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Abstract—In this paper, we propose a biologically inspired
framework for robot learning based on demonstrations. The
dynamic movement primitive (DMP), which is motivated by neu-
robiology and human behavior, is employed to model a robotic
motion that is generalizable. However, the DMP method can only
be used to handle a single demonstration. To enable the robot to
learn from multiple demonstrations, the DMP is combined with
the Gaussian mixture model (GMM) to integrate the features of
multiple demonstrations, where the conventional GMM is fur-
ther replaced by the fuzzy GMM (FGMM) to improve the fitting
performance. Also, a novel regression algorithm for FGMM is
derived to retrieve the nonlinear term of the DMP. Additionally,
a neural network-based controller is developed for the robot
to track the generated motions. In this network, the cerebel-
lar model articulation controller is employed to compensate for
the unknown robot dynamics. The experiments have been per-
formed on a Baxter robot to demonstrate the effectiveness of the
proposed methods.

Index Terms—Cerebellar model articulation controller
(CMAC), dynamic movement primitive (DMP), fuzzy Gaussian
mixture model (FGMM), Gaussian mixture regression (GMR),
neural control, robot learning from demonstrations (LfDs).

I. INTRODUCTION

I
N THE recent decades, robots have been widely applied

in both industrial manufacturing and the daily life of

individuals. For industrial robots, learning from demonstra-

tions (LfDs) [1] is one of the most efficient and domi-

nant ways to acquire skills that can be directly used in

manufacturing. This way is also applicable and even more
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important for robots operating in the context of daily life, such

as the humanoid robot assistants, the robotic prostheses and

the robotic exoskeletons [2]. For humanoid robot assistants,

human-like actions that are imitated from the demonstrator

make them more friendly to users [3], and the complexity of

the global motion planning can be reduced through LfD. For

prosthetic manipulators, the control methods usually require

continuously updated commands sent from the human; for

example, the signals collected from the motor cortex [4] in

the brain computer interface, which heighten the load of the

operator. Employing the visual evoked potentials to generate

motion commands can reduce this load partly [5]. And to fur-

ther simplify the control, storing the motions learned from the

demonstrations would be an alternative method. However, the

flexibility of the robot will be limited if the motions are pre-

planned. Hence, it is necessary to develop an effective model

for LfD to generalize motions.

The dynamical system (DS) is a powerful tool to model

the state evolution of a system. It can be employed to rep-

resent a set of trajectories that have the same attractor,

which serves as the target position of the motion. Then the

target of the motion can be adjusted automatically using

the object recognition technologies, such as the multimodal

perception [6], [7]. The neural networks (NNs), for instance,

extreme learning machine, have been utilized to learn the

DS-based model [8]–[11]. However, the usage of the NNs

complicates the internal structure of the DS and makes the

motion learning inefficient.

The dynamic movement primitive (DMP) [12], [13] offers a

compact implementation of the motion model using DS. The

concept of motor primitives that human behavior is composed

of a sequence of basic actions [14], [15] is introduced in this

model, enabling the robot to reproduce human-like motions.

Additionally, this model can be used to learn the trajectories

with uncertainties when combined with the reinforcement

learning [16]. Hence in this paper, the DMP is chosen as

the basis of our motion model. The generalization ability of

the DMP is guaranteed by a second-order DS coupled with

a nonlinear term, and the nonlinear term is the objective of

model learning.

The traditional DMP model [12] can only be used to han-

dle a single demonstration. However, multiple demonstrations

are necessary because optimal motion is difficult to obtain

through only one-time teaching, even for an expert [17].

Additionally, more information can be extracted from multiple

demonstrations, such as the order of the subtasks [18] and the
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features that store the variation of the human motions [19].

To cognize more features, the data captured from multiple

demonstrations should be integrated into the nonlinear term

of the DMP model. The probabilistic methods have shown

their feasibility to tackle this problem [20]–[23]. For example,

the Gaussian mixture regression (GMR) [24], which is based

on a probabilistic model named the Gaussian mixture model

(GMM), has been employed to extract the important features

of the task [23]. The GMR has also been utilized to construct

the DS model called the stable estimator of DSs for stable

motions [20]. Inspired by these works and further consider-

ing the fitting performance of the GMM, the fuzzy GMM

(FGMM) [25] is employed to fuse the features of multiple

demonstrations into the nonlinear term of the DMP in this

paper, which has been proposed to improve the learning effi-

ciency of the active curve axis GMM [26] and has shown

better nonlinearity fitting performance than the conventional

GMM. A novel regression algorithm for the FGMM is fur-

ther developed to retrieve the nonlinear term, according to the

geometric significance of the GMR.

In practice, only considering the motion modeling is not

sufficient for a stable LfD framework because of the dynamic

and unstructured environments, which will result in many

disturbances and the variation of the robot’s dynamics. If

the manipulator is controlled using a model-based control

method [27], the situation mentioned above will affect the

control performance and even make the system unstable.

Considering the uncertainties of the robot dynamics, various

approximation tools, such as NNs [28]–[30] and fuzzy logic

systems [31] have been integrated into the control design to

approximate the uncertainties. Recently, NN has served as a

promising computational tool in various fields; for example,

the primal-dual neural network has been employed to solve a

complicated quadratic programming problem [32].

For the dynamics controllers that employ the NNs, the learn-

ing efficiency is an important aspect that should be considered,

because there is a tradeoff between the approximation accu-

racy and the efficiency of the NNs. The cerebellar model

articulation controller (CMAC) is a type of NNs that have

been adopted widely in dynamics control design [33]–[36].

The structure of the CMAC is inspired by the information

processing mode of the cerebellum [35]. This NN is not

fully connected to associative memory; thus, local weights

are updated during each learning cycle to provide faster

learning compared to fully connected NNs, without func-

tion approximation loss [34]. In this paper, we have also

developed a CMAC-NN-based controller to guarantee that the

generated motions can be performed accurately and steadily

under the output constraint. This constraint exists commonly

in real-world robotic systems, such as nonholonomic mobile

robots [37]–[39], and its effect can be compensated with the

help of a barrier Lyapunov function (BLF). The CMAC is

employed to approximate the unknown dynamics of the robot.

The main contribution of this paper is the development of

a complete robot learning framework. The control scheme is

shown in Fig. 1. The DMP combined with the FGMM is

used to model the demonstrations in Cartesian space. Then the

generated motions are transformed into the trajectories in joint

Fig. 1. Control scheme.

space using the inverse kinematics, and a CMAC-NN-based

controller is developed to track the trajectories. Until now,

most of this papers on this subject have only concentrated on

the motion modeling without considering the performance of

the dynamics controller; however, this paper accounts for these

two aspects to develop a more complete robot LfD framework.

The remainder of this paper is organized as follows.

Section II introduces the motion model and the learning

method. In Section III, the NN-based controller for trajec-

tory tracking is designed with the proof of the stability. The

experiments are presented in Section IV. And Section V con-

cludes this paper. For the convenience of the readers, the main

notations used in this paper are presented in Table I.

II. MOTION MODELING

A. Dynamic Movement Primitive

The DMP can be employed to represent the evolutions of

various state variables in skill transfer, for example, position

signals [12] and stiffness signals [40], [41]. For the robotic

motion in Cartesian space, both the position and the orientation

of the end-effector can be modeled with the DMP to achieve

the generalization of the motion.

The DMP model for task-space motion is defined as

follows [12]:

τsv̇ = d1

(

xg − x
)

− d2v − d1

(

xg − x0

)

s + d1f (s)

τsẋ = v (1)

where x ∈ R denotes the position variable in Cartesian space

with initial position x0 and goal position xg, v ∈ R is the

Cartesian velocity, v̇ ∈ R is the Cartesian acceleration, d1, d2 ∈
R are the positive constants to be specified, τs > 0 is the

temporal-scaling factor, and s ∈ R is defined as the state of

the following DS called the canonical system [12]:

τsṡ = −αss (2)

where αs > 0 denotes the decay rate. Usually, the initial value

of s is set as s0 = 1; f (s) is a continuous nonlinear function

defined as follows [12]:

f (s) =
ns

∑

i=1

ωsiψi(s)s (3)

with

ψi(s) =
exp

[

−(s − bsi)
2/(2asi)

]

∑ns

i=1 exp
[

−(s − bsi)
2/(2asi)

] (4)
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TABLE I
NOMENCLATURE

Fig. 2. Physical significance of DMP.

where ψi(s) is the normalized Gaussian function with the mean

bsi ∈ R and the variance asi ∈ R, ns is the number of the

Gaussian functions. ωsi ∈ R is the weight of the ith Gaussian

function.

As shown in Fig. 2, the DMP model (1) can be regarded

as a spring-damper system propelled by a nonlinear force, the

magnitude of which is

Fv = −d1

(

xg − x0

)

s + d1f (s) (5)

where (xg − x0) serves as the spatial-scaling factor. According

to (2), s is monotonically decreasing with the initial value

s0 > 0 and will converge to zero. Therefore, f (s) and Fv will

converge to zero, and the position variable x will reach the

Fig. 3. GMM and regression.

attractor xg, which means that the goal of the motion can be

modulated by changing the value of xg. Additionally, the dura-

tion of the motion is determined by the factor τs. These two

characteristics are essential for a generalizable motion model.

B. Learning DMP Model From Multiple Demonstrations

The conventional method used for learning in a DMP model

is to solve a linear regression problem, where the demonstra-

tion is assumed as the data generated from the model and the

expected nonlinear function of f (s) is defined as follows [12]:

f ∗(s) = τsẍ(▽s) + d2ẋ(▽s)

d1
−

(

xg − x(▽s)
)

+
(

xg − x0

)

s

(6)

where x(·) is the function of a given demonstration trajectory,

▽s denotes the inverse function of s(t) = s0 exp(−αst/τs),

which is the solution of ( 2). With the data obtained from (6),

the weight vector ωs = {ωs1, . . . , ωsns} can be estimated by

using the least squares method (LSM).

When nd demonstration trajectories {xi(t)} are given,

multiple expected nonlinear functions, {f ∗
i (s)}, for i =

1, 2, . . . , nd, can be obtained. Then the GMR, which is based

on the GMM, can be employed to fuse the data obtained from

these functions (see Fig. 3).

Assume that Ob = {o1, . . . , ot, . . . , onp} with ot =
[o1t, o2t] ∈ R2 is an observed dataset generated from the map-

ping sets {f ∗
1 , . . . , f ∗

nd
} through discretization, where o1t ∈ s,

o2t ∈ f ∗
i (o1t), and np is the number of the data ot. The dis-

tribution of Ob is modeled by the GMM with finite Gaussian

distributions, the probability density of which is [23]

p(Ob|�) =
np
∏

t=1

p(ot|�) =
np
∏

t=1

( ng
∑

i=1

αip(ot|θi)

)

(7)

where � = (α1, . . . , αng , θ1, . . . , θng), αi ∈ R is the mixing

weight with
∑ng

i=1 αi = 1, ng is the number of the Gaussian

distributions, and θi = (μi, σi) is the parameter of the ith

Gaussian distribution

p(ot|θi) =
exp

(

−0.5(ot − μi)
Tσ−1

i (ot − μi)

)

2π
√

|σi|
(8)

where μi ∈ R2 is the mean and σi ∈ R2×2 is the covariance

matrix

μi =
[

μ1i

μ2i

]

, σi =
[

σ1i σ12i

σ12i σ2i

]

. (9)
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Fig. 4. Cross sections of the generalized SGM in principal plane.

The maximum likelihood estimation is employed to esti-

mate the parameters of the GMM. Then the GMR is utilized

to retrieve the composite expected function f̄ ∗(s), which is

defined as [24]

f̄ ∗(s) =
ng

∑

i=1

βi(s)ηi(s) (10)

with

βi(s) = αiG(s|μ1i, σ1i)
∑ng

i=1 αiG(s|μ1i, σ1i)
(11)

ηi(s) = μ2i + σ12i

σ1i

(s − μ1i) (12)

where G(s|μ1i, σ1i) denotes the 1-D Gaussian distribution

function with the mean μ1i and the variance σ1i. Using the

data obtained from (10) and the LSM, the weights in (3) can

be estimated.

C. Improvement to Fitting Performance Using FGMM

Considering the nonlinearity of the demonstrations, the con-

ventional GMM is replaced by the FGMM to improve the

fitting performance, which is based on the generalized single

Gaussian model (SGM).

1) Generalized SGM: For a 2-D generalized SGM [26],

one of its axes is beeline and the other is bent, which cor-

respond to the conventional Gaussian model and the AcaG

model, respectively, (see Fig. 4). The 2-D plane that the curve

principal axis is located in is referred to as the principal plane.

The observations are first transformed to the principal plane

by the principal component analysis (PCA) method [26]

rt = Q(ot − T) (13)

where the PCA is used for coordinate transformation, T ∈ R2

is the translation vector that includes the means of the sam-

ple, Q ∈ R2×2 is the rotation matrix which is composed of

the eigenvectors of the covariance matrix, and rt ∈ R2 is the

transformed point of ot which is located in the principal plane.

The curve principal axis is chosen as a parabola to fit the point

set {rt} [26]

r̄2t = apr̄2
1t + bp (14)

where r̄t = [r̄1t, r̄2t] denotes the point in the curve principal

axis, and ap, bp ∈ R are computed by using the weighted least

squares method.

To derive the probability density of Ob, we first consider

the AcaG model, the axis of which is located in the curve (14).

(a)

(b)

Fig. 5. Regression for FGMM. (a) FGMM and the axes of its Gaussian
components. (b) Result of regression.

Assume that the projection points of rt in the curve is zt =
{z1t, . . . , zjt, . . . , zJtt}, where Jt is the number of the projection

points of rt. In the principal plane, the center of the AcaG is

(0, 0); thus, the probability of the point zjt is [26]

p1

(

zjt

)

=
exp

(

−0.5 l2aj(rt)σ̄
−1
1

)

√
2π |σ̄1|

(15)

where σ̄1 ∈ R is the variance of the AcaG model, and laj(rt)

denotes the arc length between (0, 0) and zjt.

For the conventional Gaussian model in generalized SGM,

its center is located in the projection point zjt. Therefore, given

zjt, the probability density is [26]

p2

(

ot|zjt

)

=
exp

(

−0.5 l2bj(rt)σ̄
−1
2

)

√
2π |σ̄2|

(16)

where σ̄2 ∈ R is the variance of the conventional Gaussian

model, and lbj(rt) denotes the distance between zjt and rt.

Then the probability distribution of the generalized SGM

can be computed by

p(ot|θ) =
Jt

∑

j=1

exp
(

−0.5 l2aj(rt)σ̄
−1
1 − 0.5 l2bj(rt)σ̄

−1
2

)

2π
√

|σ̄1σ̄2|
(17)

where θ = (Q, T, ap, bp, σ̄1, σ̄2) includes the parameters of

the generalized SGM.
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2) Fuzzy GMM: Assume that the parameter set of the ith

generalized SGM is θi = (Qi, Ti, api, bpi, σ̄1i, σ̄2i), and the

transformed point is rit, for i = 1, 2, . . . , ng. The FGMM

constructs a novel mixture model by replacing (8) with (17),

and introduces the fuzzy membership in the EM algorithm

to effectively solve the problem of the parameter estima-

tion. The iterative procedure of the EM algorithm for FGMM

is described in [25] and [42], which improves the learning

performance of the conventional method.

D. Regression for FGMM

Since the GMR employed for the learning of the DMP is

based on the conventional GMM, a new regression algorithm

for FGMM should be derived. The parameters of the FGMM

(Ti, Qi) involve the means of the Gaussian models in the orig-

inal data space, i.e., the information of the means, which is

employed in GMR, is implied in (Ti, Qi) through the PCA

transformation. Therefore, the regression algorithm for FGMM

cannot be derived from (10) directly.

To derive the regression algorithm for FGMM, the geomet-

rical significance of GMR is first discussed. The result of the

GMR, (10), can be rewritten as

f̄ ∗(s) =
ng

∑

i=1

βi(s)(aris + bri) (18)

where ari = σ12i/σ1i and bri = μ2i−μ1iσ12i/σ1i. Note that the

item (aris+bri) is a linear function, and its geometric represen-

tation is a beeline, where the axis of the ith Gaussian model is

located. Therefore, the GMR can be regarded as the weighted

summation of a set of linear functions, where the weight βi(s)

is the normalized probability of the Gaussian model along the

axis of the input.

For the FGMM, the corresponding axis, denoted by yci(s),

can be obtained through the PCA inverse transformation of

the curve principal axis

c̄it = Q−1
i cit + Ti (19)

where cit ∈ R2 and c̄it ∈ R2 denote the points in the curve

principal axis and in axis yci(s), respectively. The weight of

the point c̄it is computed by

βci(s) =
αi

∑Jit

j=1 G
(

lij(1)(cit)|0, σ̄1i

)

∑ng

i=1 αi

∑Jit

j=1 G
(

lij(1)(cit)|0, σ̄1i

)
. (20)

According to the geometrical significance discussed above, the

regression for FGMM (see Fig. 5) can be written as

F̄R(s) =
ng

∑

i=1

βci(s)yci(s). (21)

III. ADAPTIVE CMAC-NN-BASED CONTROL

To design a joint-space controller for tracking the movement

generated from the motion model, the movement is first trans-

formed into an n-dimensional trajectory qd ∈ Rn in joint space

using the inverse kinematics, which is bounded and smooth. In

the design process of the controller, the CMAC-NN is utilized

Fig. 6. Structure of CMAC.

to estimate the dynamics uncertainties, such as unknown non-

linearities and varying payloads, and the BLF is employed to

facilitate the control design with the output being constrained.

A. Dynamics of Robot Manipulator

The dynamics of an n–link manipulator is described as

follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + τd (22)

where q ∈ Rn, q̇ ∈ Rn, and q̈ ∈ Rn denote the joint position, the

joint velocity, and the joint acceleration, respectively. M(q) ∈
Rn×n is the inertia matrix which is symmetric positive definite,

C(q, q̇) ∈ Rn×n is the Coriolis and centripetal matrix, and

G(q) ∈ Rn is the gravity vector. τ ∈ Rn is the control torque

and τd ∈ Rn is assumed as a bounded external torque caused

by the unknown disturbance, with ‖τd‖ ≤ τ̄d, where τ̄d > 0

is a known bound. The matrix (Ṁ − 2C) is skew-symmetric,

thus we have

νT
(

Ṁ − 2C
)

ν = 0,∀ν ∈ Rn. (23)

B. CMAC Neural Networks

The CMAC-NN is an efficient functional approximator with

fast learning rate. The structure of the NN is shown in Fig. 6,

which consists of five spaces. Considering the estimation error,

any C1-function H(X ) : RnI → Rno approximated by the

CMAC-NN is presented as follows [34]:

H(X ) = WTB(X ) + ǫ (24)

where X = [X1,X2, . . . ,XnI ]
T ∈ RnI is the input vector, W ∈

Rnl×no is the weight matrix, nl is the number of the layouts

of the NN, B(X ) = [B1(X ), . . . , Bk(X ), . . . , Bnl
(X )]T ∈ Rnl

is the receptive field function vector with

Bk(X ) = exp

[

nI
∑

i=1

−
(

Xi − b̄ik

)2

2ā2
ik

]

(25)

where b̄ik is the mean and ā2
ik is the variance. ǫ =

[ǫ1, . . . , ǫi, . . . , ǫno ]T ∈ Rno is the approximation error with

|ǫi| ≤ ǭi, and ǭi is a known bound.
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C. Barrier Lyapunov Function

The BLF is utilized to solve the constraint problem of the

manipulator controller, which is defined as follows [43]:

V(ξ) = k2
v

π
tan

(

πξ2

2k2
v

)

(26)

where ξ ∈ R denotes the state of the system, with |ξ(0)| < kv,

and kv > 0 as a constant constraint.

Lemma 1: For a positive Lyapunov candidate function V(t),

which is continuously differentiable with bounded initial value

V(0), the solution is uniformly bounded if the following

inequality holds [43]:

V̇ ≤ −σvV + ρv (27)

where σv > 0 and ρv > 0.

D. Control Design

Define the tracking errors as e1 = [e11, e12,

. . . , e1n]T = q − qd, and e2 = [e21, e22, . . . , e2n]T = q̇ − γ ,

where γ designed later in (31) is a function of e1 and q̇d.

Then the closed-loop dynamics is written as follows:

Mė2 + Ce2 = τ + τd − Mγ̇ − Cγ − G. (28)

Considering that the output is constrained by |e1i| < kbi,

for i = 1, 2, . . . , n, the first part of the Lyapunov candidate

function V = V1 + V2 is chosen as follows [43]:

V1 =
n

∑

i=1

k2
bi

π
tan

(

πe2
1i

2k2
bi

)

+ 1

2
eT

2 Me2 (29)

where the BLF is employed. Taking the derivative of V1 yields

V̇1 =
n

∑

i=1

e1i(e2i + γi − q̇di)

cos2

(

πe2
1i

2k2
bi

) + eT
2 (τ + τd − Mγ̇ − Cγ − G).

(30)

Inspired by Lemma 1, γ is designed as

γ = −Ke

⎡

⎢

⎢

⎢

⎢

⎣

k2
b1

e11π
sin

(

πe2
11

2k2
b1

)

cos

(

πe2
11

2k2
b1

)

...

k2
bn

e1nπ
sin

(

πe2
1n

2k2
bn

)

cos

(

πe2
1n

2k2
bn

)

⎤

⎥

⎥

⎥

⎥

⎦

+ q̇d (31)

where Ke = diag(ke1, . . . , kei, . . . , ken), with kei > 0.

Then (30) is rewritten as

V̇1 = −
n

∑

i=1

kei

k2
bi

π
tan

(

πe2
1i

2k2
bi

)

+
n

∑

i=1

e1ie2i

cos2

(

πe2
1i

2k2
bi

)

+ eT
2 (τ + τd − Mγ̇ − Cγ − G). (32)

Considering the uncertainties of the matrices M, C, and G,

we further define the uncertain terms in (32) as

H∗(ē, qr) = Mγ̇ + Cγ + G (33)

where ē = [e1, e2]T and qr = [qd, q̇d, q̈d]T . For simplification,

it is assumed that the trajectory is tracked perfectly,

i.e., ē = 0 ∈ R2×n. Then the function H∗(ē, qr) can be

rewritten as H(qr), which results in the mismatching error

being defined as

εh = H(qr) − H∗(ē, qr). (34)

And according to the mean value theorem, we have [44]

‖εh(ē, qr)‖ ≤ g(‖ē‖)‖ē‖ (35)

where g : R → R is a strictly increasing and globally

invertible function. The function H(qr) is then approximated

by the CMAC-NN

H(qr) = W∗TB(qr) + ǫh (36)

where W∗ ∈ Rnl×n is the ideal NN weights matrix, B(qr) ∈ Rnl

is the receptive-field function vector, nl is the number of the

layouts of the CMAC-NN, and ǫh is the approximation error.

W∗ is defined as

W∗ = arg min
Ŵ

(

sup
qr∈�d

‖H(qr) − ŴTB(qr)‖
)

(37)

where Ŵ is the estimate of W∗ and W̃ = W∗ − Ŵ.

Design the control torque as

τ = −

⎡

⎢

⎢

⎢

⎢

⎣

e11

cos2

(

πe2
11

2k2
b1

)

...
e1n

cos2

(

πe2
1n

2k2
bn

)

⎤

⎥

⎥

⎥

⎥

⎦

−
(

Kp1 + Kp2

)

e2 − Kssgn(e2) + ŴTB

(38)

where the first two terms guarantee the constraints satisfaction,

the third term improves the robustness to disturbance, and the

last term is used to compensate for the dynamics uncertainties.

Substituting (33), (34), (36), and (38) into (32), we have

V̇1 = −
n

∑

i=1

kei

k2
bi

π
tan

(

πe2
1i

2k2
bi

)

− eT
2

(

Kp1 + Kp2

)

e2

− eT
2

(

Kssgn(e2) + W̃TB + δ − εh

)

(39)

where Kp1, Kp2, and Ks are the n×n positive definite diagonal

matrices, with kp2 = λmin(Kp2) and ks = λmin(Ks). δ := ǫh−τd

and δ̄ := ǭh + τ̄d. Selecting kp2 > g(‖ē‖), we have

eT
2 εh ≤ ‖ē‖2g(‖ē‖) < ‖ē‖2kp2 ≤ eT

2 Kp2e2. (40)

Selecting ks > δ̄, we have

− eT
2 (Kssgn(e2) + δ) < 0. (41)

The second part of the V is further chosen as

V2 = 1

2
tr
(

W̃TŴ−1W̃
)

(42)

where Ŵ is the positive definite matrix. Using (40) and (41),

the derivative of V is written as

V̇ = V̇1 + V̇2

≤ −
n

∑

i=1

kei

k2
bi

π
tan

(

πe2
1i

2k2
bi

)

− eT
2 Kp1e2

− tr
[

W̃T
(

BeT
2 + Ŵ−1 ˙̂

W
)]

. (43)
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Fig. 7. Experiment platform.

Design the update law of the NN weights as follows:

˙̂
W = −Ŵ

(

BeT
2 + κŴ

)

(44)

where κ > 0 is the parameter to be adjusted. According to

the Young’s inequality, we have: tr(W̃TŴ) ≤ (−‖W̃‖2
F +

‖W∗‖2
F)/2. Then (43) is further derived as

V̇ ≤ −
n

∑

i=1

kei

k2
bi

π
tan

(

πe2
1i

2k2
bi

)

− eT
2 Kp1e2

− 1

2
κ‖W̃‖2

F + 1

2
κ‖W∗‖2

F

≤ −ρ1V + ρ2 (45)

where ρ2 = (1/2)κ‖W∗‖2
F and ρ1 is defined as

ρ1 = min

(

λmin(Ke),
2λmin

(

Kp1

)

λmax(M)
,

κ

λmax

(

Ŵ−1
)

)

. (46)

Multiplying both sides of (45) by an exponential term eρ1t, we

have: eρ1tV̇ +ρ1eρ1tV ≤ eρ1tρ2. Then the following inequality

is obtained through an integral operation:

1

2
eT

1 e1 ≤ V ≤ e−ρ1tV(0) + ρ2

ρ1

(

1 − e−ρ1t
)

≤ V(0) + ρ2

ρ1
.

(47)

Therefore, considering the closed-loop system including the

robot dynamics (22), the control torque (38) and the NN

update law (44), the tracking error e1 will converge asymptot-

ically to the compact set

�s =
{

e1

∣

∣‖e1‖2 ≤ 2V(0) + 2ρ2

ρ1

}

(48)

providing that V(0) ∈ L∞.

IV. EXPERIMENTAL VERIFICATION

A. Experiment Platform

The effectiveness of the proposed method has been verified

on a Baxter robot, which is a collaborative robot developed

by Rethink Robotics. As shown in Fig. 7, the Baxter has two

7-DOF arms and multiple sensors; for example, the head cam-

era that can be employed to detect objects. In our experiments,

the linear electric grippers are attached to the end positions of

(a) (b)

Fig. 8. (a) Pick-and-place task demonstrated by a human tutor. (b) New
situation.

two arms such that the robot is able to perform pick-and-place

tasks. The built-in Zero-G mode of the robot is utilized for

demonstrations, which allows the arms to be moved freely by

the demonstrator. This mode can be activated by grasping the

cuff of the robot.

B. Motion Learning and Generalization

This group of experiments aims to test the performance of

the proposed DMP-based motion model. The pick-and-place

task is first demonstrated five times by the demonstrator. As

shown in Fig. 8(a), the task is to place the blue cylinder

object into the green canister. The orientation of the gripper

is fixed as: ζrpy = [−π, 0, 0](rad), and the movement trajec-

tories of the end-effector along each direction are recorded

during the demonstrations. The demonstration data is shown

in Fig. 9(a), which is used to learn the motion models. In this

group of experiments, the motion models are employed for

the modeling of the trajectories along the x-axis, y-axis, and

z-axis, respectively. The parameters of the models are set as:

d1 = 25, d2 = (25/2)2, τs = 1.0, and αs = 25/3. The number

of the normalized Gaussian functions is selected as 10, the cen-

ters of which are distributed evenly in the interval [0, 1]. The

duration of motions is normalized as 1s in the learning phase,

and the sampling rate is set as 0.01 s. The nonlinear terms are,

respectively, modeled by the GMM and the FGMM to com-

pare the performance of these two methods. The number of the

Gaussians in each mixture model is selected as 2. The learned

motion models are then employed to generate new motions.

Fig. 9(b) shows the fusion result that is learned with the

GMM, while in Fig. 9(c), the FGMM is employed. The results

show that the FGMM has better performance than the GMM

when the numbers of the Gaussians are equal. At the begin-

ning of the motion generated by the GMM, the characteristic

changes obviously; thus, the GMM has poor performance

when the number of the Gaussians is insufficient. We increase

the number of the Gaussians in the GMM and as shown in

Fig. 9 (d), the performance of the motion model is improved.

We use the mean square error (MSE) to quantify the accuracy

of the estimations

MSE = 1

nd

nd
∑

i=1

‖xi − x̂‖2

where nd is the number of the demonstration trajectories, xi

denotes the demonstration trajectory, and x̂ denotes the learned
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(a) (b)

(c) (d)

Fig. 9. Demonstrations and the reproductions generated from the motion models. (a) Demonstration trajectories along x-axis, y-axis, and z-axis. Learned
motion using (b) GMM with two Gaussians, (c) FGMM with two Gaussians, and (d) GMM with three Gaussians.

Fig. 10. Generalization.

trajectory. The results are shown in Table II, showing that the

errors of the FGMM are smaller than the errors of the GMM

when the numbers of the Gaussians are equal.

The generalization ability of the model is verified in the sec-

ond experiment. As shown in Fig. 8(b), the canister is moved

to a new place, and we take this action at the beginning of the

motion and halfway. The head camera of the robot is employed

to measure the position of the canister, and the coordinate of

the canister is used to adjust the goal parameter xg of the

motion model. In both situations, the motions all evolve to

TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED METHODS

the new goal as shown in Fig. 10, which indicates that the

generalization ability of the DMP model is inherited.

C. Verification of the NN-Based Controller

In this group of experiments, the performance

of the proposed NN-based controller is verified. Considering

the learning efficiency of the NN, two joints (w0 and w1)

of the robot are selected to track the given trajectories, which

are defined as follows:
{

ζw0 = 0.5 sin(2π t/3) + 1.0

ζw1 = 0.5 cos(2π t/3) + 0.2 (rad).

The weights of the NN are initialized as 0, and the centers

of the receptive-field functions are distributed evenly in the

intervals [0.2, 1.8] and [0.0, 1.0].

In the first experiment, a controller without NN learning

is used to track the given trajectories, while in the second

experiment, the neural learning of the controller is enabled.

The experiment results are shown in Fig. 11(a)–(f), where the
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Results of the comparison experiments that are used to verify the NN-based controller. Desired trajectories and the actual trajectories of the joints
(a) w0 and w1 without NN learning and (b) w0 and w1 with NN learning. The tracking errors of the joints (c) w0 and w1 without neural learning and
(d) w0 and w1 with neural learning. (e) Compensation torques generated by the neural network. (f) Norm of each column of the NN weight matrix W.

controller with the neural learning enables the robot to track

the given trajectories more accurately. The tracking errors are

reduced into the interval [−0.035, 0.035] with the compensa-

tion torques generated by the neural network as is shown in

Fig. 11(d) and (e), where the effect caused by the unknown

dynamics and the dynamic environment is compensated for.

Fig. 11(f) shows the norm of each column of the NN weight

matrix. The value of each norm converges in 18 s.

V. CONCLUSION

This paper has proposed a novel robot LfD framework,

considering the performance of both a motion model and

dynamics controller. The DMP was chosen as the basic

model in our method, the generalization ability of which was

employed. The FGMM was utilized to fuse multiple demon-

strations to cognize more features from human motions, which

showed better nonlinearity fitting performance than the GMM.

The regression algorithm for FGMM was also developed to

replace the GMR. Besides, the CMAC-NN was integrated into

the controller to cognize the dynamic environment and to com-

pensate for the unknown dynamics, whereby the robot was

able to track the trajectories generated from the motion model

more accurately. The effectiveness of the proposed methods

has been verified through several experiments that were per-

formed on the Baxter robot. In future work, we will combine

our framework with the reinforcement learning technology to

enable the robot to learn motions through trial and error, rather

than learning only from the human demonstrations.
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