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Abstract—We present a robot localization system using
biologically-inspired vision. Our system models two extensively
studied human visual capabilities: (1) extracting the “gist” of
a scene to produce a coarse localization hypothesis, and (2)
refining it by locating salient landmark points in the scene.
Gist is computed here as a holistic statistical signature of the
image, yielding abstract scene classification and layout. Saliency
is computed as a measure of interest at every image location,
efficiently directing the time-consuming landmark identification
process towards the most likely candidate locations in the image.
The gist features and salient regions are then further processed
using a Monte-Carlo localization algorithm to allow the robot
to generate its position. We test the system in three different
outdoor environments — building complex (38.4x54.86m area,
13966 testing images), vegetation-filled park (82.3x109.73m area,
26397 testing images), and open-field park (137.16x178.31m area,
34711 testing images) — each with its own challenges. The system
is able to localize, on average, within 0.98, 2.63, and 3.46m,
respectively, even with multiple kidnapped-robot instances.

Index Terms—Gist of a scene, saliency, scene recognition,
computational neuroscience, image classification, image statistics,
landmark recognition, robot vision, robot localization.

I. INTRODUCTION

THE problem of localization is central to endowing mobile

machines with intelligence. Range sensors such as sonar

and ladar [1], [2] are particularly effective indoors due to many

structural regularities such as flat walls and narrow corridors.

In the outdoors, these sensors become less robust given all

the protrusions and surface irregularities [3]. For example,

a slight change in pose can result in large jumps in range

reading because of tree trunks, moving branches, and leaves.

GPS, coupled with other sensors or by itself [4], has also

been extensively used. However, GPS may not be applicable

in environments where there is no satellite visibility, such as

underwater, in caves, indoors, or on Mars. In those places,

vision, our main perceptual system for localization, should be

a viable alternative.

We first describe traditional vision localization techniques as

background information to better demonstrate the advantages

of using biological approaches. In section I-B, we then intro-

duce a robust biologically plausible vision system that concur-

rently observes a scene from two contrasting perspectives: its

rough overall layout (using gist) and detailed recognition only

on select globally conspicuous locations (using saliency). In

addition, section I-C describes how using topological maps,
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which is analogous to how humans deal with spatial informa-

tion, allows for a compact and accurate representation.

A. Traditional Vision-Based Localization

Existing vision-based localization systems can be catego-

rized along several lines. The first one is according to image-

view types, where some systems use ground-view images [5],

[6] and others use omni-directional images [7], [8]. Another

categorization is according to localization goal, such as actual

metric location [9] or a coarser place or room number [7]. Yet

another grouping is according to whether or not the system

is provided with a map, or must build one as it locates itself

(SLAM) [10], [11].

One additional categorization to consider comes from the

vision perspective, which classifies systems according to visual

feature type: local and global features. Local features are com-

puted over a limited area of the image, whereas global features

pool information over the entire image, e.g., into histograms.

Before analyzing various approaches, which by no means is

exhaustive, it should be pointed out that, like other vision

problems, any localization and landmark recognition system

faces the general issues of occlusion, dynamic background,

lighting, and viewpoint changes.

A popular starting point for local features are SIFT key-

points [12]. There have been a number of systems that utilize

SIFT features [5], [13] in recent years for object recognition

because they can work in the presence of occlusion and

some viewpoint changes. Other examples of local features

are SURF [14] and GLOH [15]. Some systems [16], [17]

extend their scope of locality by matching image regions to

recognize a location. At this level of representation, the major

hurdle lies in achieving reliable segmentation and in robustly

characterizing individual regions. This is especially difficult

with unconstrained environments such as a park full of trees.

Global feature methods usually rely on comparing image

statistics for color [7], [8], textures [6], or a combination of

both [18], [19]. Holistic approaches, which do not have a

segmentation stage, may sacrifice spatial information (feature

location). Yet, some systems [6], [18] try to recover crude

spatial information by using a predefined grid and computing

global statistics within each grid tile. These methods are

limited, for the most part, to recognizing places (e.g. rooms in

a building, as opposed to exact metric geographical locations)

because with global features, it is harder to deduce a change

in position even when the robot moves considerably.
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B. Biologically Plausible Scene Recognition

Today, with many available studies in human vision, there is

a unique opportunity to develop systems that take inspiration

from neuroscience and bring a new perspective in solving

vision-based robot localization. For example, even in the initial

viewing of a scene, the human visual processing system

already guides its attention to visually interesting regions

within the field of view. This extensively studied early course

of analysis [20]–[23] is commonly regarded as perceptual

saliency. Saliency-based or “bottom-up” guidance of attention

highlights a limited number of possible points of interest in

an image, which would be useful [24] in selecting landmarks

that are most reliable in a particular environment (a chal-

lenging problem in itself). Moreover, by focusing on specific

sub-regions and not the whole image, the matching process

becomes more flexible and less computationally expensive.

Concurrent with the mechanisms of saliency, humans also

exhibit the ability to rapidly summarize the “gist” of a scene

[25]–[27] in less than 100ms. Human subjects are able to

consistently answer detailed inquiries such as the presence of

an animal in a scene [28], [29], general semantic classification

(indoors vs. outdoors, room types: kitchen, office, etc.) and

rough visual feature distributions such as colorful vs. gray-

scale images or several large masses vs. many small objects

in a scene [30], [31]. It is reported that gist computations may

occur in brain regions which respond to “places”, that is, prefer

scenes that are notable by their spatial layout [32] as opposed

to objects or faces. In addition, gist perception is affected by

spectral contents and color diagnosticity [33], which leads to

the implementation of models such as [34], [35].

In spite of how contrasting saliency and gist are, both

modules rely on raw features that come from the same area, the

early visual cortex. Furthermore, the idea that gist and saliency

are computed in parallel is demonstrated in a study in which

human subjects are able to simultaneously discriminate rapidly

presented natural scenes in the peripheral view while being

involved in a visual discrimination task in the foveal view

[36]. From an engineering perspective it is an effective strategy

to analyze a scene from opposite coarseness levels, a high-

level, image-global layout (corresponding to gist) and detailed

pixel-wise analysis (saliency). Also, note that, while saliency

models primarily utilize local features [23], gist features are

almost exclusively holistic [6], [18], [33]. Our presented model

(figure 1) seeks to employ the two complementary concepts

of biological vision, implemented faithfully and efficiently, to

produce a critical capability such as localization.

After early preprocessing at both retina and LGN (figure 1),

the visual stimuli arrive at Visual Cortex (cortical visual areas

V1, V2, V4, and MT) for low-level feature extractions which

are then fed to saliency and gist modules. Along the Dorsal

Pathway or “where” visual processing stream [37] (posterior

parietal cortex), the saliency module builds a saliency map

through the use of spatial competition of low-level feature re-

sponses throughout the visual field. This competition silences

locations which, at first, may produce strong local feature re-

sponses but resemble their neighboring locations. Conversely,

the competition strengthens points which are distinct from

Fig. 1. A sketch of the full system with each sub-system projected onto
anatomical locations that may putatively play similar roles in human vision.

their surroundings. On the contrary, in the Ventral Pathway

or the “what” visual processing stream (Inferior Temporal

cortex), the low-level feature-detector responses are combined

to yield a gist vector as a concise global synopsis of the scene

as a whole. Both pathways end up at the pre-frontal cortex

where conscious decisions and motor commands are formed.

In this paper, we concentrate mostly on the biologically-

inspired localization computations of the ventral pathway.

C. Topological Maps

In addition to biological vision, our utilization of topological

maps also draws from various human experiments. A topolog-

ical map [38], [39], which refers to a graph annotation of an

environment, assigns nodes to particular places and edges as

paths if direct passage between pairs of places (end-nodes) ex-

ist. One of the distinct ways humans manage spatial knowledge

is by relying more on topological information than metric.

That is, although humans cannot estimate precise distances

or directions [40], they can draw a detailed and hierarchical

topological (or cognitive) map to describe their environments

[41]. Nevertheless, approximate metric information is still

deducible and is quite useful. In addition, the amount of

added information is not a heavy burden (in terms of updating

and querying) for the system, because of the concise nature

of a basic graph organization. This is in sharp contrast to

a more traditional metric grid map in robotics localization

literature [1], [9], where every area in the map is specified

for occupancy, as opposed to being assumed untraversable if

not specified as places or paths.

In our system, as well as a number of others [38], [42],

we use an augmented topological map with directed edges.

The map has an origin and a rectangular boundary, and each

node has a Cartesian coordinate. In addition, each edge has a

cost, which is set to the distance between the corresponding

end-nodes. This way the system benefits from the compact

representation of a graph while preserving the important metric

information of the environment. The robot state (position and
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Fig. 2. Diagram for the Vision Localization System. From an input image the system extracts low-level features consisting of center-surround color, intensity,
and orientation that are computed in separate channels. They are then further processed to produce gist features and salient regions. We then compare them
with previously obtained environment visual information. The results are used to estimate the robot’s location.

viewing direction) is represented by a point which can lie on

a node or an edge.

It should be noted that various parts of our system, such

as the localization module (we use a standard probabilistic

approach [1], [9], [10]) may not be biologically plausible.

This is why we simply claim that the system is biologically

inspired. Our philosophy is that although we are committed

to studying biological systems (human vision in particular),

we also would like to build systems that are useful in the real

world now. We see this dual intention as a two-way street,

where engineering ideas can help bring inspiration to explain

scientific phenomena, not just the other way around in building

neuromorphic robots.

II. DESIGN AND IMPLEMENTATION

In this paper we describe our biologically inspired vision

localization system. We have reported in [18] our gist-based

place recognition system, which is only a part of the presented

system. We define the gist features as a low-dimensional

vector (compared to raw image pixel array) that represents

a scene and can be acquired over very short time frames.

Place classification based on gist then becomes possible if

and when the vector can be reliably classified as belonging

to a given place. In the presented system, we also utilized

salient landmarks obtained from the attention system to refine

the place estimation to a more accurate metric localization.

Previously [43], we reported a preliminary result. Here, the

original contribution is explaining the system in more detail

(especially the salient landmark acquisition and recognition)

and, more importantly, rigorously testing it in multiple chal-

lenging outdoor environments at various times of the day to

demonstrate its lighting invariance. In addition, we also test

the individual modules within the system — salient region

recognition (a local-feature system) and gist-based localization

— to gauge their contributions to the end result.

The localization system (illustrated in figure 2) is divided

into 3 stages: feature extraction, recognition, and localization.

The first takes a camera image and outputs gist features and

salient regions. In the next stage, we compare them with

memorized environment visual information. These matches are

input to the localization stage to decide where the robot is.

The term salient region refers to a conspicuous area in an in-

put image depicting an easily detected part of the environment.

An ideal salient region is one that is persistently observed from

different points of view and at different times of the day. A

salient region does not have to isolate a single object (often

times it is part of an object or a jumbled set of objects), it just

has to be a consistent point of interest in the real world. To this

end, the set of salient regions that portray the same point of

interest are grouped together and the set is called a landmark.

Thus, a salient region can be considered as an evidence of

a landmark and “to match a salient region with a landmark,”

means to match a region with the landmark’s saved regions. It

is also important to note that the process of discovering salient

regions is done using biological computations, but the process

of region matching is not. We use SIFT keypoints [12] because

they are the current gold standard for pattern recognition.

Within the augmented topological map we group an area

in the environment as a segment. A segment is an ordered

list of edges with one edge connected to the next to form

a continuous path. This grouping is motivated by the fact

that views/layout in one path-segment are coarsely similar.
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An example is the selected three-edge segment (highlighted

in green) in the map in figure 2. Geographically speaking,

a segment is usually a portion of a hallway, path, or road

interrupted by a crossing or a physical barrier at both ends for

a natural delineation. The term segment is roughly equivalent

to the generic term “place” for place recognition systems

(mentioned in section I-A), which refer to a general vicinity of

an environment. With this, the robot location can be noted as

both Cartesian coordinate (x, y) or a pair of segment number

snum and the fraction of length traveled (between 0.0 to 1.0)

along the path ltrav.

In the following sub-sections we will describe the details of

each of the three stages in its order of operation.

A. Feature extraction: Gist and Salient Regions

The shared raw low-level features (which emulate the ones

found in the visual cortex) for gist [18] and saliency [22],

[44] models are filter outputs computed in color, intensity,

and orientation channels. Within them, there are sub-channels

to account for sub-categories: color opponencies (in color

channel), degree orientation (orientation channel), intensity

opponency (intensity channel). Each sub-channel has a nine-

scale pyramidal representation of filter outputs. Within each

sub-channel, the model performs center-surround operations

(commonly found in biological-vision which compares im-

age values in center-location to their neighboring surround-

locations) between filter output maps at different scales in

the pyramid. These center-surround maps (also called feature

maps) are then fed into both gist and saliency modules.

1) Gist Feature Extraction: The gist model [18] computes

average values (biologically plausible accumulation opera-

tions) from 4-by-4 grid sub-regions of the feature maps. Figure

2 illustrates gist extraction on an intensity feature map. By

doing so, we encode information from various visual domains

with a small number of values, while still taking into account

coarse spatial information. The raw gist feature dimension is

544: 34 feature maps (from all sub-channel center-surround

combinations) times 16 regions per map.

2) Salient Region Selection and Segmentation: The saliency

model [22], on the other hand, uses the feature maps to detect

conspicuity regions in each channel. It first performs a linear

combination (simple unweighted pixel-wise addition) between

feature maps within each channel to produce conspicuity maps

(one per channel). The model then combines the maps through

winner-take-all mechanisms, which emphasize locations that

substantially differ from their neighbors, to yield a saliency

map. We then further process the saliency map to produce a

set of salient regions (figure 3).

The system starts at the pixel location of the saliency map’s

highest value. To extract a region that includes the point, we

use a shape estimator algorithm [45] (region growing with

adaptive thresholding) to segment the feature map that gives

rise to it. To find the appropriate feature map, we compare

the values of the conspicuity maps at the salient location and

select the channel with the highest value (this is the winning

channel). Within the winning channel, we compare values at

the same location for all the feature maps. The one with the

highest value is the winning center-surround map.

Fig. 3. A salient region is extracted from the center-surround map that gives
rise to it. We use a shape estimator algorithm to create a region-of-interest
(ROI) window and use inhibition-of-return (IOR) in the saliency map to find
other regions.

The system then creates a bounding box around the seg-

mented region. Initially, we fit a box in a straight-forward

manner: find smallest-sized rectangle that fits all connected

pixels. The system then adjusts the size to between 35% and

50% in both the image width and height, if it is not yet within

the range. This is because small regions are hard to recognize

and overly large ones take too long to match. In addition,

the system also creates an inhibition-of-return (IOR) mask to

suppress that part of the saliency map to move to subsequent

regions. This is done by blurring the region with a Gaussian

filter to produce a tapering effect at the mask’s border. Also,

if a new region overlaps any previous regions by more than

66%, it is discarded but is still suppressed.

We continue until 1 of 3 exit conditions occur: unsegmented

image area is below 50%, number of regions processed is

5, and the saliency map value of the next point is lower

than 5% of the first (most salient). We limit the regions to

5 because, from experiments, subsequent regions have a much

lower likelihood of being repeatable in testing. Figure 4 shows

extraction of 5 regions. There are reasons why multiple regions

per image is better. First, additional perception (there are

many salient entities within the field of view) contributes to a

more accurate localization, given the possibility of occlusion

in an image. Second, the first region may be coincidental

or a distraction. In figure 4, the first one returned is a ray

of sunshine hitting a building. Although from the saliency

perspective, it is correct, it is not a good location cue. The

second region is better because it depicts details of a building.

B. Segment and Salient Region Recognition

This stage attempts to match the visual stimuli (salient

regions and gist features) with stored environment information.

The results are then used to localize at the next stage. The

system acquires the information through two training steps:

building a landmark database and training a segment classifier

using gist features. The procedure involves a guided traversal

of the robot through all the paths in the map. As the robot

moves about the environment, we store the salient regions

found along with the corresponding robot locations when they

are discovered. We perform the traversal several times for

ample lighting coverage. At the same time, we also store the

gist features from each input frame for segment classification

training. To determine how many segments to classify, we

group the edges according to view similarity by a human

operator estimation. The operator uses a simple heuristic: start
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Fig. 4. Process of obtaining multiple salient regions from a frame, where the IOR mask (last row) dictates the shift in attention of the system to different
parts of the image.

a new segment and stop the previous one when an abrupt

visual change occurs. This is usually because an intersection

is reached and the robot is turning in place to another direction.

The following sub-sections describe the run-time matching

process, and formulate the output for our back-end Monte

Carlo localization (MCL) module [1], [9], [10]. Within the

MCL framework, we need to provide observation models to

weight the likelihood of a particular observation to occur in

a given state. The system observes two types of evidence:

segment classification and matched salient regions.

1) Segment Classification: The segment estimator is imple-

mented as a 3-layer neural network classifier trained using the

back-propagation algorithm on gist features that have already

undergone PCA/ICA dimension reduction [18]. One of the

main reasons why the classifier succeeds is because of the

decision to group edges into segments. It would have been

difficult to train an edge-classifier using coarse features like

gist as adjacent edges that are part of the same segment usually

are moving toward the same general direction and thus tend

to share a lot of the background scene. Each segment in the

environment has an associated classifier output node and the

output potential is the likelihood that the scene belongs to that

segment, stored in a vector z
′

t to be used as an observation

where

z
′

t = { svalt,j } j = 1 ... Nsegment (1)

with svalt,j being the segment likelihood value for time t

and segment j is one of Nsegment segments.

2) Salient Region Recognition: In order to recall the stored

salient regions we have to find a robust way to recognize

them. We use two sets of signatures: SIFT keypoints [12]

and salient feature vector. We employ a straight-forward SIFT

recognition system [12] (using all the suggested parameters

and thresholds) but consider only regions that have more than

5 keypoints to ensure that the match is not a coincidence.

A salient feature vector [43] is a set of values taken from a

5-by-5 window centered at the salient point location (yellow

disk in figure 5) of a region sreg. These normalized values

(between 0.0 to 1.0) come from the sub-channels’ feature maps

[22], [44] for all channels (color, intensity, and orientation). In

total, there are 1050 features (7 sub-channels times 6 feature

maps times 5x5 locations). Because the feature maps are

produced in the previous feature extraction step (section II-A),

even though they are computed over the entire image for each

visual domain, from the salient feature vector perspective, they

come at almost no computational cost.

To compare salient feature vectors from two salient regions

sreg1 and sreg2, we factor in both feature similarity sfSim

(equation 2) and salient point location proximity sfProx

(equation 3). The former is based on the Euclidian-distance

in feature space:

sfSim(sreg1, sreg2) = 1 −

√

∑Nsf

i=1
(sreg1,i − sreg2,i)2

Nsf

(2)

Nsf is the total number of salient features. For a match to
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be confirmed, the feature similarity has to be above .75 out

of the maximal 1.0. The location proximity sfProx, on the

other hand, is the Euclidian distance in pixel units (denoted by

the function dist), normalized by the image diagonal length:

sfProx(sreg1, sreg2) = 1 −
dist(sreg1, sreg2)

lDiagonal

(3)

The positive match score threshold for the distance is 95%

(within 5% of input image diagonal). Note that the proximity

distance is measured after aligning sreg1 and sreg2 together,

which is after a positive SIFT match is ascertained (observe

the fused image in figure 5). The SIFT recognition module

estimates a planar (translational and rotational) transformation

matrix [12] that characterizes the alignment. In short, individ-

ual reference-test keypoint pairs are first compared based on

the descriptor’s similarity. Each matched pair then “votes” for

possible 2D affine transforms (there is no explicit notion of

an object location in 3D space) that relate the two images.

An outlier elimination is performed using the most likely

transform given all matches. Using the remaining pairs, we

compute a final affine transform. With this matrix, the system

can check the alignment disparity between the two regions’

salient point location.

Fig. 5. Matching process of two salient regions using the SIFT keypoints
(drawn as red disks) and salient feature vector, which is feature map values
taken at the salient point (drawn as the yellow disk). The lines indicate the
correspondences that are found. The fused image is added to show that we
also estimate the pose change between the pair.

Once the incoming salient regions are compared with the

landmark database, the successful matches (ones which pass

both salient feature vector and SIFT match thresholds de-

scribed above) are denoted as observation z
′′

t , where

z
′′

t = { omatcht,k }, k = 1 ... Mt (4)

with omatcht,k being the k-th matched database salient

region at time t. Mt denotes the total number of positive

matches at time t. Note that the recognition module may not

produce an observation for every time t, it is possible that it

finds no matches, Mt = 0.

C. Monte-Carlo Localization

We estimate robot position by implementing Monte-Carlo

Localization (MCL) which utilizes Sampling Importance Re-

sampling (SIR) [1], [9], [10]. We formulate the location belief

state St as a set of weighted particles: St = {xt,i, wt,i} i =

1 ... N at time t and N being the number of particles. Each

particle (possible robot location) xt,i is composed of a segment

number snum and percentage of length traveled ltrav along

the segment edges, xt,i = {snumt,i, ltravt,i}. Each particle

has a weight wt,i, which is proportional to the likelihood of

observing incoming data modeled by the segment and salient

region observation model (explained in sections II-C2 and

II-C3 below, respectively). Note that the segment observation

is applied before salient region observation because segment

estimation can be calculated almost instantaneously while the

salient region matching is much slower. We have not tried it,

but, if the order of application is reversed, we believe that

the results would be similar given that the observations are

integrated over time. From experiments, N = 100 suffices

for the simplified localization domain where a hallway is

represented by an edge and not a two dimensional space. We

tried N as high as 1000 with unnoticeable performance or

computation speed change. With N = 50 the performance

starts to degrade, namely in kidnapped robot instances. We

estimate the location belief Bel(St) by recursively updating

posterior p(St|z
t, ut) — zt being an evidence and ut the

motion measurement using [46]:

Bel(St) = p(St|z
t, ut) (5)

= αp(zt|St)

∫

St−1

p(St|St−1, ut)Bel(St−1) dSt−1

We first compute p(St|St−1, ut) (called the predic-

tion/proposal phase) to take robot movement into account

by applying the motion model to the particles. Afterwards,

p(zt|St) is computed in the update phase to incorporate the

visual information by applying the observation models —

segment estimation z
′

t (eqn. 1) and matched salient regions

z
′′

t (eqn. 4) — to each particle for weighted resampling steps.

The following algorithm shows the order in which the system

computes belief estimation Bel(St) at each time step t:

1) apply motion model to St−1 to create S
′

t

2) apply segment observation model to S
′

t to create S
′′

t

3) if (Mt > 0)

a) apply salient region observation model to S
′′

t to

yield St

b) else St = S
′′

t

Here, we specify two intermediate states: S
′

t and S
′′

t . S
′

t

is the belief state after the motion model is applied to the

particles. S
′′

t is the state after the segment observation (first

step of update phase p(zt|St)) is subsequently applied to

S
′

t. Segment observation application is done by weighted

resampling using likelihood function p(z
′

t|x
′

t,i) (equation 6

below) as weights. This function denotes the likelihood that a

segment estimation z
′

t is observed at location x
′

t,i. Afterwards,

the salient region observation model (second step of update

phase p(zt|St)) is applied to the belief state S
′′

t to produce

St. This is done with weighted resampling using the likelihood

function p(z
′′

t |x
′′

t,i) (equation 7 below) as weights, representing

the likelihood that salient region match z
′′

t is found at x
′′

t,i.

1) Motion Model: The system employs a straightforward

motion model to each particle x
′

t−1,i in St−1 by moving it
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Fig. 6. A snapshot of the system test-run. Top-left (main) image contains the salient region windows. Green window means a database match, while red is
not found. A salient region match is displayed next to the main image. Below the main image is the segment estimation vector derived from gist (there are 9
possible segments in the environment). The middle image projects the robot state onto the map: cyan disks are the particles, the yellow disks are the location
of the matched database salient region, the blue disk (the center of the blue circle, here partially covered by a yellow disk) is the most likely location. The
radius of the blue circle is equivalent to five feet. The right-most histogram is the number of particles at each of the 9 possible segments. The robot believes
that it is towards the end of the first segment, which is correct within a few feet.

with the distance traveled (odometry reading ut) plus noise to

account for uncertainties such as wheel slippage. We model

this by drawing a particle x
′

t,i from a Gaussian probability

density p(x
′

t,i|ut, xt−1,i), where the mean is the robot location

in the absence of noise and standard deviation of .1ft (about

1/6th of a typical single step). The latter controls the level

of noise in the robot movement measurement. From our

experiments, we find that this number does not affect the end

result as much because the neighborhood of particles around a

converged location (observe the belief map in figure 6) is large

enough that motion error in any direction is well covered.

In the procedure, the distribution spawns a new location by

only changing the length traveled ltrav portion of a particle

x
′

t,i. It is then checked for validity with respect to the map as

ltrav has a range of 0.0 to 1.0. If the value is below 0.0, then

the robot has moved back to a previous segment in the path,

while if it is above 1.0, the robot has moved to a subsequent

segment. We take care of these situations by changing the

segment snum and normalizing the excess distance (from the

end of original segment) to produce a corresponding ltrav.

If the original segment ends in an intersection with multiple

continuing segments, we simply select one randomly. If no

other segment extends the path, we just resample.

2) Segment-Estimation Observation Model: This model es-

timates the likelihood that the gist feature-based segment esti-

mation correctly predicts the assumed robot location. So, we

weigh each location particle x
′

t,i in S
′

t with w
′

t,i = p(z
′

t|x
′

t,i)
for resampling (with added 10 percent random particles to

avoid the well known population degeneration problem in

Monte Carlo methods) to create belief S
′′

t . We take into

account the segment-estimation vector z
′

t by using:

p(z
′

t|x
′

t,i) =
svalt,snum

′

t,i

∑Nsegment

j=1
svalt,j

∗ sval
t,snum

′

t,i
(6)

Here, the likelihood that a particle x
′

t,i observes z
′

t is

proportional to the percentage of estimation value of the

robot’s segment location sval
t,snum

′

t,i

over the total esti-

mation value (first term) times the robot segment location

value (second term). The rationale for the first term is to

measure the segment’s dominance with respect to all values

in the vector; the more dominant the more sure we are that

the segment estimation is correctly predicting the particle’s

segment location. The second term preserves the ratio of the

robot segment location value with respect to maximum value

of 1.0 so that we can make a distinction of confidence level

of the segment estimation prediction. Note that the likelihood

function only makes use of the segment snum
′

t,i information

from particle x
′

t,i, while ltrav
′

t,i is left unused as the precise

location of the robot within the segment does not have any

effect on segment estimation.

3) Salient-Region-Recognition Observation Model: In this

model we want to measure the likelihood of simultaneously

observing the matched salient regions given that the robot is

at a given location. We weigh each particle x
′′

t,i in S
′′

t with

w
′′

t,i = p(z
′′

t |x
′′

t,i) for resampling (with added 20% random

noise, also to combat population degeneracy) to create belief

St+1 by taking into account the salient region matches z
′′

t

using:

p(z
′′

t |x
′′

t,i) =

Mt
∏

k=1

p(omatcht,k|x
′′

t,i) (7)
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1 2 3 4 5 6 7 8 9

Fig. 7. Examples of images in each of the nine segments (with corresponding label) of ACB (first row), AnFpark (second row), and FDFpark (third row)

Given that each salient-region match observation is in-

dependent, we simply multiply each of them to calculate

the total likelihood. The probability of an individual match

p(omatcht,k|x
′′

t,i) is modeled by a Gaussian with the standard

deviation σ set to 5% of the environment map’s diagonal.

The likelihood value is the probability of drawing a length

longer than the distance between the particle and the location

where the matched database salient region is acquired. σ

is set proportional to the map diagonal to reflect how the

larger the environment, the higher the level of uncertainty. The

added noise is twice that of segment observation because the

salient region observation probability density is much narrower

and we find that 20% keeps the particle population diverse

enough to allow for dispersion and correct re-convergence

in a kidnapped robot event. Also, although the SIFT and

salient feature vector matching scores (explained in section

II-B2 above) are available for weights, we do not use them

in the likelihood function directly. These matching scores

were thresholded to come up with the positive salient region

matches we are now considering in this section. We do

not reason with match quality because the thresholds alone

eliminate most false positives.

Figure 6 illustrates how the system works together.

III. TESTING AND RESULTS

We test the system at 3 sites (each has 9 segments) on

campus with example scenes of each occupying a row of figure

7. The same data is used to test the gist model [18] in segment

classification. In this work we localize to a coordinate location

within the map. The first site is the 38.4x54.86m Ahmanson

Center for Biological Research (ACB) building complex (first

row of figure 7). Most of the surroundings are flat walls with

little texture. The second site (second row) is a 82.3x109.73m

area comprising two adjoining parks full of trees: Associate

and Founders park (AnF). The third testing (third row) site is

the Frederick. D. Fagg park (FDF), a 137.16x178.31m open

area where large portions of the scenes are the sky.

We also compare our system, which employs both local

features (SIFT keypoints within salient regions and salient

feature vector at the salient point) as well as global (gist)

features with two systems that use only salient regions or only

gist features. The back-end Monte-Carlo localization modules

in all three instances are identical. For the SIFT-only system,

we take out the salient feature vector from the region signature

to end up with only SIFT features. Also, in [47] we have

compared our gist system with other place recognition systems

and found that the results are comparable. Thus, the gist-only

localization comparison may also be indicative of what place

recognition systems can do in a metric localization task.

The visual data is gathered using an 8mm handheld cam-

corder carried by a person. There is no camera calibration or

lens distortion correction which may help in salient region

matching. Because the data is recorded at approximately

constant speed and we record clips for individual segments

separately, we use interpolation to come up with the ground-

truth location. Also, the map (edge lengths and node locations)

is currently constructed manually. With this, we calculate the

walking velocity using the distance of a particular path divided

by the amount of time it took for the person to traverse it

(identical to the clip duration). We can place the location of

the start and end of the clip because they are prespecified.

For the frame locations in between, we assume a uniform

capture interval to advance the person’s location properly. In

all experiments, a denoted error signifies a measured difference

(in feet) between the robot belief and this generated ground

truth location. To roughly mimic odometry noise such as

slippage, we add zero-mean Gaussian noise with a standard

deviation 1/6 the average walking speed for each site.

The main issue in collecting training samples is filming time

selection that includes all lighting conditions. Because lighting

space is hard to gauge, we perform trial-and-error to come up

with the times of day (up to 6 per day): from the brightest

(noon time) to the darkest (early evening). Note that 10 of

12 of the testing clips are taken at a different date than the

training clips. As for the two other clips, the testing data was

recorded in the early evening (dark lighting) while training

data was taken near noon (bright lighting). In all, there are

26,368 training and 13,966 testing frames for the ACB cite,

66,291 training and 26,387 testing frames for the AnF site,

and 82,747 training and 34,711 testing frames for the FDF

site.

Currently, we test the system offline on a 16-core 2.6GHz

machine, operating on 160x120 images. We time individual

sub-modules and find that the slowest part by far is the salient

region recognition process (3 seconds on average). This is in

spite of a parallel search implementation using 16 dispatched
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threads that compare input regions with different parts of

the landmark database. The gist and saliency computation

time (also implemented in parallel where each sub-channel

has its own thread) is about 20ms. In addition, the salient

region acquisition (windowing) takes 10ms, while the segment

estimation takes less than 1ms. The back end localization itself

takes less than 1ms as it only uses 100 particles.

A. Experiment 1: Ahmanson Center for Biological Research

(ACB)

Fig. 8. Lighting conditions used for testing at Ahmanson Center for Biology
(ACB). Clockwise from top left: late afternoon (trial 1), early evening (trial
2), noon (trial 4) , and mid-afternoon (trial 3)

This experiment site is chosen to investigate what the

system can achieve in a rigid and less spacious man-made

environment. Each segment (scenes displayed in first row of

figure 7) is a straight line and part of a hallway. Figure

8 depicts different lighting conditions that are tested: late

afternoon (trial 1), early evening with the lights already turned

on (2), mid-afternoon (3), and noon (4).

Table I shows the result with an overall error of 0.98m In

general, the error is uniformly distributed across segments,

although spikes in segments 2 and 5 are clearly visible. The

error rate for segment 2, which comes from trials 1, 2, and

4, occurred because the identified salient regions (mainly the

textured white building and its entrance door in figure 8) are at

the end of the hallway and they do not change sizes as much

even after a 3m robot displacement. It is also the case for the

error spike in segment 5 for trial 4, as the system latches to a

water tower (fifth image of the first row of figure 7).

The errors in segment 5 from trials 3 and 4 (bright lighting)

partially originate from the camera’s exposure control that tries

to properly normalize the range of frames with wide intensity

contrast (the scenes are comprised of very bright sky and dark

buildings) and it ends up darkening the building for a few

seconds — something to consider when selecting a camera to

film outdoor scenes. During this time, the segment estimator

produces incorrect values and the SIFT module is unable to

recognize any regions in the image, which throws off the robot

belief completely. It seems that for the system to fail, all parts

(saliency, SIFT, and gist matching) have to fail.

B. Experiment 2: Associates and Founders Park (AnF)

Fig. 9. Lighting conditions used for testing at Associate and Founders park
(AnF). Clockwise from top left: overcast (trial 1), early evening (trial 2), noon
(trial 4), and mid-afternoon (trial 3)

We compare experiment 1 results with, conceivably, a more

difficult vegetation-dominated site (scenes shown in the second

row of figure 7) that also has longer paths (about twice

the lengths of ACB segments). Figure 9 shows four lighting

conditions tested: overcast (trial 1), early evening with lights

already turned on (2), mid-afternoon (3), and noon (4). As

we can see in the images, there are fewer rigid structures and

the few object that exist in the environment (lamp posts and

benches) tend to look small with respect to the image size.

Also, objects can either be taken away (e.g. the bench in the

top right image in figure 9) or added such as service vehicles

parked or a large storage box placed in the park for a day. In

addition, whole scene matching using local features would be

hard because the tree leaves produce high numbers of random

texture-like patterns that significantly contaminate the process.

The results (table II) reveal an overall error of 2.63m

but with noticeably higher performance disparity between

segments. The errors are also different across trials for which

segment produces high displacements. On average (last col-

umn of the table) though, all segments have roughly equal

errors. Between trials, the error difference between the two dim

lighting trials (3 and 4) and the bright lighting trials (1 and 2)

is significant. It seems that low lighting, or more importantly

the lack of unpredictable and ephemeral sunlight (observe the

grass in the bottom two images of figure 9), allows for uniform

lighting and better correlation between training and testing

runs. In the end, although the results are worse than experiment

1, it is quite an accomplishment given the challenges presented

by the scenes and no by-hand calibration is done in moving

from the first environment to the second.

C. Experiment 3: Frederick D. Fagg park (FDF)

The third site is the Frederick D. Fagg park, an open area

used to assess the system’s response on sparser scenes (third

row of figure 7) and in an even larger environment (the
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TABLE I
AHMANSON CENTER FOR BIOLOGY EXPERIMENTAL RESULTS

Trial 1 Trial 2 Trial 3 Trial 4 Total

Segment number error number error number error number error number error

frames (m) frames (m) frames (m) frames (m) frames (m)

1 387 0.96 410 1.02 388 0.73 411 0.75 1596 0.87

2 440 1.87 436 2.87 461 0.70 438 1.66 1775 1.76

3 465 1.06 485 0.69 463 0.89 474 1.35 1887 1.00

4 359 0.99 321 0.96 305 1.00 249 0.98 1234 0.98

5 307 1.17 337 0.62 321 1.77 319 1.96 1284 1.37

6 556 0.60 495 1.15 534 0.75 502 0.56 2087 0.76

7 438 0.48 445 0.60 398 0.85 400 0.82 1681 0.68

8 290 0.59 247 1.14 274 0.77 288 0.88 1099 0.83

9 341 0.66 373 0.50 313 0.60 296 0.59 1323 0.59

Total 3583 0.93 3549 1.08 3457 0.87 3377 1.06 13966 0.98

TABLE II
ASSOCIATE AND FOUNDERS PARK EXPERIMENTAL RESULTS

Trial 1 Trial 2 Trial 3 Trial 4 Total

Segment number error number error number error number error number error

frames (m) frames (m) frames (m) frames (m) frames (m)

1 698 1.21 802 1.88 891 4.19 746 1.76 3137 2.36

2 570 2.40 328 1.90 474 5.76 474 1.90 1846 3.05

3 865 1.61 977 3.32 968 2.01 963 4.65 3773 2.93

4 488 3.20 597 1.73 688 1.57 632 2.85 2405 2.28

5 617 3.34 770 1.33 774 1.70 777 3.36 2938 2.39

6 1001 1.55 1122 1.80 1003 3.28 1098 3.38 4224 2.50

7 422 1.09 570 4.01 561 2.45 399 2.80 1952 2.68

8 598 2.52 692 3.11 797 2.21 768 1.68 2855 2.35

9 747 2.14 809 1.66 862 3.54 849 5.04 3267 3.14

Total 6006 2.06 6667 2.29 7018 2.89 6706 3.21 26397 2.63

segments are about 50% longer than the ones in the AnF

experiment, three times that of ACB). Figure 10 represents the

4 lighting conditions tested: late afternoon (trial 1), evening

(2), noon (3), and mid-afternoon (4).

Fig. 10. Lighting Conditions use for Testing at Frederick D. Fagg park (FDF).
Clockwise from top left: late afternoon (trial 1), evening (trial 2), noon (trial
4), and middle of afternoon (trial 3).

Table III shows the results, listing an overall error of 3.46m,

worse than the other two sites. It seems that an increase in

environment size affects the results. However, the more direct

cause is scale. Currently, the system uses the location of where

the matched database salient region is found as a hypothesis

of where the robot currently is. Because the SIFT module can

perform scale-invariant matching (with the scale ratio included

as part of the result), the system limits the matching-scale

threshold to between 2/3 and 3/2. This is not entirely effective

as a scale ratio of 0.8 (the region found is smaller than the

one matched in the database) can translate to a geographical

difference of 5m. This is because, in this environment, far

away buildings are salient and, as the robot moves toward

them, their appearance hardly changes. Thus, although these

are stable localization cues, they are not good for fine-grained

location pin-pointing. We would need closer (< 3m away)

regions.

One encouraging point is that the system seems to be able to

cope with a variety of lighting conditions. The results are better

than the preliminary results [43] because of better lighting

coverage in training despite the fact that training and testing

are done on separate days. In this site, for example, we have

dark (trial 1 and 2) and bright (trials 3 and 4) conditions, even

with long shadows cast on the field (trial 4 scene in figure 10).
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TABLE III
FREDERICK D. FAGG PARK EXPERIMENTAL RESULTS

Trial 1 Trial 2 Trial 3 Trial 4 Total

Segment number error number error number error number error number error

frames (m) frames (m) frames (m) frames (m) frames (m)

1 881 1.44 670 1.98 847 2.88 953 1.41 3351 1.90

2 788 6.57 740 4.92 797 2.30 878 3.99 3203 4.42

3 858 3.45 696 4.12 922 1.49 870 2.14 3346 2.71

4 837 4.54 740 4.28 837 1.97 821 4.59 3235 3.83

5 831 3.42 748 3.78 694 4.69 854 3.03 3127 3.68

6 1680 5.52 1565 3.84 1712 3.24 1672 3.79 6629 4.10

7 1037 3.44 923 2.97 857 3.34 894 3.35 3711 3.28

8 1172 4.94 1211 3.22 1355 2.19 1270 3.36 5008 3.38

9 739 3.03 825 2.73 794 3.67 743 3.75 3101 3.29

Total 8823 4.18 8118 3.54 8815 2.82 8955 3.29 34711 3.46

TABLE IV
MODEL COMPARISON EXPERIMENTAL RESULTS

System

ACB AnF FDF

Trial 1 Trial 2 Trial 3 Trial 4 Trial 1 Trial 2 Trial 3 Trial 4 Trial 1 Trial 2 Trial 3 Trial 4

err. (m) err. (m) err. (m) err. (m) err. (m) err. (m) err. (m) err. (m) err. (m) err. (m) err. (m) err. (m)

gist 7.81 7.37 9.12 6.09 13.09 18.24 20.12 14.28 23.96 26.12 24.46 27.25

SIFT 1.60 1.69 1.92 1.67 2.70 2.99 3.46 3.70 4.58 4.96 3.89 4.73

bio-system 0.93 1.08 0.87 1.06 2.06 2.29 2.89 3.21 4.18 3.54 2.82 3.29

D. Experiment 4: Sub-module Analysis

Table IV shows a comparison of systems that use only

local features (SIFT), only global features (gist features), and

the presented bio-system, which uses both global and local

features. The gist-only system cannot localize to the metric

level because it can only pin-point location to the segment

level and some segments have lengths that are more than 100

feet. The SIFT-only system, on the other hand, is close to

the presented system. However, there is a clear improvement

between the two. In the ACB site, the improvement is 42.53%,

from 1.72m in SIFT-only to 0.98m in our system, (one-sided

t-test t(27930) = −27.3134, p < 0.01), while the AnF site

is 18.65%, from 3.23m to 2.63m (one-sided t-test t(52792) =
−15.5403, p < 0.01), and the FDF site is 23.74% from 4.53m

to 3.46m (one-sided t-test t(69420) = −32.3395, p < 0.01).

On several occasions, the SIFT-only system completely mis-

placed the robot. In our system, whenever the salient region

(SIFT and salient feature vector) matching is incorrect, the

gist observation model is available to correct mistakes. In

contrast, the SIFT-only system can only make a decision

from one recognition module. Additionally, in kidnapped robot

situations (we inserted 4 instances per run for ACB and AnF,

and 5 for FDF, about once every several thousand frames),

the presented system is faster to correctly relocalize because

it receives twice the amount of observations (both global and

local) as the SIFT only system.

The search time for the SIFT-only model is also much

longer than our system. In our system, we use the gist features

(segment estimation) not only as an observation model, but

also as a context information for order of comparison between

input and stored salient regions. That is, we compare the

database salient regions from the most likely segment first.

By the same token, we also use the salient feature vector as

an initial comparison (if the salient feature vector between

reference and test region differs significantly, there is no need

for SIFT matching). In [48] we showed that the technique cuts

down search time by at least 87%, a speed up of 8.

IV. DISCUSSIONS AND CONCLUSION

We introduced new ideas in vision localization which have

proven to be beneficial in our testing. The first is the use

of complementary gist and saliency features, implemented

in parallel using shared raw feature channels (color, inten-

sity, orientation), as study of human visual cortex suggests.

Through the saliency model, the system automatically selects

persistently salient regions as localization cues. Because the

system does not perform whole-scene matching (only regions),

the process is more efficient in the number of SIFT keypoints

compared. Also, the gist features, which come with saliency at

almost no computation cost, approximate the image layout and

provide segment estimation. The system then performs multi-

level localization by using both as MCL observations. Many

scene-based methods [6]–[8] that are limited to recognizing

places indicate that their results can be used as a filter for

more accurate metric localization using finer yet more volatile

local features. Our system is the implementation of such an

extension.

Currently, segment estimation is used for both localization

and match ordering; we compare input regions with database

landmarks from the most likely segments first. Because robots

are real-time systems, it is a given that the database search ends

after the first match is found; the system does not have time to

consider all positive matches to find the best. Therefore, the

ordering indirectly influences the salient region recognition



IEEE TRANSACTIONS ON ROBOTICS 12

step. This method of utilization of multiple experts, which is

in the spirit of hierarchical recognition, has been shown [49],

[50] to speed up the database search process.

As for performance benchmark, to the best of our knowl-

edge, we have not seen other systems tested in multiple

outdoor environments localizing to coordinate level. At 2005

ICCV Vision contest [51], teams have to localize from a

database of GPS-coordinates-tagged street-level photographs

of a stretch (1 city block) of urban street. The winner [52]

returns 9/22 answers within 4 meters of the actual location.

Most purely vision-based systems are tested indoors and report

just the recognition rate (whether the current view is correctly

matched with stored images), not the location.

One issue to discuss is the system’s readiness for au-

tonomous localization and navigation. With the current setup,

testing is done uni-directionally: all images are taken from

the same perspective, the middle of the road. In autonomous

control using lane following, a bit of swerving may occur. We

may need to consider training the system on a multidirectional

data set. However, recording from every perspective in the

environment may put the recognition systems, both segment

classification and salient region recognition, past their limits.

A workable compromise would be to have the camera pan left

to right (up to 45◦) while the robot is on the road. We can

also add, in each of the stored salient regions, where the road

should be with respect to it, to aid road recognition.
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