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�e present study explores biological synthesis of silver nanoparticles (AgNPs) using the cell-free extract of Spirulina platensis.
Biosynthesised AgNPs were characterised by UV-Vis spectroscopy, SEM, TEM, and FTIR analysis and 	nally evaluated for
antibacterial activity. Extracellular synthesis using aqueous extract of S. platensis showed the formation of well scattered, highly
stable, spherical AgNPs with an average size of 30–50 nm. �e size and morphology of the nanoparticles were con	rmed by
SEM and TEM analysis. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for
the formation and stabilisation of AgNPs. Furthermore, the synthesised nanoparticles exhibited high antibacterial activity against
pathogenic Gram-negative, that is, Escherichia coli, MTCC-9721; Proteus vulgaris, MTCC-7299; Klebsiella pneumoniae, MTCC-
9751, and Gram-positive, that is, Staphylococcus aureus, MTCC-9542; S. epidermidis, MTCC-2639; Bacillus cereus, MTCC-9017,
bacteria. �e AgNPs had shown maximum zone of inhibition (ZOI) that is 31.3 ± 1.11 in P. vulgaris. Use of such a microalgal
system provides a simple, cost-eective alternative template for the biosynthesis of nanomaterials of silver in a large scale that
could be of great use in biomedical applications.

1. Introduction

Particles with a size up to 100 nm are usually referred to
as nanoparticles. Nanoparticles exhibit completely new or
improved properties, based on speci	c characteristics, such
as grain size, distribution, morphology, and higher surface
to volume ratio if compared with larger particles of the bulk
material [1]. A speci	c surface area is relevant to catalytic
reactivity and other related properties, such as antimicrobial
activity in silver nanoparticles (AgNPs).

Biological eectiveness of NPs enhances due to increase
in speci	c surface area and surface energy [2]. Silver has long
been documented as having an inhibitory eect on many
bacterial strains and microorganisms commonly present
in medical and industrial processes [3]. AgNPs proved to
be eective as an antimicrobial agent even at a very low
concentration and they inhibit the growth of antibiotic
resistant bacteria. AgNPs interact with membrane proteins
and DNA of bacteria, which have sulphur and phospho-
rous complex that have high a�nity towards AgNPs [4].

�e most widely used and known applications of silver and
AgNPs prevent the infection of burns and open wounds
in the medical industry and include Clinical Ultrasound
Gel and topical ointments and creams [5]. Other widely
used applications are medical devices and implants pre-
pared with silver-impregnated polymers. In addition, silver
containing consumer products, such as colloidal silver gel
and silver embedded fabrics, are now used in sporting
equipment [6]. AgNPs are used in low doses for antimicrobial
treatment in comparison to standard antimicrobial agents
[7].

Production of NPs may be achieved through dierent
methods. Chemical methods are the most popular methods
for the production of NPs. However, chemical methods can-
not evade the use of toxic chemicals in the synthesis protocol.
Since noble metal NPs, such as gold, silver, and platinum, are
widely applied to human contact areas, there is a growing
need to develop environmentally benign protocol of NPs
synthesis that avoids the use of toxic chemicals. Biological
methods of NPs synthesis using bacteria [2, 8], fungi [9,
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10], plants [11–14], algae [15–17], sea weed [18], and lichen
[19] have been recommended as ecofriendly alternatives to
chemical and physical process.

Attachment of nanoparticles by cell wall of bacteriawould
be due to negative charges and speci	c functional groups on
the bacterial surface. AgNPs a�er penetration into the bac-
terial cell may disturb the rigidity of cell wall or lipopolysac-
charides membrane and inactivate enzymes functioning and
their transport system and generation of H2O2 which results
in bacterial death [20].

�e synthesis of NPs of speci	c composition, self-
assembly, and size is one of the most challenging areas of
nanotechnology as it is strongly in�uenced by experimental
conditions, the kinetics of interaction of metal ions with
reducing agents, and adsorption processes of the stabilizing
agent with metal NPs [10].

Among the microorganisms, microalgae have a tremen-
dous role in bioremediation of toxic and precious metals
and their biotransformation to dierent nontoxic forms [21].
�ey not only accumulate metals by chelation and chemical
transformation, but are also reported to produce biomin-
eral structures and metal NPs. However, most microorgan-
isms that have been reported for synthesis of AgNPs are
pathogenic to either plants or humans. So, over the years,
researchers have turned to nonpathogenic microorganisms.
Among the blue-green algae (cyanobacteria), Anabaena,
Calothrix, Leptolyngbya, and Nostoc ellipsosporum have been
reported to synthesise intracellular gold, silver, palladium,
and platinum NPs [7]. �e green microalga C. vulgaris has
also been reported to produce gold, platinum, palladium,
ruthenium, rhodium, and iridium nanoparticles, whereas
the cell-free extract e�ciently produces gold and silver
nanoplates intracellularly [22]. Extracellular AgNP synthesis
has been reported for the boiled extract of the brown seaweed
Padina tetrastromatica [23].

S. platensis is a free �oating 	lamentous cyanobacterium
characterised by cylindrical, multicellular trichomes in an
open, le�-hand helix. It occurs naturally in tropical and
subtropical lakes with high pH and high concentrations of
carbonate and bicarbonate. In present study,we aim to test the
ability of cell-free extracts of S. platensis to produce AgNPs in
an aqueous system.

2. Materials and Methods

2.1. Microorganism and Culture Condition. �e experimental
organism S. platensis was isolated from Jal Mahal, Jaipur,
Rajasthan (India), cultivated in Zarrouk’s medium [24],
under dierent temperature, and illuminated with white
�uorescent lamps at a light intensity of 2,000 lux (Sharma et
al. 2014). Conical �asks of 250mL capacity were prepared
containing 100mL S. platensis culture and were shaken
gently thrice a day to avoid clumping and enhance the
growth.

2.2. Preparation of Microalgal Extract. Typically, 5 g (dry
weight) S. platensis biomass was suspended in 100mL of dou-
ble distilled sterile water for 15min at 100∘C in an Erlenmeyer

�ask. A�er boiling, the mixture was cooled and centrifuged
at 10,000 rpm for 15min. Supernatant was collected and was
stored at 4∘C for further analysis.

2.3. Biosynthesis of Silver Nanoparticles. In the typically
synthesis process of silver nanoparticles, add 2mL of pure
microalgal extract dropwise into the 100mL of 1mM of silver
nitrate solution in 250mL conical �ask.�e reactionmixture
was kept at 60∘C for 10min under constant mechanical
stirring. It was observed that reduction of Ag ions into
AgNPs completed within 10min, indicating rapid synthesis
of AgNPs, and pH remains within 4.7–5.0 during the period
of reaction. �e colour change was noted and nanoparticles
formation was monitored using UV-Vis spectrophotometer.
�e synthesised silver nanoparticles were centrifuged at
15,000 rpm for 20min at 4∘C, and discard the supernatant to
collect the pellet. �e pellet was washed with distilled water
for several times to remove impurities and 90% ethanol to get
pure AgNPs powder.

2.4. Characterisation of Prepared Nanoparticles. �e char-
acterisation of AgNPs was carried out by surface plasmon
resonance band using a UV-Visible spectroscopy 1800 of
Shimadzu, Kyoto, Japan. Micrograph of AgNPs was obtained
by scanning electron microscope of SEM-EVO 18, Carl Zeiss
30KeV SEM. TEM micrograph of the AgNPs was observed
using the TEM instrument of TEM-Tecni G2-S twin FEI
200KeV TEM. TEM device conducted at an increasing
voltage of 200 kv.�e FTIR spectrum was recorded on FTIR-
Shimadzu IR A�nity 1. All measurements were carried out

in the range of 400–4,000 cm−1 at a resolution of 4 cm−1

(Figure 2).

2.5. Antibacterial Activity of AgNPs. A turbid liquid sample
of each bacterial strain with an OD of McFarland of 0.5
(1 × 108 CFU/mL) was prepared in an isotonic NaCl (0.85%)
solution. Furthermore, this solution was diluted ten times
(1× 107 CFU/mL) and used as inoculums. 100 �L of bacterial
suspension was prepared and inoculated on Mueller-Hinton
Agar-II (MHA-II) plates by spread plate technique.�e sterile
disc of 6mm in diameter (Hi-Media Laboratories Pvt. Ltd.)
was impregnated with 50�L of 1mg/mL solution of nanopar-
ticles in deionised water. �e discs were evaporated at room
temperature for 24 hours. Aqueous extract of deionised water
was used as negative control and gentamicin (10 �g/disc) was
used as positive control. �e discs were gently pressed on
MHA Petri Plates and incubated at 37∘C for 24 hours. �e
zone of inhibition in the diameter of each disc was measured
in millimetre (mm) using a Hi-Media Laboratories Pvt. Ltd.
zone scale. �e experiments were done in four replicates and
mean values of ZOI were reported.

�e AgNPs prepared by S. platensis were used to evaluate
antibacterial activity against Gram (−) and Gram (+) bacteria
(Escherichia coli, MTCC-9721; Proteus vulgaris, MTCC-7299;
Klebsiella pneumoniae, MTCC-9751; Staphylococcus aureus,
MTCC-9542; S. epidermidis, MTCC-2639; Bacillus cereus,
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Figure 1: UV-Vis absorption spectra of AgNPs synthesised from S.
platensis.
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Figure 2: FTIR images of AgNPs generated using cell-free extracts
of S. platensis.

MTCC-9017) on MHA-II plates by Kirby-Bauer disk diu-
sion method [25].

3. Results and Discussion

In this study, biological synthesis of AgNPs has been shown
from cell-free aqueous extracts of S. platensis. �ese extracts
when interacting with the silver nitrate salt solution form
a dark brown solution due to the reduction of the silver
ion to AgNPs followed by a colour change indicating the
biotransformation of ionic silver to reduced silver and the
subsequent formation of AgNPs in an aqueous medium.�is
reaction results in the biosynthesis of AgNPs showed by a
colour change to dark brown from the light yellow seen at
the beginning of the reaction (Figure 3). �e colour change
was monitored visually and the peak at 437 nm in the UV-
visible spectra indicated the presence of AgNPswhichmay be
due to the excitation of surface plasmon vibrations in AgNPs
(Figure 1).

�e morphological characteristics of biosynthesised
AgNPs were studied by scanning electron microscope, using
an instrument of SEM-EVO 18, Carl Zeiss 30KeV SEM

(Figure 4(a)).�eTEM images showed thatmost of the parti-
cles are spherical in shape and do not create big agglomerates
which indicated the monodispersed nature of NPs stabilised
by a capping agent.�e TEM images revealed that AgNPs are
in the range of 30–50 nm (Figure 4(b)).

3.1. FTIR Spectrum Analysis. �e FTIR spectrum of the
AgNPs produced by cell-free extracts of S. platensis is
shown in Figure 2. �is spectrum shows the presence of

band at 1533.89, 1558.48, 1639.49, 1652.99, and 3510.44 cm−1

corresponding to monosubstituted amide, nitro, primary
amide, carboxylic, and alcohol group, respectively. �e band

at 1448.54 cm−1 is due to methylene scissoring vibrations
present in the proteins. Largely, the observation con	rms the
presence of protein in AgNPs. FTIR spectroscopic study has
con	rmed that the monosubstituted amide of proteins has
the stronger ability to bind metal, so that the proteins could
most possibly form a coat covering the metal nanoparticles
to prevent agglomeration of the particles and stabilizing in
the medium.�is data suggests that the biological molecules
could probably perform the reduction and stabilisation of the
AgNPs in the aqueousmedium.�ese results confer the work
of Awwad et al. [13].

3.2. Antibacterial Activity of Ag Nanoparticles. Table 1
showed the four replicates experiments of zone of inhibition
(mm) around the disc with cell-free aqueous extracts
mediated synthesised silver AgNPs. �e study revealed that
AgNPs (50 �g/disk) had shown maximum inhibitory eect
against Proteus vulgaris, MTCC-7299 and Staphylococcus
aureus, MTCC-9542, that is, 31.3 ± 1.11 and 31.0 ± 0.71,
followed byKlebsiella pneumoniae, MTCC-9751 (25.0±0.91);
Escherichia coli, MTCC-9721 (24.3 ± 0.48); Bacillus cereus,
MTCC-9017 (24.3 ± 0.75); and S. epidermidis, MTCC-2639
(20.0 ± 0.41) as compared to gentamicin (+ control) (ZOI-
22.0mm), deionised water (− control) (ZOI- 0.0), S. platensis
extracts (ZOI- 8.0mm), and 1mM silver nitrate solution
(ZOI- 10.0mm) against Proteus vulgaris (Figures 5(a)–5(f)
and 6). �e formations of free radicals from the surface of
the silver nanoparticles were responsible for the antibacterial
function. In addition, excess formation of reactive oxygen
species (ROS) may lead to a breakdown of membrane
function and increased permeability of the cell membrane
or leakage of cell matters and morphological changes of
bacterial cells and growth inhibition [26]. �e charge of
bacterial cell wall is negative because of dissociation of
carboxylic groups on the cell surface [27]. Weak positive
charges present on AgNPs are attracted towards negative
charges [28]. In contrast, Sondi and Salopek-Sondi [29]
suggested that the antibacterial eects of AgNPs on bacteria
depended on the concentration of AgNPs and closely related
with the development of “pits” on cell wall of bacteria. AgNPs
interact with the thiol groups of bacterial proteins and may
retard the replication of DNA [30]. It is consistent to state
that binding of the nanoparticles to the bacteria depends
on the surface area available for interaction. Nanoparticles
have larger surface area available for interaction which
enhances bactericidal eect than the large sized particles;
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Table 1: Antibacterial activity of AgNPs.

Bacterial strain
AgNPs (1mg/mL)

Mean ± SE Gentamicin (+) S. platensis extracts AgNO3 (1mM)

(ZOI in mm) Control (ZOI in mm) (ZOI in mm) (ZOI in mm)

Escherichia coli, MTCC-9721 24 23 25 25 24.3 ± 0.48 28 12 15

Proteus vulgaris, MTCC-7299 30 32 34 29 31.3 ± 1.11 22 8 10

Klebsiella pneumoniae, MTCC-9751 26 27 24 23 25.0 ± 0.91 16 8 11

Staphylococcus aureus, MTCC-9542 30 33 30 31 31.0 ± 0.71 25 9 12

S. epidermidis, MTCC-2639 21 20 19 20 20.0 ± 0.41 24 9 11

Bacillus cereus, MTCC-9017 23 25 26 23 24.3 ± 0.75 10 8 9

(a) (b) (c)

Figure 3: �e pictures show the (a) S. platensis extracts, (b) AgNO3 solution, and (c) AgNPs solution.

(a) (b)

Figure 4: (a) �e SEM images and (b) TEM image of AgNPs synthesised by cell-free extracts of S. platensis.

hence AgNPs exhibit more toxicity to the microorganism
[27].

4. Conclusion

It is concluded that the cell-free aqueous extracts produce
stable AgNPs by reduction of aqueous Ag+ ions in AgNPs.

�e utilisation of S. platensis biomass has various advantages
like easy cultivation and availability. �is biological method
approach toward the synthesis of AgNPs has numerous ben-
e	ts, that is, nontoxicity, cost eectiveness, rapid reduction,
and economic viability. Future prospects of this research
would be large scale production of AgNPs using S. platensis
and ascertaining its e�cacy against extensive spectrum of
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(a) (b) (c)

(d) (e) (f)

Figure 5: (a–f) Antibacterial activities of AgNPs against (a) Klebsiella pneumoniae, (b) Escherichia coli, (c) Staphylococcus aureus, (d) S.
epidermidis, (e) Bacillus cereus, and (f) Proteus vulgaris.

Figure 6: Antibacterial activities of gentamicin (+ control), de-
ionised water (− control), and S. platensis extracts against Proteus
vulgaris.

microbial population. Further investigations would involve
covering the potency of S. platensis to synthesise silver
nanoparticles.
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