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Hyperthermia, the mild elevation of temperature to 40–43◦C, can induce cancer

cell death and enhance the effects of radiotherapy and chemotherapy. However,

achievement of its full potential as a clinically relevant treatment modality has been

restricted by its inability to effectively and preferentially heat malignant cells. The

limited spatial resolution may be circumvented by the intravenous administration of

cancer-targeting magnetic nanoparticles that accumulate in the tumor, followed by the

application of an alternating magnetic field to raise the temperature of the nanoparticles

located in the tumor tissue. This targeted approach enables preferential heating of

malignant cancer cells whilst sparing the surrounding normal tissue, potentially improving

the effectiveness and safety of hyperthermia. Despite promising results in preclinical

studies, there are numerous challenges that must be addressed before this technique

can progress to the clinic. This review discusses these challenges and highlights the

current understanding of targeted magnetic hyperthermia.

Keywords: magnetic hyperthermia, targeted therapy, iron oxide nanoparticles, cancer therapy, magnetic

nanoparticles

INTRODUCTION

Hyperthermia, a treatment aimed at raising the temperature of cancerous regions of the body
to 40–43◦C, can induce cancer cell death by enhancing the cytotoxic effects of radiotherapy and
chemotherapy (Wust et al., 2002). Extensive preclinical and clinical research into the application
of hyperthermia has been conducted, with a number of randomized trials demonstrating that,
when combined with radiotherapy, it has the potential to improve the outcomes of various cancers
without significantly increasing toxicity (De Haas-Kock et al., 2009; Lutgens et al., 2010). Despite
these promising results, hyperthermia is rarely incorporated into modern oncological management
due to its ineffectiveness when applied as a single modality treatment and a lack of large phase
3 clinical trials combining hyperthermia with both standard chemotherapy and radiotherapy (van
der Zee, 2002). Furthermore, a major disadvantage of conventional hyperthermia is that, in general,
both malignant and non-malignant cells are equally sensitive to heating (Dewey et al., 1977;
Roizin-Towle and Pirro, 1991). This is in contrast to chemotherapy or radiotherapy, which are
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generally more cytotoxic toward malignant cells. As a
result, there has been significant interest in the concept of
“biologically targeted magnetic hyperthermia,” whereby targeted
magnetic iron oxide nanoparticles (MIONs) are administered
intravenously in order to heat tumors under an alternating
magnetic field. In this review, we will discuss the current
understanding of targeted magnetic hyperthermia and the
limitations that must be overcome for further progression into
clinical practice.

HYPERTHERMIA AND CELL DEATH

Hyperthermia can cause cell death through a range of different
mechanisms and there are no consistent differences in thermal
sensitivities between malignant and non-malignant cells (Dewey
et al., 1977; Roizin-Towle and Pirro, 1991). It has been
shown in vitro that cell viability following hyperthermia
treatment is heavily influenced by both the temperature and
the duration of hyperthermia (Figure 1). Even half a degree rise
in temperature can have a substantial impact on cell viability,
highlighting the importance of effective and homogenous
delivery of hyperthermia (Dewey et al., 1977). One of the
possible mechanisms behind the reduction in cell viability is
protein denaturationwith subsequent activation and deactivation
of several downstream pathways (van der Zee, 2002; Wust
et al., 2002). Individual proteins have specific temperature
thresholds for denaturation, with highly expressed proteins
generally being more tolerant to heat (Leuenberger et al.,
2017). Protein denaturation occurs from approximately 40◦C
and higher temperatures will denature a greater proportion
of proteins, which may explain why the rate of cell death
rises with the temperature (Lepock, 2005b). At temperatures
of 40–42◦C, only a small fraction of proteins is denatured,
however, some of these can subsequently co-aggregate with
native proteins, thereby significantly increasing the level of
aggregation (Borrelli et al., 1996). It is this combination of
heat-induced denaturation and subsequent co-aggregation that
is thought to affect several downstream pathways including
inactivation of protein synthesis, cell cycle progression and DNA
repair (Dewey et al., 1977; Kampinga et al., 2004; Lepock, 2005a).
Furthermore, possibly through a mechanism that is unrelated to
protein denaturation, hyperthermia can have an adverse impact
on the cytoskeleton, organelles, intracellular transport, and RNA
processing (Richter et al., 2010). Another potential contributor
to reduction in cell viability is heat-induced alterations in
the plasma and subcellular organelle membranes, as well as
membrane proteins (Richter et al., 2010; Mello et al., 2017).

Sufficient application of hyperthermia can result in cell death
(Figure 1), but if cells survive several major classes of proteins
will be activated leading to thermotolerance. These classes of
proteins include: heat shock proteins that stabilize misfolded
proteins, proteolytic enzymes that clear denatured/aggregated
proteins, RNA-, and DNA-modifying proteins that repair
damage, and others (Richter et al., 2010).

In addition to the responses to hyperthermia at a cellular
level described above, hyperthermia may impart its effects via

several additional, unique mechanisms on cell communities
and these have been investigated in vivo. Tumors are generally
associated with hypoxic and acidic environments due to poor
vasculature, conditions in which cells are known to be more
susceptible to hyperthermia (Gerweck et al., 1979; Eales et al.,
2016). Elevated temperatures can lead to increased perfusion
within the tumor, leading to greater chemotherapeutic drug
delivery and higher oxygen concentrations, which in turn can
sensitize tumors to radiotherapy (Song et al., 1996; Rau et al.,
2000). Hyperthermia may enhance the immune response via
several mechanisms, including increased migration of immune
effector cells to the tumor, modulation of cell surface molecules
and various pro-inflammatory cytokines, proliferation of effector
cells, and increased immune cell cytotoxicity against malignant
cells (Peer et al., 2010).

Despite the multitude of mechanisms by which hyperthermia
can induce cell death, it is not efficient as a single agent treatment,
mainly due to its poor specificity and the development of
thermotolerance which may make subsequent hyperthermia
treatments less effective. However, in combination with
radiotherapy or chemotherapy, hyperthermia can lead to
improved patient outcomes.

HYPERTHERMIA IN COMBINATION WITH
RADIOTHERAPY AND CHEMOTHERAPY

In the clinic, hyperthermia can be applied to a local area, a
specific region of the body or the entire body. In the past few
decades, mild elevations of temperature have been achieved by
various means including thermal chambers, hot water blankets,
application of electromagnetic energy, perfusion of limb or body
cavity with heated fluids, ultrasound and MIONs (van der Zee,
2002; Wust et al., 2002). In order to improve the efficacy,
hyperthermia has often been evaluated as an adjunct treatment
to enhance radiotherapy and cytotoxic chemotherapy. One way
of expressing the enhancement of radiotherapy or chemotherapy
is via the thermal enhancement ratio (TER), where TER is the
ratio of the dose of radiation or drug alone that is required to
achieve the end point to the dose of radiation or drug combined
with heat to achieve the same end point (Overgaard, 1984). As an
example, 60min of hyperthermia at 42◦C, can result in a TER
of nearly 2 for radiotherapy, making hyperthermia one of the
most potent radiosensitizers (Overgaard, 1984). Hyperthermia is
thought to enhance radiotherapy via protein denaturation and
the subsequent inactivation of proteins involved in DNA repair.
Inactivation of DNA repair proteins, particularly those involved
in excision of clustered base damage, may prevent repair of the
DNA damage induced by radiotherapy, leading to increased cell
death (Kampinga and Dikomey, 2001). In vivo, hyperthermia
can prime the tumor to radiotherapy via increased vascular
perfusion and oxygenation of previously radioresistant, hypoxic
areas (Song et al., 2005). Both preclinical and clinical evidence
indicates that the TER is highest when hyperthermia is delivered
simultaneously or in close temporal proximity to radiotherapy
when protein denaturation and aggregation are likely to be
at their greatest (van Leeuwen et al., 2017). Furthermore, the
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FIGURE 1 | Survival curves for asynchronous Chinese hamster ovary (CHO) cells heated at different temperatures for varying lengths of time. Adapted from Dewey

et al. (1977).

TER increases with temperature and duration of hyperthermia
(Overgaard, 1984).

Hyperthermia can synergistically enhance the efficacy
of numerous chemotherapeutic agents including cisplatin,
cyclophosphamide and bleomycin, whilst no significant
enhancement for 5-fluorouracil, doxorubicin, and vincristine
has been observed. For example, the application of 30min of
hyperthermia at 41.5◦C in vivo, can result in a TER of 1.48
for cisplatin and 2.28 for cyclophosphamide (Urano et al.,
1999). Although the exact mechanism for chemosensitization
is poorly understood, for alkylating or alkylating-like platinum
agents like cyclophosphamide and cisplatin, their ability to
interact with and encourage protein denaturation may be partly
responsible (Lepock, 2005b). In vivo, hyperthermia can lead to
chemosensitivity via increased tumor blood flow and increased
vascular permeability resulting in increased accumulation of
chemotherapeutic agent (Song et al., 2005).

There have been a number of randomized clinical trials on
the impact of hyperthermia on various cancers in combination
with radiotherapy or chemotherapy or both (Tables 1–3), with
many other studies currently in progress (Valdagni et al., 1988;
Berdov andMenteshashvili, 1990; Datta et al., 1990; Sharma et al.,
1991; Sugimachi et al., 1994; Kitamura et al., 1995; Overgaard
et al., 1996; Vernon et al., 1996; Sneed et al., 1998; Harima
et al., 2001; van der Zee, 2002; Jones et al., 2005; Franckena
et al., 2008; Verwaal et al., 2008; Huilgol et al., 2010; Issels
et al., 2010; Colombo et al., 2011; Cihoric et al., 2015; Arends
et al., 2016). The majority of studies demonstrated higher rates
of local response with only mild to moderate toxicities. It is
worth noting that there is some heterogeneity in the outcomes,
which may be due to differences in heating protocols. An area of
deficiency, and perhaps one of the reasons why hyperthermia is
rarely used in the clinic is that delivering sufficient hyperthermia
to the tumor, whilst sparing the surrounding normal tissue, is
difficult.

MAGNETIC HYPERTHERMIA

Despite the ability of hyperthermia to enhance radio- and
chemotherapy treatments, toxicity due to the similar responses of
malignant, and healthy tissues to hyperthermia remains a barrier
to clinical application. A promising approach to overcoming
this obstacle is magnetic hyperthermia, a form of hyperthermia
that is currently undergoing clinical trials. It was first proposed
by Gilchrist et al. (1957), who introduced the concept of
injecting MIONs (20–100 nm), into lymphatic channels in order
to heat residual cancer cells under an Alternating Magnetic Field
(AMF) (Gilchrist et al., 1957). In 1993, Jordan et al. showed
that delivering magnetic nanoparticles via direct injection into
the tumor could result in much more effective and selective
heating of tumors when compared to other heating techniques
such as radiofrequency heating and ultrasound (Jordan et al.,
1993). Furthermore, there is in vitro evidence that certain types
of cancers including glioblastoma cells can take up magnetic
nanoparticles more efficiently than non-malignant cells, although
the exact mechanism is not well understood (Jordan et al., 1999).
Since then, significant efforts have gone into the development
of a clinical AMF system, resulting in the formation of a
publicly listed company, MagForce AG based in Germany.
The company has developed NanoTherm R© aminosilane coated
ferrofluid, NanoActivator R© alternating magnetic field applicator,
and NanoPlan R© temperature simulation software.

In the past 2 decades, phase 1, and 2 clinical studies
of intratumorally delivered magnetic nanoparticles and the
subsequent application of AMF via the MagForce system have
been successfully conducted for patients with glioblastoma
and prostate cancers (Johannsen et al., 2005, 2007a,b; Maier-
Hauff et al., 2011). Phase 1 clinical studies on patients
with prostate cancer demonstrated the feasibility of the
approach with no significant late treatment-related morbidity.
The average temperatures achieved were in the hyperthermic
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TABLE 1 | List of randomized clinical trials on hyperthermia combined with radiotherapy.

Reference Cancer type Number of

patients

randomized

Type of treatment Outcomes Toxicity from

hyperthermia

Valdagni et al.,

1988

Fixed and inoperable N3

cervical nodal squamous

cell carcinoma

metastases from either a

previous, concomitant

T1-T3 head and neck

primary or unknown

primary

44 nodes Control arm: Radiotherapy

Experimental arm: Radiotherapy +

hyperthermia (radiative

hyperthermia, 280-300 MHz within

20–25min of irradiation, ≥42.5◦C

for 30min, 2–6 treatments)

Complete response rates:

82.3% for experimental arm

and 36.8% for control arm

p = 0.0152

Thermal enhancement ratio

= 2.23

Similar acute toxicities

between control and

experimental arm

Datta et al.,

1990

Head and neck

carcinoma Stage I-IV

65 Control arm: Radiotherapy

Experimental arm: Radiotherapy +

hyperthermia (capacitive

hyperthermia, 27.12 MHz,

immediately before radiotherapy,

≥42.5◦C for 20min, twice a week)

At 18 months post

treatment, 19% disease free

survival for control and 33%

for experimental arm p =

0.11 For stages III and IV,

control 8%, experimental

25% p = 0.03, 79% of

study group had almost

complete alleviation of pain

compared to only 50% of

control group p < 0.02

3 of 33 patients in the

experimental arm

developed local

erythema and facial

edema

Berdov and

Menteshashvili,

1990

T4N0M0 Rectal

carcinoma

115 Control arm: Pre-operative

radiotherapy

Experimental arm: Pre-operative

radiotherapy and hyperthermia

(capacitive hyperthermia involving

an endorectal antenna, 915 MHz,

42-43◦C for 1 h, 4–5 treatments,

radiation delivered within 10min)

55.4% of experimental arm

were able to have an

operation compared to

27.1% for control arm

5 year survival 35.6% for

experimental arm compared

to 6.6% for control group

p < 0.05

Comparable

post-operative

complications between

control and

experimental arm

Sharma et al.,

1991

Stage II and III Cervical

Carcinoma

50 Control arm: Radiotherapy

Experimental arm: Radiotherapy +

hyperthermia (capacitive

hyperthermia involving an

intravaginal electrode, 27.12 MHz,

42-43◦C for 30min, radiation

delivered within 30min, 3 times per

week for 4 weeks)

18 months of follow-up

Local control 50% for

control arm

70% for experimental arm

p < 0.05

No major toxicity from

hyperthermia

Perez et al.,

1991

Superficial Tumors 245 Control arm: Radiotherapy

Experimental arm: Radiotherapy +

hyperthermia (radiative

hyperthermia, 915 MHz, 43◦C for

60min immediately after

irradiation, 8 treatments)

Improved local control for

tumors <3cm but not for

tumors >3cm

30% incidence of

thermal blisters in the

experimental arm

Vernon et al.,

1996*

Patients with advanced

primary or recurrent

breast cancer having

local radiotherapy rather

than surgery

306 Control arm: Radiotherapy

Experimental arm: Radiotherapy +

hyperthermia (via various devices

and frequencies depending on the

study location, ≥42.5◦C for

≥30min, various intervals between

radiotherapy and hyperthermia,

2-8 treatments)

Complete response for the

control arm 41%

59% for hyperthermia arm

p < 0.001

Greatest difference seen in

patients with recurrent

lesions in previously

irradiated areas, where

further irradiation was

limited to low dose

More acute toxicities in

the experimental arm:

Blisters: 11% vs. 2%

Ulceration

7% vs. 2%

Necrosis

7% vs. 1%

Comparable rates of

late toxicity between

the control and

experimental arm

Overgaard

et al., 1996

Recurrent or metastatic

malignant melanoma

134 lesions in 70

patients

Control arm: Radiotherapy

Experimental arm: Radiotherapy +

hyperthermia (variable mode of

delivery, hyperthermia delivered

within 30min of radiotherapy,

aimed for >60 equivalent minutes

of 43◦C but in reality only a median

of 9 equivalent minutes of 43◦C

achieved, 3 treatments)

Complete response rate

62% for experimental arm

and 35% for radiotherapy

only control arm

p = 0.003

Similar acute or late

radiation reactions in

control and

experimental arm

(Continued)
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TABLE 1 | Continued

Reference Cancer type Number of

patients

randomized

Type of treatment Outcomes Toxicity from

hyperthermia

Emami et al.,

1996

Persistent or recurrent

tumors after previous

radiotherapy and/or

surgery, amenable to

interstitial radiotherapy

171 Control arm: Interstitial

radiotherapy

Experimental arm: Interstitial

radiotherapy + hyperthermia

(delivered by either 300-2450 MHz

microwave antennas or 0.1-1 MHz

radiofrequency currents, ≥43◦C

for 60min, hyperthermia delivered

within 60min of irradiation, 1-2

sessions)

No difference in survival or

complete response.

Similar toxicity between

control and

experimental arm

Van Der Zee

et al., 2000

Muscle-invasive

bladder cancer

(including T2, T3, T4,

N0, M0) Cervical

Cancer Stages IIB, IIIB

or IV Rectal Cancer

Stage M0-M1

361 Control arm: Radiotherapy

Experimental arm: Radiotherapy +

hyperthermia (delivered using

various systems, 42◦C for 60min,

within 1–4 h after radiotherapy, 5

treatments)

Complete response rates:

39% control arm

55% experimental arm

p < 0.001

Lower local failure rate for

hyperthermia arm: (relative

hazard ratio 0.76)

p = 0.04

At 3 years, no significant

difference in overall survival

except for cervical cancer

(51% and 27%

p = 0.009)

Cases of burns in the

experimental arm

Similar rates of late

radiation toxic effects

between control and

experimental arm

Harima et al.,

2001

Stage IIIB cervical

carcinoma

40 Control arm: External beam

radiotherapy + high dose rate

intracavitary brachytherapy

Experimental arm: External beam

radiotherapy + high dose rate

intracavitary brachytherapy +

hyperthermia (capacitive heating

device, 8 MHz, delivered within

30min of radiotherapy, for a total

of 60min, average temperature of

40.6◦C achieved, 3 sessions)

Significant difference in

3-year local relapse-free

survival

48.5% control arm

79.7% experimental arm

p = 0.048

No significant improvement

in 3-year overall survival and

disease-free survival

Similar rates of acute or

late toxicity between

the control and

experimental arm

Jones et al.,

2005

Malignancy ≤ 3 cm in

thickness from the

body surface

109 All patients received hyperthermia

(radiative hyperthermia, 433 MHz,

for ≤1 h maximum allowable

temperature of normal tissue

43◦C) for 1 h. If they were unable

to achieve a thermal dose of ≥0.5

CEM 43◦C T90, they were not

randomized.

Rest of patients were then

randomized.

Control: No further hyperthermia

but had radiotherapy

Experimental: Hyperthermia +

radiotherapy (twice a week, 1–2 h,

targeted between 10-100

cumulative equivalent minutes at

43◦C T90)

Complete response rate:

Hyperthermia arm 66%

Control arm 42%

p = 0.02

Note that some patients

received systemic treatment

but there was no significant

difference in the proportion

of patients in each arm who

received systemic therapy

No significant difference in

overall survival

Grade 1 and 2 thermal

burns 41% in

experimental arm

4% in control arm

Grade 3 thermal burns

5% for experimental

arm

2% in control arm

11% catheter (used to

monitor the

temperature) related

side effects for

experimental arm

2% for control arm

Franckena

et al., 2008

Locoregionally

advanced cervical

cancer

114 Control arm: Radiotherapy

Experimental arm: Radiotherapy +

hyperthermia (via various systems

depending on site, >42◦C for

60min, 5 treatments)

12 year follow-up

Local control:

37% for hyperthermia arm

56% for control

p = 0.01

Similar rates of late

toxicity between control

and experimental arm

(Continued)
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TABLE 1 | Continued

Reference Cancer type Number of

patients

randomized

Type of treatment Outcomes Toxicity from

hyperthermia

Huilgol et al.,

2010

T2-T4, N0-N3, M0

Oropharynx,

hypopharynx or oral

cavity carcinoma

56 Control Arm: Radiotherapy

Experimental Arm: Radiotherapy +

hyperthermia (via capacitive

system, 8.2MHz, power increased

until patients complained of

discomfort, power reduced and

treatment continued for 30min,

5-7 sessions)

Statistically significant

difference in median survival

of control group 145 days

Experimental group 241

days

Comparable acute and

late toxicities between

control and

experimental arm,

except for overall

increase in thermal

burns in the

experimental arm

*Meta-analysis of 5 randomized trials. The 5 trials were not published separately due to slow accrual.

range (40–43◦C), as opposed to the thermoablative range
(>50◦C). Although there were PSA declines following magnetic
hyperthermia, responses in the monotherapy trial were of
limited extent and duration and therefore, a phase 2 trial
is now recruiting patients with intermediate risk prostate
cancer and is evaluating magnetic hyperthermia in combination
with low dose rate brachytherapy (Johannsen et al., 2010).
Furthermore, MagForce has recently received an Investigational
Device Exemption (IDE) for use in patients with intermediate
prostate cancer undergoing active surveillance. Recruitment of
patients with intermediate risk prostate cancer will commence
after approval by ethics committees (Magforce, 2013, 2018).
It is hoped that hyperthermia treatment in such patients can
control the more aggressive component of the tumor and prevent
or delay the need for radiotherapy or surgery. A phase 2
clinical trial involving 66 patients with recurrent glioblastoma,
demonstrated a median overall survival of 13.4 months from
the time of tumor recurrence (Maier-Hauff et al., 2011). Acute
toxicities observed in this study included tachycardia (18.2%),
headaches (13.6%), motor disturbances (21.2%), and convulsions
(22.7%), which may be prevented with anti-epileptic drugs. In
the magnetic hyperthermia study, however, no prolonged side
effects were observed other than worsening motor disturbances,
which may be related to disease progression rather thanmagnetic
hyperthermia (Maier-Hauff et al., 2011). Following the phase
2 clinical trial, MagForce has been conducting a randomized,
controlled trial (DRKS00005476) to determine the efficacy
and safety of NanoTherm R© monotherapy and NanoTherm R©

in combination with radiotherapy vs. radiotherapy alone in
recurrent/progressive glioblastoma. The study is now closed and
the final report of the data will be submitted to the official bodies
this year (Magforce, 2013, 2018).

MAGNETIC IRON OXIDE NANOPARTICLES
FOR MAGNETIC HYPERTHERMIA

The most commonly used materials for magnetic hyperthermia
are nanometre size (10–100nm) ferrite nanoparticles, in
particular magnetite (Fe3O4) or maghemite (γ-Fe2O3). Fe3O4

and γ-Fe2O3 are commonly and collectively referred to as
MIONs. The magnetic properties of MIONs arise from the
presence of ions with different valency in their crystal structure.

For instance, Fe3O4 consists of two trivalent iron (III) ions and
one divalent iron (II) ion. The unpaired ions result in parallel but
oppositely aligned magnetic moments that do not cancel out and
thus are subject to strong, spontaneous magnetization.

When exposed to an alternating magnetic field, MIONs
produce heat via two main mechanisms: (1) hysteresis loss and
(2) relaxational losses. Hysteresis losses occur in large MIONs
which possess multiple magnetic domains. When such particles
are subjected to an alternating magnetic field, the orientation
of the magnetic moments will align continuously with the
direction of the magnetic field as illustrated in Figure 2. This
results in a difference in energy that is released in the form
of heat (Kirschning et al., 2012). As MION size decreases, the
number of magnetic domains will also decrease until a single
magnetic domain remains at a threshold size of approximately
128 nm (Houlding and Rebrov, 2012). Below this size, MIONs
are deemed superparamagnetic and in the presence of an AMF,
heat is mainly produced by Néel relaxation and Brownian
relaxation. Néel relaxation refers to rapid changes in the particle’s
magnetic moment when exposed to AMF (Figure 2). The rapid
realignment is opposed by the particle’s crystalline structure,
resulting in heat generation. Brownian relaxation refers to the
frictional heat generated from the physical rotation of particles
within a supporting medium when the particles attempt to
realign themselves with the changing magnetic field (Figure 2;
Suto et al., 2009; Suriyanto et al., 2017). A more comprehensive
discussion on the mechanism of heating is beyond the scope of
this review and covered elsewhere (Ruta et al., 2015).

MIONs have the advantage of long term chemical stability
and biocompatibility, and ease of surface modification and
functionalisation when compared to other types of magnetic
susceptible materials such as certain metals (e.g., iron, nickel or
cobalt) or metal alloys (e.g., FePt, FeCo), (Dunn et al., 2014).
Furthermore, MIONs can act as a contrast agent for computed
tomography (CT) at high concentrations andmagnetic resonance
imaging (MRI) at lower concentrations, with several iron
oxide nanoparticles previously approved by the FDA for these
applications (Anselmo and Mitragotri, 2015). This is particularly
useful since the concentration of the MIONs within the tumor
can be estimated via CT and this can aid the estimation of
hyperthermia dosimetry (Johannsen et al., 2007b). MIONs have
also been shown to enhance the effects of radiotherapy even in
the absence of AMF, potentially by increasing the generation
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TABLE 2 | List of randomized clinical trials on hyperthermia combined with chemotherapy.

Reference Cancer type Number of

patients

randomized

Type of treatment Outcomes Toxicity from

hyperthermia

Ghussen

et al., 1984

Malignant melanoma

of the extremities

107 Control arm: Local excision and regional

lymph node dissection

Experimental arm: Local excision and

regional lymph node dissection +

hyperthermia perfusion (via extracorporal

heating of heparinized whole blood, limb

temperatures were elevated to 42◦C,

60min) with melphalan (added once limb

temperature reached ≥40◦C)

Significant improvement

in disease-free survival

p = 0.0001

Significant improvement

in survival.

p = 0.0207

Higher rates of

reversible

post-operative

complications in the

experimental arm

Hafström

et al., 1991

Recurrent malignant

melanoma of the

extremities

69 Control arm: Surgery

Experimental arm: Surgery + regional

hyperthermic perfusion (via extracorporeal

heating of blood mixed with low molecular

weight dextran and heparin, temperature of

the inflow perfusate was maintained at

41.5–41.8◦C, maintained for 1 h, melphalan

added either beginning or at the end of

hyperthermic perfusion)

Improved tumor-free

survival

p = 0.044

Difference in median

survival not statistically

significant

Higher rates of

post-operative

complications in the

experimental arm

Hamazoe

et al., 1994

Gastric cancer with

gross serosal

invasion but no gross

peritoneal metastasis

82 Control arm: Surgery

Experimental arm: Surgery + continuous

hyperthermic peritoneal perfusion with

mitomycin C (after gastrectomy, saline

containing mitomycin C was heated and

infused into the peritoneal cavity via silicon

tubes, inflow termperature was maintained

between 44–45◦C, 50–60min)

No statistically significant

difference in overall

survival.

Higher rates of

transient abnormal

blood profiles after

surgery in the

experimental arm

Sugimachi

et al., 1994

Thoracic esophageal

squamous cell

carcinoma

40 Control arm: Chemotherapy +/-

Oesophagectomy

Experimental arm: + hyperthermia (via

capacitive system involving an endotract

electrode, 42.5–44◦C for 30min, 6 sessions)
+/− Oesophagectomy

Subjective improvement

of dysphagia: 40% in

control arm vs. 70% for

experimental arm

Radiographic

improvement: 25% in

control arm and 50% in

experimental arm

Histological response:

18.8% in control arm vs.

58.3% in experimental

arm p < 0 0.05

Similar rates of toxicity

between control and

experimental arm

Koops et al.,

1998

Primary cutaneous

melanoma at high

risk of having regional

micrometastases

832 Control: Wide excision

Experimental arm: Wide excision and

isolated limb perfusion with melphalan and

mild hyperthermia (limb was perfused

heated perfusate, maintaining tissue

temperatures of 39–40◦C for 60min,

melphalan delivered once subcutaneous

temperature reached 38◦C)

No survival benefit Higher rates of

transient

post-operative toxicity

in the experimental arm

Verwaal et al.,

2008

Peritoneal

carcinomatosis of

colorectal cancer

105 Control: Chemotherapy (5-fluorouracil,

leucovorin weekly for 26 weeks or until

progression or unacceptable toxicity. If

treated with 5-fluorouracil within 12 months

before randomization, received irinotecan at

3 weekly intervals for 6 months, or until

progression or intolerable toxicity) + surgery

(only if symptoms of intestinal obstruction).

Experimental arm: Cytoreductive surgery,

intra-operative hyperthermic intraperitoneal

chemotherapy (initial warming via >3 l

isotonic dialysis fluid, at 1–2 l/min and an

inflow temperature of 41–42◦C for 90min,

Mitomycin C added once abdominal

temperature stable at 40◦C) + adjuvant

systemic chemotherapy.

Median follow-up of

almost 8 years

Median progression-free

survival:

7.7 months for control

arm and 12.6 months in

hyperthermia arm

p = 0.02

Median disease-specific

survival: 12.6 months in

control arm and 22.2

months in hyperthermia

arm

p = 0.028

Toxicity higher for

experimental arm

including 3 of 54

patients in the

experimental arm dying

from abdominal sepsis

(Continued)
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TABLE 2 | Continued

Reference Cancer type Number of

patients

randomized

Type of treatment Outcomes Toxicity from

hyperthermia

Colombo

et al., 2011

Intermediate to

high-risk non-muscle

invasive bladder

cancer

83 Control arm: Transurethral resection and 2

doses of mitomycin C

Experimental arm: Transurethral resection

and 2 doses of mitomycin C + hyperthermia

(via a 915 MHz intravesical radiative

hyperthermia device, median temperature of

42 ± 2◦C for ≥40min, 8 x weekly and 4 x

monthly sessions)

Median follow-up 91

months

10-year disease-free

survival:

53% with

thermochemotherapy

15% with chemotherapy

p < 0.001

Similar rates of acute

and late toxicity

between control and

experimental arm

Arends et al.,

2016

Intermediate to high

risk

non-muscle-invasive

bladder cancer

190 Control Arm: Bacillus Calmette-Guerin

immunotherapy

Experimental arm: 6 × weekly mitomycin C

+ 6 × 6-weekly maintenance mitomycin C

and hyperthermia (via a 915 MHz intravesical

radiative hyperthermia device, 42 ± 2◦C,

60min, 6 x weekly sessions followed 6

further treatments at 6 week intervals)

24 month recurrence free

survival was 81.8% in

experimental arm and

64.8% in the control arm

p = 0.02

Mitomycin C +

Hyperthermia group

associated with less

urinary frequency,

nocturia, incontinence,

hematuria, fever, fatigue

and arthralgia but more

catheterisation

difficulties, urethral

strictures, bladder

tissue reaction, bladder

spasms, bladder pain,

allergies

of reactive oxygen species (ROS) through the Fenton reaction
(Huang et al., 2010; Klein et al., 2012; Khoei et al., 2014; Bouras
et al., 2015). Finally, iron is an essential component of the
human body and the average human adult naturally carries
approximately 3.5–4 grams of iron. Consequently, unlike other
inorganic nanoparticles, MIONs have been systemically delivered
safely in large quantities in clinical settings (Hetzel et al., 2014).
Furthermore, there is in vitro evidence that intracellular localized
heating of ligand-decorated MIONS can lead to lysosomal
damage of the target cells and induce cell death even in the
absence of bulk heating (Creixell et al., 2011; Domenech et al.,
2013).

MODE OF DELIVERY

MIONs can potentially be delivered to the tumor via intra-
tumoral, intra-peritoneal, intra-arterial, intra-cavitary, and
intravenous administration. Oral administration of MIONs
is not feasible as most of the nanoparticles will be fecally
excreted, owning to their large size (Chamorro et al., 2015).
Intra-tumoral administration of MIONs efficiently localizes
MIONs in the tumor and can result in effective heating
of primary tumors such as prostate cancer. Intra-tumoral
administration can result in very high concentrations of MIONs
within the tumor and can remain localized in the tumor.
When MIONs were directly injected to the prostate in men
with localized prostate cancer, MIONs were still clearly visible
on CT 6 weeks post injection, thereby allowing repeated
magnetic hyperthermia treatments (Johannsen et al., 2005). In
a separate post-mortem study of patients with glioblastoma
who received MIONs, nanoparticles were restricted to the
site of intra-tumoral injection, once again confirming a good
retention profile (Van Landeghem et al., 2009). However,

intra-tumoral delivery of MIONs is not practical for larger
tumors with regional metastases and is more invasive than other
techniques (Figure 3). Furthermore, poorly defined tumors
like GBM may be better targeted by intravenously delivered
MIONs which are less dependent on the operator for effective
delivery, although penetrating the blood-brain barrier may be a
challenge.

Intra-peritoneal mode of delivery is well suited to cancers
that often spread to the peritoneal cavity such as ovarian,
pancreatic and gastric cancers. Cancer targeting MIONs have
been successfully delivered via the intra-peritoneal route and
have demonstrated significant uptake by both primary and
metastatic tumors in orthotopic mouse pancreatic cancer models
(Gao et al., 2017). When compared to intravenous mode of
delivery, the intra-peritoneal route achieved an intra-tumoral
level that was 3-fold higher. The same system was able
to carry chemotherapeutic drugs and significantly inhibited
pancreatic tumors without systemic toxicity (Gao et al., 2017).
Toraya-Brown et al. administered non-targeted MIONs intra-
peritoneally in an aggressive mouse metastatic ovarian cancer
model and demonstrated significant accumulation of MIONs in
the tumor (Toraya-Brown et al., 2013). They determined that the
non-targetedMIONswere taken up by peritoneal phagocytes and
delivered to tumors. When under an AMF, MIONs generated
enough heat to induce cell death within tumors. A separate
mouse study determined that up to 5 mg/kg of MIONs can be
safely delivered intraperitoneally although at higher levels, signs
of oxidative damage were detected within the hepatic and renal
tissues (Ma et al., 2012). Furthermore, monocyte/macrophage-
like cells with a propensity to migrate into tumors, can be loaded
withMIONs externally and injected intraperitoneally, after which
the cells will direct MIONs for magnetic hyperthermia (Basel
et al., 2012).
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TABLE 3 | List of randomized clinical trials on hyperthermia combined with radiotherapy and chemotherapy.

Reference Cancer type Number of

patients

randomized

Type of treatment Outcomes Toxicity from

hyperthermia

Kitamura et al.,

1995

Squamous cell

carcinoma of the thoracic

esophagus undergoing

neoadjuvant therapy

66 Control arm: Neoadjuvant

chemoradiotherapy + surgery

Experimental arm: Neoadjuvant

hyperthermochemoradiotherapy

(capacitive system involving an

intraluminal applicator, 42.5–44◦C

at tumor surface for 30min, 6

sessions)

Complete response

25% in experimental arm

5.9% in control arm

3 year survival 50.4%

experimental arm

24.2% control arm

Details lacking

No postoperative

mortality in either arm

Sneed et al.,

1998

Glioblastoma 79 Control arm: Radiotherapy + oral

hydroxyurea + brachytherapy

boost

Experimental arm: Radiotherapy +

oral hydroxyurea + brachytherapy

boost + hyperthermia (radiative

hyperthermia, 915 MHz, ≥42.5◦C

for 30min, 15–30min before and

after brachytherapy)

Median survival:

76 weeks for control arm

85 weeks for hyperthermia

arm

p = 0.02

There was a trend (p =

0.08) toward more

grade 3 or higher

toxicities for the

experimental arm

Higher incidence of

grade 1 and grade 2

neurological changes

and seizures for the

experimental arm

Issels et al.,

2010

Localised high-risk

soft-tissue sarcoma,

extremity and

retroperitoneal

341 Control arm: Neoadjuvant and

adjuvant chemotherapy

(etoposide, ifosfamide,

doxorubicine) + local therapy

(surgery +/- radiotherapy)

Experimental arm: Neoadjuvant

and adjuvant chemotherapy

(etoposide, ifosfamide,

doxorubicine) + local therapy

(surgery +/- radiotherapy) +

regional hyperthermia (radiative

hyperthermia, 42◦C for 60min on

day 1 and 4 of 3 weekly

chemotherapy cycles, up to 8

sessions)

Median follow-up 34

months

Significant improvement in

local progression-free

survival (hazard ratio =

0.58, p = 0.003) and

disease-free survival (hazard

ratio = 0.7, p = 0.011)

Increased pain, bolus

pressure, skin burn in

experimental arm

FIGURE 2 | Different heat generation mechanisms of magnetic nanoparticles in response to an alternating magnetic field. Orange circles represent MIONs, short

straight arrows represent magnetic field direction, curved arrows represent the movement (solid curved arrow) or change in magnetic moment direction (dashed

curved arrow), and dashed lines represent domain boundaries in multi-domain particles. Adapted from Suriyanto et al. (2017).

Frontiers in Pharmacology | www.frontiersin.org 9 August 2018 | Volume 9 | Article 831

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Chang et al. Targeted Magnetic Hyperthermia

FIGURE 3 | (A) Intra-tumoral delivery can achieve high concentrations of MIONs but are only suited to localized disease such as prostate cancer. (B) Intravenous

delivery can potentially target poorly localized malignancies, often with lymph node metastases, such as lung cancer. AMF, alternating magnetic field; MIONs,

magnetic iron-oxide nanoparticles.

For bladder cancers, magnetic hyperthermia can be achieved
by the direct injection of MIONs into the bladder cavity
via a urinary catheter. The thick lining of the bladder will
restrict the absorption of MIONs and once the treatment is
completed, MIONs can be removed through the catheter, thereby
minimizing systemic toxicity. The feasibility of this approach
was demonstrated by Oliveira et al. in rat bladders, where
temperatures of 42◦C were maintained in the bladder with
minimal heating of surrounding tissues (Oliveira et al., 2013).

Intra-arterial administration of chemotherapeutic drugs has
been successfully applied to liver cancers in the clinic. MIONs
may be well suited to this task as they tend to accumulate in the
liver via the reticuloendothelial system. With this in mind, the
arterial delivery of iron oxide nanoparticles has been explored in
preclinical models by several investigators (Lee et al., 2013, 2017;
Kim et al., 2016). In rabbits, when MIONs were delivered with
iodized oil and doxorubicin, there was an increased intra-tumoral
accumulation of drugs and consequently, reduced numbers of
viable tumor cells (Lee et al., 2013). For lung cancer, there
have been early investigations into the potential formulation of
aerosolized MIONs and their delivery via a combination of a
nebulizer and a magnet (Dames et al., 2007; Tewes et al., 2014;
Graczyk et al., 2015). However, it would be quite challenging
to deliver sufficient quantities of MIONs for the application of
magnetic hyperthermia using this approach.

Although the modes of administration mentioned so far are
well suited to particular scenarios, intravenous administration
is the most versatile method of delivery for the widest range
of cancers. Not surprisingly, intravenous delivery is one of the
most common routes of administration of chemotherapeutic
drugs and in the past, FDA-approved MION MRI contrast
agents have been delivered intravenously. (Figure 3). When
MIONs are delivered in this manner, the accumulation of

nanoparticles within the tumor depends in part on the enhanced
permeability and retention (EPR) effect (Iyer et al., 2006). The
EPR effect refers to the tendency of nanoparticles to preferentially
accumulate within tumors due to their leaky vasculatures and
poor lymphatic drainage. Once nanoparticles have reached the
tumor, targeting ligands, such as small molecules, peptides or
antibodies, bound to MIONs may lead to increased association
and uptake of nanoparticles by malignant cells (DeNardo et al.,
2007; Balivada et al., 2010). Their preferential accumulation
within the malignant cells can lead to targeted heating of
tumors and sparing of adjacent normal tissue under AMF
(DeNardo et al., 2007; Balivada et al., 2010). Such approaches
may potentially result in more homogeneous delivery of MIONs
to the tumor and would be far less operator dependent when
compared to other forms of targeting. In addition, the avoidance
of the surgical morbidity associated with intra-tumoral injection
of MIONs in the tumor may be attractive.

So far, preclinial in vivo studies (Table 4) have been performed
in order to demonstrate the concept of biologically targeted
magnetic hyperthermia (Table 4). Huang et al. intravenously
injected extremely large quantities (1,700mg Fe/kg) of
untargeted MIONs into mice and achieved a subcutaneous
tumor concentration of 1.9mg Fe/kg of tumor. Despite the
lack of targeting moiety, they were able to achieve a tumor
to surrounding non-tumor concentration ratio of more than
16:1 via the enhanced permeability and retention effect alone.
Application of AMF achieved significant tumor control when
compared to either nanoparticles or AMF alone. In the same
study, mice injected with even higher doses of nanoparticles
(3,400mg Fe/kg) survived more than 12 months without
showing any clinical signs of toxicity (Huang and Hainfeld,
2013). Another in vivo study on intravenous administration of
porphyrin coated MIONs demonstrated improved melanoma
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tumor control under AMF (Balivada et al., 2010). A third
mouse study assessing the effectiveness of MIONs conjugated
to ChL6, an antibody that targets tumor-associated antigen L6,
demonstrated significant tumor accumulation and breast cancer
tumor growth delays (DeNardo et al., 2007).

Despite the promising findings outlined above, preclinical
studies often apply field strengths, frequencies or quantities of
MIONs that are beyond what is clinically feasible and thus,
further research is warranted in the areas of design, delivery, and
the heating of nanoparticles, to achieve clinical translation in the
future. In the following sections, areas requiring further research
will be highlighted.

FACTORS INFLUENCING THE EFFICACY
OF BIOLOGICALLY TARGETED MAGNETIC
HYPERTHERMIA

Field Strength and Frequency
Achieving and maintaining hyperthermia in the tumor is no
easy task. Due to natural thermoregulatory processes, significant
powermust be delivered to elevate the temperature of a particular
region of the body. The heating of MIONs is dependent on
a variety of factors including the concentration of MIONs,
frequency and the field strength. Currently, the only clinically
available AMF system in the world, NanoActivator R© (MagForce
AG, Germany), can operate at a frequency of 100 kHz and
is able to apply fields up to 18 kA/m (Jordan et al., 2001).
Although higher frequencies are technically feasible, 100 kHz was
chosen to minimize eddy currents andmaximize the temperature
differential between normal tissues and tumors containing
magnetic nanoparticles (Jordan et al., 1993). Eddy currents
are electrical currents that are induced within the conductor,
in this case the human body, due to the changing magnetic
field, as described by Faraday’s law of induction. Excessive
non-specific heating of normal tissues by eddy currents is the
primary determinant of themaximum tolerable field strength and
frequency.

At present, there is limited clinical data on the maximum
tolerable field strength and frequency. In 1984, Atkinson et al.
designed a single-turn induction coil for interstitial magnetic seed
therapy and conducted experiments on thoraces of numerous
volunteers. They found that field intensities up to 35.8 A/m at
a frequency of 13.56 MHz can be tolerated for extended periods
of time. Based on this study, the assumption was made that
the product of field strength and frequency should not exceed
4.85 × 108 A/m·s (Atkinson et al., 1984). However, this is not
an absolute limit and in certain scenarios, this limit may be
exceeded (Dutz and Hergt, 2013; Obaidat et al., 2015). In phase
1 and 2 trials of the MagForce system, using lower frequencies
of 100 kHz, patients with glioblastoma were able to tolerate up
to 13.5 kA/m (1.35 × 109 A/m·s or a median value of 8.5 ×

108 A/m·s) whilst patients with prostate cancer were only able
to tolerate up to 5 kA/m (5 × 108 A/m·s) due to discomfort
in the groin and/or perineal regions (Johannsen et al., 2007a;
Maier-Hauff et al., 2007; Nieskoski and Trembly, 2014). This may
have been due to boundary effects between tissues of different
dielectric constants and conductivity, as well as narrowing of

current path in the skin folds such as the groin, resulting
in hot spots (Johannsen et al., 2007a). The higher tolerable
field strength in patients with glioblastoma is likely to be due
to the smaller radius of the head compared to the pelvis or
thorax in other studies. Considering that higher field strengths
and frequencies will translate to improved heating of tumors,
further research is required into improving the tolerable limits
of magnetic field strengths and frequencies via improved surface
cooling of hotspots that develop in the body, such as the groin
(Johannsen et al., 2007b). Furthermore, with shorter duration
of treatment, it is possible that higher magnetic field strength
or frequency may be achievable. Another possible limitation to
the maximum field strength that can be applied clinically relates
to the technical challenges of designing and manufacturing a
much larger system than the smaller systems utilized in the
preclinical studies (Table 4; Jordan et al., 2001). It is advisable
that future preclinical studies on biologically targeted magnetic
hyperthermia focus on the application of clinically relevant
magnetic field strength and frequency of 18 kA/m and 100 kHz
currently available on the MagForce system.

Assuming that MIONs have been delivered to the target,
the temperature can be adjusted by the alteration of magnetic
field strength or frequency. For example, the hyperthermia
system from Magforce controls the temperature by adjusting the
magnetic field strength. As the effect of hyperthermia is heavily
influenced by the temperature reached and for how long this
is maintained, it is extremely important to accurately monitor
the temperature during therapy and this has been previously
achieved with an invasive catheter or specialized software based
on imaging (Mahmoudi et al., 2018). Future studies must ensure
that hyperthermia is delivered sufficiently by close monitoring of
the tumor temperature.

DOSING AND TOXICITY OF MAGNETIC
IRON OXIDE NANOPARTICLES

The rate of AMF-induced heating is highly dependent on the
concentration of MIONs within the tumor. In clinical trials, up
to 31.36mg of Fe/cm3 of tumor, in the form of MIONs, have
been administered intra-tumorally in patients with glioblastoma
(Maier-Hauff et al., 2011). Feraheme R© (AMAG Pharmaceuticals,
USA), an FDA approved iron oxide nanoparticle indicated for
iron replacement, has been safely delivered intravenously in
larger quantity than probably any other FDA approved inorganic
nanoparticle so far and the recommended dose is 510mg of
Fe in the form of Feraheme R©, followed by a second injection
3 to 8 days later. In the past, several patients have received
two additional injections to a total dose of 2.02 g of Fe in the
form of Feraheme R© within a short period (Lu et al., 2010). In
a hypothetical scenario, if 2.02 g of Fe in the form of MIONs,
are intravenously administered to a patient with a 35ml prostate
tumor, and assuming that 1% of the dose would reach the
tumor, this would result in only about 0.6mg of Fe/cm3 of
tumor, far lower than what has been achieved with intra-tumoral
administration. In addition, Feraheme contains approximately
3 nm iron oxide cores that are smaller than the MIONs that
are typically associated with effective heating (Bullivant et al.,
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TABLE 4 | In vivo studies of biologically targeted magnetic hyperthermia.

Reference Field

strength

(kA/m)

Frequency

(kHz)

Field strength

x frequency

(A/m•s)

Quantity of

Fe delivered

Target Targeting

Mechanism

Summary of Results

Huang (Huang and

Hainfeld, 2013)

38 kA/m 980 kHz 3.724 × 1010 1700 mg/kg Squamous Cell

Carcinoma

EPR Durable ablation of tumors

in 84% of hyperthermia

group compared to 0% for

controls

Balivada (Balivada

et al., 2010)

5 kA/m 366 kHz 1.830 × 109 13.30 mg/kg* Melanoma EPR + Porphyrins Tumor volume was smaller

in the hyperthermia group

(p<0.1)

DeNardo

(DeNardo et al.,

2007)

56–113 kA/m 153 kHz 1.729 × 1010 150 mg/kg* Breast Cancer EPR + Antibody

targeting integral

membrane

glycoprotein

Tumor

doubling/tripling/quadrupling

times were increased

significantly (p < 0.05)

except for the group that

received the lowest energy

*Assuming 20 g average weight of mice.

EPR, enhanced permeability and retention; kA/m, kiloampere/metre; kHz, kilohertz; A/m•s, ampere/meter•second.

2013). For example, the nanoparticles used by MagForce contain
a 12 nm iron oxide core surrounded by aminosilanes and larger
crystal cores are likely to be associated with different toxicity
profiles. In mice, Huang et al. was able to deliver much higher
concentrations of MIONs (5.1 g Fe/kg) and determined an
MTD50 value of 4.7 g Fe/kg, more than 100 times that delivered
per kg in the Feraheme study (Huang and Hainfeld, 2013).

As the interaction of MIONs with their biological
environment, and therefore their toxicity, varies with
morphology, size, and surface modifications such as the
addition of biocompatible coatings and targeting moieties, as
well as the route of administration, each formulation needs to
be tested thoroughly in vitro and in vivo. MIONs can mediate
toxicity through several mechanisms that all have to be taken into
account when evaluating their safety. Most intracellular toxicity
is caused by generation of reactive oxygen species whereas
in vivo disturbances of blood clotting, iron homeostasis and
macrophage function, as well as organ toxicities, are additional
considerations (Ilinskaya and Dobrovolskaia, 2013; Wu et al.,
2014; Wei et al., 2016; Shah and Dobrovolskaia, 2018). A more
detailed discussion of MION toxicity can be found in specialized
review articles (Reddy et al., 2012; Liu et al., 2013; Arami et al.,
2015).

To achieve sufficient heating via intravenous delivery of
MIONs, further research is necessary to assess the tolerability
of larger quantities of MIONs with bigger cores which are
more suited to magnetic hyperthermia, and this will have to be
finely balanced with size requirements for efficient intra-tumoral
accumulation of nanoparticles.

HEATING EFFICIENCY OF MAGNETIC
IRON OXIDE NANOPARTICLES

In order to minimize the quantity of iron oxide nanoparticles
necessary for adequate magnetic hyperthermia, the development
of nanoparticles with higher heating efficiency is desirable. The

most common parameter for quantifying the heat generated
via magnetic induction of MIONs is the Specific Absorption
Rate (SAR). The experimental measurement of SAR is relatively
simple. It typically involves suspending a known amount of
MIONs in a liquid of known heat capacity. The test sample is
exposed to an AMF of a specific strength and frequency, and the
change in temperature is measured continuously over a period
of time. The temperature measurement is carried out with fiber
optic temperature probes to avoid electromagnetic interference
with the measurement. The SAR is then calculated from the
following equation (Kallumadil et al., 2009; Huang et al., 2012):

SAR =
C

mnp

(

dT

dt

)
∣

∣

∣

∣

t=0

where C is heat capacity of the fluid per unit mass of fluid, mnp

is the mass of magnetic phase suspended in the fluid and dT/dt
refers to the initial slope of temperature rise T, as a function of
time, t.

It is important to note that SAR is a system-dependent
parameter, that is, its value depends on the strength (H) and
frequency (f) of the applied magnetic field. Therefore, direct
comparison betweenmeasurements that are made using different
field strength and frequency is not possible. A better parameter
for this purpose is the Intrinsic Loss Power (ILP) which is
mathematically described by the equation below (Kallumadil
et al., 2009):

ILP =
SAR

H2f
=

C

H2f mnp

(

dT

dt

)
∣

∣

∣

∣

t=0

The ILP parameter is introduced under several key assumptions:
(1) Test samples are single domain nanoparticles that heat up
mainly via rotational relaxation; (2) Magnetic induction systems
are of low frequencies at approximately 105–106 Hz; (3) Applied
field strength is under the saturation field of the MIONs; (4)
For the case of polydisperse MIONs in solution, the crystallite
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polydispersity index (PDI) has to be greater than 0.1 (Rosensweig,
2002; Kallumadil et al., 2009). If these assumptions are not
satisfied, the derived ILP values may not be valid. It is important
to note that the published ILPs are only a guide, and the absolute
values may not always be reliable due to the variability in the
methods used to measure them and given the heating rates
are very sensitive to factors such as polydispersity (Gonzales-
Weimuller et al., 2009; Wildeboer et al., 2014). Different types
of MIONs have highly variable heating properties. Kallumadil
et al. found significant variations in the ILP between various
commercially available MIONs, ranging from 0.15 to 3.12
nHm2/kg. Heating rates can be influenced by several factors
such as the ferrous iron content, size, hydrodynamic diameter,
shape, number of cores, method of synthesis, and introduction
of other metals such as Mn and Zn (Kallumadil et al., 2009;
Blanco-Andujar et al., 2015; Hauser et al., 2015; Phong et al.,
2017).

Due to the large number of variables, it is difficult to
determine precisely how individual factors can impact the
heating performance. In addition, the viscosity of the solvent
and concentration of MIONs can further dictate the heating
properties (Salas et al., 2014). Despite this, there are studies
that do provide general insights to the relationship between
the various characteristics and the heating properties. Several
investigators have shown that in general, larger MIONs are more
efficient at generating heat than smaller MIONs. (Gonzales-
Weimuller et al., 2009; Lartigue et al., 2011; de La Presa et al.,
2012; Jeun et al., 2012). For example, Lartigue et al. produced
MIONs ranging from 4 to 35nm and coated themwith rhamnose,
a type of sugar. When heated under 168 kHz and 21 kA/m, the
SAR was 0 W/g of Fe for 4 nm MIONs, 32 W/g of Fe for 10 nm
MIONs, 61 W/g of Fe for 16 nm MIONs, and 76 W/g of Fe for
35 nmMIONs (Lartigue et al., 2011).

The shape of the nanoparticle can have a significant influence
on the heating performance. Song et al. produced and compared
the heating performance of quasi-cubical and spherical Fe3O4

nanoparticles under 100 kHz and 30 kA/m. Under equal
concentration of Fe, the SAR for quasi-cubical nanoparticles
were far superior (Song et al., 2012). Another study by Nemati
et al. compared deformed cube (octopods) shaped MIONs with
spherical nanoparticles of similar volume and demonstrated
superior heating performance of the octopods (Nemati et al.,
2016). Liu et al. produced ring shaped MIONs (nanorings)
and compared the heating performance with a commercial
MION called Resovist across a range of magnetic field strengths.
Although the difference cannot be entirely attributed to the shape
alone due to the differences in size, nanorings demonstrated
superior heating performance, especially under the higher ranges
of magnetic field strength (Liu et al., 2015). Consequently,
magnetic hyperthermia via nanorings resulted in superior tumor
control in vivo (Liu et al., 2015). Despite the superior heating
rates of some of the oddly shaped MIONS, it is important to be
aware that the shape can also influence the rate of uptake and
toxicity (Hinde et al., 2017). These factors must be considered
when designing nanoparticles for clinical applications.

The surface coating can have a significant impact on the
heating performance of MIONs. Complete coating of MIONs

with a low heat conductor such as SiO2 shell can prevent the
outflow of heat and reduce the heating efficiency (Gonzalez-
Fernandez et al., 2009; Rivas et al., 2012). Furthermore, the
thickness of the coating can also impact the heating efficiency.
Liu et al. coated MIONs with polyethylene glycol (PEG)
polymer of various length ranging from 2,000 to 20,000 Da
and found that MIONs coated with shorter polymers generally
heat better, possibly due to increased Brownian loss, improved
thermal conductivity and dispersibility (Liu et al., 2012). One
exception to this was the 31 nm MION which heated better
when coated with longer PEG polymers. This was ascribed
to potential agglomeration of the 31 nm MIONs with the
shorter PEG, highlighting a delicate balance between stability
and heating performance. The coating can also influence the
pharmacokinetics of MIONs in the body which is an important
consideration when developingMIONs for hyperthermia (Arami
et al., 2015). Doping MIONs with Mg or Zn is another strategy
that has resulted in nanoparticles with superior heating profiles,
resulting in better tumor control in vivo (Jang et al., 2009).

Interestingly, one of the highest ILPs (23.41 nHm2/kg) to
have been reported in the past was on bacterially derived
MIONs, which have a mean core diameter of approximately
30 nm (Hergt et al., 2005). Bacterial magnetosome-like cubic
nanoparticles were later produced by Martinez-Boubeta et al.
and demonstrated superior heating efficiency compared to
spheroidal MIONs of similar size (Martinez-Boubeta et al., 2013).
Le Fevre et al. have evaluated the effectiveness of magnetic
hyperthermia via intra-tumorally delivered magnetosomes and
achieved superior tumor control compared to chemically
synthesized MIONs (Le Fèvre et al., 2017). Recently, Sangnier
et al. demonstrated that magnetosomes can be tagged with
tumor targeting peptide, arginine-glycine-aspartic acid (RGD),
then administered intravenously in mice models for targeted
delivery to tumors (Plan Sangnier et al., 2018). They applied
photothermal therapy rather than magnetic hyperthermia
as it was thought to be more effective. However, such
approaches are likely to be limited for deep seated tumors
in humans and thus, further work is required to evaluate its
application for magnetic hyperthermia. Many other types of
nanoparticles have been produced in the past for magnetic
hyperthermia and more details can be found in other specialized
review articles (Blanco-Andujar et al., 2017; Hedayatnasab
et al., 2017). Higher heating efficiency would be highly
desirable as it would reduce the quantity of nanoparticles,
field strength and frequency required to induce significant
heating.

TARGETING OF MIONS

Intravenously administered nanoparticles preferentially
accumulate within tumors owing to their leaky vasculature
and poor drainage. This EPR effect is well documented and was
recently demonstrated in human tumors (Clark et al., 2016).
In addition, structural and surface modification of MIONs can
further increase tumor accumulation and up to ∼15.5%ID/g
have been reported in the past (Xu et al., 2016).
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Targeting of cancer cells with antibodies or other ligands can
further improve the accumulation of nanoparticles within the
tumor. MIONs conjugated to antibodies have been previously
delivered to several tumor specific antigens including L6, HER-2
and PSMA for medical imaging and magnetic hyperthermia
(DeNardo et al., 2007; Zhang et al., 2011; Tse et al., 2015).
As mentioned earlier, one of the best examples is a study
by DeNardo et al. in which MIONs conjugated to ChL6, an
antibody that targets tumor-associated antigen L6, demonstrated
significant tumor accumulation and breast cancer tumor growth
delays under an AMF (DeNardo et al., 2007). Despite the
potential for enhanced delivery, targeting can be associated with
significant challenges in terms of the chemistry of conjugation
and stability of ligand or antibody bound to nanoparticles.
For example, MLN2704, a prostate specific antigen directed
immunoconjugate for delivering chemotherapeutics to prostate
cancer was associated with significant toxicity and limited
activity due to deconjugation of the targeting antibody once
in circulation (Milowsky et al., 2016). In a clinical trial
of CALAA-01, a ligand bound nanoparticle siRNA delivery
system, 21% of patients discontinued the study due to an
adverse event and it was proposed that ligand instability was
responsible for the undesirable toxicity (Zuckerman and Davis,
2015). Some of these limitations can be overcome by the
application of bispecific antibodies that can spontaneously bind
to both the poly ethylene glycol (PEG) coated nanoparticles
and cancer specific antigens such as prostate specific membrane
antigen (PSMA) or epidermal growth factor receptor (EGFR).
Bispecific antibodies are composed of 2 separate single-chain
fragment (scFv) and are smaller than whole antibodies. It
can be stored in the freezer separate to the nanoparticles,
thereby overcoming the stability issue. When administered
with any PEGylated nanoparticles prior to or at the time of
delivery, bispecific antibodies will spontaneously associate itself
with PEGylated nanoparticles. Within the tumor, bispecific
antibodies will bind to cancer specific antigens and keep
the nanoparticle in close proximity to the target cancer
cells, thereby, enhancing tumor accumulation (Howard et al.,
2016).

To overcome the limitations of antibodies, MIONs can
alternatively be conjugated to cancer specific peptides,
glycosaminoglycans or aptamers. In order to target ovarian
cancer, Taratula et al. synthesized MIONs conjugated to
an ovarian cancer targeting Luteinizing Hormone-Release
Hormone (LHRH) peptide. In vitro, LHRH peptide coating
improved the ability of MIONs to associate with ovarian cancer
cells and resulted in a significant reduction in cell viability
under an alternating magnetic field (Taratula et al., 2013).
For reduced immunogenicity, MIONs can be coated with
hyaluronic acid, a biocompatible material that is naturally found
in our body. Hyaluronic acid can target cancer cells via CD44
receptor, a commonly found cell surface marker in epithelial
tumors and its potential role in magnetic hyperthermia has been
demonstrated in vitro (Thomas et al., 2015). Nair et al. produced
glioma targeting aptamers, composed of oligonucleotides, for
conjugation with dextran coated iron oxide nanoparticles. Using
the targeted MIONs, they were able to induce preferential

damage to glioma cells via mechanical oscillation induced by a
rotating magnetic field (Nair et al., 2010). It is possible that such
nanoparticles may be applied for magnetic hyperthermia in the
future.

For further enhancement of hyperthermia, MIONs can
be directed toward intracellular organelles of cancer cells
via conjugation of organelle targeting peptides. Peng et al.
administered transferrin and nuclear targeting TAT peptide
conjugated MIONs to mice and applied photothermal
hyperthermia (Peng et al., 2017). When compared to transferrin
conjugated MIONs, nuclear targeting MIONs demonstrated
significant improvement in tumor control (Peng et al., 2017).
Additional studies are required to confirm that such intracellular
targeting strategies may be applicable for magnetic hyperthermia.
Despite these exciting approaches to targeting, there is multitude
of factors that can influence its effectiveness and a detailed
evaluation can be found in specialized reviews (Rosenblum et al.,
2018).

Another novel approach to improved tumor targeting is to
suppress the reticuloendothelial system with drugs prior to the
delivery of MIONs. For example, Abdollah et al. demonstrated
that the suppression of Kupffer cells in the liver with dextran
sulfate can significantly increase the circulating half-life of
non-targeted MIONs by inhibiting the liver uptake (Abdollah
et al., 2014). It is uncertain whether dextran sulfate suppression
can also be applied in combination with ligand- or antibody-
conjugated MIONs to prevent liver uptake and further research
is warranted in this area.

Overall, several strategies are being evaluated in order to
effectively target nanoparticles to the tumor whilst sparing
normal tissue. Improved targeting will ultimately be the key to
delivering sufficient quantities of MIONs for selective heating of
tumors.

MAGNETICALLY TARGETED MIONS

Due to their magnetic properties, MIONs can be directed
toward the tumor via a magnetic field. This can be applied
in combination with targeted MIONs for effective magnetic
hyperthermia. There are several notable examples of this
approach. For gene therapy, MIONs have been used to
direct intravenously administered silencing RNAs toward gastric
tumors in mouse models under a magnetic field (Namiki et al.,
2009). In a separate study, Garcia-Jimeno et al. were able to direct
magnetoliposomes, with the aid of a magnetic field, toward the
target and away from the liver and the spleen of mice (García-
Jimeno et al., 2012).

For maximum uptake and retention in the tumor, it is
important for MIONs or other nanoparticles to extravasate and
reach the cancer cells. This can be achieved by disrupting the
endothelial barrier with an external magnetic field. Qui et al.
injected MIONs into mouse tail vein and used an external
magnetic field to direct the particles into the lateral tail vein.
Histological examination revealed that MIONs accumulated
in the endothelial tissue. When a fluorophore was injected
systemically, fluorescence signal was higher in the tail of the mice
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subjected to themagnetic field andMIONs, due to a disruption of
endothelial lining (Qiu et al., 2017). Combining these approaches
may potentially improve the therapeutic efficacy of magnetic
hyperthermia in the future.

OTHER METHODS TO IMPROVE THE
IMPACT OF TARGETED MAGNETIC
HEATING

Other novel methods of improving the effectiveness of magnetic
hyperthermia have been explored. Espinosa et al. applied
near-infrared laser irradiation (808 nm) during magnetic
hyperthermia in vivo and demonstrated 2–5 fold improvements
in heating when compared to magnetic hyperthermia alone
although such approaches would be limited to surface tumors
owing to the poor tissue penetration of laser irradiation
(Espinosa et al., 2016).

In the past, there have been attempts to biologically enhance
the effectiveness of magnetic hyperthermia with hyperthermia
enhancing drugs such as the heat shock protein (HSP) 90
inhibitor Geldanomycin. When cells are heated, HSP 90 plays
a key role in stabilizing proteins, thus, limiting the downstream
effects of protein denaturation. Therefore, the inhibition of
HSP 90 can lead to improved effectiveness of hyperthermia
and reduce thermotolerance. For example, Ito et al. delivered
Geldanomycin, and applied magnetic hyperthermia in a mouse
melanoma model, which resulted in significant improvement in
tumor control when compared to magnetic hyperthermia alone
(Ito et al., 2009). This approach is particularly promising as
HSP 90 inhibitors can independently enhance the effectiveness
of radiotherapy, even in the absence of hyperthermia (Schilling
et al., 2015).

There are many other hyperthermia enhancers that have been
reported in the past but themajority of these agents have not been
evaluated in combination with magnetic hyperthermia (Marchal
et al., 1986). Protease inhibitors are another class of potent
hyperthermia enhancers that have been evaluated in vitro. It
is thought that the enhancement is achieved by inhibiting the
clearance of denatured proteins within the cells (Zhu et al., 1995).

Another novel strategy is to combine magnetic hyperthermia
with thermally sensitive liposomes. This can be achieved by
creating a liposome with magnetic iron oxide cores embedded
within. When an AMF is applied, the magnetic nanoparticles
will trigger the release of the lipososomal contents. As AMF
can be applied to a specific region of the body, this could
result in targeted drug release and improved therapeutic

effectiveness. For example, Yang et al. produced a CD90 targeted
magnetoliposome encapsulating 17-AAG, a HSP 90 inhibitor.
The magnetoliposome was able to simultaneously heat liver

cancer stem-like cells and trigger the release of 17-AAG, thereby
improving the effectiveness of magnetic hyperthermia (Yang
et al., 2015).

CONCLUSION

Hyperthermia can lead to cell death via modulation of various
cellular processes and is an effective treatment that can enhance
the outcomes of radiotherapy and chemotherapy. One of
the disadvantages is the lack of specificity toward malignant
cells compared to healthy tissue. Systemic administration of
targeted MIONs has the potential to improve the specificity
of hyperthermia and improve its efficacy. However, several
limitations must be resolved before this technology can
progress to clinic. Future preclinical studies should focus on
designing MIONs that can target and heat tumors more
effectively. Furthermore, various hyperthermia enhancers should
be evaluated in combination with magnetic hyperthermia, with
the ultimate objective of achieving clinical feasibility.
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