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Abstract— We present a robot localization system using
biologically-inspired vision. Our system models two extensively
studied human visual capabilities: (1) extracting the “gist” of
a scene to produce a coarse localization hypothesis, and (2)
refining it by locating salient landmark regions in the scene.
Gist is computed here as a holistic statistical signature of the
image, yielding abstract scene classification and layout. Saliency
is computed as a measure of interest at every image location,
efficiently directing the time-consuming landmark identification
process towards the most likely candidate locations in the
image. The gist and salient landmark features are then further
processed using a Monte-Carlo localization algorithm to allow
the robot to generate its position. We test the system in three
different outdoor environments - building complex (126x180ft.
area, 3794 testing images), vegetation-filled park (270x360ft.
area, 7196 testing images), and open-field park (450x585ft. area,
8287 testing images) - each with its own challenges. The system
is able to localize, on average, within 6.0, 10.73, and 32.24 ft.,
respectively, even with multiple kidnapped-robot instances.

I. INTRODUCTION

The problem of localization is central to endowing mobile

machines with intelligence. Range sensor such as sonar and

ladar [1], [2], [3] are particularly effective indoors due to

many structural regularities such as flat walls and narrow

corridors. In the outdoors, however, these sensors become

less robust given all the protrusions and surface irregularities

[4]. For example, a slight change in pose can result in

large jumps in range reading because of tree trunks, moving

branches, and leaves. GPS, coupled with other sensors or by

itself [5], has also been extensively used. However, GPS may

not be applicable in environments where there is no satellite

visibility, such as underwater, in caves, indoors, or on Mars.

In those places vision, human’s main perceptual system for

localization, should be a viable alernative.

Existing vision-based localization systems can be catego-

rized based on several groupings. The first one is according

to image-view types, where some systems use ground-view

images [6], [7] and others use omni-directional images [8],

[9], [10]. Another categorization is according to localization

goal, such as actual metric location [11] or a coarser place

or room number [8]. Yet another grouping is according to

whether or not the system is provided with a map. Presently,
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simultaneous localization and mapping (SLAM) [12], [13],

[14] is an active branch of robotics research.

One additional categorization to consider here comes from

the vision perspective, which classifies systems according to

the type of visual features used: local features and global

features. Local features are computed over a limited area of

the image, as opposed to global features which may pool

information over the entire image into, e.g., histograms. Be-

fore analyzing the variety of approaches, which by no means

is exhaustive, it should be pointed out that, like other vision

problems, any localization and landmark recognition system

faces the general issues of occlusion, dynamic background,

lighting, and viewpoint changes.

A popular starting point for local features are SIFT

keypoints [15]. There has been a number of systems that

utilize SIFT features [6], [16], [17] in recent years for

object recognition because they can work in the presence

of occlusion and some viewpoint changes. Other examples

of local features are Kernel PCA features [18] and Harris

corners [19]. Some systems [20], [21] extend their scope of

locality by matching image regions to recognize a location.

At this level of representation, the major hurdle lies in

achieving reliable segmentation and in robustly character-

izing individual regions. This is especially difficult with

unconstrained environments such as a park where vegetation

dominates (figure 4).

Global feature methods usually utilize color [8], [9],

textures [7], or a combination of both [22], [23]. Holistic

approaches, which do not have a segmentation stage, may

sacrifice spatial information (the location of the features).

Yet, some systems [7], [22] try to recover crude spatial

information by using a predefined grid and computing global

statistics within each grid tile. These methods are limited,

for the most part, to recognizing places (as opposed to exact

geographical locations) because with global features, it is

harder to deduce a change in position even when the robot

moves considerably.

Today, with many available studies in human vision,

there is a unique opportunity to develop systems that take

inspiration from neuroscience and bring a new perspective

in solving vision-based robot localization. For example, even

in the initial viewing of a scene, the human visual processing

system already guides its attention to visually interesting

regions within the field of view. This extensively studied

early course of analysis [24], [25], [26], [27] is commonly

regarded as being guided by perceptual saliency. Saliency-

based or “bottom-up” guidance of attention highlights a

limited number of possible points of interest in an image,



which would be useful [28] in selecting landmarks that are

the most reliable in a particular environment (a challenging

problem in itself). Moreover, by focusing on specific sub-

regions and not the whole image, the matching process

becomes more flexible and less computationally expensive.

Recent discoveries in human vision show that humans are

able to recognize scenes at multiple levels. Concurrent with

the mechanisms of saliency, humans also exhibit the ability to

rapidly summarize the “gist” of a scene [29], [30], [31], [32]

in less than 100ms. Human subjects are able to consistently

answer detailed inquiries such as the presence of an animal in

a scene [33], [34], general semantic classification (indoors vs.

outdoors, room types: kitchen, office, etc.) and rough visual

feature distributions such as colorful vs. grayscale images

or several large masses vs. many small objects in a scene

[35], [36] It is reported that gist computations may occur

in brain regions which also respond to “places”, that is, it

prefers scenes that are notable by their spatial layout [37]

as opposed to objects or faces. In addition, gist perception

is affected by spectral contents and color diagnosticity [32],

[38], which leads to the implementation of models such as

[39], [40].

In spite of how contrasting saliency and gist are, both of

these modules rely upon raw features that come from the

same area, the early visual cortex. Furthermore, the idea that

gist and saliency are computed in parallel is demonstrated in

a study in which human subjects are able to simultaneously

discriminate rapidly presented natural scenes in the periph-

eral view while being involved in a visual discrimination task

in the foveal view [41]. From an engineering perspective it is

an effective strategy to analyze a scene from opposite resolu-

tion levels, a high-level, image-global layout (corresponding

to gist) and detailed pixel-wise analysis (saliency). It is also

important to note that while saliency models primarily utilize

local features [27], gist features are almost exclusively global

or holistic [38], [7], [22]. Our model presented below seeks

to employ these two complementary concepts of biological

vision, implemented faithfully and efficiently, to produce a

critical capability such as localization. Figure 1 shows a

diagram of the full system with each sub-system projected

onto its respective anatomical location.

After early preprocessing that takes place at both the retina

and LGN (following figure 1), the visual stimuli arrive at

Visual Cortex (cortical visual areas V1, V2, V4, and MT)

for low-level feature extractions which are then channeled

to the saliency and gist module. Along the Dorsal Pathway

or “where” visual processing stream [42] (posterior parietal

cortex), the saliency module builds a saliency map through

the use of spatial competition of low-level feature responses

throughout the visual field. This competition silences lo-

cations which, at first, may produce strong local feature

responses but resemble their neighboring locations. Con-

versely, the competition strengthens points which are distinct

from their surroundings. On the contrary, in the Ventral

Pathway or the “what” visual processing stream (inferior

temporal cortex), the low-level feature-detector responses

are combined to yield a gist vector as a concise global

Fig. 1. Model of Human Vision with Gist and Saliency.

synopsis of the scene as a whole. Both pathways end up at

the pre-frontal cortex where concious decisions and motor

commands are formed.

There is an additional consequence of the Dorsal and

Ventral pathway division that is applicable in vision robotics.

The Ventral pathway, which includes areas such as the hip-

pocampus and para-hippocampus (known to be involved in

recognition and spatial memory recollection [43]), performs

at a slower speed than the Dorsal pathway, which is real

time. The dorsal pathway module performs navigational tasks

such as obstacle avoidance, which require fast reaction but

not recognition. The dorsal module makes use of the salient

features for tracking objects, motion cues for lane following.

It may also need stereo vision to perform obstacle avoidance.

In effect, the brain can be viewed as a behavior-based

architecture [44]. In this paper, we concentrate mostly on

the ventral pathway, which is responsible for localization.

II. DESIGN AND IMPLEMENTATION

Figure 2 displays the overall flow of the localization sys-

tem which can be divided to three stages: feature extraction,

object and place recognition, and localization. The feature

extraction stage takes an image from a camera (or retina

in figure 1) and outputs the gist [22] and salient feature

computations [26], [45], which are already implemented

previously. Our main contribution is utilizing both of the

sub-systems concurrently in the two subsequent stages. The

place and object recognition stage then tries to match these

features with memorized information about the environment.

These matches are then used as an input to the localization

stage to make a decision of where the robot might be.

As part of the object and place recognition stage, a map

of the environment is associated with the visual information.

The map, which is currently provided to the system, is

an augmented-topological map. It is a graph-based map

with each node having a cartesian coordinate and each

edge having its cost set to the distance between the edge’s
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Fig. 2. Diagram for the Vision Localization System

corresponding end-nodes. This way the system benefits from

the compact representation of a graph while preserving the

important metric information of the environment. In the map,

a robot state (position and viewing direction) is represented

by a point which can lie on a node or an edge.

For further analysis, we introduce the concept of a seg-

ment. A segment is an ordered list of edges with each edge

connected to the next one in the list to form a continuous

path. This grouping is motivated by the fact that views/layout

in one path-segment are coarsely similar. The selected three-

edge segment (highlighted in green) in the map of figure

2 is an example. From this point forward, “place” (as in

figure 1) and “segment” will be used interchangably to refer

to the same notion of a region in a map. Because the map

includes a rectangular boundary and an origin, a location

can be noted as both cartesian coordinates (x, y) or a pair of

segment number and a fraction of length traveled (between

0.0 to 1.0) along the segment (snum, ltrav).

A. Feature extraction, Saliency, and Gist

As mentioned above, the low-level visual-feature extrac-

tion [26], [45], the saliency computation stage, [26], [45]

and the gist model [22] have previously been reported. In

summary, the low-level features consist of center-surround

color, intensity, and orientation that are computed in separate

channels. Each of these channels are run in parallel, which

in our robot (including the gist and saliency extraction) runs

at 80ms/frame (12.5 fps). At this point the gist features are

ready to use for recognition while we need to further process

the output of the saliency model. We select up to five of

the most salient points per frame and use a shape estimator

algorithm [46] to segment out the respective salient regions

for each point. We put a limit in the number of salient regions

per frame because, from experiments, the subsequent regions

have a much lower likelihood of being repeatable in other

training or testing runs.

B. Salient Region/Object and Segment/Place Recognition

There are two separate training steps for the system. The

first one is to build a visual landmark database, the second

is to train a segment classifier using gist. These two sets of

information are then connected through the environment map

with the landmarks compartmentalized by their respective

segment of origin. Later on, this will enable the system to

prioritize the on-line landmark search process using gist. The

training procedure involves a guided traversal of the robot

through all the paths in the map. This should be performed

several times to have ample lighting coverage as well as

to allow identification of landmarks that are consistent over

a number of runs. In what follows, the term landmark

refers to an actual point of interest in the environment, not

image of an object. An image is an evidence of a landmark

and a landmark is memorized as a set of images which

provide different views as the robot passes through it in the

environment. And thus, the phrase “matching a salient region

to a landmark” means to match a region image with one of

the memorized images on the list of a landmark.

1) Segment/Place Recognition: The segment estimator is

implemented using a neural network classifier, trained on

gist features using the back-propagation algorithm. One of

the main reasons why the classifier succeeds is because we

decided to group edges to segments as it would have been

difficult to train an edge-classifier using coarse features like

gist. Each segment in the environment has an associated



output node and the output potential is the likelihood that

the scene belongs to that segment, stored in a vector z
′

t to

be used by the localization algorithm as an observation where

z
′

t = { svalt,j }, j = 1 ... Nsegment (1)

with svalt,j being the segment likelihood for time t and

segment j which is one of the Nsegment segments in the

environment.

2) Salient Region/Object Recognition: The object recog-

nition module generates SIFT features [15] for each salient

region and uses them along with their corresponding salient

feature vectors for all matching processes (training and

testing). Salient feature vectors are sets of feature-map values

(from each low-level channel) taken at the salient points.

In the landmark database building phase, the first incoming

salient regions are used to create initial landmarks. When the

next video frame arrives, the system tries to match the new

salient regions to the existing landmarks. The ones that are

matched can then be added to the corresponding landmarks

while the remaining salient regions are used to create new

landmarks. Once all the frames are processed, the landmarks

are pruned by setting minimum thresholds such as number

of images and range of video frame numbers, both of which

indicate how persistent the landmark is in the environment. In

addition, the landmarks can also be pruned across traversals

by only considering the ones that occur in more than one

runs.

As alluded before, the landmarks are arranged by the

segments of origin which are used to prioritize search order

(in test runs) using gist. The salient feature vector can also be

used to prime the order based on Euclidian distance. In real

time systems such as robots, it is a given that the database

search ends after the first object found, as the system does

not require the best match. So, it is desirable to have a

high matching threshold, one that tend to give some false

negatives but almost no false positives.

Once the incoming salient regions are compared with

the landmark database, we obtain a number of successful

matches which are denoted for observation as z
′′

t , where

z
′′

t = { omatcht,k }, k = 1 ... Mt (2)

with omatcht,k being the found object/salient region match

k (one of Mt matches) at time t. Note that the object

recognition module may not produce an observation for every

time t (Mt = 0) as it may either find no matches or still be

currently processing.

C. Monte-Carlo Localization

We estimate the robot’s position by implementing Monte-

Carlo Localization (MCL) [1], [11], [13]. It formulates

the location belief as a set of weighted particles: St =
{ xt,i, wt,i} i = 1 ... N at time t. Each particle xt,i is com-

posed of a segment number and percentage of length traveled

along the segment edges xt,i = {snumt,i, ltravt,i} and has

a weight of wt,i which is proportional to the likelihood of

observing incoming data modeled by the segment and salient

region observation model (sections II-C.2 and II-C.3). From

experiments, N = 100 seemed to suffice for the simplified

localization domain where a hallway is represented by an

edge and not a two dimensional space. However, it should

be pointed out that in this system, the dorsal pathway will

be the one responsible to keep the robot in the middle of the

path, avoiding a need to localize laterally.

We estimate the location belief Bel(St) by evolving

posterior p(St|z
t, ut) - zt being an evidence and ut the

motion measurement - by recursively updating Bel(St) [47]:

Bel(St) = p(St|z
t, ut) (3)

= αp(zt|St)

∫
St−1

p(St|St−1, ut)Bel(St−1) dSt−1

We first compute p(St|St−1, ut) (called the predic-

tion/proposal phase) to take motion into consideration by

applying the motion model to the particles. Afterwards,

p(zt|St) is computed in the update phase to incorporate the

visual information by applying the observation model to the

weight of each particle for a weighted resampling step.

As explained above (sections II-B.1 and II-B.2), the

system observes two types of evidence: z
′

t and z
′′

t which

are segment estimation and object recognition, respectively.

Segment estimation is available at each time step while object

recognition is not always available as it might not be ready

or returns no match. In the procedure below, the object

recognition observation is treated as evidence that arrives

at the following time step after a zero motion. Consequently,

this condenses the procedure to having compound observa-

tions because the prediction phase is effectively non-existent.

And thus, at each time step t the system computes belief

estimation Bel(St) in the following order:

1) apply motion model to St−1 to create S
′

t

2) apply segment observation model to S
′

t to create S
′′

t

3) if (Mt > 0)

a) apply object observation model to S
′′

t to yield St

b) else St = S
′′

t

We specify two intermediate states S
′

t and S
′′

t , the former

being the belief after the motion model is applied to the

particles, moving it by the measured movement, while the

latter is the state after the segment observation is then

subsequently applied. Lastly the object observation model

(if there are found objects at time t) is applied to S
′′

t to

produce St.

1) Motion Model: The system employs a straightforward

motion model for an odometry reading ut. We apply the

motion to each particle from the set St−1 by sampling

a random particle x
′

t,i from the density p(x
′

t,i|ut, xt−1,i).
Included in the probability density is noise drawn from a

gaussian distribution to account for wheel slippage with a

standard deviation of .1ft which is proportional to 1/6th of

a typical single step. The standard deviation controls the

level of uncertainty in the robot movement measurement,

the bigger the number, the greater the level of noise added.

From our experiment, we find that this number does not

affect the end result as much because the number of particles



around the vicinity of a converged location is large enough

that motion error in any direction is well covered by the

neighborhood of particles.

2) Segment-Estimation Observation Model: We weigh

each particle x
′

t,i with w
′

t,i = p(z
′

t|x
′

t,i) for resampling

(with added 10 percent random particles to avoid the well

known population degeneration problem in Monte Carlo

methods) to create belief S
′′

t by taking into account the

segment-estimation vector z
′

t (equation 1).

p(z
′

t|x
′

t,i) =
sval

t,snum
′

t,i∑Nsegment

j=1
svalt,j

∗ svalt,snum
′

t,i

(4)

Here, the likelihood that a particle x
′

t,i observes z
′

t is pro-

portional to the percentage of its segment value svalt,snum
′

t,i

(measures its dominance with respect to other entries) times

its absolute value (to preserve its ratio with respect to

maximum possible value of 1.0). In the implementation, the

denominator is taken out because it is equal for all particles.

3) Salient-Region-Recognition Observation Model: We

weigh each particle x
′′

t,i with w
′′

t,i = p(z
′′

t |x
′′

t,i) for resam-

pling (with added 20 percent random noise, also to combat

the population degeneracy problem in Monte Carlo methods)

to create belief St+1 by taking into account the object

matches z
′′

t (equation 2).

p(z
′′

t |x
′′

t,i) =

Mt∏
k=1

p(omatcht,k|x
′′

t,i) (5)

Here, each object-match observation is independent

and thus is processed individually. The probability

p(omatcht,k|x
′′

t,i) is modeled by a gaussian with σ set to

5% of the environment map diagonal. The likelihood value

is the probability of drawing a length longer than the distance

between the particle and the location where the database

object matched is acquired. σ is set proportional to the

map diagonal to reflect how the larger the environment

means the higher the level of observation uncertainty. The

added noise is twice that of segment observation because the

object observation probability density is much narrower than

the previous one and we find that 20% keeps the particle

population diverse enough so that in a kidnapped robot

event, the particles are able to disperse and reconverge to

the new location. Also, although the SIFT matching scores

are available for weights, we decided to assume all object

match accuracies are equal.

III. TESTINGS AND RESULTS

The localization system is tested at three outdoor sites:

ACB, AnF, and FDF, each composed of 9 segments (labeled

in figure 3, 4, and 5, respectively), using videos provided

by [48] with the maps illustrated in [22]. The ACB scenes

are filmed throughout the narrow corridors of a 126x180ft.

building complex. Most of the surroundings are flat walls

with little texture and solid lines that delineate the walls and

different parts of the buildings. The scenes of the 270x360ft.

Fig. 3. Examples of images in each of the nine segments (with corre-
sponding label) of ACB.

Fig. 4. Examples of images in each of the nine segments (with corre-
sponding label) of AnF.

1 2 3

4 5 6

7 8 9

Fig. 5. Examples of images in each of the nine segments (with corre-
sponding label) of FDF.



Fig. 6. A snapshot of the system test-run. Top-left (main) image contains the salient region windows. Green window means a database match, while red
is not found. An object match is displayed next to the main image. Below the main image is the segment estimation vector derived from gist (there are
9 possible segments in the environment). The middle image projects the robot state onto the map: cyan disks are the particles, the yellow disks are the
location of the matched database objects, the blue disk (the center of the blue circle, here partially covered by a yellow disk) is the most likely location.
The radius of the blue circle is equivalent to five feet. The right-most histogram is the number of particles at each of the 9 possible segments. The robot
believes that it is towards the end of the first segment, which is correct within a few feet.

AnF site are dominated by vegetation. The length of the seg-

ments at this site are about twice the length of the segments

in ACB. A large portion of the scenes of the 450x585ft. FDF

site is sky, which is mostly textureless space with scattered

light clouds. The lengths of the FDF segments are about

50% longer than the ones in AnF and three times that of

ACB. Because the data is taken by a person carrying a hand-

held camera walking at approximately constant speed, we

use interpolation to come up with the ground-truth location

of the person for both training and testing data.

The data for each site consists of 12 to 15 runs, spanning

various lighting conditions. The gist model has been shown

to work in these lighting conditions [22]. However, in the

current testing setup, we will take two runs for each site that

are of comparable lighting conditions, training the system on

the first one, and testing it on the second one.

Figure 6 displays results at one time step.

Table I reports the results for the three different envi-

ronments. For ACB and AnF, the error is quite uniform

throughout the segments except for two spikes in segment

8 for both sites (11.22 and 22.99ft, respectively). The main

problem encountered here, as well as everywhere else to a

certain degree, is that of scale. The SIFT object recognition

module is able to perform scale-invariant matching (with

the scale ratio included as part of the result). However, this

presents a problem as there is not enough information to

deduce a location where the matching would be close to

1-to-1. Because of the nature of the localization problem,

where landmarks in the outdoor environment are not easily

measured, systems usually are not able to obtain actual sizes

of objects unless they are pre-specified. In segment 8 of AnF,

we have matches with the side of a building that looks almost

identical for a long stretch of the path leading to it. A better

way to solve this problem would be to track the landmark and

use the change in scale from a measured movement of the

robot to obtain the landmark size. Currently the localization

system has not yet incorporated the dorsal tracking module to

perform this method. Instead, the system limits the matching-

scale threshold to between 2/3 and 3/2. This is not entirely

effective, however, as a scale ratio of 0.8 (the object found

is smaller than the matched database object) can translate to

a geographical difference of 15 feet.

The results for the FDF site, however, are not quite as

good. There are two reasons for this: scale (as with the

other sites) and object recognition failure because of lighting

conditions. Segment 6 severely exhibits this problem because

its path is straight, leading to a large building (figure 5). The

large error in segment 7, on the other hand, is caused by

the inability of the SIFT module to recognize any object

in sight for long stretches of time. We mentioned earlier

that the training and testing pairs are selected for lighting. It

seems to be the case that, for this segment, lighting was

quite different between the two instances as the training

data is much brighter than the testing data. It should be

noted, however, that in other sites, the object recognition

module performed well in the presence of occlusion, view-

point changes, and some lighting changes. The authors would

suggest that a way to alleviate this problem is to simply train

the system with more samples from other lighting conditions.



TABLE I

EXPERIMENTAL RESULTS

Segment ACB AnF FDF

frame num. error (ft) frame num. error (ft) frame num. error (ft)

1 377 6.77 866 7.34 782 12.38

2 496 7.65 569 4.87 813 12.97

3 541 5.24 896 8.31 869 9.37

4 401 4.92 496 7.66 795 30.36

5 304 7.21 769 8.87 857 18.24

6 555 4.94 1250 13.51 1434 45.20

7 486 2.70 588 5.84 839 101.62

8 327 11.22 844 22.99 1149 27.00

9 307 5.50 918 11.22 749 23.97

Total 3794 6.00 7196 10.73 8287 32.24

IV. DISCUSSION AND CONCLUSIONS

We introduced several new ideas in robotics vision lo-

calization which have been proven in our testing to be quite

beneficial. The first one is the use of complementary features

(gist and saliency) and how they could possibly interact.

The vision model implements both in parallel, especially

in the computation-heavy feature extraction phase, as the

study of the human visual cortex would suggest. Through

the saliency model, the system automatically selects salient

objects so that it does not have to perform whole-scene view

matching. In addition, the gist features which approximate

layout come with saliency at almost no computation time.

In essence what we have is the use of multiple experts,

implemented in an efficient manner through sharing of some

of the computations.

The system also performs both hierarchical recognition

and multi-level localization. Hierachical recognition, which

has been shown [49], [50] to speed up the process, is done by

prioritizing the landmark database search through segment

estimation, salient feature matching, and the current state

(e.g. matching landmarks that are in the vicinity of the most

belief location) before performing object recognition. Multi-

level localization, on the other hand, is done by using both

segment estimation and object recognition as observations

in the Monte-Carlo localization. Many scene-based methods

[8], [9], [7], [22], [23] that are limited to recognizing places

(as opposed to geographical points) indicate that their results

can be used as a filter for a more accurate attempt at

localization with the use of finer yet more volatile local

features. Our system is the implementation of such extension.

As for performance benchmark, to the best of our knowl-

edge, we have not seen other systems that are tested in

multiple outdoor environments (building complex, vegetation

dominated park, and open field) and are localizing to the

coordinate level (not a place). At the 2005 ICCV Computer

Vision contest[51], where the goal was to localize from

a database of street-level photographs tagged with GPS

coordinates of a stretch (about 1 city block) of urban street,

the winning team [52] returns 9/22 answers within 4 meters

of the actual location. Our system has a 6ft. (1.8m) error in a

126x180ft. building complex, although our system can store

as many pictures as it wants. Most other purely vision-based

systems are tested indoors and a majority of them reports just

the recognition rate, that is, if the current view is correctly

matched with stored images, not the location. However, if we

compare just the system segment prediction with other scene

based methods (which are place recognizers and usually

report results in the mid to upper ninetieth percentile), it fares

quite well. The times where our system is lost are when the

segment and salient region modules are both confused, which

usually occurs in extremely different lighting condition than

the one used in training.

The system now needs to resolve the issue of integrating

the localization module (in the ventral pathway, figure 1)

with the rest of the architecture, namely the autonomous

navigation or dorsal tracking module. The cooperation of

both pathways occurs in the recognition process, where the

ventral module relies on the dorsal module to track a salient

region as it is being matched to the landmark database.

A problem related to localization is the goal-seeking task.

Here the robot also needs to follow a path to the goal

location. One way to do this is through landmark hopping.

After the robot is able to localize, it sets the path to the

goal and creates the corresponding list of landmarks to

look for. It would then go to the first landmark in the

path and, while going to that direction, the system tries to

attend and recognize the subsequent landmarks. When the

next landmark that will advance the robot’s even further is

recognized, it switches to that one. This is done until the

goal location is found. Biasing the saliency module to look

specifically into the vicinity of the next object in the path

is possible because the database stores all object image-

coordinate locations from the training process.
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