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Abstract  21 
 22 
Recent advances in subcellular imaging transcriptomics platforms have enabled high-resolution 23 
spatial mapping of gene expression, while also introducing significant analytical challenges in 24 
accurately identifying cells and assigning transcripts. Existing methods grapple with cell 25 
segmentation, frequently leading to fragmented cells or oversized cells that capture 26 
contaminated expression. To this end, we present BIDCell, a self-supervised deep learning-27 
based framework with biologically-informed loss functions that learn relationships between 28 
spatially resolved gene expression and cell morphology. BIDCell incorporates cell-type data, 29 
including single-cell transcriptomics data from public repositories, with cell morphology 30 
information. Using a comprehensive evaluation framework consisting of metrics in five 31 
complementary categories for cell segmentation performance, we demonstrate that BIDCell 32 
outperforms other state-of-the-art methods according to many metrics across a variety of tissue 33 
types and technology platforms. Our findings underscore the potential of BIDCell to significantly 34 
enhance single-cell spatial expression analyses, including cell-cell interactions, enabling great 35 
potential in biological discovery.  36 
 37 
Introduction  38 
 39 
High-throughput spatial omics technologies are at the forefront of modern molecular biology, 40 
and promise to provide topographic context to the wealth of available transcriptomic data. 41 
Recent breakthroughs in profiling technology have revolutionised our understanding of 42 
multicellular biological systems, and the collection of Subcellular Spatial Transcriptomics (SST) 43 
technologies (e.g. 10x Genomics Xenium (Janesick et al., 2022); NanoString CosMx (He et al., 44 
2022); BGI Stereo-seq (Chen et al., 2022); and Vizgen MERSCOPE) now offer the promise to 45 
tackle biological problems that were previously inaccessible and better understand intercellular 46 
communication by preserving tissue architecture. Depending on the commercial platforms, 47 
these ultra-high resolution, spatially resolved single-cell data contain mixtures of nuclear, 48 
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cytoplasmic, and/or cell membrane signals, and create new data challenges in information 49 
extraction. More specifically, the aim is to ensure all available data can be capitalised to 50 
automatically and accurately distinguish the boundaries of individual cells, as the fundamental 51 
goal of SST technologies is to understand how single-cell transcriptomes behave in situ within a 52 
given tissue (Moen et al., 2019). 53 
 54 
Limited attempts have been made to address these data challenges and to date, three 55 
conceptual categories have emerged. The first employs morphological operations originally 56 
designed for lower-resolution imaging technologies such as microscopy. Within this category, 57 
initial nuclei segmentation is accomplished with a nuclear marker, using thresholding or 58 
pretrained models such as Cellpose (Stringer et al., 2021) and MESMER (Greenwald et al., 59 
2022). Cell boundaries are then identified using either morphological expansion by a 60 
prespecified distance (Janesick et al., 2022) or using a watershed algorithm on a mask of the 61 
cell bodies (Chen et al., 2022). Chen et al. applied a global threshold to the density of all 62 
molecules in SST data to estimate the cell body mask. The limitation of Cellpose (Stringer et al., 63 
2021) and similar approaches is that they were primarily designed for microscopy modalities 64 
and fluorescent markers, so they may not always be suitable for SST due to dissimilar visual 65 
characteristics. 66 
 67 
Secondly, an alternative approach to cell segmentation does not identify cell boundaries 68 
directly, but classifies or clusters individual transcripts into distinct measurement categories that 69 
pertain to cells. These include segmentation-free and transcript-based methods, as exemplified 70 
by Baysor (Petukhov et al., 2022), StereoCell (Li et al., 2023), pciSeq (Qian et al., 2020), 71 
Sparcle (Prabhakaran, 2022), and ClusterMap (He et al., 2021). However, a key limitation of 72 
these approaches is their assumption that expression of all RNAs within a cell body are 73 
homogeneous, and in the case of Baysor, that cell shapes (morphologies) can be well 74 
approximated with a multivariate normal prior. This can result in visually unrealistic 75 
segmentations that do not correspond well to imaging data. 76 
 77 
Thirdly, more recent approaches have begun to leverage deep learning (DL) methods. DL 78 
models such as U-Net (Ronneberger, Fischer and Brox, 2015) have provided solutions for many 79 
image analysis challenges. However, they require ground truth to be generated for training. DL-80 
based methods for SST cell segmentation include GeneSegNet (Wang et al., 2022) and SCS 81 
(Chen, Li and Bar-Joseph, 2023), though manual supervision is still required in the form of initial 82 
cell labels or based on hard-coded rules. The self-supervised learning (SSL) paradigm can 83 
provide a solution to overcome the requirement of annotations. While SSL-based methods have 84 
shown promise for other imaging modalities (Robitaille et al., 2021, 2022), direct application to 85 
SST images remains challenging. SST data are considerably different from other cellular 86 
imaging modalities and natural images (e.g., regular RGB images), as they typically contain 87 
hundreds of channels, and there is a lack of clear visual cues that indicate cell boundaries. This 88 
creates new challenges such as (i) accurately delineating cohesive masks for cells in densely-89 
packed regions, (ii) handling high sparsity within gene channels, and (iii) addressing the lack of 90 
contrast for cell instances.  91 
  92 
While these morphological and DL-based approaches have shown promise, they have not fully 93 
exploited the high-dimensional expression information contained within SST data. It has 94 
become increasingly clear that relying solely on imaging information may not be sufficient to 95 
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accurately segment cells. There is growing interest in leveraging large, well-annotated scRNA-96 
seq datasets (Han et al., 2023), as exemplified by JSTA (Littman et al., 2020), which proposed a 97 
joint cell segmentation and cell type annotation strategy. While much of the literature has 98 
emphasised the importance of accounting for biological information such as transcriptional 99 
composition, cell type, and cell morphology, the impact of incorporating such information into 100 
segmentation approaches remains to be fully understood. 101 
 102 
Here, we present a new biologically-informed deep learning-based cell segmentation (BIDCell) 103 
framework (Figure 1a), that addresses the challenges of cell body segmentation in SST images 104 
through key innovations in the framework and learning strategies. We introduce (a) new 105 
biologically-informed loss functions with multiple synergistic components and incorporate them 106 
within an SSL paradigm; and (b) explicitly incorporate prior knowledge from single-cell 107 
sequencing data to enable the estimation of different cell shapes. The combination of the novel 108 
losses and use of existing scRNA-seq data in supplement to subcellular imaging data improves 109 
performance, and BIDCell is generalisable across different SST platforms. Along with the 110 
development of our novel method, we created a comprehensive evaluation framework for cell 111 
segmentation, CellSPA, that assesses five complementary categories of criteria for identifying 112 
the optimal segmentation strategies. This framework aims to promote the adoption of new 113 
segmentation methods for novel biotechnological data.  114 
 115 
Results 116 
 117 
BIDCell: Incorporating biological insights using deep learning to improve cell shape 118 
representation. 119 
BIDCell is a self-supervised DL-based cell segmentation method that identifies each individual 120 
cell and all its pixels as a cohesive mask. BIDCell uses subcellular spatial transcriptomic maps, 121 
corresponding DAPI images, and relevant average expression profiles of cell types from single-122 
cell sequencing datasets; the latter is obtained from public repositories such as the Human Cell 123 
Atlas. Given the lack of ground truth and visual features that indicate cell boundaries in the SST 124 
images, BIDCell instead focuses on the relationships between the high-dimensional spatial 125 
gene expressions and cell morphology.  126 
 127 
To achieve this, we designed multiple loss functions that represent various criteria based on 128 
biological knowledge, that work synergistically to produce accurate segmentations and allow 129 
self-supervised learning (Figure 1a; see Methods and Supplementary Materials for a detailed 130 
description). BIDCell learns to use the locations of highly- and lowly-expressed marker genes to 131 
calibrate the segmentation to capture higher “cell expression purity”, thereby ensuring 132 
transcripts within each cell share the same profile. Furthermore, BIDCell captures local 133 
expression patterns using a data-driven, cell-type-informed morphology. We found that the 134 
eccentricity measure of nuclei could reveal diverse cell morphologies that correspond to 135 
established knowledge, such as elongated morphologies for fibroblasts (Supplementary Figure 136 
1). By capturing a diverse set of cell shapes and leveraging marker information from previous 137 
single-cell experiments (Table 1), BIDCell generates superior segmentations (Figure 1b and 138 
Supplementary Figure 2), and overcomes the limitations of many existing methods (Table 2) 139 
that rely primarily on SST image intensity values for cell segmentation. 140 
 141 
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We further ensure the integrity of cell segmentations by proposing three other cooperative loss 142 
functions. Appropriate cell sizes are supported by capturing expression patterns local to nuclei 143 
using guidance from cell-type informed morphologies (cell-calling), while ensuring the 144 
cohesiveness of cell instances (oversegmentation) and enhancing segmentation in densely-145 
populated regions (overlap loss). BIDCell also leverages expression patterns within nuclei to 146 
guide the identification of cell body pixels. Our investigation using Xenium-BreastCancer1 data 147 
shows that our loss functions do not need to be adjusted by weights and that the losses work 148 
collaboratively (Supplementary Figure 3). The popular UNet 3+ (Huang et al., 2020) serves as 149 
the segmentation backbone architecture in BIDCell, though this is not a requirement and it may 150 
be replaced with alternative architectures.  151 
 152 
CellSPA comprehensive evaluation framework captures diverse sets of metrics of 153 
segmentation aspects across five complementary categories. 154 
To ensure an unbiased comparison, we introduce a Cell Segmentation Performance 155 
Assessment (CellSPA) framework (Figure 2a) that captures cell segmentation metrics across 156 
five complementary categories. These categories, detailed in Figure 2a and Table 3, include (i) 157 
baseline characteristics at both the cell and gene levels; (ii) measures of segmented cell 158 
expression, where we assess the “expression purity” of our assigned segmented cells based on 159 
how well transcripts within the segmented cell share a similar expression profile; (iii) measures 160 
of baseline cell characteristics in its spatial environment, including spatial region diversity and 161 
corresponding diversity in morphology; (iv) a measure of contamination between nearest 162 
neighbours; and (v) measures of replicability. 163 
 164 
Using CellSPA, we compared the performance of BIDCell with several recently developed 165 
methods for the segmentation of SST data. These methods included classical segmentation-166 
based approaches such as simple dilation, watershed, and Voroni; and transcript-based 167 
approaches including Baysor. Additionally, we evaluated JSTA (Littman et al., 2020), which 168 
attempts to jointly determine cell (sub) types and cell segmentation based on an extension from 169 
the traditional watershed approach. In all comparisons, we limited the computational time to 170 
within 72 hours, which we deemed a practical requirement for the solutions provided by each 171 
approach (see Discussion).  172 
 173 
To ensure the minimal appropriateness of segmented cells, we examine a series of quality 174 
control (QC) statistics. As an illustrative example using Xenium-BreastCancer1 data, we 175 
segmented cells using BIDCell, generating ~100,000 number of cells, with 53.4% of transcripts 176 
assigned (Figure 2b). We first confirm that the total number of transcripts per cell and the 177 
number of genes per cell were greater in the whole cell (cell body + nuclei) compared to just the 178 
nuclei (Figure 2c and Supplementary Figure 4). 179 
 180 
Similarly, using the percentage of cells expressed for each gene between the nuclei vs. the cell 181 
body, we further evaluate the level of information presented in the nuclei and the cell body from 182 
the gene level (Figure 2d). We find that the segmented cells of some of the methods (e.g. 183 
Baysor) did not yield any additional transcript information beyond that of the nuclei, where we 184 
see a tight concordance (lying on a 45-degree line) between the segmented cell body and the 185 
cell nuclei. However, BIDCell, 10x, Cellpose and JSTA are all able to capture additional 186 
transcript information. Moving forward, we will focus on methods that provide "additional" 187 
information to the nuclei, with an emphasis on the ability to better capture cell boundaries.  188 
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 189 
Lastly, we examine the cell morphology of the segmented cells against the segmented nuclei, 190 
including cell area, elongation, compactness, sphericity, convexity, eccentricity, solidity and 191 
circularity (See Methods and Supplementary Figure 5). Through these metrics, we are able to 192 
identify the outliers of the segmented cells, such as cells with extremely large areas in JSTA, 193 
Voronoi and Watershed in the sparse areas (Supplementary Figure 6). We illustrate that as 194 
intended from our cell-mask, BIDCell has cell morphology that is highly correlated with the 195 
nuclei morphology (Figure 2e). Furthermore, we find that segmented cells from BIDCell exhibit 196 
more diverse cell morphology characteristics compared to other methods (Supplementary 197 
Figure 7).  198 
 199 
BIDCell captures improved purity of cell expression, leading to better topographic 200 
context of neighbouring cellular interaction. 201 
To determine whether various cell segmentation methods can improve spatial resolution without 202 
sacrificing detection efficiency, we first compare the correlation between cell type signatures in 203 
the Xenium and Chromium V2 platforms for Xenium-BreastCancer1 data (Figure 3a). We 204 
observed that the performance of correlation for average expression between the spatial and 205 
sequencing profile ranges between 0.72 and 0.8 across all methods. Interestingly, we observe a 206 
trade-off between the size of the cell (average total transcript per cell) and the level of 207 
correlation. Figure 3a illustrates that BIDCell achieves the best balance between high 208 
correlation with segmented nuclei and a large cell body among all methods. Similar results are 209 
shown in the average percentage of expressed genes (Figure 3b). Furthermore, Figure 3c 210 
highlights a high level of consistency in cell type proportion between the segmented cells 211 
generated by BIDCell and Chromium (cor = 0.95). Next, by examining the presence of positive 212 
and negative markers, we demonstrate that  BIDCell achieves a clear improvement in 213 
expression purity of segmented cells with a larger cell body (Figure 3d and Supplementary 214 
Figure 8), as BIDCell has a higher presence of positive markers and a lower presence of 215 
negative markers.  216 
 217 
In category III of CellSPA, we investigate the potential contamination between neighbouring 218 
cells by comparing the percentage of B cells that expressed negative markers, such as CD3D 219 
and CD3E, which are positive T cell markers but are considered negative markers in B cells. 220 
The presence of T cell marker genes in B cells suggests potential contamination during the cell 221 
segmentation process. Figure 3e and Supplementary Figure 9 indicate that BIDCell showed the 222 
smallest percentage of contamination cells, indicating its ability to reduce contamination in a 223 
densely populated region.  224 
 225 
Lastly, we investigate the spatial diversity by examining the association between the cell type 226 
composition and the various cell level characteristics of spatial local regions. Here, we expect 227 
the region with a diverse composition of cell types would have a high variety of cell sizes and 228 
morphologies. We first divide the image into several local regions and then quantify the diversity 229 
of the cell type composition of a region using entropy (Figure 3f). As shown in Figure 3g and 230 
Supplementary Figure 10, we find that BIDCell achieves a higher correlation of the coefficient of 231 
variation of the cell-level characteristics (the total transcripts, the total genes expressed and cell 232 
area) with the cell type entropy compared to the other methods. Similarly, we observe that the 233 
variety of cell elongation in BIDCell is highly correlated with the proportion of fibroblasts, one of 234 
the dominant cell types in the data (Figure 3h). 235 
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 236 
Together, with a comprehensive benchmarking using CellSPA, we demonstrate that the BIDCell 237 
segmentation achieves a better balance between high cell expression purity and a large cell 238 
body compared to the other state-of-the-art methods, which capture a more diverse range of cell 239 
morphologies and provide a more accurate representation of the topographic context of 240 
neighbouring cellular interactions. 241 
 242 
BIDCell is replicable and generalisable to multiple SST platforms.  243 
As an additional sensitivity analysis to the ablation study, we evaluated the replicability of 244 
BIDCell. We compared the results between the two replicated studies (Xenium-BreastCancer1 245 
and Xenium-BreastCancer2). Figure 3i displays images of the two replicates, with 246 
corresponding cell types highlighted in Figure 3j (left panel). The results are very similar, 247 
demonstrating that BIDCell is replicable. The tSNE plot in Figure 3j (right panel) shows a well-248 
mixed population of cells between the two replicated studies. The high correlation of the cell 249 
morphology metrics of segmented cells from BIDCell between the two replicates further confirm 250 
the replicability of our method (Supplementary Figure 11). 251 
 252 
We demonstrate the generalisability of BIDCell to other SST platforms and tissue types by 253 
applying BIDCell to data generated by CosMx from NanoString (Figure 4a-c, Supplementary 254 
Figure 12) and MERSCOPE data from Vizgen (Figure 4d-f, Figure 4a-c, Supplementary Figure 255 
13). In particular, we observed that BIDCell had a lower percentage of B cells expressing 256 
negative markers (markers indicating contamination) for the CosMx-Lung data (Figure 4c), 257 
suggesting more accurate cell segmentation and better estimation of neighbouring cellular 258 
interaction. Additionally, in MERSCOPE-Melanoma data, regions with more diverse cell types 259 
corresponded to more diverse cell type characteristics (Figure 4f). 260 
 261 
Accurate cell segmentation can reveal region-specific subtypes among neuronal cells. 262 
To further assess the performance of BIDCell in accurately segmenting closely packed cells, we 263 
performed an evaluation on another case study from Xenium-MouseBrain data. The 264 
hippocampus is critical for learning and memory (Bird and Burgess, 2008), and the tripartite 265 
synapses formed between the dentate gyrus and cornu ammonis (CA) have been well studied 266 
(Tzakis and Holahan, 2019). Because of the density of pyramidal neurons within the CA region, 267 
we asked whether or not BIDCell could accurately distinguish CA1, 2, and 3 from one another. 268 
Figures 5a-b show the spatial image and highlight the neuronal cell type and neuronal regions 269 
using scClassify trained existing sequencing data (Table 1). Figure 5c compares the 270 
segmentation pattern obtained using 10x vs. BIDCell. Note that BIDCell generates a more finely 271 
textured and tighter pattern of cells than 10x, and the output more closely resembles the pattern 272 
seen in Figure 5a.The superior performance of BIDCell is further confirmed by the evaluation 273 
metrics. With similar size of the segmented cells with 10x (Supplementary Figure 14),  BIDCell 274 
achieves a higher similarity with scRNA-seq and expression purity score (Figure 5d-e, 275 
Supplementary Figure 15). Moreover, BIDCell can identify markers that are enriched in the 276 
dentate gyrus (Prox1; (Lavado and Oliver, 2007)) or CA1-3 (Neurod6; (Schwab et al., 1998)) 277 
(Figure 5d). Furthermore, it is able to subdivide the CA region despite the close proximity of the 278 
pyramidal neurons to one another. Figure 5f shows the expression patterns of Wfs1 in CA1 279 
(Dong et al., 2009), Necab2 in CA2 (Zimmermann et al., 2013) and Slit2 in CA3 (Blockus et al., 280 
2021), consistent with prior studies. Interestingly, we found a new gene (Cpne8) that is enriched 281 
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in CA1, consistent with in situ data from the Allen Brain Atlas and illustrates BIDCell’s capacity 282 
for biological discovery. 283 
 284 
Discussion 285 
 286 
Here we presented BIDCell, a novel approach for cell segmentation in subcellular spatially 287 
resolved transcriptomics data. BIDCell leverages DL with its biologically-informed loss functions 288 
that allow the model to self-learn and capture both cell type and cell shape information, while 289 
optimising for cell expression purity. Its default components (such as the backbone architecture 290 
and use of cell type profiles) may be exchanged for other architectures and Atlas datasets. We 291 
have demonstrated the effectiveness of BIDCell by comparing it to state-of-the-art methods and 292 
have shown that BIDCell provides better cell body delineation. Moreover, our flexible approach 293 
can be applied to different technology platforms, and different gene panels. Our study highlights 294 
the potential of BIDCell for accurate cell segmentation and its potential impact on the field of 295 
subcellular spatially resolved transcriptomics.  296 
 297 
The typical approach to leverage advancements in DL relies on ground truth to guide models to 298 
learn relationships between inputs and outputs. However, manual annotation of individual pixels 299 
is unattainable for SST that contain hundreds of molecular units per pixel, given the time and 300 
effort of manual labour. Further, we have shown (e.g., with Cellpose) that models pretrained on 301 
other imaging modalities do not transfer well to SST images. BIDCell leverages the recent self-302 
supervised learning paradigm to harness DL for SST without ground truth. BIDCell innovates 303 
through its integrated loss functions that inject biological knowledge of cell morphology and 304 
expressions, to allow the model to self-learn from the given spatial transcriptomic and DAPI 305 
images, and produce superior visual and quantitative performance compared to previous 306 
methods. Our loss functions also allow BIDCell to be broadly applicable across diverse tissue 307 
types and various SST platforms. Therefore, BIDCell can facilitate faster research outputs and 308 
new discoveries.  309 
 310 
Establishing an easy-to-use evaluation system is crucial for promoting reproducible science and 311 
transparency, as well as facilitating further methods development. In CellSPA, we have 312 
extended beyond a single accuracy metric and introduced metrics that represent important 313 
downstream properties or biological characteristics recognised by scientists. This concept of 314 
evaluation by human-recognised criteria is also discussed by the computer vision community as 315 
"empirical evaluation" (Taha and Hanbury, 2015). Another aspect that is often overlooked is 316 
related to the practical establishment of benchmarking studies. As benchmarking studies gain 317 
recognition, they can be time-consuming due to challenges with software versioning and 318 
different operating systems, and different methods may require varying degrees of ease of use 319 
and time to adjust the code for comparison. The CellSPA tool is available as a R package with 320 
all necessary dependencies, simplifying its installation and usage on local systems, and 321 
promoting reproducible science and transparency.  Rather than generating a comprehensive 322 
comparison of existing methods, which can quickly become outdated, evaluation metrics are 323 
generated to allow new methods to be compared to a database of existing methods, without the 324 
need to re-implement a large collection of methods. This approach reduces redundancy, allows 325 
for direct comparison with state-of-the-art methods, and saves time and effort. Examples of this 326 
approach include those for cell deconvolution (Li et al., 2022) and simulation methods (Cao, 327 
Yang and Yang, 2021). 328 
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 329 
A comprehensive evaluation framework is vital when comparing diverse segmentation 330 
approaches in the absence of a ground truth. It is important to recognise that different 331 
segmentation approaches may purposefully have different priorities and outcomes. As a simple 332 
example, a segmentation approach such as a seeded Voronoi tessellation will identify larger 333 
cells than a fixed expansion around the nuclei. Thus the former will typically identify more 334 
molecules and produce a denser map of which cells are touching. In contrast, the latter may 335 
produce more homogenous estimates of the molecular composition of cells with a reduced 336 
likelihood of quantifying molecules from neighbouring cells. Further complicating comparisons of 337 
hard-coded segmentation approaches is that comparisons of cell body segmentation is 338 
confounded by differing nuclei segmentation approaches with an arbitrary oversegmentation of 339 
nuclei typically resulting in smaller and more homogenous cell bodies. This emphasises that the 340 
use of a variety of metrics to quantify segmentation performance enables a systematic 341 
assessment and revelation of the desirable properties of each approach. 342 
 343 
Cells have a three-dimensional structure, thus analyses in a two-dimensional perspective may 344 
achieve limited representation. BIDCell can be further adapted (e.g., via its cell-calling loss) to 345 
incorporate cell membrane markers to enhance segmentation. In MERSCOPE data that display 346 
cell membrane markers, there is a percentage (~25%) of cells that lack nuclei in their 347 
segmentation, likely due to being elongated melanocytes or fibroblasts in a section without a 348 
nucleus. While platforms like MERSCOPE can utilise cell membrane markers as cell masks to 349 
perform cell segmentation, it is necessary to conduct further research to understand whether a 350 
cell's slicing affects the measurement of expression in tissues. Similarly, in the nervous system, 351 
a future challenge will be to accurately identify and segment dendritic and axon morphologies.  352 
Like melanocytes and fibroblasts, the varied and elongated nature of these cell morphologies 353 
will make it challenging to accurately identify cell boundaries in the absence of nearby nuclei.  354 
Because of these difficulties, most approaches may instead generate similar results between 355 
the segmentation of the whole cell and the corresponding segmentation of the cell nuclei. 356 
 357 
In conclusion, the development of subcellular spatial transcriptomics technologies is 358 
revolutionising molecular biology. We have introduced a self-supervised deep learning approach 359 
that does not require ground truth supervision and incorporates prior biological knowledge by 360 
leveraging the myriad of single-cell datasets in Atlas databases. We illustrate that our new 361 
BIDCell method outperforms the current state-of-the-art cell segmentation methods, and we are 362 
able to uncover region-specific cell-cell interactions in the brain with explicit highlighting of cell 363 
bodies and boundaries. Furthermore, recognising the importance of evaluation, we developed 364 
CellSPA, a Cell Segmentation Performance Assessment framework, that covers a wide variety 365 
of metrics across five complementary categories of cell segmentation characteristics. 366 
 367 
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 481 
Figures 482 
 483 
 484 

 485 
 486 
Figure 1. BIDCell framework. (a) Schematic illustration of the BIDCell framework and the loss 487 
functions used for training. (b) Comparative illustration of the predictions from BIDCell and other 488 
cell segmentation methods. BIDCell captures cell morphologies with better correspondence to 489 
the input images, with a more diverse set of cell shapes that include elongated types. The H&E 490 
images are provided for illustration purposes only and were not used as an input for any of the 491 
methods shown. 492 
 493 
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 494 
 495 
Figure 2. CellSPA performance evaluation framework. (a) Schematic showing the cell 496 
segmentation evaluation framework with five complementary categories. (b) Bar plots showing 497 
overall characteristics, including the number of cells [left], and the number of transcripts [right] 498 
for each of the 11 methods. (c) Boxplots of cell-level quality metrics with total number of 499 
transcripts [left] and total number of genes [right]. (d) Gene-level quality metric represented by a 500 
scatter plot of the percentage of cells expressed for each gene in the segmented cells (y-axis) 501 
vs. the nuclei (x-axis). (e) Cell morphology metrics represented by the elongation values 502 
between the segmented cells (y-axis) and nuclei (x-axis), where each dot represents the 503 
average elongation for each cell type. 504 
 505 
 506 
 507 
 508 
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 509 
 510 
Figure 3. CellSPA graphical representation of comparison study using Xenium-511 
BreastCancer. (a) Correlation heatmap of average expression between segmented cells from 512 
BIDCell (y-axis) and expression from Chromium data (x-axis) [left]. Scatter plot between 513 
correlation with Chromium expression (y-axis) and average total number of transcripts per cell 514 
(x-axis) based on average expression [right]. Each dot represents a different method. (b) 515 
Scatter plot between correlation with Chromium expression (y-axis) and average total number of 516 
transcripts per cell (x-axis), where each dot represents a different method. (c) Scatter plot 517 
between BIDCell (y-axis) and expression from Chromium data (x-axis) based on the cell type 518 
proportion extracted from each of the methods. (d) Scatter plot showing the expression between 519 
the F1 score for positive markers in BIDCell (y-axis) and in 10x segmentation (x-axis) [left], and 520 
scatter plot showing the purity F1 score against the average total transcripts per cell [right]. 521 
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Each dot represents a method. (e) Line plots showing the percentage of B cells expressing the 522 
unwanted T cell marker CD4, CD8A, and CD8B against its distance from the nearest T cell, 523 
where the B cells are grouped by distance ranges. A lower percentage is better, and each line 524 
represents a different method. (f-h) Spatial characteristics diversity. (f) indicates the local spatial 525 
regions being divided in the images where the left panel indicates the cell type proportions of 526 
each local region and the right panel indicates the cell type entropy of the local region. (g) 527 
Scatter plots showing the association between the cell type entropy and the coefficient of 528 
variation of the total transcripts of three methods: 10x, BIDCell, and Watershed, where each dot 529 
represents each local region shown in (f). (h) Scatter plots showing the association between the 530 
coefficient of variation of elongation and proportion of fibroblasts in the data. (i) Spatial imaging 531 
of two replicates in Xenium-BreastCancer, where each dot represents the segmented cells 532 
coloured by the annotated cell type. (j) UMAP plots of the two replicates, coloured by cell type 533 
[left] and replicate [right]. 534 
  535 
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 536 
Figure 4. Generalisability of BIDCell. (a) CosMx-Lung image with UMAP plot highlighting 537 
different cell types. (b) Comparative illustration of the predictions from BIDCell and NanoString. 538 
(c) Line plots showing the percentage of B cells expressing the unwanted T cell marker CD4, 539 
CD8A, and CD8B against its distance from the nearest T cell, where the B cells are grouped by 540 
the distance ranges. A lower percentage is better, and each line represents a different method 541 
with BIDCell (red), NanoString (orange), and Cellpose nuclei (grey). (d) MERSCOPE-Melanoma 542 
image with UMAP highlighting different cell types. (e) Comparative illustration of the predictions 543 
from BIDCell and Vizgen. (f) Scatter plot showing the coefficient of variation of the total number 544 
of genes against cell type entropy in a given region for cells segmented from BIDCell [left], 545 
nuclei cells [middle], and cells segmented from Vizgen [right]. 546 
 547 
 548 
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 549 
Figure 5. Assessment using Xenium-MouseBrain data. (a) Spatial image highlighting the cell 550 
type and neuronal regions using scClassify trained on SMART-seq2 data. (b) Comparative 551 
illustration of the predictions from BIDCell and other methods. (c) Hippocampus cell 552 
segmentation region by 10x [top] and BIDCell [bottom]. (d) Scatter plot showing the Pearson 553 
correlation with SMART-seq2 data between 10x and BIDCell for each cell type, where each dot 554 
is coloured by the cell type with the same colours as the legend in (c). (e) Scatter plot showing 555 
the positive purity score between 10x and BIDCell for each cell type, where each dot is coloured 556 
by the cell type. (f) The top panel indicates the neurons in the hippocampus region (CA1-CA3, 557 
DG) and the bottom panels are 6 x 2 panels showing the five distinct spatial regions with 558 
different neuronal markers in the hippocampal regions. From top to bottom, Prox1 was 559 
expressed only in DG, Neurod6 was expressed in all CA regions, Slit2 was expressed in CA3, 560 
Necab2 was expressed in CA2, and Wfs1 and Cpne8 were expressed in CA1. 561 
 562 
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Materials and Methods1

Datasets and preprocessing2

We used publicly available data resources from three different SST commercial platforms3

(10× Genomics Xenium, NanoString CosMx, and Vizgen MERSCOPE), and sequencing4

data from Human Cell Atlas.5

Subcellular spatial transcriptomics data6

For all datasets and for each gene, detected transcripts were converted into a 2D image where7

the value of each pixel represents the number of detected transcripts at its location. The8

images were combined channel-wise, resulting in an image volume X ∈ RH×W×ngenes , where9

H is the height of the sample, W is the width of the sample, and ngenes is the number of10

genes in the panel.11

12

(i) Xenium-BreastCancer1 and Xenium-BreastCancer213

The Breast Cancer datasets included in this study were downloaded from https://www.1014

xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast (accessed 915

Feb 2023), and included two replicates. Low-quality transcripts for 10× Genomics Xenium16

data with a phred-scaled quality value score below 20 were removed, as suggested by the17

vendor (1). Negative control transcripts, blanks, and antisense transcripts were also filtered18

out. This resulted in 313 unique genes with the overall pixel dimension of the images be-19

ing 5, 475× 7, 524× 313 for Xenium breast cancer replicate 1 (Xenium-BreastCancer1) and20

5, 474× 7, 524× 313 for Xenium breast cancer replicate 2 (Xenium-BreastCancer2).21

22

(ii) Xenium-MouseBrain23

The Mouse Brain data included in this study was downloaded from https://www.10xgen24

omics.com/resources/datasets/fresh-frozen-mouse-brain-replicates-1-standard25

(accessed 14 Feb 2023) and were processed following the steps in (i). There were 248 unique26

genes, and the resulting size of the image was 7, 038× 10, 277× 248 pixels.27

28

(iii) CosMx-Lung29

The CosMx NSCLC Lung dataset included in this study was downloaded from https://30

nanostring.com/products/cosmx-spatial-molecular-imager/nsclc-ffpe-dataset/31

(accessed 24 Mar 2023). We used data for Lung5-1, which comprised 30 fields of view.32

Transcripts containing “NegPrb” were removed, resulting in 960 unique genes and an overall33

image dimension of 7, 878× 9, 850× 960 pixels.34

35

(iv) MERSCOPE-Melanoma36

The MERSCOPE melanoma data included in this study were downloaded from https:37

//info.vizgen.com/merscope-ffpe-solution (for patient 2, accessed 26 Mar 2023).38

Transcripts with “Blank-” were filtered out, resulting in 500 unique genes and an image with39

1
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6, 841× 7, 849× 500 pixels.40

41

Nuclei segmentation42

DAPI images were directly downloaded from the websites of their respective datasets. In43

cases where the maximum intensity projection (MIP) DAPI image was not provided, we44

computed the MIP DAPI by finding the maximum intensity value for each (x,y) location45

for each stack of DAPI. DAPI images were resized to align with the lateral resolutions of46

spatial transciptomic maps using bilinear interpolation. Nuclei segmentation was performed47

on the MIP DAPI using the pretrained Cellpose model with automatic estimation of nuclei48

diameter (2). We used the “cyto” model as we found the “nuclei” model to undersegment or49

omit a considerable number (e.g., 21k for Xenium-BreastCancer1) of nuclei given the same50

MIP DAPI image, which is consistent with another study (3). Other nuclei segmentation51

methods may be used with BIDCell as our framework is not limited to Cellpose.52

53

Transcriptomics sequencing data54

We used five publicly available single-cell RNA-seq data collections as references to guide55

the cell segmentation in BIDCell and evaluation with CellSPA. For the reference data with56

multiple datasets, we constructed cell-type specific profiles by aggregating the gene expres-57

sion by cell type per dataset.58

59

(i) TISCH-BRCA60

The reference for Xenium-BreastCancer used in BIDCell was based on 10 single-cell61

breast cancer datasets downloaded from The Tumor Immune Single Cell Hub 2 (TISCH2)62

(4) from http://tisch.comp-genomics.org/gallery/?cancer=BRCA&species=Human,63

which contains the gene by cell expressions and cell annotations of the data. We used the64

“celltype major lineage” as the cell type labels. We combined the “CD4Tconv” and “Treg”65

as “CD4Tconv/Treg” and “CD8T” and “CD8Tex” as “CD8T/CD8Tex”, which results in 1766

cell types in total.67

68

(ii) Chromium-BreastCancer69

To evaluate the performance of Xenium-BreastCancer, we downloaded the Chromium70

scFFPE-seq data from the same experiment from https://www.10xgenomics.com/produc71

ts/xenium-in-situ/preview-dataset-human-breast (accessed 22 March 2023), which72

contains 30,365 cells and 18,082 expressed genes. We then performed Louvain clustering on73

the k-nearest neighbour graph with k = 20, based on the top 50 principal components (PCs)74

to obtain 22 clusters. We then annotated each cluster based on the markers and annotation75

provided in the original publication (1).76

77

(iii) Allen Brain Map78

2
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The reference for Xenium-MouseBrain data was based on Mouse Whole Cortex and Hip-79

pocampus SMART-seq data downloaded from https://portal.brain-map.org/atlases80

-and-data/rnaseq/mouse-whole-cortex-and-hippocampus-smart-seq, which contains81

both gene by cell expressions and cell annotations of the data. We used the cluster anno-82

tation from “cell type alias label” as the cell type labels and combined some of the labels83

with a small number of cells. For example, we combined all “Sst” subtypes as “Sst” and all84

“Vip” subtypes as “Vip”, which results in 59 cell types in total.85

86

(iv) HLCA and TISCH-NSCLC87

The reference for CosMx-Lung for both BIDCell and CellSPA was based on Human Lung88

Cell Atlas (HLCA) (5), provided in the “HLCA v1.h5ad” file from https://beta.fastgen89

omics.org/p/hlca, including both gene expressions and cell type annotations of the data.90

We used “ann finest level” as cell type labels, which contained 50 cell types in total.91

92

As HLCA only contains single-cell datasets from non-cancer lung tissue, we comple-93

mented the reference data with malignant cells provided in TISCH2, where we downloaded94

6 single-cell NSCLC datasets with tumour samples from http://tisch.comp-genomics.95

org/gallery/?cancer=NSCLC&species=Human. We only included the cells labelled as96

malignant cells in the reference.97

98

(v) TISCH-SKCM99

The reference for MERSCOPE-Melanoma for both BIDCell and CellSPA was based on100

10 single-cell melanoma datasets downloaded from TISCH2 from http://tisch.comp-g101

enomics.org/gallery/?cancer=SKCM&species=Human, which contains the gene by cell102

expressions and cell annotations of the data. We used the “celltype major lineage” as the cell103

type labels. We combined the “CD4Tconv” and “Treg” as “CD4Tconv/Treg” and “CD8T”104

and “CD8Tex” as “CD8T/CD8Tex”, which resulted in 15 cell types in total.105

106

Biologically-Informed Deep Cell Segmentation (BIDCell) Overview107

BIDCell is a self-supervised deep learning framework that computes biologically-informed108

loss functions to optimise learnable parameters for the prediction of cell segmentation masks109

for spatial transcriptomic data. BIDCell uses three types of data: (i) spatial transcriptomic110

maps of genes, (ii) corresponding DAPI image, and (iii) average gene expression profiles of111

cell types from a reference dataset, such as the Human Cell Atlas. A major innovation in112

developing BIDCell is the use of biologically-informed prior knowledge via the self-supervised113

learning paradigm to enable DL models to learn complex structures in SST data, to derive114

cell segmentations that are visually more realistic and capture better expression profiles.115

The BIDCell framework has the following four key characteristics:116

1. BIDCell predicts diverse cell shapes for datasets containing various cell types to better117

capture cell expressions (see Elongated and non-elongated shapes).118

3
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2. BIDCell uses positive and negative markers from sequencing data to enhance the guid-119

ance for learning relationships between spatial gene expressions and cell morphology120

in the form of cell segmentations (see Positive and negative cell-type markers).121

3. BIDCell is parameterised by a deep learning architecture that learns to segment cells122

from spatial transcriptomic images (see Deep learning-based segmentation).123

4. BIDCell uses biologically-informed, self-supervised loss functions to train the deep124

learning architecture without the need for manual annotations and better capture cell125

expressions (see BIDCell training and loss functions).126

Elongated and non-elongated shapes127

BIDCell is capable of generating cell segmentations that exhibit different morphologies128

for different cell types, rather than assume a generally circular profile for all cell types. In129

particular, BIDCell can distinguish between cell types that typically appear more elongated,130

such as fibroblasts and smooth muscle cells, and those that are typically more rounded or131

circular, such as B cells. Elongated cell types can be directly specified for each tissue sample132

as desired, based on existing biological knowledge.133

134

We used the expression within the nuclei (see Nuclei segmentation) of cells to perform135

an initial classification of elongated and non-elongated cell types. Transcripts were mapped136

to nuclei using nuclei segmentations, and the Spearman correlation was computed between137

nuclei expression profiles and reference cell types of the Human Cell Atlas. Nuclei were clas-138

sified as the cell type with which it was most highly correlated to. This initial classification139

coupled with the eccentricity of the nuclei were used to inform the cell-calling loss function140

(described in Cell-calling loss) to produce segmentation morphologies with more variation141

that are more appropriate for different cell types. We considered epithelial cells, fibroblasts,142

myofibroblasts, and smooth muscle cells to be elongated for samples of breast cancer and143

melanoma. Endothelial cells, fibroblasts, myofibroblasts, fibromyocytes, and pericytes were144

deemed elongated for NSCLC. We considered all cell types in the mouse brain sample to be145

elongated.146

147

Positive and negative cell-type markers148

BIDCell learns relationships between the spatial distribution of gene expressions and149

cell morphology in the form of cell segmentations. This relationship can be enhanced by150

incorporating biological knowledge in the form of cell-type markers, specially, the genes151

that are typically more expressed (positive markers) and less expressed (negative markers)152

in different cell types, which allows BIDCell to predict segmentations that lead to more153

accurate cell expression profiles. Cell-type marker knowledge is drawn from the Human Cell154

Atlas, which allows BIDCell to be applied without requiring a matched single-cell reference155

for the same sample of interest. Markers were incorporated into BIDCell through our positive156

and negative marker losses (described in Positive and negative marker losses).157

4

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2023. ; https://doi.org/10.1101/2023.06.13.544733doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.13.544733
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep learning-based segmentation158

BIDCell is parameterised by a set of learnable parameters θ of a deep learning segmentation159

model. We used the popular UNet 3+ (6) as the backbone of our framework to perform160

cell segmentation by predicting the probability of cell instances at each pixel. This archi-161

tecture may be swapped out for other segmentation architectures. UNet 3+ was originally162

proposed for organ segmentation in computed tomography (CT) images. It was built on163

the original U-Net (7) and incorporated full-scale skip connections that combined low-level164

details with high-level features across different scales (resolutions). UNet 3+ comprised an165

encoding branch and decoding branch with five levels of feature scales. We did not adopt166

the deep supervision component proposed by UNet 3+, and instead only computed training167

losses at the lateral resolution of the original input.168

169

Input170

The input to the UNet 3+ model was a cropped multichannel spatial transcriptomic image171

x ∈ Rh×w×ngenes , where ngenes represents the channel axis corresponding to the total number172

of genes in the dataset, h is the height of the input patch, and w is the width of the input173

patch. Prior to being fed into the first convolutional layer, the input was reshaped to [ncells,174

ngenes, h, w ], effectively placing ncells in the batch size dimension. In this way, all the cells175

in a patch were processed simultaneously, and the model could flexibly support an arbitrary176

number of cells without requiring extra padding or preprocessing. ncells was determined by177

the corresponding patch of nuclei to ensure consistency with predicted cell instances. Input178

volumes that were empty of nuclei were disregarded during training and yielded no cells179

during prediction.180

181

Output and segmentation prediction182

The softmax function was applied to the output of UNet 3+ to yield probabilities of fore-183

ground and background pixels for each cell instance. This produced multiple probabilities184

for background pixels (i.e., ncells probabilities per pixel for a patch containing ncells), due to185

the placement of cell instances in the batch size dimension. These probabilities were aggre-186

gated by averaging across all the background predictions per pixel. The argmax function187

was applied pixel-wise to the foreground probabilities for all cells and averaged background188

probabilities. This produced a segmentation map corresponding to the object (cell instance189

or background) with the highest probability at each pixel.190

191

Morphological postprocessing192

The initial segmentation output by the deep learning model was further refined to ensure193

pixel connectivity within each cell (i.e., all the sections of the cell were connected). The194

process involved morphological image processing techniques to each cell, including dilation,195

erosion, hole-filling, and removal of isolated islands, while ensuring that the nucleus was196

captured. First, dilation followed by erosion were applied using a 5× 5 circular kernel with197

two iterations each. Hole-filling was then carried out on the cell section with the largest198

overlap with the nucleus. Any remaining pixels initially predicted for the cell that were still199
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not connected to the main cell section were discarded.200

201

Mapping transcripts to predicted cells202

The detected transcripts were mapped to cells using the final predicted segmentations. The203

segmentation map was resized back to the original pixel resolution using nearest neighbour204

interpolation. Transcripts located in the mask of a cell were added to the expression profile205

of the cell. This produced a gene-cell matrix ncells × ngenes, which was used for performance206

evaluation and downstream analysis.207

208

BIDCell training and loss functions209

Our approach for learning the parameters θ of the segmentation model relies on minimising210

a total of 6 loss functions that we propose with our framework. Some of the losses effec-211

tively increase the number of pixels predicted for a cell, while others reduce the size of its212

segmentation. Taken together, the losses ensure that the segmentation model learns rela-213

tionships between spatially-localised, high-dimensional gene expression information and the214

morphology of individual cells215

(A) Nuclei encapsulation loss216

The segmentation of a cell must contain all the pixels of the cell’s nucleus. Additionally,217

the expressed genes in nuclei can guide the model to learn which genes should be pre-218

dicted within cells. Hence, we included a loss function Lne that incentivises the model219

to learn to correctly predict nuclei pixels:220

Lne(xnuc, ŷ) = −xnuclog(ŷ)− (1− xnuc)log(1− ŷ), (1)

where xnuc is the binary nucleus segmentation mask, and ŷ is the predicted segmenta-221

tion for all cells of the corresponding training patch.222

(B) Cell-calling loss223

The aim of the cell-calling loss was to increase the number of transcripts assigned224

to cells. We also designed the cell-calling loss to allow BIDCell to capture cell-type225

specific morphologies. Unique expansion masks ec ∈ {0, 1}h×w were computed for each226

cell based on the shape of its nucleus and whether its nucleus expression profile was227

indicative of an elongated cell type. The expansion mask of a non-elongated cell was228

computed by applying a single iteration of the morphological dilation operator with a229

circular kernel of 20× 20 pixels to its binary nucleus mask.230

The expansion mask of an elongated cell was computed based on the elongation of its231

nucleus, defined as the eccentricity of an ellipse fitted to its nucleus mask:232

ecc =

√
1− b2

a2
, (2)
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where a represents the length of the major axis, and b is the length of the minor axis.233

We found that elongated cell types tended to have nuclei with higher eccentricity (Sup-234

plementary Figure 3). Hence, the eccentricity of a nucleus could serve as a proxy for235

the shape of its cell via an elongated expansion mask. We computed each cell-specific236

elongated expansion mask using an elliptical dilation kernel applied to the nucleus. The237

horizontal and vertical lengths of the elliptical kernel were computed by:238

lh = α× eccnuc × lt, (3)

lv =

{
lt − lh, if lt − lh > lvm

lvm, otherwise
(4)

where α is a scaling factor set to 0.9, eccnuc is the eccentricity of the nucleus, lt is the sum239

of lh and lv, which was set to 60 pixels, and lvm is the minimum vertical length, which240

was set to 3 pixels. These values were selected based on visual inspection (e.g., the cells241

appear reasonably sized), and were kept consistent across the different elongated cell242

types and datasets used in this study. The elliptical dilation kernel was rotated to align243

with the nucleus and applied to the nucleus mask to produce the elongated expansion244

mask of the cell.245

The expansion masks were used in our cell-calling loss function that was minimised246

during training:247

Lcc(e, ŷ) =
1

M

M∑
c

−eclog(ŷc)− (1− ec)log(1− ŷc), (5)

where ec is the expansion mask and ŷc is the predicted segmentation of cell c of M cells248

in an input patch.249

(C) Over-segmentation loss250

We introduced the over-segmentation loss to counter the cell size-increasing effects of251

the cell-calling loss to prevent the segmentations becoming too large and splitting into252

separate segments. This loss function elicited a penalty whenever the sum of cytoplasmic253

predictions exceeded the sum of nuclei predictions for a cell in a given patch:254

pnuc,c =
∑
i

∑
j

σ(q̂ijcxnuc,ij − 0.5), (6)

pcyto,c =
∑
i

∑
j

σ(q̂ijc(1− xnuc,ij)− 0.5), (7)
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Los =

{
1
M

∑M
c (pcyto,c − pnuc,c), if

∑M
c (pcyto,c − pnuc,c) > 0

0, otherwise
(8)

where for cell c at pixel (i, j), q̂ijc is the predicted foreground probability for cell c,255

xnuc,ij ∈ {0, 1} is the binary nucleus mask, and σ is the sigmoid function. Los was256

normalised by number of cells M to aid smooth training.257

(D) Overlap loss258

Cells are often densely-packed together in samples of various human tissues. This poses259

a challenge to segmentation models in predicting clear boundaries and coherent seg-260

mentations for neighbouring cells without overlap. We introduced the overlap loss to261

penalise the prediction of multiple cells occurring at each pixel:262

sov,ij = −(1− xnuc,ij) +
M∑
c

σ(q̂ijc(1− xnuc,ij)− 0.5), (9)

Lov =

{∑
i

∑
j(sov,ij)

Mhw
, if sov > 0

0, otherwise
(10)

Lov was normalised by number of cells M , and the lateral dimensions h and w of the263

input to aid smooth training.264

(E) Positive and negative marker losses265

The purposes of our positive and negative marker losses were to encourage the model to266

capture pixels that contained positive cell-type markers, and penalise the model when267

segmentations captured pixels that contained negative cell-type markers for each cell.268

The positive and negative markers for the training loss were those with expressions269

in the highest and lowest 10 percentile for each cell type of a tissue sample. In our270

experiments, we found that a higher number of positive markers tended to increase the271

size of predicted cells as the model learns to capture more markers, and vice versa. We272

found that removing positive markers that were common to at least a third of cell types273

in each tissue type was appropriate across the different datasets for training.274

The one-hot encoded lists of positive and negative markers of the cell type for cell c were275

converted into sparse maps mpos,c ∈ {0, 1}h×w and mneg,c ∈ {0, 1}h×w. At each pixel,276

0 indicated the absence of all markers, while 1 indicated the presence of any positive277

or negative marker for its respective map. mpos,c and mneg,c were then multiplied278

element-wise by the expansion mask ec to remove markers far away from the current279

cell. Each marker map was dilated by a 3×3 kernel, which was based on the assumption280

that pixels in a 3 × 3 region around each marker were most likely from the same cell.281
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We found this dilation to improve training guidance and segmentation quality, as the282

maps tended to be quite sparse.283

The marker maps were then used to compute the positive and negative marker losses:284

Lpos(mpos, ŷ) =
1

M

M∑
c

−mpos,clog(ŷc)− (1−mpos,c)log(1− ŷc), (11)

Lneg(mneg, q̂) =
1

M

M∑
c

σ(q̂cmneg,c − 0.5) (12)

Total loss285

The model was trained by minimising the sum of all the loss functions over N training286

patches:287

min
θ

N∑
n

[λneLne + λccLcc + λosLos + λovLov + λposLpos + λnegLneg + γ||θ||22], (13)

where each λ represents a hyperparameter that scaled its respective L, and γ is the weight288

(set to 0.0001) for L2 regularisation ||θ||22. λ was set to 1.0 (except for the ablation study);289

this ensured our losses were not fine-tuned to any particular datasets.290

Practical implementation291

Details292

To address computational efficiency concerns related to memory usage, we partitioned293

the spatial transcriptomic maps into patches of 48 × 48 × ngenes for input into UNet 3+.294

BIDCell has been verified for datasets containing up to 960 genes on a 12GB GPU. It is295

also important to note that the number of genes primarily affects the weights of the first296

convolutional layer, thus having a minor impact on memory usage.297

The patches were divided with a 24-pixel lateral overlap. This was done to minimise298

abrupt border cutoffs in the patch-based predictions, such as sharp or cut-off cell bound-299

aries. Only non-overlapping patches were selected during training, while all patches were300

used during inference. One image patch was input into the model at one time, though batch301

size was effectively ncells due to reshaping (see Deep learning-based segmentation-Input). Nei-302

ther normalisation nor standardisation were applied to the input image patches, such that303

the pixels depicted raw detections of transcripts.304

305

The model was trained end-to-end from scratch for 4,000 iterations (i.e., using 4,000306

training patches). This amounted to a maximum of 22% of the entire image, thereby leaving307

the rest of the image unseen by the model during inference. Weights of the convolutional308

layers were initialised using He et al.’s method (8). We employed standard on-the-fly image309

data augmentation by randomly applying a flip (horizontal or vertical), rotation (of 90, 180,310
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or 270 degrees) in the (x,y) plane. The order of training samples was randomised prior to311

training. We employed the Adam optimiser (9) to minimise the sum of all losses at a fixed312

learning rate of 0.00001, with a first moment estimate of 0.9 and second moment estimate313

of 0.999.314

315

Time and system considerations316

We ran BIDCell on a Linux system with a 12GB NVIDIA GTX Titan V GPU, In-317

tel(R) Core(TM) i9-9900K CPU @ 3.60GHz with 16 threads, and 64GB RAM. BIDCell was318

implemented in Python using PyTorch. For Xenium-BreastCancer1, which contained 109k319

detected nuclei, 41M pixels (x,y), and 313 genes, training was completed after approximately320

10 minutes for 4,000 steps. Inference time was about 50 minutes for the complete image.321

Morphological postprocessing required approximately 30 minutes to generate the final seg-322

mentation.323

324

Ablation study325

We performed an ablation study to determine the contributions from each loss function326

and effects of different hyperparameter values. We used Xenium-BreastCancer1 for these327

experiments. We evaluated BIDCell without each of the different loss functions by indi-328

vidually setting their corresponding weights λ to zero. Furthermore, we evaluated different329

parameterisations of the cell-calling loss. We experimented with different diameters for the330

dilation kernel for non-elongated cells, including 10, 20, and 30 pixels, and different total331

lengths of the minor and major axes lt of the dilation kernel for elongated cells, including 50,332

60, and 70 pixels. We also ran BIDCell without shape-specific expansions, thereby assuming333

a non-elongated shape for all cells.334

335

Performance evaluation336

We compared our BIDCell framework to vendor-provided cell segmentations, and methods337

designed to identify cell bodies via cell segmentation, on Xenium-BreastCancer1. Table 1338

provides a summary of all methods compared from adapting classical approaches including339

Voronoi expansion, nuclei dilation, and the watershed algorithm, to recently proposed ap-340

proaches for SST images including Baysor, JSTA, and Cellpose.341

342

Settings used for other methods343

We used publicly available code for Baysor, JSTA, and Cellpose with default parameters un-344

less stated otherwise. All comparison methods that required nuclei information used identical345

nuclei as BIDCell, which were detected using Cellpose (v2.1.1) (see Nuclei segmentation).346

• Baysor - Version 0.5.2 was applied either without a prior, or with a prior nuclei seg-347

mentation with default prior segmentation confidence of 0.2. For both instances, we348

followed recommended settings (10), including 15 for the minimum number of tran-349

scripts expected per cell, and not setting a scale value, since the sample contained cells350
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of varying sizes. We found the scale parameter to have a considerable effect on segmen-351

tation predictions, and often resulted in cells with unrealistically uniform appearances352

if explicitly set.353

• JSTA - default parameters were used. We encountered high CPU loading and issues354

with two regions of Xenium-BreastCancer1, which yielded empty predictions for those355

regions despite multiple attempts and efforts to reduce input size.356

• Cellpose - Version 2.1.1 was applied to the channel-wise concatenated image comprising357

DAPI as the “nuclei” channel, and sum of spatial transcriptomic maps across all genes358

as the “cells” channel, using the pre-trained “cyto” model with automatic estimation359

of cell diameter.360

• Voronoi - Classical Voronoi expansion was seeded on nuclei centroids and applied using361

the SciPy library (v1.9.3).362

• Watershed - The watershed algorithm was performed on the sum of transcriptomic363

maps across all genes. Seeded watershed used nuclei centroids and was applied using364

OpenCV (v4.6.0).365

• Cellpose nuclei dilation - we applied dilation to nuclei masks as a comparison segmen-366

tation method. Each nucleus was enlarged by about 1 micron in radius by applying367

morphological dilation using a 3×3 circular kernel for one iteration. Overlaps between368

adjacent cell expansions were permitted.369

Evaluation metrics and settings370

We introduce the CellSPA framework, that captures evaluation metrics across five comple-371

mentary categories. A summary of this information is provided in Table 3.372

373

[A] Baseline metrics374

375

Overall characteristics376

• Number of cells377

• Proportion of transcripts assigned378

Cell-level QC metrics379

• Proportion of cells expressed per gene380

• Number of transcripts per cell381

• Number of genes expressed per cell382

• Cell area383
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• Density = Number of total transcripts
Cell area

384

Cell morphology metrics385

We evaluated multiple morphology-based metrics and provide diagrammatic illustrations386

in Supplementary Figure 16).387

• Elongation =
Widthbounding box

Heightbounding box
388

Elongation measures the ratio of height versus the width of the bounding box (Sup-389

plementary Figure 16f). Elongation is insensitive to concave irregularities and holes390

present in the shape of the cell. The value of this metric will be 1 for a perfect square391

bounding box. As the cell becomes more elongated the value will either increase far392

above 1 or decrease far below 1, depending on whether the elongation occurs along the393

height or width of the bounding box.394

• Circularity = 4π×area
(convex perimeter)2

395

Circularity measures the area to perimeter ratio while excluding local irregularities of396

the cell. We used the convex perimeter of the object as opposed to its true perimeter397

to avoid concave irregularities. The value will be 1 for a circle and decreases as a cell398

becomes less circular.399

• Sphericity =
Radiusinscribing circle

Radiuscircumscribing circle
400

Sphericity measures the rate at which an object approaches the shape of a sphere401

while accounting for the largest local irregularity of the cell by comparing the ratio of402

the radius largest circle that fits inside the cell (inscribing circle) to the radius of the403

smallest circle that contains the whole cell (circumscribing circle). The value is 1 for a404

sphere and decreases as the cell becomes less spherical.405

• Compactness = 4π×area
(perimeter)2

406

Compactness measures the ratio of the area of an object to the area of a circle with the407

same perimeter. A circle will have a value of 1, and the less smooth or more irregular408

the perimeter of a cell, the smaller the value will be.409

• Convexity = convex perimeter
perimeter

410

Convexity measures the ratio of the convex perimeter of a cell to its perimeter. The411

value will be 1 for a circle and decrease the more irregular the perimeter of a cell412

becomes, similar to compactness.413

• Eccentricity = lengthminor axis

lengthmajor axis
414

Eccentricity (or ellipticity) measures the ratio of the major axis to the minor axis of a415

cell. The major axis is the longest possible line that can be drawn between the inner416

boundary of a cell without intersecting its boundary. The minor axis is the longest417

possible line can be drawn within the inner boundary of a cell while while also being418

perpendicular to the major axis. This gives a value of 1 for a circle and decreases the419

more flat the cell becomes.420
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• Solidity = area
convex area

421

Solidity measures the ratio of the area of a cell to the convex area of a cell. This422

measures the density of a cell by detecting holes and irregular boundaries in the cell423

shape. The maximum value will be 1 for a cell with a perfectly convex and smooth424

boundary and will decrease as the cell shape becomes more concave and/or irregular.425

Gene-level QC characteristics426

• Proportion of cells expressed per gene427

[B] Segmented cell expression purity. We implemented two broad classes of statistics to428

capture (i) the concordance of expression profile with scRNA-seq data and (ii) the expression429

purity or homogeneity of cell type markers. The scRNA-seq data used are described in430

Section Datasets and preprocessing and listed in Table 2.431

• Concordance with scRNA-seq data - We calculated the similarity of the expression432

pattern between the segmented cells and publicly available single-cell datasets. Here433

the similarity was measured by Pearson correlation of the average log-normalised gene434

expression for each cell type. We also calculated the concordance of the proportion435

of non-zero expression for each cell type between the segmented cells and scRNA-seq436

data. For data with paired Chromium data from the same experiment, i.e., Xenium-437

Brain, we also compared the cell type proportion and quantify the concordance using438

the Pearson correlation. We annotated the cell type annotation for segmented cells439

using scClassify (11) with scRNA-seq data as reference.440

• Purity of expression - We first curated a list of positive markers and negative markers441

from the scRNA-seq reference data. For each cell type, we selected the highest and442

lowest 10 percentile of the genes with difference of expression compared to other cell443

types. We also removed the positive markers that were common to more than 25%444

of cell types for a more pure positive marker list. For each segmented cell, we then445

consider the genes with the highest 10 percentile of expression as positive genes and446

lowest 10 percentile as negative markers. We then calculated the Precision, Recall and447

F1 score for both positive and negative markers. We further summarised the average448

positive marker F1 scores and negative marker F1 scores into one Purity F1 score for449

each method, where we first scaled the average positive and negative marker F1 scores450

into the range of [0, 1] and then calculated the F1 score of transformed metrics as the451

following:452

F1purity = 2 · (1− F1negative) · F1positive
1− F1nagative + F1positive

.

[C] Spatial characteristics. In this category, we measured the association between cell453

type diversity in local spatial regions and all the cell-level baseline characteristics provided454
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in [A]. We first divided each image into multiple small regions. Then, for each local spa-455

tial region, we calculated the cell type diversity using Shannon entropy with the R package456

’entropy’, where a higher entropy indicates a more diverse cell type composition. Next, we457

assessed the variability of cell-level baseline characteristics within each local region using458

the coefficient of variation. Subsequently, for each of the cell-level baseline characteristics459

mentioned in [A], we calculated the Pearson correlation between the cell type diversity (mea-460

sured using Shannon entropy) and the coefficient of variation of these characteristics across461

all local regions. Here, we anticipate that regions with more diverse cell type compositions462

will exhibit higher variability in cell-level characteristics, leading to a stronger correlation463

between these two metrics.464

465

[D] Neighbouring contamination This metric is designed for cell segmentation to ensure466

that the expression signals between neighboring cells are not contaminated. For a pair of467

cell types (e.g., cell type A and B), we computed the Euclidean distance from each cell in468

cell type A to its nearest neighbor belonging to cell type B. We then grouped the cells of cell469

type A based on a range of distances. Within each group, we calculated the proportion of470

cells expressing a selected negative marker, which is a cell type marker for cell type B. We471

anticipate that the method with less contamination will result in segmented cells expressing472

lower levels of the negative marker, even when the distance to a different cell type is minimal.473

474

[E] Replicability Our analysis involved assessing the agreement between the Xenium-475

BreastCancer1 and Xenium-BreastCancer2 datasets, which are closely related in terms of476

all the cell-level baseline characteristics provided in [A]. As these datasets are considered to477

be sister regions, we anticipated that the distribution of all the baseline characteristics, as478

well as the cell type composition, would be similar. We use Pearson correlation to quantify479

the degree of concordance.480
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Table 1. Single-cell RNA-seq references used in this study

Data collection Data Number of cell type Source 

TISCH-BRCA

GSE110686

17 http://tisch.comp-genomics.org/gallery/?
cancer=BRCA&species=Human

GSE114727_10X
GSE114727_inDrop
GSE138536
GSE143423
GSE176078
SRP114962
EMTAB8107
GSE148673
GSE150660

Chromium-BreastCancer Single Cell Gene Expression Flex (FRP) 22 https://www.10xgenomics.com/products/xenium-
in-situ/preview-dataset-human-breast

Mouse brain Allen brain map 59
https://portal.brain-map.org/atlases-and-
data/rnaseq/mouse-whole-cortex-and-
hippocampus-smart-seq

HLCA

Banovich_Kropski_2020

50 https://beta.fastgenomics.org/p/hlca

Krasnow_2020
Lafyatis_Rojas_2019
Meyer_2019
Misharin_2021
Misharin_Budinger_2018
Teichmann_Meyer_2019

TISCH-NSCLC

EMTAB6149

1 http://tisch.comp-genomics.org/gallery/?
cancer=SCLC&species=Human

GSE117570
GSE127465
GSE143423
GSE148071
GSE150660

SKCM atlas

GSE115978

15 http://tisch.comp-genomics.org/gallery/?
cancer=SKCM&species=Human

GSE120575
GSE123139
GSE139249
GSE148190
GSE72056
GSE134388
GSE159251
GSE166181
GSE179373
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Table 2. Summary of existing methods used for comparison.

Types Name of method 
Nuclei 
segmentation

Cell body 
segmetation Public code Reference

10x (Nuclei) 10x NA N/A
Cellpose (Nuclei) Cellpose NA Version 2.1.1

Adapted from 
classical approach

Cellpose nuclei dilated Cellpose Dilation OpenCV (v4.6.0)
Voronoi Cellpose Voronoi expansion SciPy library (v1.9.3)
Watershed Cellpose Watershed algorithm OpenCV (v4.6.0)

Deep learning 
morphological based

10x 10x 10x N/A
BIDCell Cellpose BIDCell Version 4494e02
Cellpose cell Cellpose Cellpose Version 2.1.1 (Stringer et al., 2021)
JSTA Cellpose JSTA Version ccce064 (Littman et al., 2020)

Transcript-based Baysor N/A or Cellpose Baysor Version 0.5.2 (Petukhov et al., 2022)
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Table 3. Summary of all CellSPA evaluation metrics of segmentation aspects across five complementary categories.

Metrics category Metrics name Gene/Cell/Dataset level Description

Baseline

Number of cells (# cells) Dataset level
Proportion of transcripts assigned Dataset level
Proportion of cells expressed per gene Gene level
Number of transcripts per cell Cell level
Number of genes expressed per cell Cell level
Cell area Cell level
Density Cell level Number of total transcripts/Cell area

Elongation Cell level
Ratio between length and Width of objects bounding 
box

Circularity Cell level
Ratio of the area of an object to the area of a circle 
with the same convex perimeter

Sphericity Cell level Degree to which object approaches shape of sphere

Compactness Cell level
Ratio of the area of an object to the area of a circle 
with the same perimeter

Convexity Cell level
Convexity is the ratio of an objects area to its convex 
area

Eccentricity Cell level
Ratio of the minor axis of an object to the major axis of 
an object  

Solidity Cell level Ratio of the area of an object to its convex area

Cell Expression

Average expression similarity Cell type level

Calculate association between average expression 
profile for each cell type from segmeted cells and 
scRNA-seq data.

proportion of non-zero expression similarity Cell type level
Calculate association between cell type % expressed 
profile from segmeted cells and scRNA-seq data.

Cell type proportion similarity Dataset level
Calculating correlation with cell type proportion in 
paired Chromium data

Positive markers purity F1 Cell level
Positive markers purity precision Cell level
Positive markers purity recall Cell level
Positive markers expressed % Cell level
Negative markers purity F1 Cell level
Negative markers purity precision Cell level
Negative markers purity recall Cell level
Negative markers expressed % Cell level

Spatial 
characteristics 
(Association 
between cell type 
diversity with cell-
level baseline 
characteristics)

corr - CTDiversity x CV( Num cell) Cell type level
Pearson correlation between cell type diversity and 
coefficient of variation of Number of cells

corr - CTDiversity x CV( Prop of transcripts) Cell type level
Correlation between cell type diversity and coefficient 
of variation of Proportion of transcripts assigned

corr - CTDiversity x CV( Prop of cells per gene) Cell type level
Correlation between cell type diversity and coefficient 
of variation of Proportion of cells expressed per gene

corr - CTDiversity x CV( Num transcripts per cell) Cell type level
Correlation between cell type diversity and coefficient 
of variation of Number of transcripts per cell

corr - CTDiversity x CV( Num genes per cell) Cell type level
Correlation between cell type diversity and coefficient 
of variation of Number of genes expressed per cell

corr - CTDiversity x CV( Cell area) Cell type level
Correlation between cell type diversity and coefficient 
of variation of Cell area

corr - CTDiversity x CV( Density) Cell type level
Correlation between cell type diversity and coefficient 
of variation of Density

corr - CTDiversity x CV( Elongation) Cell type level
Correlation between cell type diversity and coefficient 
of variation of Elongation

corr - CTDiversity x CV( Circularity) Cell type level
Correlation between cell type diversity and coefficient 
of variation of Circularity

corr - CTDiversity x CV( Sphericity) Cell type level
Correlation between cell type diversity and coefficient 
of variation of Sphericity

corr - CTDiversity x CV( Compactness) Cell type level
Correlation between cell type diversity and coefficient 
of variation of Compactness

corr - CTDiversity x CV( Convexity) Cell type level
Correlation between cell type diversity and coefficient 
of variation of Convexity

corr - CTDiversity x CV( Eccentricity) Cell type level
Correlation between cell type diversity and coefficient 
of variation of Eccentricity

corr - CTDiversity x CV( Solidity) Cell type level
Correlation between cell type diversity and coefficient 
of variation of Solidity

Nearest 
Neighbour 
interaction

Precentage of negative markers expressed in 
neighbour (unwanted expression) Dataset level

For a pair of cell type, calculate the negative marker 
expressed proportion of cell type A vs the distance to 
cell type B 

Robustness and 
reproducibility 
between two 
biological 
replicates

Concordance between Number of cells Dataset level Correlation between Number of cells
Concordance between Proportion of transcripts 
assigned Dataset level Correlation between Proportion of transcripts assigned
Concordance between Proportion of cells expressed 
per gene Dataset level

Correlation between Proportion of cells expressed per 
gene

Concordance between Number of transcripts per cell Dataset level Correlation between Number of transcripts per cell
Concordance between Number of genes expressed 
per cell Dataset level

Correlation between Number of genes expressed per 
cell

Concordance between Cell area Dataset level Correlation between Cell area
Concordance between Density Dataset level Correlation between Density
Concordance between Elongation Dataset level Correlation between Elongation
Concordance between Circularity Dataset level Correlation between Circularity
Concordance between Sphericity Dataset level Correlation between Sphericity
Concordance between Compactness Dataset level Correlation between Compactness
Concordance between Convexity Dataset level Correlation between Convexity
Concordance between Eccentricity Dataset level Correlation between Eccentricity
Concordance between Solidity Dataset level Correlation between Solidity

* correlation by default is defined as Pearson correlation 
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