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Theincreasing availability of large-scale single-cell atlases has enabled the

detailed description of cell states. In parallel, advances in deep learning
allow rapid analysis of newly generated query datasets by mapping them
intoreference atlases. However, existing data transformations learned to
map query data are not easily explainable using biologically known concepts
such as genes or pathways. Here we propose expiMap, a biologically
informed deep-learning architecture that enables single-cell reference
mapping. ExpiMap learns to map cells into biologically understandable
components representing known ‘gene programs’. The activity of each
cellforagene program is learned while simultaneously refining them and
learning de novo programs. We show that expiMap compares favourably

to existing methods while bringing an additional layer of interpretability
tointegrative single-cell analysis. Furthermore, we demonstrate its
applicability to analyse single-cell perturbation responses in different
tissues and species and resolve responses of patients who have coronavirus
disease 2019 to different treatments across cell types.

The progress and development of experimental technologies' * and
computational tools*” for single-cell genomics have enabled the con-
struction of atlases with millions of cells serving as high-resolution
coordinate systems'’ for biological and therapeutic discoveries™ ™.
However, leveraging existing atlases poses acomputational challenge
known as reference mapping enabling rapid integration of newly gener-
ated datasets, denoted as a query. The transfer of knowledge from the
reference to the query allows the rapid annotation of the query data’,
imputation of missing modalities in the query®" and the discovery of
novel populations®”.

Single-cell reference mapping is growing in popularity®” ' tomap
query datasets by minimal modification of the reference atlas”. Existing
reference mapping methods embed new query data into a reference
latent space by removing technical differences, such as batch effects
between the reference and the query, without access to reference

data. However, the implicitly used latent dimensions for joint data
representation are not directly interpretable.

An important trend in machine learning is the development of
interpretable models, for example, by adding statistical assump-
tions to learned latent spaces or including prior information from
validated mechanisms or other data®. As the former disentanglement
approaches have not yielded sufficiently useful latent spaces in our
context??, we hypothesize that using prior information may help
identifiability. In particular, we aimto leverage known or newly learned
gene programs (GPs) to contextualize query databy answering various
questions, including ‘which GPs are disturbed in a disease query data
compared with the healthy reference?’ and ‘which biological programs
explainanovel populationinthe query?’ By thus making reference map-
pinginterpretable, it canmove beyond mere data alignment between
query and reference and be used for further interpretation of query
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datafor example, in the case of disease perturbation versus a healthy
atlas. Currently, the standard approach for identifying biological
programs in query cells compared with a reference atlas is to test for
differentially expressed genes and downstream gene set enrichment.
However, the differential expression on an atlas consisting of cells from
anarbitrary number of studies with variable degrees of biological and
technical heterogeneity represents a challenge for statistical analysis.
The currently accepted best practices*** suggest that differential
expression should be performed on non-integrated expression data
and not on the corrected expression values after integration; hence,
statistical models should account for complex experimental designs
and adjust for batch effects, which is further hampered by modelling
constraints such as parameter identifiability. Instead of using simpler
non-parametric statistical tests, both biologically relevant and irrel-
evant genes may be captured, which may compromise the accuracy
ofenriched gene set terms.

Collectively, it may be useful to have interpretable embeddings
directly associated with validatable GPs in the context of atlas-wide
comparisonsto capture the relevant biological signals while account-
ing for nonlinear batch effects. This end-to-end approachis commonin
deeplearning and has been shown to outperform classical approaches
that use sequential regularization and analysis. Interpretable refer-
ence mapping requires incorporating domain knowledge?, such as
curated GPs, into the representation learning model to guide inter-
pretation and exploration. Including domain knowledge to design
‘domain-informed’ deep learning architectures has been shown to
improve the performance on challenging prediction tasks, from
tumour type* to protein structure?. Earlier works proposed incor-
porating regularized linear decodes to include domain knowledge
into autoencoders for single-cell data®®, with scalable and expressive
embeddings compared with existing factor models, such as f-scLVM”.
Recent approaches such as VEGA*®, scETM* and pmVAE* also feature
variational autoencoderswith linear decoders or training separate VAEs
for each GP yet connected via a global loss in the case of pmVAE. Yet,
accounting for theincompleteness of domain knowledge and learning
new knowledge de novo from the data, rather than being locked into
prior-based feature design, are not fully addressed by existing methods.
Finally, going beyond single dataset analysis towards large-scale data
integration and reference mapping while injecting domain knowledge
remains challenging.

Inthis Technical Report, to address these challenges, we propose
to build amachine learning system that exploits the knowledge of the
underlying biological phenomenon for single-cell representation learn-
ing (as outlined more generally in the idea of ‘differential programs™°
recently). We construct an ‘explainable programmable mapper’ (expi-
Map) as an interpretable conditional variational autoencoder’**** that
allows the incorporation of domain knowledge by performing ‘archi-
tecture programming’, that is, constraining the network architecture
toensure that each latent dimension captures the variability of known
GPs. We apply an attention-like mechanism* to select the relevant GPs
foreachreference dataset. This helps with the prioritization of essential
gene sets but also allows the inclusion of genes not initially included
in annotated GPs, thereby addressing the incomplete nature of the
knowledge database. To identify new variations unique to the query
data, such as disease effects, we identify de novo GPs in addition to
the known GPs in knowledge bases by learning disentangled latent
representations. The framework can be used to automatically identify
and explore biological processes in normal and disease states when
mapping new query datasets to the atlas while maintaining comparable
integration performance to existing data integration methods.

Results

Interpretable single-cell reference mapping using expiMap
Linear methods, such as principal component analysis (PCA)*** or
matrix factorization®*, learn arepresentation of the datawhere each

dimension of the latent space can be explained using aweighted com-
bination of the input, such as gene expression. This interpretability
comes at the cost of the model’s limited capacity (for example, only
capturing linear relationships) to fit the data. In contrast, nonlinear
methods using deep neural networks*>*' come with a larger capacity
at the expense of reduced model interpretability.

Here we aim to design a system that can provide biologically
interpretable answers to queries of an integrated representation of
multiple (denoted by N) reference single-cell datasets and custom
GPs. These can be gene lists from existing curated databases*>**, lists
extracted from literature** or individually curated gene sets (Fig. 1a).
This knowledge is transformed into a binary GP matrix, in which each
row is a GP. Each column denotes the membership of a gene in that
program (Methods and Fig. 1b).

We wire the network weights using the GP matrix such that each
latent variable contributes to the reconstruction of a set of genes
defined by the GP similar to?**°. The model receives a gene expression
matrix from Ndifferent single-cell studies (X) and an additional vector
for corresponding one-hot encoded study labels (S,.,) for each cell, for
example, the experimental laboratories or sequencing technologies
(Fig.1c). Theadopted variational autoencoder architecture”* leverages
anonlinear encoder for flexibility and alinear decoder® for interpret-
ability. The latent space dimension chosen is equal to the number of
GPs. The weights from each latent dimension (that is, latent GP) to
outputare programmed according to the GP matrix so thatalatent GP
can only contribute to the reconstruction of genes in a particular GP
(denoted as ‘fixed membership’in Fig.1c). As annotated GPs are often
incomplete, we allow the inclusion of other genesineach GP by apply-
ing L1 sparsity regularization to genes not initially labelled to belong
to that GP (denoted as ‘soft membership’in Fig. 1c). This enables the
model to leverage the sparse selection of other genes, which helps in
the reconstruction and therefore accounts for incomplete domain
knowledge, torefine ontologies and pave the way towards a data-driven
alternative means to learn GPs (see later results).

However, the number of GPs may be very large, and potentially
redundant, and not all arerelevant for every atlas. To select only inform-
ative GPs, an attention-like mechanism is implemented with a group
lassoregularization layerinlatent space (Methods), which de-activates
GPsthatareredundant or do not contribute to thereconstruction error
of the model. The model s trained end to end and can thus be used to
construct reference atlases with interpretable embedding dimensions,
which we canleverage to analyse integrated datasets.

On the basis of this pre-trained, interpretable reference model,
we propose employing transfer learning, as outlined in architectural
surgery” (Methods), to map new datasets into the reference. We modify
the strategy of fine-tuning conditional weights in scArches allow-
ing the model to learn new GPs that are not included in the reference
model. This is achieved by adding new latent space dimensions, that
is, nodes with trainable weights in the bottleneck layer of the model
(Fig. 1d and Methods), while keeping the rest frozen. We implement
two ways of learning these new GPs: either by learning GPs confined
to pre-defined genes (denoted as ‘new constrained’ in Fig. 1d) that
were not present or those that have been de-activatedin thereference
model. Inaddition, the model may also learn de novo GPs as realized by
an Ll-regularized gene before capture of new variations in the query
data without pre-defined gene sets (denoted as ‘new unconstrained’
inFig.1d). The limited learning capacity of the model at the reference
mapping stage, due to frozen weighting, enforces aninformation bot-
tleneck (that is, a reduced capacity to learn and store information),
encouraging the new nodes to learnimportant and potentially disen-
tangled*® sources of variations in the query data. We further employ
the Hilbert-Schmidtindependence criterion (HSIC)***’, akernel-based
measure of latent variable independence®, to further enforce inde-
pendence between old and new unconstrained GPs learned during
query optimization (Fig. 1d).
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Fig.1|Biologically informed reference mapping using expiMap.

a,b, Domain knowledge from databases, articles and expert knowledge (a) is
used to construct a binary matrix of GPs (b). ¢, The model is trained on reference
data, received gene expression and study labels for each cell to encode a set of
latent variables representing GPs. The GPs are pruned and enriched by the model
using agroup lasso and gene-level sparsity regularization, respectively, and fed
into alinear decoder. The GP matrix is then used to program the neural network
architecture by wiring the model parameters of the decoder to learn a specific

GP for each latent dimension. d, The reference model is expanded and fine-tuned
upon mapping query data using architecture surgery, whereas new learnable
latent GPs are added and trained with the query data. The decoder architecture
equals c with the difference that only highlighted weights of newly added GPs
aretrainablein the encoder and decoder. To make sure these newly learned
unconstrained GPs do not overlap with reference GPs, we employ statistical
independence constraints.

The probabilistic representation learned by expiMap as a Bayesian
model allows the performance of hypothesis testing on the integrated
latent space of the query and the reference accounting for technical
factors (Methods). The hypothesis testingis performed at the GP level,
identifying differential GPs between two groups of cells by sampling
fromthe group’s posterior distribution of the latent variables. The ratio

between two hypothesis probabilities is reported by the Bayes factor.
Later, we demonstrate how this ability helps to identify GPs associ-
ated witha perturbationin the query data compared with the healthy
reference. When talking about the results of the expiMap Bayes test,
we call the GPs ‘enriched’ if their absolute logarithmic Bayes score is
greater than orequal to 2.3.
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Fig.2| ExpiMap resolves GPs after IFN-B perturbation. a, UMAP representation

ofthe query control and IFN-B-stimulated cells from eight patients (n =13,576
cells) mapped onto a healthy immune reference from four different studies
(n=32,484 cells) using expiMap. Colours demonstrate study (left), harmonized
celltype (middle) and data source (right). HSPCs, haematopoietic stem and
progenitor cells. b, Differential GP analysis results between query IFN- and
control cells from the query and reference. The x axis shows the ranking of GPs;
they axis denotes the significance (absolute log-Bayes factor) of each GP.

METABOLISM_OF_LIPIDS_
AND_LIPOPROTEINS

¢, Visualization of both the reference and query datain the context of the top two
most significant expiMap latent GPsin b. Each dot shows the latent GP score of
each cell. d, Visualization of the query and reference in various GPs, delineating
cell types or perturbation states for B cells and CD14/16" monocytes. e, The
activity of the most differentially active GP terms in CD14" monocytes after IFN-p
stimulation. Each violin plot demonstrates the distribution of latent GP values
across different cell types. The dashed square highlights GPs characterizing the
myeloid-specific response to IFN-f.

Collectively, through expiMap, we propose an approach tolearn-
inginterpretable, domain-aware representations of single-cell datasets
for the integrative analysis of reference and query data. Further, we
propose amodified version of architecture surgery that goes beyond
pre-defined domain knowledge while retaining interpretability. This
allows contextualizing the query data with the reference datawithina
specific GP to answer the user’s biological questions.

expiMap parses transcriptional response to IFN-f§

One of the ultimate goals in building large, single-cell atlases is
studying the effect of perturbations (for example, disease) and con-
textualizing it within a given healthy reference. To demonstrate the
applicability of our model in this scenario, we constructed a human
immune cell atlas from four studies of bone marrow*® and periph-
eral blood mononuclear cells (PBMCs)*~'. We then mapped a query
PBMC dataset of samples from eight patients diagnosed with sys-
temic lupus erythematosus whose cells were either untreated (con-
trol) or treated with interferon (IFN)-, a potent cytokine inducing a
strong transcriptional response in immune cells*?. Successful map-
ping should align untreated cells to matching cell types in the healthy
reference while preserving the strong effect of IFN-p. The expiMap
model trained with GPs extracted from the Reactome**** pathway
knowledgebase successfully mapped the query untreated cells to the

healthy reference while forming clustersindicative of the IFN-B-treated
cells (Fig. 2a).

By testing between IFN-f3 and control conditions, we identified the
top differential GPs, matching to previously reported GPs**** includ-
ing IFN-related pathways (Fig. 2b), which also separates the control
reference and query cells from stimulated query cells (Fig. 2¢). Fol-
lowing up with a cell-type-specific analysis, we identified differential
GPsacross cell types (thatis, one versus all) or cell-type-specific [IFN-3
effects (that is, IFN-p versus control within a cell type). In particular,
we detected agroup of population-specific GPs that separated one cell
type fromtherest (Fig. 2d, first row). The population-specific GPs can
be used together with perturbation-associated GPs (that is, obtained
from IFN-f3 query cells versus control cellsinboth query and reference
forthat celltype) to resolve the heterogeneity of cell state for that cell
type (Fig. 2d, second row; for all cell types, see Extended Data Fig. 1
and Supplementary Figs.1-3). We found that the general IFN GPs (for
example, IFN signalling) are always induced in all cell types (Fig. 2e
and Supplementary Figs. 2and 3). In contrast, some GPs (for example,
GPCR-related programs; their genes are provided in Supplementary
Tables 1and 2), including genes from the CXC chemokine family (for
example, CXCL10), are present only in the myeloid lineage (for high-
lighted GPs, see Fig. 2e; for all extended figures, see Supplementary
Figs. 2 and 3). Additionally, we detected carbohydrate metabolism
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activity in CD14" and CD16" monocytes and dendritic cells (DCs), and
activeamino acid metabolismin CD14" monocytes after IFN-f3 stimula-
tion (Supplementary Figs.2and 3). Thisisinagreement with previous
observations in cancer and viral infection showing that amino acid,
lipid and carbohydrate metabolic pathways contribute to theimmune
response™*°, Specifically, it is known that IFN-B engages with the amino
acid metabolic pathway to produce polyamines and clear viral infec-
tions®’. Still, a direct link to myeloid cells, as revealed by expiMap, has
not beenreported elsewhere.

Differential expression analysis on atlasesis challenging due to the
complex experimental designs and the probable presence of nonlinear
batch effects that cannot be modelled by linear approaches. Gene
set enrichment analysis (GSEA) is a classical approach for inferring
the activity of GPs and involves the sequential pipeline of differential
expression analysis and gene set enrichment test. To evaluate the
robustness of expiMap’s integrated GP test, we hence compared it
with the classical GSEA via limma-fry*®>*° (Supplementary Note 1 and
Extended DataFig.2).In our comparisons, we observed that, unlike con-
ventional gene set testing, which tends to detect general, non-specific
terms, expiMap was able to identify specialized GPs. For example, in
the B-cell population of both IFN-B-treated and control cells, expiMap
detected B-cell receptor signalling and antigen presentation activity,
which are more descriptive of B-cell biology than the general terms
such as ‘adaptive immune response’ or ‘immune response’ that were
foundtobeenrichedin these cells by limma-fry (Extended Data Fig. 2c).
We postulate that the increased variability in gene expression meas-
urements hinders the detection of specialized biological signals by
standard gene set testing on cell atlases. This indicates that expiMap
canextract biologically relevant GPs from a single-cell atlas consisting
of many datasets while accounting for technical variations such as
batch effects, which may not always be feasible with existing pipelines,
owingto the presence of nonlinear batch effects.

To further analyse the contribution ofindividual genesineach GP,
weintroduce the gene importance score: the absolute value of decoder
weights for genes in GPs (see also Methods), which can measure the
comparative importance of genes within each GPs. Using the impor-
tance score, we analysed the dependence between the expressionlevels
of genes and theirimportance scores in various GPs (Supplementary
Note 2 and Extended Data Fig. 3). We also confirmed the robustness
of the model under different data query dataset sizes (Supplemen-
tary Note 3 and Extended Data Fig. 4). Finally, we compared reference
mapping and individual analysis of query data by applying expiMap
on IFN-f dataset alone and repeated analogous analysis as shown in
Fig. 2. We found the results similar (Supplementary Note 4 and
Extended Data Fig. 5).

Biologically informed modelling improves the performance

As ameans to benchmark the performance of expiMap’s reference
mapping component, we compared it with scArches +scVI’, Seurat v4®
and Symphony’®. Although expiMap and scVI both leverage scArches
for reference mapping, scVldid not mix the untreated monocytes from
the query datawith healthy monocytesin the reference (dotted circle
in Fig. 3a; for mixing of studies, see Supplementary Fig. 4), whereas
expiMap successfully integrated theminto the healthy reference (0.68
versus 0.47 average batch correction scores; see further for a descrip-
tion of the metrics) while preserving the effect of IFN-3 treatmentin
cells that should not be integrated with the rest. We attribute this to
the explicit incorporation of the IFN-f3-related GPs in the expiMap
model, which helps differentiate the perturbed and control states while
resolving the transcriptional similarities between control cells, leading
to better mixing of control states. We investigated this by removing
the top five GPs obtained from the IFN-f3 versus control comparison
(Fig. 2b) and retraining the model. We observed that this led to the
incorrect mixing of control and stimulated cells with the reference (Sup-
plementary Fig.5).Inthisexample, both scArches +scVland expiMap

had better performance than Seurat v4 and Symphony for integrating
control query cells into control cells from the reference (Fig. 3b). We
also quantitatively evaluated the integration of query control cells
into the healthy reference using nine different metrics of biological
preservation and mixing®.

We further benchmarked expiMap in de novo integration against
scVland non-amortized scVI (Fig. 3c), and linear-decoded variational
autoencoder (LDVAE)*, a variation of scVI with a linear decoder
(Extended Data Fig. 6a). Overall, we found that additional domain
knowledge distilled into expiMap compensates for the lower model
capacity compared with nonlinear models enabling it to achieve
competitive performance (Supplementary Note 5). This is aligned
with recent results>*° demonstrating the improved performance of
deep learning-based models by integrating domain knowledge into
modelling.

Learning new GPs

Leveraging domainknowledge is crucial for the rapid and interpretable
analysis of new query datasets within the context of areference atlas.
However, domain knowledge is not always comprehensive, complete
and up to date for a novel phenomenon (for example, a new disease).
Thus, the ability to learn new GPs to analyse query data containing
new variations, such as new states or cell populations, is pivotal. We
address this by allowing expiMap to learn novel GPs associated with
the query data that exist in the knowledge base but are not detected
previously in the reference model, as well as de novo programs that
are not described in the knowledge base (Methods).

To evaluate the success of this strategy, we sought to remove GPs
and cells containing information about IFN signalling and B cells dur-
ing reference training and assess if the model could de novo learn GPs
of that type if the query data contain B cells and IFN-f3-treated cells.
To this end, we removed the general IFN-related GPs, including IFN,
IFN-af (and GPs containing a superset of those) and cytokine signal-
lingin theimmune system, from Reactome. We also removed B cellsin
thereference and the top two B-cell GPs containing information about
B-cell receptor signalling and antigen presentation, as shownin Fig. 2d.
Next, we trained the healthy reference PBMC model, as before, with the
same studies as Fig. 2a, in which the model did not see GPs related to
IFN pathway activity, B cells and their GPsin reference training. Further,
we added aset of new nodes along with trainable weights at the query
training stage; one was set with fixed gene membership to learn B-cell
receptor signalling GP, and the other three were flexible and able to
learn other variations in the data. In practice, we suggest initializing
ten (as default) newly initialized unconstrained nodes for more com-
plicated query datasets, as redundant nodes will be switched off (all
decoderweights setto zero) by L1regularization. Ideally, we would like
the model to learn GPs containing information about new variations
inthe query. We examined the distribution of the latent space values
across different cell types (Fig. 4a). The node constrained with the B-cell
GPlearned the variations specific to B cells (Fig. 4a, first row). The B-cell
nodehad 84 active genes, of which 66 genes are fromthe B-cell receptor
signalling GP (Fig. 4b). While expiMap learned the pre-defined GP, it
also added nine B-cell markers (for the full gene list, see Supplementary
Table 3) obtained using differential testing (Wilcoxon rank-sum test
in scanpy®) owing to the soft membership features in the model that
were not initially in the pre-defined GP, demonstrating the ability of
the model to incorporate extra information and enrich incomplete
domain knowledge (Fig. 4b). Further, by looking at distribution plots,
one of the newly learned nodes after in query training displayed a
different distribution for myeloid cells/lineage (denoted as node 1in
Fig.4a).In contrast, other cells had uniformly similar values. Another
node (node2inFig.4a) had abimodal distribution across all cell types,
suggesting that the variation between control and IFN-3-stimulated
cells is captured. We then sought to uncover the variations in the
denovolearned nodes by comparing the top 50 genes influencing that
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model, as shown by the comparison of reference building performance through
benchmarking in five different tissues, including PBMCs (n = 161,764, Ny, .cnes = 8),
heart (n=18,641, Nyyches = 4), lUNG (1= 65,662, Nyyenes = 19), colon (n=34,772,
Npacenes = 12) and liver (n =113,063, ny, s = 14) across three different methods.
Theyaxisis the average score of the nine metrics detailed in b. PC regression,
principal component regression.

node using gene importance score (for details about geneimportance
score, see Methods) with GPs with amaximum number of overlapping
genes and those from differentially expressed genes. We found that
node 1 and node 2 learned variations related to myeloid and IFN-f3
(Fig. 4c). Specifically, node 1is a new GP with minimal overlap with
the top two previously identified programs (Extended Data Fig. 7a).
This newly learned program also had a maximum gene overlap of
24% with the top 50 genes influencing the GP with other existing GPs
in Reactome (GPs that had maximum gene overlap are shown on the
firstrowinFig.4c). Thefull distribution of overlaps betweenreference
GPs and new unconstrained GPsis shownin Extended Data Fig. 7b. The
only significantly overlapping GPis IMMUNE_SYSTEM, a very large and
general GP with491genes. This demonstrates that the model learned a
new program distinguishing myeloid cells from other cell types. Node
2 also captured the program describing the IFN response observed
only in the query data. When plotted against each other, we observe
the separation of B cells and myeloid cells (Fig. 4d), IFN-B-treated cells
and B cells (Fig. 4e,f). We also quantified GPs specificity with clas-
sification and statistical metrics corroborating visual and qualitative

comparisons (Extended Data Fig. 7c-e and Supplementary Table 4).
Finally, the last node (node 3 in Fig. 4a) was de-activated for most
of the training but started to capture the signal related to DC cells
(Fig.4g-i). Themostimportantgene for node 3 is TMSBX4 (for aranked
list of important genes in node 3, see Supplementary Table 5), which
has higher expression levels for DC cells (Fig. 4h). The scores of node 3
also have comparatively higher values for DC cells (Fig. 4g).

We further confirmed the independence of newly learned GPs
(Supplementary Note 6 and Supplementary Table 6). Finally, we
showed our modelisrobustinlearning new GPs and existing GPs across
different data subsampling scenarios and model hyperparameters
(for detailed analysis, see Supplementary Note 6 and Supplementary
Tables 7-12). Overall, we demonstrated that expiMap can learn
pre-defined GPs notin the reference GP matrix for populations present
onlyinthe query dataduring query training while having the ability to
enrich the pre-defined GPs with new genes (see also Supplementary
Note 7 and Extended Data Fig. 7f, g), not in the program. In addition,
we demonstrated that expiMap is notrestricted to pre-defined GPsand
canlearnde novo GPs without any user supervision or prior knowledge.
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Fig. 4| Learning new GPs from query data. a, Distribution of single-cell latent
representation values across newly learned GPs across different query data
celltypes for query IFN-B-treated cells and control cells. b,c, Comparison of
overlap of the most influential genes dominating the variance in newly learned
constrained B-cell nodes (b) and unconstrained nodes (c) with genes in existing
related GPs and top genes obtained from the differential testing analysis. The
terms ‘MYELOIDS_DEG’ and ‘B_CELLS_DEG ' refer to genes obtained from one
versus all Wilcoxon rank-sum tests in the query control cells for each population,
respectively. The myeloid population consists of CD14* monocytes, CD16*
monocytes and DC populations. INF_VS_CTRL_DEG’ denotes differentially

expressed genes comparing IFN-B-treated and control cells. The existing GPs for
care those with maximal overlap with at least 12 genes with newly learned GPs.
d-f, Visualization of newly learned GPs (for cells from the reference and query
datasets with cell types present in the query dataset) discriminating specific

cell types and states from the rest, such as B cells and myeloids with the

effect of IFN removed (d) or B cells with the effect of IFN preserved (e,f).

g-i, UMAP of expiMap’s latent space for the query dataset coloured by node 3
latent representation values (g), TMSB4X gene expression counts (h) and cell
types (i). The dotted circle highlights DCs.

Interpreting treatment responses of patients with COVID-19
To demonstrate the medical use of interpretable atlas querying, we
focused onthe cellular response toinfection during coronavirus disease
2019 (COVID-19) and the effect ofimmunosuppressive interventions.
Weleveraged theintegrated immune PBMC atlas to map IFN-3 dataset
(asinFig.2a) and anew dataset from two patients (P1and P2) at differ-
ent COVID stages (severe disease and during the remission process:
D1, severe COVID-19 on day 1; D5 and D7, remission on days 5and 7,
respectively). Both patients were treated with tocilizumab, animmuno-
suppressive drug targeting the interleukin-6 receptor®. The integrated
dataset (Fig. 5b,c) was re-annotated using canonical markersidentifying
20 cell states fromthe myeloid and lymphoid compartments, including
rare populations such as megakaryocytes and erythroid progenitors,
as well as a population of CD10" B cells (Fig. 5c). From the integrated
embedding produced by expiMap, we could observe that some cellular
states are associated with disease severity, which may be related to
differences in the cellular response to tocilizumab.

Our analyses pointed us towards CD8" T cells and monocytes
(Fig.5c) inboth severe and remission stages that did not integrateinto
the healthy reference, unlike other populations from the same patients.
We investigated this by performing a differential GP test between
severe query cells and control cells to identify GPs that could explain
this separation. We identified transcriptional programs of antiviral
response at different clinical stages of COVID-19 and in specific PBMC
celltypes. Pathogen recognition receptor (PRR) RIG-I/MDAS and GPCR
pathways displayed differential behaviourin CD8* T cells (Fig. 5d) and
CD14" monocytes (Fig. 5e) in severe COVID-19 (D1) and during remission
(D5and D7). RIG-I/MDAS5 and GPCR pathways initiate the innate immune
response and modulate the adaptive immune responses during viral
infections® and are reported to coordinate the inflammatory dynam-
ics during COVID-19 (refs. °*%°). These findings suggest that acomplex
cellular communication circuit may be differentially activated in both
patients and may be related to the differences in treatment response
atthe cellular level.
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Next, we estimated underlying cellular communication pathways
using CellChat®® and compared them at different clinical stagesin our
integrated Immune atlas. This analysis revealed that the annexin path-
way displayed differential transcriptional behaviourin the severe and
remission stages of P1and P2, involving CD14" and CD16" monocytes,
natural killer (NK) cells and CD8" T cells (Fig. 5f and Supplementary
Fig. 6). Annexins are structural proteins that participate in the regu-
lation of inflammatory responses and homeostasis®” and have been
associated with disease severity in COVID-19 (refs. °*%°). In this circuit,
CD14" and CD16" monocytes show the potential to receive signals from
NK cellsand CD8' T cells for P1D1. In P1D35, the annexin pathway switches
completely tosignalling between CD16" monocytes and CD4" T cells. In
stark contrast, P2D1is characterized by the annexin pathway focusing
on CD14" monocytes, which continues throughout the remission stage
(P2D5), with the addition of CD16* monocytes persisting towards D7
of remission (P2D7) (Supplementary Fig. 6).

Although expression levels of annexins have been described as
biomarkers for the prediction of disease severity®’, our analysis using
expiMap is the first to describe the expression of ligand-receptor
pairs from the annexin pathway at the cellular level with the potential
tointeractbetween monocytes (CD14"and CD16"), NK cellsand T cells
in COVID. The differences observed between patientsin the expression
of annexin-related interaction circuits may be related to the capability
of viral clearance in each patient® and the early expression of FPR1 by
CD16" monocytes, whichis associated with the early detection of patho-
genic molecules and tissue damage’ . Interestingly, our analysis shows
the expression of IFNG for P2D7 by NKand CD8" T cells (Extended Data
Fig.8), which may indicate amore complexantiviral response thaninPI,
independent of the symptomatic resolution attained by tocilizumab.
Moreover, when contrasting our results with the annexin circuitin the
datafrom IFN-stimulated cells, we observed that the inferred cell-cell
interactions using the annexin pathway were dominated by the expres-
sion of ANXA1in DCs rather than FPR1in CD14* monocytes (Extended
DataFig. 8). Our results do notillustrate the same circuit; however, this
may indicate alung-specificinteraction operatingin the lungs after the
monocytes migrate to the affected lung tissue.

Although both these patients recovered after treatment with
tocilizumab, clinical studies demonstrate that this behaviour is not
consistent, and other factors, such as tocilizumab posology, may
affect the clinical outcome”. At the cellular level, expiMap identifies
transcriptional and cell-cell interaction circuits with the potential
to be druggable, such as RIG-I/MDAS5 and annexins, to help suppress
cytokine storm syndrome in patients with COVID-19, which results in
hospitalization.

expiMap resolves disease heterogeneity in Pancreas

As afinal use case, we asked whether expiMap could assist with inter-
pretable cell type annotation and the analysis of cell state heteroge-
neity. We used expiMap to integrate three non-type 2 diabetes (T2D)
pancreatic datasets’>”> (Methods and Supplementary Note 8) differ-
ingin multiple biological factors, including sex, age and stress status,
using PanglaoDB marker sets to enable cell type identification®”” and
Reactome pathways to identify molecular processes’ differentially

active between biological conditions. Before integration, we removed
immune cells from the reference to assess whether new cell types in
the query could be successfully integrated. We projected a new data-
set (query) that included healthy and T2D cells into this reference
(Fig. 6a,b). Ontheintegrated embedding (Fig. 6b), aseparation between
studies is observed. This is expected due to biological differences
between the integrated mouse models, such as disease state and age.
We also performed integrations with scArches + scVI, Seurat V4 and
Symphony (Extended Data Fig. 9a) and assessed the integration qual-
ity using scIB metrics (Extended Data Fig. 9b), showing that expiMap
is one of the top-performing methods.

Next, we automatically transferred cell type annotations from
reference to query (Fig. 6d, Supplementary Fig. 7and Methods). Ana-
lysing expiMap-generated scores of pancreatic cell type-associated
PanglaoDB GPs (Supplementary Fig. 7c) helped with the annotation
of ambiguous cell clusters (Supplementary Fig. 7b). For example,
expiMap scores helped to resolve potential doublets (for example,
immune-endocrine doublets) and small cell populations (for exam-
ple, acinar cells) that were marked as unknown or wrongly annotated
(Fig. 6d and Supplementary Fig. 7b,c). As automated cell type anno-
tation methods often produce unreliable results in challenging cell
populations, suchas doublets, rare cell types or transitional cell states,
manual assessment of marker expression is still required. However,
expression can be affected by batch effects”, while expiMap scores are
directly comparable. Furthermore, when specific cell types are missing
fromthe reference, the annotation transfer cannot be performed, such
asfortheimmune cellsthat were present onlyin the query (Fig. 6aand
Supplementary Fig.7a).Insuchacase, expiMap enables GP-enrichment
analysis to provide insights into cell types. Similarly, expiMap scores
canresolve coarsely annotated cell types. We show that the GP cell type
scores for the immune cell subpopulations (Fig. 6d) provide similar
information as the manually curated markers (Supplementary Fig. 8).
As online marker databases often contain multiple putative markers,
often of insufficient quality, manual selection of markers becomes
challenging””®*°. Indeed, we tried to use the top PanglaoDB markers for
B-cell annotation (Ebf1, Cd74 and Cd52 out of 110 markers). However,
they lacked sufficient specificity and sensitivity, while expiMap score
based onall PanglaoDB markers correctly annotated B-cell lineage, cor-
responding to the B-cell lineage marker Cd79a* as well as non-activated
B cell (Cd19 and Ms4al) and activated plasma B cell (Jchain) markers
(Supplementary Fig. 8). This can be explained by the prioritization of
informative genes within expiMap for data-specific cell reconstruction
tocreateasingle batch-corrected GP score, helping to resolve ambigui-
ties and challenges of automatic reference-based classifiers”. We also
show that expiMap scores explain why the diabetes model and healthy
beta cells do not overlap in integration, as indicated by differential
activity of identity and maturation GPs (Fig. 6¢c, Extended Data Fig. 9
and Supplementary Note 8).

Tosearch for molecular changes between the healthy control and
T2D-model beta cells from the STZ study, we used the expiMap Bayes
test with the Reactome GPs (Supplementary Table 13). We demonstrate
that there is only a small overlap between the genes of the enriched
GPs (Fig. 6e), simplifying the interpretation. We observed differences

Fig. 5| expiMap analysis highlights the importance of the annexin gene
family communication pathway during moderate and severe COVID-19.

a, lllustration of the integrated datasets from PBMCs of healthy controls, patients
with severe COVID treated with tocilizumab, and patients in the remission stages,
andinvitro IFN-stimulated PBMCs. Figure made with BioRender. b, Integrated
manifold using expiMap showing combined healthy PBMCs (n =32,484), two
query datasets including two patients with COVID-19 (n =18,752) and the IFN-
dataset (n=13,576) (ref.'®). ¢, Detailed cell type annotation of the integrated
PBMC datasets. Red circles highlight cells not merged with the healthy PBMC cell
atlas. ModDC, monocyte-derived dendritic cells; CD14* Mo, CD14" monocytes;
CD16* Mo, CD16" monocytes; pDC, plasmacytoid dendritic cells; pB, plasma B

cells.d,e, Distribution plots for differential GP activities were obtained using
expiMap for CD8" T cells and CD14* monocytes, highlighting the antiviral
transcriptional programs for RIG-I/MDAS and GPCRs in each population. ILS,
interleukins. Scatter plots are latent GPs representations of highlighted GPs for
each cell type. f, Annexin communication pathways in different stages of COVID.
Inthe severe stage (P1D1), CD14" and CD16" monocytes participate in a dynamic
communicationactivity via annexins with NK and CD8" T cells. This circuit
converges to focused signalling to CD16" monocytes during COVID remission
(P1D5).In P2, CD14* monocytes receive focused annexin signalling from NK, CD8*
and CD4" T cellsin the severe stage (P2D1), and later converge to signalling to
CD14* monocytes from the same lymphoid effectors during remission (P2D5).
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in energy metabolism, unfolded protein response (UPR) and islet
communication, as previously reported in the original study (Supple-
mentary Note 9 and Supplementary Table 14). To identify whether the
enriched GPs separate cellsinto multiple populations within samples,
we analysed the distributions of Reactome GP scores. The score of
interactions between lymphoid and non-immune cells (Fig. 6f) had
a multimodal distribution within T2D-model beta cells treated with
insulin, potentially indicating the presence of multiple cell states within
individual samples. For scores from other enriched GPs, we did not
observe such distinct multimodal patterns within individual samples.

One ofthe key dysfunction processesin T2D, also identified inour
enrichment analysis, isthe UPR, which results from pro-insulin synthe-
sis rate that exceeds the protein processing capacity of cells, leading
to beta-cell dysfunction and death®**. Thus, we compared scores of
enriched GPs associated with UPR and protein synthesis and processing
acrossindividual cells (Fig. 6g). As expiMap produces batch-corrected
GP scores we could also perform cross-study comparison with refer-
ence. We observed a high correlation between the UPR and asparagine
N-linked glycosylation GP scores (absolute correlation coefficient of
0.93) across all datasets with extreme GP scores in T2D-model cells
(Fig. 6g). An increase in N-linked glycosylation had been previously
implicated in diabetes, although the regulatory background is not
clear®*® We further support the implication of N-linked glycosylation
in T2D and its potential association with immune response (Fig. 6h,
Supplementary Fig. 9 and Supplementary Note 10). We also assessed
how multiple genes contribute to GP scores and how GP rather than
gene-level comparison reduces noise (Supplementary Note 10).

Finally, we applied expiMap on another Pancreas dataset capturing
mouse endocrinogenesis® to demonstrate the model’s applicability
on continuous developmental processes (Supplementary Note 11
and Extended Data Fig. 10). Overall, our results demonstrate that the
expiMap GP activity analysis captures a complex differentiation and
perturbation processin Pancreas.

Discussion

We introduced expiMap for interpretable single-cell reference map-
ping. Our model embeds domain knowledge in the form of GPs into
the deep learning architectures used for reference mapping and can
further complement these GPs with newly discovered unconstrained
GPs for query datasets. The interpretability of the model allows the
users to generateimmediate inferences about the query once mapped
to areference within the context of GPs. This contrasts with the existing
analysis pipelines, which involve multiple steps and, without end-to-end
learning, necessarily aggregate processing errors from previous steps.
Interestingly, in acomparison across five different organ atlases, we
found that the constrained expiMap model did not lose expressiveness
versus an unconstrained conditional variational autoencoder model;
indeed, prior constraints appeared toimprove reference mapping and

denovodataintegration performance, confirming the earlier concepts
of adding ‘differentiable programs™™. Through various applications,
we demonstrated the interpretability of the model.

Reference mapping with expiMap provides a new perspective on
dataintegration and reference mapping. In scenarios with significant
differences in the datasets, such as cross-species mapping, the query
datamightnotbe fully aligned in the reference owing to the substantial
biological and technical differences dominating the overall repre-
sentation obtained by existing methods. This phenomenon makes it
challenging to distinguish shared and unique signals between datasets.
expiMap enables the integration of datasets along the axes of varia-
tions explained by a single or multiple GPs, where the datasets share
variations and are mixed. This mixing stems from the commonality of
the datasets in those programs. Such insights could not be obtained
by, for example, looking at the overall uniform manifold approxima-
tion and projection (UMAP), which would be influenced by all genes,
might be misleading and could obscure such commonalities. As we
demonstrated when mapping COVID-19 patient data, CD8" T cells from
patients with COVID-19 were separate from IFN-f3-treated CD8' T cells
inthe global representation obtained fromall GPsin UMAP (Fig. 5b,c).
At the same time, they are integrated within specific GPs, capturing
shared signals in two different cell states (Fig. 5d). Overall, expiMap
can provide more insights into data integration by contextualizing it
within GPs.

Our model leverages domain knowledge to improve the inter-
pretability of deep learning models useful for single-cell genomics.
With increasing availability®”* of curated domain knowledge, expi-
Map can be trained on multiple databases while pruning irrelevant
information. However, selecting the relevant knowledge toincludein
the model can affect the model’s performance. As we demonstrated,
including IFN-related knowledge can improve the performance in
reference mapping (Fig. 2), while excluding it can lead to poor map-
ping of the query (Supplementary Fig. 4). Another limitation concerns
the interpretation and validation of newly learned GPs that capture
new variations in the query data. As we demonstrated, looking at
distribution plots and visualizing the embedding can decipher the
variations. However, the validation at the gene level requires further
expert knowledge for each biological system. Another limitation is
the modelling hierarchies in unsupervised settings, starting from
single genes to GPs and to higher-level biological processes. Previ-
ous work, such as knowledge-primed neural networks®, P-net*® and
visible neural networks’® employed hierarchical modelling, but in
supervised settings, to predict tumour type or cell states. Using a
similar strategy in an unsupervised model would add another layer of
analysis to mapping data, not only to GPs but also to biological pro-
cesses, and potentiallyimprove the performance. A final limitation of
general deep learning models may be data hunger. To determine the
sensitivity of our model to dataset size, we trained models of increasing

Fig. 6 | Reference mapping of pancreaticislet cells using expiMap.

a, Pancreaticislet cell analysis. The expiMap model was trained on
heterogeneous non-T2D mouse pancreatic islet cells from different datasets.
Adataset containing healthy and treated T2D-model cells was mapped to this
reference. expiMap was trained with GPs from PanglaoDB to evaluate cell type
annotation and scores from Reactome to determine metabolic differences
between healthy and T2D-model beta cells. b, expiMap-integrated UMAP
coloured by dataset shows three reference Pancreas datasets (45,178 cells) and
one query dataset (36,899 cells). ¢, Healthy and T2D-model beta cells from the
reference and query separate on UMAP. d, The expiMap score forimmune B cells
highlights asubpopulation of cells previously annotated under the umbrella
term of immune cells. The score for acinar cells helps annotate the small acinar
celltype cluster, which was not annotated in automatic cell type transfer owing
tolow classifier certainty. e, Low redundancy of the top differential Reactome
pathways between healthy and T2D-model query beta cells. Genes (columns)
associated with each GP (rows) are marked in white; the absence of agenein

aGPisindicated by dark colour. The displayed matrix was clustered both by
genes and GPs. f, The immune interaction GP scores in insulin-treated T2D-
model beta cells from the query are bimodally distributed. g,h, Beta-cell scores
of selected GPs differentially active in T2D-model beta cells. Comparison of
UPR and protein synthesis and processing GP activites (g) and comparison of
N-linked glycosylation and immune GP activity (h). Legend is showninc.Onthe
first subplot, circles mark the T2D-model population with relatively high scores
in UPR and mRNA metabolism compared with healthy control from the query,
whereas other non-T2D cells from the reference show high mRNA metabolism
without a high UPR score. The circle indicates the T2D-model population with
extreme UPR and asparagine N-linked glycosylation scores. ref: reference
datasets, other samples are from the query; STZ: streptozotocin T2D model;
STZ_GLP-1: STZ treated with GLP-1; STZ_ _estrogen: STZ treated with oestrogen;
STZ_GLP-1_estrogen: STZ treated with GLP-1-oestrogen conjugate; STZ_insulin:
STZ treated with insulin; STZ_GLP-1_estrogen+insulin: STZ treated with GLP-1-
oestrogen conjugate and insulin; control: healthy control.
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quality by incrementally including more training samples in the refer-
encebuilding task (Extended Data Fig. 6b). We observed that expiMap
outperformed the linear baseline of a non-biologically informed lin-
ear decoder model (LDVAE) in a low-data regime. The more complex
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non-amortized scVl achieved the best results with increased number
of training samples, while expiMap outperformed scVI and LDVAE.
Overall, theseresults suggest thatincorporating prior knowledge leads
to more sample-efficient learning in the presence of fewer samples
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than non-biologically informed models with similar complexity (for
example, LDVAE). Further, when more training samples are available
to learn GP activities efficiently, expiMap performs with complex
nonlinear models.

Although we demonstrated expiMap by using single-cell RNA
sequencing data, the model is naturally extendable to multimodal®**
datasets. Recent technological advances in single-cell biology allow
the simultaneous capture of chromatin accessibility, gene expression
and protein levels in single cells*. This makes it possible to learn the
hierarchy of connected representations by distilling domain knowledge
about regulatory elements, transcription and translation, covering
multiple cellular processesinto the representation learning methods.
Another potentially exciting direction is the combination of the expi-
Map architecture with invitro perturbation modelling approaches®**
to model in vitro perturbations of GPs. Finally, given the availability
of spatial transcriptomics data®, it is possible to adapt expiMap to
include information about cell-to-cell communication® in the learned
representations to gain further insights into cellular communications
and signalling.

Researchersinthe field of single-cell genomics are moving towards
using reference mapping to analyse new query datasets. We envision
that expiMap will further advance the applicability of reference map-
ping methods by bringing a new layer of interpretability and mecha-
nisticunderstanding to integrative single-cell data analysis facilitating
biological hypothesis generation and discovery.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/541556-022-01072-x.
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Methods

expiMap model

Our model builds upon the framework of (conditional) variational
autoencoders®**°, The log-likelihood of the data for expiMap can be
written as

logp(a(xww,C)p(W):logfpg(xn,w,C>p(Z>p<W)dz )
V4

ps(XIZ,W,C) = NB(g([Z.CI[W,L]"),CD), @

where g(x) = softmax (x) x Sis a softmax function that is multiplied by
thelibrarysize S of each cell. Alternatively, g(x) could also be asoftplus
or exponential function. Further, Xisarandom variable representing
gene expression, C indicates conditions (for example, batch ID) and
pe (X | Z,W,C)is the output distribution, also called a decoder in the
setting of variational autoencoders, used to model X given the latent
variable Z.

NB (-, -) in equation (2) denotes the mean and dispersion para-
metrized negative binomial distribution, -, -)means a column-stacked
matrix, Wand L are matrix parameters for latent variables Zand one-hot
encoded conditions C, respectively; and D is a matrix of
condition-specific dispersion parameters for each gene. Wisanxm
matrix withn corresponding to the number of genes and m correspond-
ing to the number of GPs provided as aninput.

The prior p(w) in equation (1) is defined as:

logp(W. ;) = Iogrfzp(W:,/|T2)P(T2|“)de =-a ”W:J”z’
logo (W) = ~a3|W.,],
J

p(W.;|t2) = N (0,7%),p (*|a) = Gamma ("TH é)

The constants were omitted because they do not affect the opti-
mization. We use a hierarchical Bayesian prior on the columns of W
with the parameter 7% integrated out as in 0i-VAE”, resulting in the
lasso regularization term. The lasso regularization allows the model
to de-activate the GPs that do not contribute to the reconstruction
lossinthe model. ais ahyperparameter specifying the strength of the
group lasso regularization.

Theevidencelower bound (ELBO) isapartof our total loss to train
the model. During the model training, the posterior distribution
pe (Z|X,C) is approximated by the variational distribution g, (ZX, C),
whichincludes a deep neural network parameterized with ¢; it is also
called anencoder. The ELBO can be written as:

1ogfp9(x|z, W, C)p(Z)p(W)dZ > /q¢(Z|X, C)log!%dz
3 3
z z

= Eqg,ax.c) [108Ps (XIZ,W, ©)] - KL (g, (Z|X,C) || p(Z)) + logp (W)
= ELBO (6,9, W)

where 0 and ¢ are parameters of the decoder and the encoder,
respectively.

GP matrix
We use tab-delimited text files where the rows represent gene sets as
aninputto construct masks for W (see the previous section). The first
columnisreserved for the name of the gene sets and the other columns
should containthe names of genes. Gene matrix transposed files (.gmt
file format) could be directly used in our APl as aninput.

Adatabase could bealso passed to the modelinthe formof abinary
matrix Bwith columns corresponding to GPs and rows corresponding

togenes, with B;; = 1ifthe ithgeneisin thejth GPand O otherwise. Such
amatrixisactually always constructed from the files described above
before passing to the model. We refer to matrix B as the GP matrix.

Defining hard/soft gene membership

The decoder network in equation (2) consists of a linear layer
H = [Z,C][W,L],inwhich the output isthen transformed to a negative
binomial means by the nonlinear functiong(H). The GP matrix B speci-
fies GPs and the gene memberships for these programs. The matrix B
is used as a mask for the matrix of the decoder weights W, where the
parameters for inactive genes in each GP are set to zero and do not
change during training if the hard mask is used.

0ifB;; = 0,
Wij= . “)
w;; otherwise
Inthe case of asoft mask, we add aregularization termthat forces
gene weights for genes that are not originally part of a GP to become
zero, butalso allows them to become active (non-zero) ifthey contrib-
ute to the reconstruction:

RW =yZ|W. 0M,| ®)
Jj
1ifBlJ = O, ( )
= 6
M {Ootherwise

Some columns of Mcanbesettoavector ofones M. ; = by setting
B.y= Gtoallow the introduction of sparse GPs.

Both variants (hard and soft masks) force the elements of Zto
correspondto the GPs encodedin W.

Learning new GPs

To allow new GPs to be learned, the model can be extended with addi-
tional nodes in reference training or query projection. For this, the
last layer of the encoder is expanded with additional nodes connected
to the existing nodes from the previous layer and producing the new
vectorZ,.,; inthe decoder, the additional matrix W, is concatenated
to W(now denoted by W, ), resultingin:

.
P (X\Zoids Znews Woids Waew © = NB (8 ([Zotd: Znew> €1 [Woid, Waew- L1") , €D)

Inaddition, L1regularizationis added to W,.,, whichis equivalent
to the Laplace before this matrix. In addition, for each element of the
vector Z,.,, the sample estimate of HSIC between the element and
theother elementsofZ,,and Z,., isadded as aregularization term to
theloss?. Also W, canbe constrained with hard gene membership or
regularized with soft gene membership (see the previous section) as
W, using an additional GP database. In this case we do not use HSIC
regularization for these new constrained nodes.

Training

We use the stochastic proximal gradient descent to optimize the ELBO
loss (equation (3)) with additional regularization terms. We also mul-
tiply the Kullback-Leibler (KL) divergenceinthe ELBO loss by the regu-
larization coefficient B. Excluding the group lasso R, (W) = —logp (W)
and soft mask term R (W) that appear in the proximal update step
(discussed further), theloss function of the model can be written as:

N
F(6,9.W) = iZIEq,p(ZJX,-,C) [—logpg (Xi|Zi, W, ©)] + BKL(qy (Z;X;, ©) || p(Z))
L

+VR25[C (Zold ’ Znew)
)]
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where Rgs'c (Zo1d» Znew) is @ sample estimate of the HSIC regularization
term.Inaddition, Z,.,,and Z,are the old (existing in reference model)
and new (learned in query training) unconstrained programs,
respectively.

Then, to minimize the objective function we use the update
scheme

6D = 6O — pVyF (6,¢, W)

PHD = g — QV¢F(9, @, W)
Prox

8

WD = (WO — v, F (6,9, W))

MRy + Ry

where £ (6, ¢, W)denotes an estimate of the function (equation (7)) over
amini-batch of samples (asin the standard stochastic gradient descent
algorithm), tis the step in the gradient descent algorithm and nis the
learning rate.

R0 = a1 o,

is the lasso and soft mask regularization term and its proximal opera-
toris

Prox 1
(V) = argmin, [EL = VI + na Ll + v L. ; oM;,,«nl]
J J

©

nRy +nR,

The hard mask variantimplies y = 0. The proximal operator above
hasaclosed-form expression (see the next section for the derivation),
so it is easy to apply it after the stochastic gradient descent update.
The gradient for the expectation terms is obtained with the repara-
metrization trick, as is common in the VAE framework®®.

Proximal operators for expiMap

To derive the closed form of the proximal operator described in the

previous section, we need two theorems.

Theorem 1. (Proximal operator of separable functions.)
Supposethat f: E; X E; X ... X E; — (—o0, 0]is given by

m

SXLXgs o X)) = D fi (X))
i=1

X; € Ei,i = 1,2,...,"’1

Thenforany x; € £1,x; € E, ... .Xp, € Epy,

Prox Prox Prox
(X1) X (X3) X ... X

h f S

Prox

(X1, X2, o s Xp) = (Xm)

where E;denotes avector space and x isa Cartesian product. The proof
of this theorem can be found in ref. %,
Theorem 2. (Decomposition of the proximal operator.)

Asufficient condition for Prox _ Prox Proxjg
f+g = f g

Prox
VX € H6g< f (x)) D dg(X)

where fand g are closed (or, equivalently here, continuous), convex
functions; H denotes a Hilbert space; and dg stands for a subgradient
of g. The proof of the theorem can be found inref. *°.

We use the two theorems above to find the closed form of the
proximal operator (equation (9)). The explicit form of the regulariza-
tion functionis:

Ry W) = Ra+R) W) = ap W, | +vX|w. oM, o)
J J

Thesumsintheregularization function are made over columns of
W:thus, this functionis clearly separablein columns, and the theorem1
isapplicable here. This means that we only need to calculate the proxi-
mal operator for acolumn, as we can find the full proximal operator as
a Cartesian product of the proximal operators for different columns.
This is the same as using its own proximal operator for each column
of Wseparately.

The regularization summand for a separate column k of W can
be writtenas

Re, W)= (RE+ R W) =alw i +y|w.iomy — @

Theregularization summand (equation (11)) has the form of asum,
so the theorem 2 has to be used.

Forthegrouplassoparta | - ||,the proximal operator canbeimme-
diately obtained (from ref. *®) as

v—naﬁ, if [vll, > na
, W= 2
nRy o,

Prox
(12)
if [, < na

Itshould be noted thatin the case when the mask’s column equals
avector of ones M. , = 1the proximal operator for the second summand
inequation (11) y || - |l;isjustaproximal operator for astandard L1regu-
larization and can be written” as

y-y ify>y
Lo =10, ifpl<y
y-p ify<y 13)
Prox

V) = % (00) X F (02) X ... X 5 (0G)
yi- I

Inaddition, the subgradient d (y | v |I;) (fromref. %, rewritten) is

Y, ify>0
sgn,0) =1 [-pyl. ify=0,
. (14)
-y, ify<0
AW IV Il = s8N, (07) X 58N, (U2) X ... X 58N, (UG)
The proximal operator aP”ro’ﬁ (v)is equal to equation (12) (without
s 2

n). By direct calculation for y* = aP||r0)|(| (v) the following holds
2

vi=1,...,Gifv; = 0,thenv! = G;ify; < O,thenv! < Gjify; > 0, thenv} > 0.
Thisbasically meansthatsgn, (u;‘) 2 sgn, (v;)Itimmediately follows
fromthe form of the subgradient (equation (14)) that
Prox

V= )
all- 2

oIV iy 20wIiiv iy

Using this and the theorem 2 we can conclude that

Prox
(V))
1

Prox Prox
)=
Y-l +all -z all-l2 \yI-I

s
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Therefore, the closed form of the proximal operator for the case

M., =1is:
Prox Prox Prox
. W= ( (V)> (16)
nRg,, nall-llz \nvI -l
Moreover, the closed forms of PToX «yand ProX . yare
-1 A gy,

giveninequations (12) and (13), respectively.
Forthecase M. ; # 1, similar reasoning can be applied. First, the
Prox
VI -OM. il
the vector of genes (gene weightsin the factor) thatareinactivein the
annotation for the factor k canbe written as

closed form of the proximal operator (v)for L1normof

Y, ifngk =0

A5 ) =
' FO). Mgy =1

17)
Prox
oM. W) = A ) X ... x AT (06)
: Lkl

where 7, (y)is the same as in equation (13).
The subgradientd(y || v ® M. 4 |l;)canbe writtenas

0, ifMgy =0
sgn, (), ifMg =1

DY I VOM. k1) =8 W) x ... x 8 (v5)

si“m =
(18)

where sgn, (y)is the same as in equation (14).
Using the same reasoning as in the derivation of the proximal
operator for sparse unannotated factors, we see that

Prox
vi= ()]
all -l

oIV O M. ()20 IVO M. i)

This means that we again can use the theorem 2 and obtain the
closed form of the proximal operator (with the learning rate n7) for the
column k of W, which corresponds to the annotated factor k

Prox Prox

Prox
)= ( (V)) (19)
nall -l \nvil- oM. il

Rk,

In addition, the closed forms of _Prox
nall -z
aregiveninequations (12) and (17), respectively.
Theorem 1 allows calculation of the output of the joint proximal

Prox . . . .
operator 1Ry + IR, () in equation (8) by applying the proximal

operators (equations (12), (16) or (19)) on each column of the input of
thejoint operatorindependently.

Prox
wand oy o g, @)

Reference mapping

The projection of a query dataset to a reference dataset is performed
using the single-cell architectural surgery (scArches) approach®. After
training a conditional VAE model for multiple batches of the reference
dataset, the trained weights are transferred to anew model with addi-
tional conditional nodes used to map new query batches to the refer-
ence. Further, additional nodes for new learnable GPs can be added at
thisstage (seethelearning new GP section). During the training of the
expanded model for query projection, only the conditional weights
connecting new batches and the weights for new GPs (if any) in both
encoder and decoder are tuned; the rest of the weights are frozen.

Projecting with scArches preserves the latent representation of the
reference and projects the query data to the same latent space while
correcting for batch effects between the query and data.

Differential testing for GPs

Totestthe hypothesis Hy : Z;, > Z;,versus H, : Z;, < Z;, where Z,,,Z;,,
arethe dimensioniofthelatent variables for the cells from the groups
aand brespectively, we use the logarithm of the Bayes factor:

p(Ho) p(Ho)
logk =1 =1 20
ok =log’ ) = 8T p(Hy) @0

where p (Hy)and p (H,) are the probabilities of the hypotheses H, and
H,, respectively.
We can compute P (Hy)as:

p(Ho) = p(Z1; > 251G, = a,G, = b) -
= Epx,.€11Gi=a)p(¥2.G11G,=b) [P (Z1i > Z2,i1X1, X2, €1, )]

where G, and G, denote the independent group variables for X; and
X,, respectively.

The probability p(z,; > Z,,|X;,X,,C;,C,)inside the expectation in
equation (21) can be estimated with the approximate posteriors
4y (Z11X,C)and g, (21X, C), as follows:

P (Z1; > Z2,ilX1, X2, €1, €2) ~ Egy 2, 1%,.C0)0 (20 %0.Go) [ (Z1i > Z3)] - (22)

where the expectation could be approximated by sampling or calcu-
lated fromthe closed form. When g, (Z|X, C)is Gaussian, we can calcu-
late the expectation by

Hi(X1,C)—11i(X5,C)

1
Ey(2141%.€1)ap(22:1%:.C2) (12 > 22,)] = Eerfc <_ 2(0?(X1,C1)+o?(xz,Cz))) >

The probabilities (equation (22)) can be averaged over many cells
from both groups as in scVI*°, to obtain the approximate value for
equation (21).

Throughthe examplesinthe paper, werefer to the results obtained
as‘expiMap testresults’and at the threshold |logk| > 2.3as the ‘enriched
results’, and call such GPs ‘differential GPs’ in the comparison of interest
in this work.

Geneimportance score

Gene importance score for a gene in a GP is the absolute value of the
decoder weight for the gene in the GP. Each column of the weight matrix
Winthedecoder (2) correspondstoaGP and each row correspondsto
agene. Because of the linearity of the decoder, a change in the latent
score of the ith GP Z; affects the reconstruction of gene counts more
for those genes with higher absolute values of the weightsin W, .. Con-
sequently, we canrank genesin each GP by the absolute values of their
weights in W. This ranking reflects the relative importance of a given
GP for each gene; a higher ranking means that this gene is affected
more by the GP.

Latent scores directions

Thessigns of latent scores of GPs do not necessary correspond to up-or
downregulation of these GPs. However, in some cases, it is possible to
determine whether anincreaseinalatentscore corresponds primarily
toanincrease or decrease in the expression of genes of a correspond-
ing GP. This can be determined by analysing the decoder gene weights
in the column corresponding to the GP (as described in the previous
section). If most of the gene weights in the column of W correspond-
ingtothe GPare positive, then the higher positive latent score implies
upregulation;inthe opposite case of mostly negative weights, alower
negative score also means upregulation.
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For thejth GP, the direction D;of predominant upregulation (nega-
tive or positive) can be calculated heuristically by several methods. We
use two methods:

sum :D; = sign (2 M/iJ)
i

counts :D; = sign (Zsign(W,;,-))
7

Then, we can multiply the latent score of the GP by this direction
Z; = Z; x D, so that a higher positive value of Z;always corresponds to
predominant upregulation of the GP and a lower negative value to
downregulation. These normalized scores can thenbe used for plotting
or testing.

Metrics for integration and evaluation
Integrations were evaluated with methods implemented in scIB. We
evaluated biological conservation through graph cLISI, normalized
mutual information (NMI), adjusted Rand index (ARI) and average
silhouette width (ASW) for cell type; and batch correction through
principal component regression, ASW for batch, kBET, graph con-
nectivity and graphiLISI. All metrics are further described in the scIB
paper®®. The overall score was computed as the average of all scores.
We assessed the dominance of genes in a GP for Extended Data
Fig.3e by normalized entropy. The normalized entropy is calculated by
dividing the entropy of the distribution of gene importance scores of
the GP by the entropy of the uniform discrete distribution of the same
size. The distribution of geneimportance scores is obtained by dividing
eachscoreby the total sum of the scores. The normalized entropy scale
is from O (absolutely concentrated) to 1 (uniformly spread weights).

Choice of hyperparameters for expiMap training

Reference training and integration. The main hyperparameter that
affectsthe quality of integration for the reference training is alpha_kl, the
value of whichis multiplied by the kl divergence terminthetotalloss. If the
visualized latent space looks like asingle blob after the reference training,
werecommend to decrease the value of alpha_kl. If the visualized latent
space showsbadintegration quality, we recommend toincrease the value
of alpha_kl. The good default value in most cases is alpha_kl = 0.5. The
required strength of group lasso regularization (alpha) depends on the
number of used GPs and the size of the dataset. For 300-500 GPs, we
recommend to use alpha= 0.7 and increase for larger numbers of GPs.

Reference mapping. We recommend to use 200 epochs and early_
stopping = True for the query to reference mapping. Smaller datasets
tend to require more epochs of training to map the query into the
reference well. If you observe that the query is not integrated into the
reference, we recommend to try longer training for the query mapping.

When using new unconstrained GPs, we recommend to start with
ten of them or more. This ensures that all new significant sources
of variation in the query would be covered by the new GPs. We also
recommend to use L1 regularization for the new GPs (the gamma_ext
parameter), it willmake themsparser, and thus more interpretable, and
alsocande-activate redundant new GPs completely, whichis important
when the number of new unconstrained GPs is high.

If you use new constrained GPs with soft masks, it is important
to monitor share of de-activated inactive genes of the soft masks in
the constrained GPs. Set print_stats = True during the training, and
check that at the end of the training process ‘Share of de-activated
inactive genesin extension terms’log show anumber higher than 0.9.
Ifthisnumber is lower, it means that some of the constrained GPs lost
their specialization given by the soft mask and added alot of irrelevant
genes. If this happens, it is better to increase the alpha_l1 parameter
and retrain the model.

Non-amortized scVI

We compared the integration performance of expiMap with scVl and
non-amortized scVI. Non-amortized scVlis a VAE model similar toscVl,
where the neural network encoder was replaced by a per cell vector of
parameters for each cell in a dataset.

Foreachcellithereare vectors g; € R?and o? € R? with the size of
the latent space. The jth latent variable for the cell i is obtained by
sampling independently from the Gaussian distribution
Zij~N (y,-,j, oij) Thedecoderisthesameasinthestandard scVimodel.
The non-amortized scVI model is trained by minimizing the negative
ELBO in batches with a gradient descent algorithm as a standard VAE
model.

GSEA using limma-fry

Read counts were normalized using the trimmed mean of M-values
(TMM)™°° with singleton pairing implemented in edgeR'" to account
for sparsity in the single cell RNAseq data. The fry test (Fast Approxi-
mation to ROAST)* in limma*® R/Bioconductor package was applied to
log counts per million (logCPM) values obtained by voom transforma-
tion'to test for the enrichment of the gene set terms in the Reactome
pathway database’®. The Reactome database was obtained from the
Molecular Signature Database (MSigDB)'>14,

Datasets and pre-processing
Allthe cell type labels and metadata were obtained from original pub-
lications unless specifically stated below.

Immune healthy atlas. The immune dataset includes samples
from bone marrow cells and peripheral blood cells from different
human samples. The bone marrow data were collected from Oetjen
etal.** and PBMC samples were obtained from 10x Genomics (https://
support.10xgenomics.com/single-cell-gene-expression/data-
sets/3.0.0/pbmc_10k_v3), Freytag et al.*’ and Sun et al.>°. The detail
of the retrieval path and the pre-processing can be found in Luecken
etal.®®and Lotfollahi et al.” We used the Reactome pathway database
forannotations’ from MsigDB!**'*; we also removed all pathways with
fewer than12 genes. The genes that were notin the GPs database were
filtered out, reducing the total number of genes from approximately
11,000 to 3,690. Then 2,000 highly variable genes were selected for
training.

PBMC IFN-B. This dataset contains cells from eight patients with Lupus
treated with IFN-B or left untreated for 6 h (ref.'*). The pools from the
IFN-B and control cells were mixed together and loaded to a 10x kit.
The dataset was obtained from the Seurat tutorial (https://satijalab.
org/seurat/articles/integration_introduction.html). We have used the
same genes as in the reference (Immune atlas).

PBMC COVID-19. The dataset® contains five peripheral blood samples
from two patients with severe COVID-19 at three different timepoints,
consisting of severe remission during treatment with tocilizumab.
The blood samples were collected on day 1, within12 h of tocilizumab
treatment, and on day 5 for both patients. An additional blood sample
was collected from patient 2 because the patient remained COVID-19
positive. The cell types were annotated using markers provided by the
authors in the original study. We have used the same genes as in the
reference (Immune atlas). The dataset is available on Gene Expression
Omnibus (GEO); the accession number is GSE150861.

We used the integrated dataset to analyse cell-cell interac-
tions using the CellChat package®. For this analysis, we used the
non-integrated shared gene space between all the integrated data-
sets after removing those genes supported by fewer than five counts,
for atotal of 10,851 genes ready for analysis. We then ran CellChat on
each subset using the curated database for interactions in human
samples. The gene expression of each ligand-receptor pair was
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visualized using a dotplot generated using Scanpy 1.8.1 (ref. ¢") and
anndata 0.7.6 (ref.'°°). The scripts for the analyses, as well as the pack-
age version used in the analysis, can be found in the ‘covid’ section of
therepository.

Pancreas. The datasets are publicly available on GEO and further
described in Supplementary Table 15. We removed low-quality
cells (high mitochondrial fraction and low number of genes) using
a study-specific threshold. For cell type annotation, we removed
genes expressed in fewer than 20 cells in each study and normalized
the expression in each study to 1 x 10° total counts, excluding highly
expressed genes, and subsequently applied a log transformation. We
merged datasets across studies using Ensembl IDs and retaining the
genes expressed in all studies. We used merged data across studies,
followed by the identification of highly variable genes, z-normalization
and the computation of top PCA components. We clustered the data
and plotted known pancreatic islet cell type markers to annotate cell
types cluster-wise.

For integration, we separated the datasets into reference and
query, asdescribed in Supplementary Table 15. From thereference data,
we removed immune cell types and their doublets. We removed genes
expressedinfewer than 20 cellsinthe reference data. We used gene sets
from PanglaoDB'” release from March 2020 and Reactome’® v4.0 and
mapped them to mouse genes using Ensembl'** V103 orthologues. We
used only gene setswith atleast three genes and at most 200 genes. We
excluded genes that were not present in these gene sets. With expiMap,
we integrated the reference datasets using samples as batches and pro-
jected query samples. We also performed matched integrations with
Seurat'”’, Symphony'® and scVI*°. We evaluated different integrations,
asdescribed in the integration evaluation section. We used reference
query splitasbatches and excluded non-healthy query samples as they
were not expected to be integrated into the healthy reference owning
tobiological differences. For the downstream interpretation analysis,
we used directed expiMap scores.

We used multiple methods to evaluate PanglaoDB cell type scores.
We plotted the PanglaoDB cell type scores of expected pancreatic cell
types on query UMAPs and visually compared the results to cell type
annotation. We used the PanglaoDB gene set scores as features for the
annotation transfer from reference to query with weighted k-nearest
neighbour (kNN), as described in ref. . We evaluated the annotation
transfer with F1score and by visual evaluation of prediction accuracy
and certainty on UMAP.

For gene-level analyses onintegrated data we normalized expres-
sion with Scanpy using functions normalize_total and loglp.

Integration benchmark datasets. We leverage datasets from five dif-
ferent tissuesincluding PBMCs (n=161,764) (ref.'*’), heart (n =18,641)
(ref."), lung (n = 65,662) (ref. ), colon (n =34,772) (ref."'°) and liver
(n=113,063) (ref.™). All datasets, except heart, were obtained from the
Sfaira database'?, whichincludes cell type labels. Heart was obtained
from the scVI package. For the expiMap training for each dataset, we
used the Reactome pathway database, selected only pathways that
contain more than 12 genes and filtered out all genes that are not pre-
sentinany pathway, and then we selected 2,000 HVG for training. For
the other models, we used the same lists of genes.

Mouse endocrinogenesis. We used the developmental dataset from
mouse endocrinogenesis (n = 25,919) (ref. *). The raw dataset is avail-
able at the GEO under accession number GSE132188. Cell type labels
were obtained froman adata object provided by the authors of scVelo'™.
We used the Reactome pathway database version 7.5.1 for annotations’®
from MsigDB'**'%*, Days 14.5 and 15.5 were used as a reference, and
days12.5and13.5asaquery. For the reference dataset, we removed all
pathways with fewer than13 genes. The genes that were not in the GPs

database were filtered out, reducing the total number of genes from

approximately 28,000 t0 10,000. Then 4,000 highly variable genes
were selected for training. For the query, we used the genes obtained
after pre-processing the reference dataset. RNA velocities were calcu-
lated using scVelo.

Methods for the query to reference benchmarks
scVI: we used the setup from the scarches tutorial for query to refer-
ence mapping with scVI (https://scarches.readthedocs.io/en/latest/
scvi_surgery_pipeline.html).

Symphony: we used the parameters recommended in the reposi-
tory (https://github.com/immunogenomics/symphony).

Seurat: we adapted the Seurat reference mapping tutorial (https://
satijalab.org/seurat/articles/integration_mapping.html), but used
supervised principal component analysis(sPCA) instead of PCA.

Statistics and reproducibility

The details for pre-processing of the datasets used for the model train-
ing are provided in the section ‘Datasets and pre-processing’. If not
indicated otherwise in that section or in the legends, no data were
excluded from training and analysis. The hyperparameters chosen
for model training for all experiments are listed in Supplementary
Note 12: hyperparameters. The details of statistical tests employed
for differential testing of GPs are provided in the sections ‘Differential
testing for GPs’and Supplementary Note 1: comparison with limma-fry.
Metrics for integration used in the paper are described in the section
‘Metrics for integration and evaluation’. Robustness of query to refer-
ence mapping for different query dataset sizes is analysed in Supple-
mentary Note 3: robustness of the model under different data query
dataset sizes. Reproducibility and robustness of newly learned GPs are
discussed in Supplementary Note 6: disentanglement and robustness
of newly learned GPs.

Protocol
Astep-by-step protocol forinstalling the software, training the model
and downstream analysis can be found on Nature Protocol Exchange™.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The Immune healthy atlas, PBMCIFN-3, PBMC COVID-19, mouse endo-
crinogenesis datasets and the heart dataset used for the integration
benchmarkare public, referenced and downloadable at https://github.
com/theislab/expiMap_reproducibility. The Pancreas datasets are pub-
licly available and can be accessed with the following GEO codes: STZ
(GSE128565), Fltp_P16 (GSE161966), NOD (GSE144471), spikein_drug
(GSE147203/GSE142465 (GSM4228185-GSM4228199)) and NOD _elimi-
nation (GSE117770). The PBMCs, lung and colon liver datasets used in
theintegrationbenchmark are public, referenced and can be obtained
from the sfaira database'? (https://theislab.github.io/sfaira-portal/).
The data supporting the findings of this study can be reproduced
using codes and notebooks available at https://github.com/theislab/
expiMap_reproducibility. All other data supporting the findings of
this study are available from the corresponding author on reasonable
request. Source data are provided with this paper.

Code availability

The software is available as a part of https://scarches.readthe-
docs.io/en/latest/. The code to reproduce the results is available at
https://github.com/theislab/expiMap_reproducibility.
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Extended Data Fig. 3| Analysis of GPs characteristics and their relationship
togenes. (a) Distribution of correlation between mean expression value and
gene importance score for each gene. X-axis: number of top-scored genes, and
the Y-axis denotes the Pearson correlation of mean log-normalized expression
for top ngenes denoted in x-axis in each GP with theirimportance scores (each
dotrepresents anactive GP, n = 247). (b-d) - Scatter plots demonstrating the
relation between mean gene expression and gene importance scores from
expiMap for GPs, selected from the highlighted group in (a). Example of a GP
witha high positive correlation (b), a GP with a correlation near zero (c), and a
GP with anegative correlation (d). The X-axis shows the mean log-normalized
expression of genes, y - gene importance score ina GP. Correlations are shown

for the top 20 genes by gene importance scores. Each dotis agene. (e) Box plot
for the entropies of normalized importance scores of the top 50 genes for each
active GP (n =247) divided by the maximal entropy (of uniform distribution). The
normalized entropy scale is from 0 (absolutely concentrated) to 1 (uniformly
spread weights). Box plot statistics: lower quartile = 0.89, upper quartile =

0.94, median =0.916, lower whisker = 0.83, upper whisker = 0.998, min=0.75,
max = 0.998. (f) Histogram of importance score for top 50 genes in MHC I
ANTIGEN PRESENTATION, this GP has normalized entropy 0.799. (g) Histogram
of importance score for top 50 genes in SIGNALING BY GPCR, this GP has
normalized entropy of 0.988.
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Extended Data Fig. 4 | Results for expiMap model trained with downsampled
query dataset (IFN-f dataset). (a) UMAP plot for the latent spaces of reference

inquery).

and downsampled query across different query dataset sizes. (b) Average of the
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Extended Data Fig. 5| See next page for caption.
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Extended Data Fig. 5| Results for expiMap model trained on IFN-p dataset
alone. (a) UMAP plot of expiMap latent space control and IFN-f stimulated cells
from eight patients (n = 13,576 cells), used before as a query dataset. Colors
demonstrate cell type (left), and condition (right). (b) Differential GP analysis
results between IFN-f stimulated and control cells. The x-axis shows the ranking
of GPs; the y-axis denotes the significance (absolute log-Bayes factor) of each

GP. (c) Scatter plot of the scores of the top two most significant expiMap GPs in
(b). Each dot shows the latent score of each cell. (d) Visualization of the scores
for various GPs, delineating cell types or perturbation states for B cellsand

CD14 +/16+ monocyetes. (e) Differential GP analysis results for CD14 + Monocytes
only between IFN-f3 stimulated and control CD14+ monocyte cells, for both IFN-
dataset only and reference mapping.
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Extended Data Fig. 6 | Benchmarking the reference building and assessing
subsampling effects on data integration. (a) Comparison of the reference
building performance by benchmarking across five different tissues, PBMCs
(n=161,764), heart (n =18,641), lung (n = 65,662), colon (n = 34,772), and liver

(n=113,063), and four different methods. (b) Subsampling effect on data
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integration. The overallintegration accuracy for different subsamples of PBMCs
(n=161,764)° data across different models. The x-axis denotes the proportion

of the data used for training each model; the y-axis is the overall average score
across nine integration metrics measuring both biological preservation and
batch removal, asintroduced in Fig. 3b.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Learning new GPs for query data and benchmarking
expiMap for enriching predefined GPs. (a) Comparison of the top influential
genes dominating the variance in node 1 with genes from the top GPs for

CD14 +/16+ monocytes from Fig. 2d. (b) Distribution of the number of
overlapping genes between top 50 influential genes of new unconstrained
nodes and the reference GPs for Fig. 4. Y-axis - number of shared genes between
the top 50 genes of the unconstrained new nodes indicated in the x-axis and

the reference GPs (n =276). Each point is the number of shared genes with one
reference GP. (c-e) Quantifying separations in Fig. 4. (c) Results of the differential
expiMap test between IFN-f stimulated cells and control cells and B cells and the
rest (d). (e) Results of the differential expiMap test between Myeloid cells and
therest. In (c-e) x-axis - is the rank of the GP, y-axis - is the absolute value of the
log Bayes score. (f-g) Benchmarking expiMap for enriching predefined GPs. The

expiMap model was trained on the PBMCs dataset from Kang et al. (n =13,576),
with [CYTOKINE_SIGNALING_IN_IMMUNE_S’,INTERFERON_ALPHA BETA_
SIGNALING’, 'ANTIVIRAL_MECHANISM_BY_IFN_STI’, INTERFERON_GAMMA _
SIGNALING’, IMMUNE_SYSTEM’] removed from GPs obtained from the Reactome
database and only INTERFERON_SIGNALING’ was kept for training. The x-axis
shows the number of deleted top genes in the INTERFERON_SIGNALING’
program, while the y-axis shows the percentage of those genes added to the top
30 genes in the INTERFERON_SIGNALING’ program after training. The colors
show the different values of L1sparsity for each experiment. (f) The x-axis is the
same as in (g); the y-axis demonstrates the percentage of the original interferon-
related genes among the top 30 genes in the INTERFERON_SIGNALING’ program
after training. When the y-axis value is smaller than 1.0, it means thatal-y
percentage of false-positive genes was added to the GP.
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Extended Data Fig. 8| Transcriptional activity of cellular communication cell types and conditions. The cell-cell communication pathways represented are

circuits occurring in severe COVID. Transcriptional activity of genes associated annexins (ANXAL FPR1), THBS (THBS1, CD36, CD47),1CAM (ICAM1, ICAM2, ITGAL,
with cell-cell communication pathways and interferon-gamma (/FNG) in different SPN, ITGAX, ITGAM, ITGB2), LCK, and CCL (CCL3, CCL4, CCLS).
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Extended Data Fig. 9| Comparison of integration results across different with other T2D-model cells is the weakest. (d) expiMap term scores in beta
integration methods. (a) UMAPs of integrated embeddings obtained with cells correspond to the known loss of beta cell identity, dedifferentiation,
differentintegration methods, (b) comparison of integration quality across and transdifferentiation in diabetes. Left, loss of beta cell identity (x-axis) vs
methods, (c) PAGA of integrated beta cells indicates that the connection of dedifferentiation-related (y-axis) expiMap terms; right, loss of beta cell identity
reference cells with query control cells is the strongest, the connection of (x-axis) vs transdifferentiation-related (y-axis) expiMap terms.

T2D-model query cells treated with insulin is moderate, and the connection
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Extended Data Fig.10 | Developmental dataset from mouse
endocrinogenesis. (a) UMAP plot of the latent space of expiMap for mouse
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corresponding to the Reactome GP Cell Cycle (b), Developmental Biology
(c), and regulation of Beta cell development (d). Developmental Biology
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GP analysis across cell types. (e-g) Scatter plots of different latent GP scores
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