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Abstract. Topic models have recently shown to be really useful tools
for the analysis of microarray experiments. In particular they have been
successfully applied to gene clustering and, very recently, also to sam-
ples classification. In this latter case, nevertheless, the basic assump-
tion of functional independence between genes is limiting, since many
other a priori information about genes’ interactions may be available
(co-regulation, spatial proximity or other a priori knowledge). In this
paper a novel topic model is proposed, which enriches and extends the
Latent Dirichlet Allocation (LDA) model by integrating such dependen-
cies, encoded in a categorization of genes. The proposed topic model
is used to derive a highly informative and discriminant representation
for microarray experiments. Its usefulness, in comparison with standard
topic models, has been demonstrated in two different classification tests.

1 Introduction

Microarrays represent a widely employed tool in molecular biology and genet-
ics, which have produced an enormous amount of data to be processed to infer
knowledge. Computational methodologies may be very useful in such analysis:
among others, clear examples are tools aiding the microarray probe design, im-
age processing-based techniques for the quantification of the spots, segmenta-
tion of spots/background, grid matching, noise suppression [5], methodologies
for classification or clustering [22]. In this paper we focus on this last class of
problems, and in particular on the samples classification task. In this context,
many approaches have been presented in the literature in the past, each one
characterized by different features, like computational complexity, effectiveness,
interpretability, optimization criterion and others – for a review see e.g. [13,21].

In particular, very recently, a class of approaches have shown to be useful and
discriminant in this context: the so called topic or latent models – the two most
famous examples being the Probabilistic Latent Semantic Analysis (PLSA – [10])
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and the Latent Dirichlet Allocation (LDA – [3]). These powerful approaches
have originally been introduced in the text analysis community for unsupervised
topic discovery in a corpus of documents, in order to correlate the presence of a
word to the particular topic discussed; the whole corpus of documents can then
be described in terms of these topics. These techniques have also been largely
applied in the computer vision community [4].

One of the main characteristics of this class of approaches is represented by
their interpretability [7]: they can model a dataset in terms of hidden topics
(or processes), which can reflect underlying and meaningful structures in the
problem. This characteristic may be extremely useful in bioinformatics, where
interpretability of methods and results is crucial. Topic models have already
been applied in the context of expression microarray analysis: a tailored version
of LDA (called Latent Process Decomposition – LPD), explicitly modelling ex-
pression levels, has been proposed in [19], with the aim of clustering expression
microarray data; moreover, an application of topic models to biclustering has
been recently proposed in [1].

A somehow unexplored scenario is represented by the application of such
models in the classification context – a preliminary evaluation of standard topic
models have been recently proposed in [2]. Even if supported by very promising
results, a clear drawback is represented by the underlying basic assumption that
each gene expression is independently generated given its corresponding latent
topic.

In this paper a novel topic model is proposed, which we call BaLDA
(Biologically-aware Latent Dirichlet Allocation), which starts from the Latent
Process Decomposition [19], introduced in the context of clustering, and defines
a new model able to take into account the given dependence between genes. This
dependence is introduced in the graphical model through a variable, modeling a
categorization of genes (namely a subdivision of genes in groups), which can be
inferred by a priori knowledge on the genes of the analyzed problem. As a further
refinement, a better modelling of the expression level is achieved by substituting
the Gaussian pdf – present in the LPD – with a more descriptive Mixture of
Gaussians.

We will show the usefulness of BaLDA in two classification experiments, as-
sessing the impact of the different introduced modifications; a comparison with
the LPD topic models and state of the art methods demonstrates the competi-
tiveness of the proposed approach.

The rest of the paper is organized as follows: in Sec. 2 technical prelimi-
naries about topic models are given. In Sec. 3 the model, together with learn-
ing/inference mechanism presented. An exhaustive experimental section is
presented in Sec. 4, and, finally, in Sec. 5, we draw some conclusions.

2 Background

In this section the background concepts are reviewed. In particular, after intro-
ducing the general ideas underlying the family of topic models, we will present



232 A. Perina et al.

Laten Dirichlet Allocation using the terminology and the notation of the docu-
ment analysis context. Then we will briefly review how these models have been
applied to the microarray scenario.

2.1 Topic Models

Topic models were introduced in the linguistic scenario, in order to describe
and model documents. The basic idea underlying these methods is that each
document is characterized by the presence of several topics (e.g. sport, finance,
politics), which induce the presence of some particular words. From a probabilis-
tic point of view, the document may be seen as a mixture of topics, each one
providing a probability distribution over words.

A variety of probabilistic topic models have been used to analyze the content
of documents and the meaning of words. In the following section we will briefly
present the LDA model, mainly to set up notations used in the remainder of the
paper.

2.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) was first introduced by Blei in [3]. In the
LDA model, words are the only observable variables and they implicitly reflect
a latent structure, i.e., the set of K topics used to generate the document. Gen-
erally speaking, given a set of documents, the latent topic structure lies in the
set of words itself. In generating the document, for each word-position a topic
is sampled and, conditioned from the topic, a word is selected. Each topic is
chosen on the basis of the random variable θ that is sampled for convenience
from a Dirichlet distribution p(θ|α) where α is a hyperparameter. The topic z
conditioned on θ and the word w conditioned on the topic and on β are sampled
from multinomial distributions p(zn|θ) and p(wn|zn, β) respectively. β represents
the word distribution over the topics. Given the parameters α and β, the joint
distribution of a topic mixture θ, a set of N topics zn, and a set of N words wn

that compose the document is given by

p(θ, z,w|α, β) = p(θ|α) ·
N∏

n=1

p(zn|θ) · p(wn|zn, β) (1)

where p(zn = i|θ) is simply θi for the unique i such that zi
n = 1. Integrating over

θ and summing over z, we obtain the probability of a document.

2.3 Topics Models in Bioinformatics

The representation provided by topic models has one clear advantage: each topic
is individually interpretable, providing a probability distribution over words that
picks out a coherent cluster of correlated terms, see for example [6,2,19]. This
may be really advantageous in the expression microarray context, since the final
goal is to provide knowledge about biological systems, and discover possible
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hidden correlations. In particular there is a straightforward analogy between
the pairs word-document and gene-sample: the expression level of a gene in a
sample may be easily interpreted as the level of the presence of a word in a
document (the higher the level the more present/expressed the word/gene is).
In this sense, a particular topic model assumes that microarray data (represented
as the gene-expression matrix) arises from a mixture of topics, whose number is
fixed; changing the topic allows different subsets of genes to be prominent.

A possible problem which may arise is that expression microarray data is
described with a matrix of real numbers, not as a non-negative integer matrix.
This problem has been solved in [19] by modifying the standard LDA via the
introduction of Gaussian distributions in place of word multinomial distributions
β; this results in a novel and efficient probabilistic model called Latent Process
Decomposition (LPD), where LDA topics are called “processes”. The model has
been successfully applied to clustering. Some modifications of the LPD model
have been recently introduced: in particular, an optimized training version can
be found in [23]; moreover, in [15], the LPD has been equipped with learned
hyperpriors on the gaussian word-topic distributions. A method for maximizing
lower bounds by re-estimating hyperparameters leaded to more accurate clus-
tering results.

A somehow unexplored scenario is represented by the application of such
models in the classification context; only very recently PLSA and LDA have
been employed to classify expression microarray samples, with really promising
results [2]. In particular, in [2], the original topic models [3,10] have not been
changed; instead the gene expression matrix has been transformed, by a proper
scaling and shifting, to a positive integer valued matrix, thus interpretable as a
count matrix in the original LDA-PLSA formulation. Despite the method lacks
biological motivations, it yielded very good classification results.

3 Biologically-aware Latent Dirichlet Allocation
(BaLDA)

The main contribution of this paper is the definition a novel topic model for the
analysis of expression microarray data, which directly improves the one provided
in [19]. This novel topic model has two clear advantages with respect to the
Latent Process Decomposition (LPD), detailed in the following.

The first (and most important) advantage starts from the observation that
the major drawback of the PLSA, LDA and LPD models is the assumption that
each gene expression is independently generated given its corresponding latent
topic. While such representation provides an efficient computational method,
it lacks the power to describe the coherent expression of different genes in a
subset of samples, this aspect being widely known in the biology. In the proposed
approach we include a mechanism in the graphical model that permits to include
a priori knowledge on the relation between genes. This a priori information is
expressed in terms of a gene categorization, namely a subdivision of the genes in
groups of related genes based on external information, like known co-regulation,
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Fig. 1. A) Biologically-aware Latent Dirichlet Allocation Bayesian Network. Shaded/
Unshaded nodes are visible/hidden variables (v/h). The model parameters Ω are rep-
resented with a letter outside a node. B) A second version of the Biologically-aware
Latent Dirichlet Allocation. The clustering result is fed into the model by means of the
visible variable k.

spatial proximity or similarity of nucleotidic sequences to name a few. This
categorization (i.e. clustering), which may be directly fed to the model, can be
computed beforehand or can be simultaneously estimated while estimating the
topic model.

The former option result in a straightforward modification of LDA; we add a
visible variable k that influences the hidden topic variable z (see Fig. 1B). More
interesting is the latter option, which permits LDA to deal with the uncertainty
associated to the clustering. In this case (see Fig. 1A), the variable k is hidden,
and depends on the visible variable gc which represents the external information.
These variables are modelled through a set of parameters which are learned
simultaneously with the other parameters.

The second novelty of the proposed approach is related to the modelling of
the word/topic distribution: in the original Latent Dirichlet Allocation, a word is
generated by a multimodal distribution β, where βw,z represents the probability
of finding the word w when the document is “speaking” about the topic z. In
the LPD [19] the word-topic probability is modeled by a single gaussian, thus
reflecting the continuous nature of the expression level, which is not captured
with the original discrete formulation. Nevertheless, the monomodal nature of
the Gaussian may not properly capture the possibly multimodal behavior of the
gene-topic distribution: in particular, within a gene, a topic can be assigned to a
single expression level. This limitation is removed in the proposed model, where
the single Gaussian is replaced by a mixture of C Gaussians; which for large C,
goes towards the multimodal spirit of the original multinomial β, still maintain-
ing the appealing characteristic of modelling continuous expression levels.
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3.1 BaLDA

The Bayesian network of Biologically-aware Latent Dirichlet Allocation (BaLDA)
is depicted in Fig.1. The model is characterized by two observations, gc and ge

(visible variables v) which respectively govern the clustering and the topic sub-
modules.

The variable k clusters the N genes in K components, while the parameters
Λk represent the parameters of the particular probability density function cho-
sen. For microarray expression are often used gaussians, t-distributions or factor
analyzers [16]. We used gaussian clustering, so Λk = {μk, σk}

p(gc,n|k, Λ) = p(gc,n|Λk) =
1√

(2π)σ
· e

(
(gc,n−μk)2

−2σ2
k

)

(2)

The parameter πk is a multinomial distribution that represents the prior on the
cluster assignment.

Each n-th gene expression ge,n is assigned a topic zn = {1 . . . Z} evaluating
the gene-topic distribution and using a topic prior θ. We have that

p(ge,n|z, μ, σ) =
∑

[c]

p(ge,n|z, c, μ, σ) =
∑

[c]

πz,c,n · 1√
(2π)σ

·e
(

(ge,n−μz,c,n)2

−2σ2
z,c,n

)

(3)

where is now visible the mixture of Gaussians palette we introduced. With [c] we
indicate the values the variable c can assume. The prior on such topic assignment
depends on the co-regulated genes (see the link k → z in the Bayesian network).

p(z = a|θ, k) = θk,a (4)

where θk are multinomial distributions that represent the topic proportions used
to generate each sample. Each distribution θk is governed by a Dirichlet prior
p(θk|αk), where α is hyperparameter that represent the strength of a topic within
a dataset.

p({θk}|{αk}) =
∏

[k]

p(θk|αk) =
∏

[k]

( 1
Z(α)

∏

z

θαk−1
k,z

)
(5)

Again the products are taken over the values of k and z and Z(α) is Dirichlet
distribution normalization constant.

At this point we can write the joint probability which describes the generative
model as

p(gc, ge, c, k, z, θ|α, μ, σ, Λ, πc, πk) = p(c|πc) · p(k|πk) · p(θ|α)
∏

n

(
p(gc,n|k, Λ) · p(ge,n|c, z, μ, σ) · p(zn|θ)

)

where each conditional distribution has already been parameterized.
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3.2 Inference and Learning

Under the model so far described, each t-th observation gt is characterized by
four hidden variables ht = {kt, ct, zt, θt

k} which in turn are governed by the
following parameters Ω = {Λk, πk, μc, σc, πc, α}.

As in LDA, exact inference is intractable: we approach it using the variational
inference [12]. We introduce a tunable distribution q(h) over the hidden variables
which defines the free energy F

F =
∑

t

(∑

h

q(ht) log
q(ht)

p(gt,ht|Ω)

)
(6)

We used the following form for the approximate posterior distribution, q(ht) =
q(θt) · ∏

n q(zt
n, ct

n) · q(kt
n) with q(θt

k) being a Dirac function centered at the
optimal vectors θ̂t. After plugging the approximate posterior and the joint dis-
tribution in the free energy formulation, we can iteratively decrease F with
the Expectation-Maximization (EM) algorithm. The EM algorithm alternates
in minimizing the free energy with respect to q(h) (E-Step) and with respect
to the model parameters Ω (M-Step). When updating q, the only constraint is
that

∑
hi

q(ht) = 1 for each hidden variable h and for each sample t. The update
rules are simply obtained by setting the derivatives of F equal to zero and this
reduces to the following formulas:

q(zt
n = a, ct

n = b) ∝ πb · N (ge,n; μa,b,n, σa,b,n) · e
(

∑
[kn] q(kt

n)·
(
Ψ(θ̂b,a)−Ψ(

∑
[k] θ̂k,b)

))

(7)
where Ψ is the derivative of the logΓ function, computable via Taylor approx-
imation (for further details see [3]), and N is the normal probability function
(see Eq.2). The remaining updates of the E-step are

θ̂t
b,a ∝ αb,a +

∑

n

q(kt
n = b) · q(zt

n = a) (8)

q(kt
n = k) ∝ πk · N (gt,n; μk, σk) (9)

In the M-step the collected posterior distributions q are used to compute an
estimate Ω̂ of the model parameters

μn,c,z =
∑

t q(zn = z) · q(ct
n = c) · gt

e,n∑
t q(zn = z) · q(ct

n = c)
(10)

σ2
n,c,z =

∑
t q(zn = z) · q(ct

n = c) · (gt
e,n − μn,c,z)2∑

t q(zn = z) · q(ct
n = c)

(11)

πc,z,n =
∑

t

q(cn = c) · q(zn = z) (12)

The appropriate update on topic proportions’ priors αk can be obtained using a
gradient descend

{α̂k,a} = arg max
∑

t

(αk,a − 1) log θk,a (13)
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subject to the appropriate normalization constraint.
We omit the update formulas for μk, σ2

k and πk which can be computed in a
very similar fashion.

3.3 Expression Microarray Samples Classification

In general, topic models have been originally introduced for clustering sets of
documents: given the dataset, models are trained and analyzed in order to find
clusters. Nevertheless, recently, they have been also successfully employed in
the classification scenario – see for example [4,2]. The main idea is to employ
a hybrid generative-discriminative approach [11], which exploits the generative
model to extract a set of features to be classified with a discriminative classifier.
More in detail, the training phase is carried out by first learning the models
on the training set. Then a set of features is extracted from each sample; the
transformed training set is then used to train a classifier. In the testing phase,
the same feature extraction process is applied to the test sample, resulting in a
feature vector to be classified using the trained classifier. In our work we em-
ployed the scheme proposed in [4,2], i.e. we employ the mixture of topics θt as
sample descriptor. This have been demonstrated to be really discriminant [4,2].
Another benefit of this representation is that we are reducing the dimensionality
from the number of genes N to the number of topics K, with K � N – thus
providing a compact and more interpretable representation. Finally, we are de-
scribing samples with a multinomial distribution whose characteristics will be
exploited by the particular chosen classifiers.

4 Experiments

Theproposed classification schemehas been evaluatedusing twodifferent datasets,
both related to tumors. The first derives from a study of prostate cancer by
Dhanasekaran et.al [20], and consists of 54 samples with 9984 features. Such
samples are subdivided in different classes: 14 samples are labelled as benign
prostatic hyperplasia (labelled BPH), 3 as normal adjacent prostate (NAP),
1 as normal adjacent tumor (NAT), 14 as localized prostate cancer (PCA), 1
prostatitis (PRO) and 20 as metastatic tumors (MET). The 6 classes can be di-
vided in three macro-classes: non-cancer (BPH,NAP,PRO), cancer (NAT,PCA),
metastatic tumor (MET). This dataset has been also employed by the authors
of [19] in their study for LPD. The second dataset we employed contains the
expressions of 90 brain tissues used to study central nervous system embryonal
tumor [18]. Each sample is characterized by 5920 features. The 90 samples in-
clude 60 with medulloblastomas, 10 with malignant gliomas, 5 with AT/RTs, 5
with renal/extrarenal rhabdoid tumors, 6 with supratentorial PNETs, and 4 nor-
mal cerebellum (5 classes in total). As in many expression microarray analysis,
a beneficial effect may be obtained by selecting a sub group of genes, in order to
limit the dimensionality of the problem and to reduce the possible redundancy
present in the dataset. Here, as in [19], we decided to perform the experiments
filtering the genes by variance and keeping only the top 500 genes.
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In all the experiments we set gc = ge, namely we clustered the genes by looking
at their expression levels in all the samples. This choice of course does not exploit
the full potentiality of the method, but it permits to already obtain promising
results (see tables below). Currently we are planning to perform an experiment by
fully exploiting the potentialities of the model, considering different information
(like spatial proximity or sequence similarity). In all the experiments, Z, K, and
C, representing the number of topics, the number of clusters and the number of
components in the mixture of Gaussians, respectively, are set in the following
way: Z was found by applying the hold out log likelihood procedure described
in [19], K has been automatically determined using Affinity Propagation [9] and
C = 3 has been set after several tests.

In order to capture the different contributions of the two innovations of the
model, we also tested the model with i) the clustering module but with only one
Gaussian per gene (C=1), ii) the model enriched by the mixture of Gaussians
gene-topic distribution, without the clustering information (K=1). We will refer
to these two versions as BaLDA v1 and BaLDA v2 respectively.

The extracted features have been classified using Support Vector Machines
employing a variety of kernels. Beside the standard linear kernel (LI), the prob-
abilistic nature of the extracted features has been exploited by the use of differ-
ent kernels on measures – also called information theoretic kernels [14], which
provide similarity between probabilistic distributions; we employed some recent
kernels, like the Kullbach-Leibler (KL), the Jensen-Shannon (JS) and the Jeffries
kernels (JE). Finally we report also results with the K- Nearest Neighbor rule,
using an approach similar to [2].

The proposed model has been compared with [19,2]. Even if [19] was designed
for clustering data, it can be straightforwardly adapted to the classification sce-
nario, following exactly the same hybrid scheme we employed. In order to have
a fair comparison, we used the authors’ implementation. Moreover, for a given
choice of (K, Z) in BaLDA, we trained two LPD models: one with the same num-
ber of topics ZLPD = Z, and one with the same complexity ZLPD = K ·Z; this
permits to give to the LPD the same number of processes that we have in our
model. It is important to notice that the optimal Z for LPD, found by applying
to the hold out log likelihood procedure, has been used also for BaLDA. In fact
it is not obvious that the optimal ZLPD will be the optimal for BaLDA as well.
Classification errors have been computed using 10-fold cross validation (with 40
repetitions). In order to augment the statistical significance of the results, the
generative models have been trained 4 times and results averaged.

Results, for both datasets, are reported in Table 1 and 2, respectively.
From the tables it is evident the improvement obtained with the BaLDA mod-
els. In particular, in all the provided experiments the full model is performing
better than the original LPD model (except in one case), with very remarkable
improvements in the first dataset, also employed in the original paper of [19].
Moreover, by comparing the results of BaLDA v1 and BaLDA v2, we can ob-
serve that the improvement introduced by clustering the genes is more relevant
than the other; however the combination of the two eventually yielded the best
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Table 1. Results obtained from Prostate Cancer Dataset. See the text for the kernel
abbreviations. We tested [2] also using the information theoretic kernels reporting the
accuracies for the best Z.

Z K C LI KL JS JE KNN

LPD [19] 3 n.a. n.a. 65.41 66.04 68.55 68.55 77.70
LPD [19] 12 n.a. n.a. 86.16 82.39 85.53 85.53 82.22
[2] 3 n.a. n.a. 82.38 83.64 78.60 84.90 77.89
BaLDA v1 3 4 1 86.80 88.68 88.05 89.94 88.17
BaLDA v2 3 1 3 77.98 76.73 76.73 75.47 76.67
BaLDA 3 4 3 89.94 89.31 91.20 91.20 85.24

Table 2. Results obtained from Brain Tumor Dataset. On the bottom, we reported
the best accuracies of three other state of the art methods.

Z K C LI KL JS JE KNN

LPD [19] 15 n.a. n.a. 83.33 81.48 81.85 84.07 78.56
LPD [19] 90 n.a. n.a. 66.67 66.67 66.67 66.67 82.11
BaLDA v1 15 6 1 85.56 85.56 88.15 88.52 82.74
BaLDA v2 15 1 3 76.67 84.08 76.67 80.37 76.48
BaLDA 15 6 3 85.19 85.19 87.87 88.89 81.15

Comparison with the state of the art

Method Acc. Method Acc. Method Acc.
[17] 86.50 [8] 86.20 [2] 84.1

result. Considering the classifiers, it is not clear which is the best combination
of kernels and classifiers – this depending on the given dataset and on the given
generative model. As a general comment, it can be said that information theo-
retic kernels are working better than the linear one, so confirming the intuition
that exploiting the probabilistic nature of the features may be useful.

A final comment regards the interpretability of the method. Figure 2 describes
topic proportions of the different models. We can observe that the topics can
capture the different classes of the problem (with our model producing a qual-
itative better result – for more comments see the caption of the figure). This
appealing interpretability of the topic models has been recently exploited in a
biclustering scenario (see [1]).

5 Conclusions

In this paper we proposed a novel topic model, which enriches and extends the
Latent Dirichlet Allocation (LDA) model by integrating genes’ dependencies,
encoded in a categorization of genes which better models the gene-topic distri-
bution, leading to better classification of samples. The proposed model, called
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Fig. 2. Topic proportions θ of the prostate cancer dataset. We depict each of the classes
with different colors. A) By clustering the genes BaLDA is able to use different topics
to describe the 3 macroclasses; for example for the genes of the fourth cluster (K=4),
the first topic describes the non-tumoral samples, the second topic the tumoral samples
and the third the metastatic tumors. Again other clusters seem to highlight one of the
three classes (the third cluster – K=3 – highlights metastatic using topic 2, etc). B)
Comparison with [19] using a model with the same complexity. C) Comparison with
[19] using the same number of topics. D) Comparison with [19] using the optimal topic
number.

BaLDA has used to derive a highly informative and discriminant representa-
tion for microarray experiments. An experimental evaluation of the proposed
methodologies on standard datasets confirms the effectiveness of the proposed
techniques, also in comparison with other classification methodologies. Future
works will focus on the biological interpretation of the results; it is evident that
the interpretable topic representation of the expression matrix can be exploited
to highlight genes strictly involved in the biological problem of interest, e.g.
cancer or tumoral processes [1].
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