking assay showed that this interaction is compromised in the

fastest photocycle mutant (Fig 3). The reduced interaction in the fastest mutant strongly sup-

ports the previous, unproven hypothesis that it is indeed light-activated VVD that is function-

ally active [25,35,36,58]. From the signaling point of view, light-activation via photon

absorption leads to flavin adduct formation at the active cysteine which transduces a conforma-

tional change in VVD protein, and this light-activated structure is required for the VVD-WCC

interaction. It has been shown that dissociating VVD photochemistry from structural change

(e.g. vvdC71S) leads to a functionally dead VVD protein [16]. Thus, we attribute the reduced

VVD-WCC interaction in the fastest photocycle mutant to the greater rate of light-state-to-

dark state reversion, which contributes to the reduced steady state ratio of the light:dark form,

thus lowering the amount of functionally active light form of VVD available at any light

intensity.

We examined the consequences of reduced VVD-WCC interaction on the N. crassa light

and circadian systems. WC-1 is highly unstable in the absence of VVD [19,35] presumably be-

cause more WC-1 is available for transcription and WC-1 transcriptional activity is linked to

its degradation [44,45,50,61]. Consistent with this WC-1 is less stable in the fastest photocycle

mutant when compared to WT on prolonged light exposure (Fig 4A and 4B). Interestingly,

WC-1 stability in the fastest photocycle mutant lies between that of WT and the vvd null strain

suggesting that the strength of the VVD-WCC interaction is directly correlated with WC-1 sta-

bility. This indicates that although WCC is more active in the fastest photocycle mutant, a

greater fraction of the newly synthesized WC-1 is available for transcription and hence more

prone to degradation.

The reduced VVD-WCC interaction in the fastest mutant also leads to an aberrant response

to changing light intensity. The VVD-WCC pool is sensitive to increasing light intensity in

WT but not in the fastest photocycle mutant (Fig 4C and 4D) where reduced VVD-WCC in-

teraction results in a smaller less dynamic VVD-WCC pool. The VVD-WCC pool in turn de-

termines the amount of WC-1 available for transcription and photoreversion, so both these

factors determine how the system will respond to the next higher light intensity. Light is a

major environmental cue for circadian clocks and light input into the N. crassa clock is gated

through WCC–mediated transcription of frq [47,52,62]. Indeed frq expression increases with

increasing light intensities in WT but not in the fastest mutant (Fig 5B), consistent with the

finding that WC-1 is less stable and the smaller VVD-WCC pool cannot respond to increases

in light intensity in this strain. The adaptive significance of pool size and photocycle length was

Adaptive Significance of Photoreceptor Photocycle Length

PLOS Genetics | DOI:10.1371/journal.pgen.1005215 May 15, 2015 15 / 23



revealed by showing that the fastest photocycle mutant loses overt rhythmicity when grown

under a quasi-normal LD cycle with steps up to and down from a maximum intensity of 10 μM

s-1m-2 approximating a very overcast day (Fig 5D). Additionally, release experiments show

that the photochemical alterations in the fastest photocycle mutant affect its function in pre-

venting resetting at dawn and maintaining the clock in the day phase (Fig 6). The interpreta-

tion is that the normal extended photocycle length is needed to maintain the oscillator and its

phase information during the day, as well as to allow the pool of VVD-WCC to grow with light

intensity to keep frq transcription and FRQ levels high enough that the dark-initiated decay of

FRQ marks a clear transition. The combination of the two functions maintains robust cycling

over several days.

The dominance of the thermal reversion rate (Kt) [3] over photoreversion in the vvdI74-

VI85Vmutant can also help describe the loss of overt rhythmicity under our quasi-normal LD

cycle. It has been modeled that Kt determines the light-to-dark ratio as a function of the fluence

[3]. The Kt of the photoreceptor ZTL in Arabidopsis thaliana is 1.6x10-4 and that of wild-type

VVD is 5.6x10-5. Interestingly the fastest photocycle VVD has a Kt>>ZTL (3.5x10-2)[20].

This model places the WT VVD in a class of photoreceptors where light:dark ratio is skewed

completely towards the light state even at very low light intensities. However, this model also

places the fastest photocycle VVD in a class where its light:dark ratio is sensitive to low light in-

tensity, which would imply that a very small fraction of the molecules are in the light state

under the conditions used in our step increase, quasi-normal light-dark cycles where the maxi-

mum light intensity was limited to 10 μMm-2s-1. This could potentially hamper the function of

VVD[I74VI85V] at low light intensity, and hence the clock.

Based on these data we propose a model where the native VVD photocycle length is re-

quired for the establishment of the dynamic VVD-WCC pool essential for photoadaptation

and maintaining sensitivity to increasing light intensity. Light-activated transcriptionally active

WC-1 in the WCC binds DNA light responsive elements (LRE) and activates the transcription

of VVD and WC-1 [Fig 7,(1)]. Newly synthesized WC-1 can be light-activated adding to tran-

scriptionally active WCC [Fig 7, (2)] or complex with newly synthesized light-activated VVD

forming a dynamic pool [Fig 7, (3)]. A fraction of WC-1 determined by ambient light intensity

also undergoes photoreversion in light and becomes available for another round of light activa-

tion [Fig 7, (4)]. The VVD photocycle length determines the duration of the VVD-WCC inter-

action and this in turn determines the magnitude of the pool of stabilized, light-activated WCC

that spends time away from DNA and is available for photoreversion to dark WC-1 [Fig 7,

(5)]. The reduced duration of the VVD-WCC interaction in the fastest photocycle mutant

(bottom) increases the amount of WCC available for transcription (and subsequent degrada-

tion [Fig 7, (6)]) but also reduces the pool of light-activated WC-1 that is available for regener-

ation of dark WC-1 through photoreversion. This reduced pool size and lack of growth of the

VVD-WCC pool with increasing light intensity are seen as defects in photoadaptation, both

repression of WCC transcription and the inability to maintain sensitivity to changing light

intensities.

Materials and Methods

Neurospora crassa strains and culture conditions

The vvd null strain was generated as part of the Neurospora knockout project in which the

complete replacement of the gene with the selectable marker hph was verified by Southern

analysis. The DNA constructs (containing 3.5kbp of the vvd promoter) encoding the tagged

version of the VVD wild-type and mutant proteins were targeted to the csr-1 locus of a vvd null

strain using a previously described transformation protocol [41]. The strains were confirmed
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as construct knock-ins at the csr-1 locus using PCR analysis (S9 Fig) (Forward 5’-TAACGCC

AGGGTTTTCCCAGTCACGACG-3’, Reverse 5’-GCGGATAACAATTTCACACAGGAAAC

AGC-3’) that helps detect the absence of the csr-1 ORF. For the race tube experiments strains

were crossed with a strain carrying the ras-1[bd]mutation [53]. Strains were maintained on

Fig 7. Model: Photocycle length defines the strength of the VVD-WCC interaction and the magnitude of this interacting pool is essential for
photoadaptation andmaintained light sensitivity. (1) WCC binds DNA light responsive elements (LRE) after light exposure, and activates the
transcription of vvd andwc-1. Light activated chromophores (blue crosses) are shown with orange halo. A portion of WCC is subsequently degraded (6).
Newly synthesized WC-1 protein may be light-activated to become part of transcriptionally active WCC (2) or complex with newly synthesized light-activated
VVD forming a dynamic pool (3). (4) Ambient light intensity results in some portion of WC-1 undergoing photoreversion to the dark state, allowing future re-
activation by light. (5) The length of the VVD photocycle controls the duration of theWCC-VVD interaction and the size of theWCC-VVD pool. This in turn
determines howmuch stabile, light-activatedWCC is maintained away from DNA and also available via photoreversion to dark WC-1. Thicknesses of arrows
represent relative rates of reactions. Red arrows in the fastest photocycle mutant show rates controlled by increasing rate of adduct decay. See text for
more details

doi:10.1371/journal.pgen.1005215.g007
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slants containing solid growth media containing 1x Vogel’s and 1.5% sucrose. Race tube media

contained 1xVogel, 0.01% Glucose and 0.17% Arginine. All RNA and protein experiments

were carried out with fungal plugs grown in Bird medium containing 1.8% glucose using tech-

niques previously described [25]. Briefly, fresh (~1 week old) conidia were inoculated in petri--

plates containing 20mL Bird medium and allowed to grow in constant dark for 48 hours. Then,

using an 8mm diameter cork borer, plugs were cut from the mycelial mat and the individual

plugs were placed in 125mL flasks containing 50ml Bird medium. Light exposure experiments

were performed after another 24 hours of culturing on a shaker in constant darkness at 25°C.

After the experiment, the mycelia were collected using filtration and immediately frozen in liq-

uid nitrogen and stored at -80°C until subsequent protein and RNA isolation. All white light

treatments were carried out using a broad spectrum (400–700nm) cool fluorescent bulb (Gen-

eral Electric). Blue light treatments were performed in a temperature-controlled incubator with

an externally controlled blue LED panel (E30LED, Percival Scientific, 450nm) using specified

intensities.

Protein preparation and RNA isolation

Protein lysates were prepared using methods described earlier [25]. Western blots were per-

formed with 12ug of protein unless noted otherwise. RNA was isolated using TRIzol reagent

(15596–026; Invitrogen) and cDNA synthesis was carried out using SuperScript III first strand

synthesis kit (18080–051; Invitrogen) using 1.5ug of purified RNA. Real-time PCR was carried

out with QuantiTect SYBR green RT-PCR kit (204243; Qiagen) in an ABI 7500 Fast system.

Co-IP assay and DSP cross-linking

Protein cross linking was performed using 2mMDSP (D3669; Sigma) using a protocol previ-

ously described [25]. Co-IP was performed as follows: 1mg of total protein incubated with

anti-V5 antibody-coated agarose beads (A7345; Sigma) overnight at 4°C followed by six washes

with cold protein extraction buffer. Elution was performed by incubating the beads with 2x

Western blot sample buffer at 65°C for 20 minutes. Samples to detect proteins were run on

pre-made gels (Novex, Life Sciences) and transferred onto PVDF membranes. Polyclonal anti-

bodies were used for FRQ (1:250), WC-1 (1:250) and WC-2 (1:5000) and commercial mono-

clonal V5 antibody (1:5000, Invitrogen) was used for VVD. Goat Anti-Rabbit HRP conjugate

and Goat Anti-Mouse HRP conjugate (BioRad) were used a secondary antibodies. Membranes

for anti-V5 IP were developed using SuperSignal West Femto Maximum Sensitivity Substrate

(Thermo Scientific) and the signal was captured using X-ray film (GE Healthcare). Western

Blots were quantified using NIH ImageJ software.

Fluorescence microscopy

Conidia were inoculated directly into a flask with baffles containing Bird medium to ensure

that the mycelia do not clump. After 24 hours of growth in dark the samples were exposed to

60 minutes of bright white light (LL60) following which 2mL of the loose mycelia were incubat-

ed in a 14mL Falcon tube with 4% Paraformaldehyde for 20 minutes. After 3 washes with

1xPBS a small fraction of the fixed mycelia was incubated with 1xHoechst followed by fluores-

cence microscopy.

Supporting Information

S1 Fig. (A) Western blot showing the equal levels of VVD expression in strains expressing

GFP (and V5) tagged versions of VVDmutant after a 60 minute white light exposure
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(40 μMm-2s-1). (B-D) The partial loss of photoadaptation is conserved in other light response

genes: Strains (n = 3) were exposed to 60 minutes of bright white light and RT-PCR analyses

was performed to study the gene expression levels of sub-1,cry and al-1 for��P<0.01 �P<0.05.

(TIF)

S2 Fig. Strain expressing GFP tagged fastest photocycle mutant VVD recapitulates the par-

tial loss of photoadaptation phenotype. Strains (V5 and GFP tagged) were grown on solid

minimal medium growth slants and exposed to constant bright white light (40 μMm-2s-1) for

4–5 days.

(TIF)

S3 Fig. VVD does not localize to the DNA and primarily functions to maintain a

VVD-WCC “pool”. Strains were grown in dark for 48 hours and then exposed to bright white

light (40 μMm-2s-1) for 30 minutes. Chromatin immunoprecipitation experiment was carried

out after formaldehyde cross-linking using anti-V5 antibody against V5 tagged VVD andWC-

1 (as control). frq PLRE and frq clock box were checked for enrichment of VVD using RT-PCR

andWC-1 served as the control. As can be seen VVD is not enriched over background and

there is no difference between the WT and the mutant VVD.

(TIF)

S4 Fig. frqmRNA and VVD protein turnover are not influenced by photocycle alterations.

(A) frqmRNA turnover was studied by exposing the strains (n = 3) to constant white light

(40 μMm-2s-1) for 20 hours followed by dark transfer and sample collection was performed at

indicated times followed by RNA isolation and RT-PCR analyses. (B&C) VVD turnover is not

altered in the mutants. VVD turnover and half-life were studied by exposing strains to con-

stant white light (40 μMm-2s-1) for 20 hours followed by dark transfer. Western blots (B) were

quantified (densitometry) using ImageJ to determine half-life (C).

(TIF)

S5 Fig. Photocycle alterations do not lead to circadian phase defects in a light to constant

dark transfer circadian experiment. (A) Race tube assay confirming the absence of a phase

defect in the fastest photocycle mutant in a light to dark synchronization experiment. Synchro-

nization was carried out by exposing the strains to 20 hours of constant white light (40 μMm-

2s-1) followed by dark transfer. (B) Densitometric analysis of conidiation rhythm shows that

the fastest photocycle mutant does not show a phase defect whereas, the vvd strain shows the

expected ~4hour phase delay. Traces are an average of 4–6 race tubes.

(TIF)

S6 Fig. Artificial moonlight conditions do not influence circadian rhythmicity. (A) Under

artificial moonlight conditions (0.02μMm-2s-1) both WT and vvd strain show sustained rhyth-

micity beyond 3–4 days. The race tubes were exposed to 12:12 L:D cycles where light intensity

in the dark phase was kept at 0.02 μMm-2s-1 to mimic moonlight intensity. Densitometric

traces are average of 3 race tubes (for each strain). (B) TheWT and the mutant strains show

sustained rhythmicity even when the artificial moonlight light intensity is increased to ~10 fold

over environmental levels (0.2μMm-2s-1). Densitometric traces are averages of 6 race tubes

per strain.

(TIF)

S7 Fig. (A) Race tubes used for densitometry in Fig 5D showing 2 tubes of the WT strain

and 2 tubes each of 2 progenies expressing the fastest photocycle VVD. The vvd strain also

showed dampening of rhythms when the light (blue) intensity was varied during the day phase

from low (dawn) to high (mid-day/noon) and back to low (dusk) but with a maximum
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intensity of 10 μMm-2s-1. (B) Same experimental setup as in (A) but with the maximum inten-

sity of 24 μMm-2s-1.

(TIF)

S8 Fig. Photochemical alterations in the fastest photocycle mutant affect VVD function

and its ability to maintain the clock during the day phase of full photoperiods. Race tubes

used for densitometry in Fig 6. Strains were entrained for 2 days 12:12 LD cycles using bright

blue light (~30 μMm-2s-1) before being released in either constant darkness or constant low

light intensity blue light (~2μMm-2s-1).

(TIF)

S9 Fig. PCR genotyping to confirm integration of constructs at the csr-1 locus. Actin was

used as a control for amplification and primers to check integration were designed to sites

flanking the site of integration.

(TIF)
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