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Abstract Fungi of the genus Trichoderma are soilborne,
green-spored ascomycetes that can be found all over the
world. They have been studied with respect to various
characteristics and applications and are known as successful
colonizers of their habitats, efficiently fighting their com-
petitors. Once established, they launch their potent degra-
dative machinery for decomposition of the often
heterogeneous substrate at hand. Therefore, distribution
and phylogeny, defense mechanisms, beneficial as well as
deleterious interaction with hosts, enzyme production and
secretion, sexual development, and response to environ-
mental conditions such as nutrients and light have been
studied in great detail with many species of this genus, thus
rendering Trichoderma one of the best studied fungi with
the genome of three species currently available. Efficient
biocontrol strains of the genus are being developed as
promising biological fungicides, and their weaponry for this
function also includes secondary metabolites with potential
applications as novel antibiotics. The cellulases produced
by Trichoderma reesei, the biotechnological workhorse of
the genus, are important industrial products, especially with
respect to production of second generation biofuels from
cellulosic waste. Genetic engineering not only led to
significant improvements in industrial processes but also
to intriguing insights into the biology of these fungi and is
now complemented by the availability of a sexual cycle in

T. reesei/Hypocrea jecorina, which significantly facilitates
both industrial and basic research. This review aims to give
a broad overview on the qualities and versatility of the best
studied Trichoderma species and to highlight intriguing
findings as well as promising applications.
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Biodiversity and phylogeny of Trichoderma

The first description of a fungus named Trichoderma dates
back to 1794 (Persoon 1794), and in 1865, a link to the
sexual state of a Hypocrea species was suggested (Tulasne
and Tulasne 1865). However, the different species assigned
to the genus Trichoderma/Hypocrea were difficult to
distinguish morphologically. It was even proposed to
reduce taxonomy to only a single species, Trichoderma
viride. Hence, it took until 1969 that development of a
concept for identification was initiated (Rifai 1969;
Samuels 2006). Thereafter, numerous new species of
Trichoderma/Hypocrea were discovered, and by 2006, the
genus already comprised more than 100 phylogenetically
defined species (Druzhinina et al. 2006a). In some cases,
especially in earlier reports, misidentifications of certain
species occurred, for example with the name Trichoderma
harzianum which has been used for many different species
(Kullnig et al. 2001). However, it is difficult to safely
correct these mistakes without analyzing the strains
originally used, and therefore, we describe the data using
the names as originally reported. In recent years, safe
identification of new species was significantly facilitated by
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development of an oligonucleotide barcode (TrichOKEY)
and a customized similarity search tool (TrichoBLAST),
both available online at www.isth.info (Druzhinina et al.
2005; Kopchinskiy et al. 2005). A further useful tool for
characterization of newly isolated Trichoderma species (but
also recombinant strains) are phenotype microarrays, which
allow for investigation of carbon utilization patters for 96
carbon sources (Bochner et al. 2001; Kubicek et al. 2003;
Druzhinina et al. 2006b). The continued efforts to elucidate
diversity and geographical occurrence of Trichoderma/
Hypocrea resulted in detailed documentations of the genus
in Europe and worldwide (Samuels et al. 2002a; Chaverri
and Samuels 2003; Jaklitsch 2009; http://nt.ars-grin.gov/
taxadescriptions/keys/TrichodermaIndex.cfm)

The Index Fungorum database (http://www.indexfungo-
rum.org/Names/Names.asp) currently even lists 471 differ-
ent names for Hypocrea species and 165 records for
Trichoderma. However, many of these names have been
introduced long before molecular methods for species
identification were available and thus are likely to have
become obsolete in the meantime. At present, the Interna-
tional Subcommission on Trichoderma/Hypocrea lists 104
species (http://www.isth.info/biodiversity/index.php),
which have been characterized at the molecular level.
Seventy-five species of Hypocrea have been identified in
temperate Europe (Jaklitsch 2009). Nevertheless, a consid-
erable number of putative Hypocrea strains and even more
Trichoderma strains, for which sequences have been
deposited in GenBank, are still without safe identification
(Druzhinina et al. 2006a) and remain to be studied further.
Species of the genus produce a broad array of pigments
from bright greenish-yellow to reddish in color, although
some are also colorless. Similarly, conidial pigmentation
varies from colorless to various green shades and some-
times also gray or brown. Other than pigmentation, species
identification within the genus is difficult because of the
narrow range of variation of the simplified morphology in
Trichoderma (Gams and Bissett 1998).

Characteristics of Trichoderma spp.

Trichoderma spp. are ubiquitous colonizers of cellulosic
materials and can thus often be found wherever decaying
plant material is available (Kubicek et al. 2008; Jaklitsch
2009) as well as in the rhizosphere of plants, where they
can induce systemic resistance against pathogens (Harman
2000). Some characteristic features of different Tricho-
derma spp. are shown in Fig. 1. The search for potent
biomass degrading enzymes and organisms also led to isolation
of these fungi from unexpected sources, such as cockroaches
(Yoder et al. 2008), marine mussels and shellfish (Sallenave et
al. 1999; Sallenave-Namont et al. 2000), or termite guts

(Sreerama and Veerabhadrappa 1993). Trichoderma spp. are
characterized by rapid growth, mostly bright green conidia
and a repetitively branched conidiophore structure (Gams and
Bissett 1998).

Despite the early suggested link between Trichoderma and
Hypocrea (Tulasne and Tulasne 1865), this anamorph–
teleomorph relationship was only confirmed more than
100 years later for Trichoderma reesei and Hypocrea
jecorina (Kuhls et al. 1996). Nevertheless, T. reesei was then
termed a clonal, asexual derivative of H. jecorina because all
attempts to cross the available strains of this species had
failed. It took more than a decade until a sexual cycle was
reported in any Trichoderma species (Seidl et al. 2009a), and
a detailed study on molecular evolution of this species led to
the discovery of a described sympatric agamospecies
Trichoderma parareesei (Druzhinina et al. 2010). Especially
because of the industrial importance of T. reesei, the
availability of a sexual cycle was a groundbreaking discovery
and now paves the way for elucidation of sexual develop-
ment also in other members of the genus.

Trichoderma spp. are highly successful colonizers of their
habitats, which is reflected both by their efficient utilization of
the substrate at hand as well as their secretion capacity for
antibiotic metabolites and enzymes. They are able to deal with
such different environments as the rich and diversified habitat
of a tropical rain forest as well as with the dark and sterile
setting of a biotechnological fermentor or shake flask. Under
all these conditions, they respond to their environment by
regulation of growth, conidiation, enzyme production, and
hence adjust their lifestyle to current conditions, which can be
exploited for the benefit of mankind. One of these environ-
mental factors is the presence or absence of light. Tricho-
derma has a long tradition of research toward the effect of
light on its physiology and development, which already
started in 1957 and largely paralleled that of Phycomyces
blakesleeanus (Schmoll et al. 2010). Besides effects on
growth, reproduction, and secondary metabolite biosynthesis,
which are common light responses in fungi, also a surprising
influence of light on cellulase gene expression has been found
(Schmoll et al. 2005). This link between light response and
metabolic processes was further substantiated by a study on
carbon source utilization using phenotype microarrays in light
and darkness (Friedl et al. 2008). Studies on the molecular
basis of these light effects revealed that interconnections
between the signaling pathways of light response, heterotri-
meric G-proteins, the cAMP-pathway, sulfur metabolism, and
oxidative stress are operative in Trichoderma (Schmoll et al.
2010; Tisch and Schmoll 2010).

In recent years, research with Trichoderma has been
facilitated significantly by sequencing of the genomes of
three strains representing the most important applications of
this genus: The genome sequence of T. reesei, the industrial
workhorse (Martinez et al. 2008; http://genome.jgi-psf.org/
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Trire2/Trire2.home.html), surprisingly revealed that, despite
its importance in industrial cellulase production, its genome
comprises the fewest amount of genes encoding cellulolytic
and hemicellulolytic enzymes. Analysis and annotation of
the genomes of Trichoderma atroviride and Trichoderma
virens, two important biocontrol species (http://genome.jgi-
psf.org/Triat1/Triat1.home.html; http://genome.jgi-psf.org/
Trive1/Trive1.home.html), is still in progress. Interestingly,
the genomes of T. atroviride and T. virens are significantly
larger than that of T. reesei, and they comprise roughly
2000 genes more than does T. reesei. It will be interesting
to learn the significance of this considerable difference in
genome sizes in the physiology of these fungi. These

milestones in research with Trichoderma enabled detailed
studies, which provided intriguing insights into their lifestyle,
physiology, and the underlying mechanisms at the molecular
level (Brunner et al. 2008; Martinez et al. 2008; Schmoll
2008; Le Crom et al. 2009; Seidl et al. 2009b).

Tools for genetic manipulation of Trichoderma

Due to the industrial application of T. reesei, the genetic
toolkit for this fungus is the most extensive of the genus,
although also research with other species is not limited by
technical obstacles and most tools can also be used for all

Fig. 1 Characteristic features of Trichoderma spp. a T. reesei and b T.
atroviride growing on plates, c T. reesei or H. jecorina growing in
daylight and showing light responsive conidiation, d fruiting body
formation of T. reesei upon crossing with a nature isolate of H.

jecorina, (e, f) T. longibrachiatum germinating and growing on human
cells, g, i T. reesei (left) during confrontation with Pythium ultimum
(right), h T. atroviride (left) during confrontation with R. solani (right)
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species with slight modifications. Transformation of many
species is possible, and different approaches such as proto-
plasting (Gruber et al. 1990), Agrobacterium-mediated
transformation (Zeilinger 2004), or biolistic transformation
(Lorito et al. 1993) were developed. The range of selectable
marker cassettes, which includes hygromycin (Mach et al.
1994) and benomyl resistance (Peterbauer et al. 1992;
Schuster et al. 2007), the Aspergillus nidulans amdS gene,
which enables growth on acetamide as sole nitrogen source
(Penttila et al. 1987) as well as the auxotrophic markers, pyr4
(Gruber et al. 1990), arg2 (Baek and Kenerley 1998), and
hxk1 (Guangtao et al. 2010) allows for construction of
multiple mutants, which is now facilitated by the availability
of a T. reesei strain with perturbed nonhomologous end-
joining pathway (Guangtao et al. 2009). Sequential deletions
despite a limited number of selection markers became
possible by the use of a blaster cassette comprising direct
repeats for homologous recombination and excision of the
marker gene (Hartl and Seiboth 2005). Besides knockout
strategies for functional analysis of genes, also expression of
antisense constructs for knockdown (Rocha-Ramirez et al.
2002; Moreno-Mateos et al. 2007; Schmoll et al. 2009) was
reported for Trichoderma, and RNAi has been shown to
function in T. reesei (Brody and Suchindra 2009). Last but
not least, the recent discovery of a sexual cycle in T. reesei
(Seidl et al. 2009a) further boosts the versatility of this
fungus for research and industry.

Defense mechanisms and their exploitation

Successful colonization of a given habitat by any organism is
crucially dependent on its potential to defend its ecological
niche and to thrive and prosper despite competition for
nutrients, space, and light. Many fungi and especially those of
the genus Trichoderma are masters of this game (Herrera-
Estrella and Chet 2004; Harman 2006; Vinale et al. 2008).
Their defense mechanisms comprise both enzymatic and
chemical weapons, which make Trichoderma spp. efficient
mycoparasites, antagonists, and biocontrol agents—character-
istics that can be exploited by using Trichoderma spp. or the
metabolites secreted by these fungi as biological fungicides to
fight plant diseases caused by pathogenic fungi (Spiegel and
Chet 1998; Vinale et al. 2006; Navazio et al. 2007; Vinale et
al. 2009). Thereby Trichoderma spp. play an important role in
the three-way interaction with the plant and the pathogen (Lu
et al. 2004; Woo et al. 2006).

Trichoderma’s strategies for combat

After publication of Trichoderma lignorum (later found to
be T. atroviride) acting as a parasite on other fungi in 1932
(Weindling 1932), research on antagonistic properties of

Trichoderma spp. progressed rapidly. Nowadays, the most
important species in this field are T. atroviride (in earlier
reports sometimes misidentified as T. harzianum), T.
harzianum, T. virens, and Trichoderma asperellum (Benitez
et al. 2004), while T. reesei, the biotechnological work-
horse, can rather be seen as a model organism used because
of the established molecular biological methods and
available recombinant strains (Seidl et al. 2006). Tricho-
derma spp. are able to control ascomycetes, basidiomy-
cetes, and oomycetes (Monte 2001; Benitez et al. 2004),
and recently, also their effect on nematodes was reported
(Dababat et al. 2006; Kyalo et al. 2007; Goswami et al.
2008)

In their defensive actions, Trichoderma spp. apply lytic
enzymes (Kubicek et al. 2001; Viterbo et al. 2002),
proteolytic enzymes (Kredics et al. 2005; Suarez et al.
2007; Chen et al. 2009), ABC transporter membrane pumps
(Ruocco et al. 2009), diffusible or volatile metabolites
(Calistru et al. 1997; Eziashi et al. 2006), and other
secondary metabolites (Reino et al. 2008) as active
measures against their hosts or they succeed by their
impairing growth conditions of pathogens (Benitez et al.
2004). Interestingly, the success of these actions is not
independent of the surrounding temperature (Mukherjee
and Raghu 1997), which can be crucial for the use as a
biocontrol agent in different climates. Large-scale studies
on gene expression during biocontrol at least in part reflect
these findings (Grinyer et al. 2005; Marra et al. 2006;
Samolski et al. 2009) and reveal additional components
with potential effectivity such as a superoxide dismutase
(Grinyer et al. 2005) and amino acid oxidase (Tseng et al.
2008) to be secreted under these conditions. Moreover, the
response of Trichoderma to its host has also been shown to
involve stress response, response to nitrogen shortage, cross
pathway control, lipid metabolism, and signaling processes
(Seidl et al. 2009b).

Regulatory mechanisms triggering the defense
of Trichoderma

Signal transduction pathways triggering the genes involved
in biocontrol and mycoparasitism have been studied in
considerable depth and include heterotrimeric G-protein
signaling, mitogen-activated protein kinase (MAPK) cas-
cades, and the cAMP pathway (Zeilinger and Omann
2007). Especially the MAP-kinase TVK1, characterized in
T. virens (Mendoza-Mendoza et al. 2003; Mukherjee et al.
2003; Mendoza-Mendoza et al. 2007) as well as its
orthologs in T. asperellum (TmkA; Viterbo et al. 2005)
and T. atroviride (TMK1; Reithner et al. 2007), is important
in regulation of signaling mechanisms targeting output
pathways relevant for efficient biocontrol. Transcript levels
of the respective genes increased upon interaction with

790 Appl Microbiol Biotechnol (2010) 87:787–799



plant roots in T. virens and T. asperellum (Viterbo et al.
2005). Deletion of T. atroviride tmk1 causes higher
antifungal activity and improved protection against Rhizoc-
tonia solani but reduced mycoparasitic activity (Reithner et
al. 2007). In agreement with this study, lack of T. virens
TVK1 considerably increases biocontrol effectivity of this
fungus (Mendoza-Mendoza et al. 2003). Hence, although
deletion of the respective genes causes reduced mycopar-
asitic efficiency, the biocontrol abilities of the mutant
strains are enhanced.

As for the action of the pathway of heterotrimeric G-
protein signaling, two genes have been studied so far
with respect to biocontrol related mechanisms in Tricho-
derma spp.: the class I (adenylate cyclase inhibiting)
G-alpha subunits TGA1 of T. atroviride and TgaA of
T. virens as well as the class III (adenylate cyclase
activating) G-alpha subunits TGA3 of T. atroviride and
GNA3 of T. reesei. TGA1 plays an important role in
regulation of coiling around host hyphae and regulates
production of antifungal metabolites. Lack of TGA1
results in enhanced growth inhibition of host fungi
(Rocha-Ramirez et al. 2002; Reithner et al. 2005). For
TgaA, a host specific involvement as shown in case of the
action of MAP-kinases has been reported (Mukherjee et
al. 2004). TGA3 on the other hand is crucial for biocontrol
since deletion of the corresponding gene resulted in
avirulent strains (Zeilinger et al. 2005). Since constitutive
activation of GNA3 in T. reesei is suggested to positively
influence mycoparasitism, a similar mechanism, may be at
work in this fungus (Silva et al. 2009). These results are in
agreement with analysis of cAMP signaling components,
which indicate a positive role of cAMP in biocontrol
(Mukherjee et al. 2007). Recently, also an important role
in biocontrol of T. virens has been reported for the
homolog of the VELVET protein, so far mainly known
as light-dependent regulator protein (Mukherjee and
Kenerley 2010).

Attempts were made to identify characteristics among
all these genes and enzymes regulated upon interaction
of Trichoderma with a pathogen, which could be used to
distinguish efficient from nonefficient biocontrol strains
isolated from nature (Nagy et al. 2007; Scherm et al.
2009). However, only further, extensive studies will reveal
the reliability of standardized marker gene assays for
evaluation of potential biocontrol strains.

Trichoderma as a protector of plant health

The beneficial action of Trichoderma spp. is not limited to
fighting pathogens; they have also been shown to be
opportunistic plant symbionts, enhancing systemic resis-
tance of plants (Yedidia et al. 1999; Shoresh et al. 2010), a
response which is improved by ceratoplatanin family

proteins (Djonovic et al. 2006; Seidl et al. 2009b).
Perception of the signals transmitted by Trichoderma in
the plant requires the function of a MAPK (Shoresh et al.
2006), and also in the fungus itself, a MAPK signaling is
crucial for full induction of systemic response in the plant
(Viterbo et al. 2005). By colonizing plant roots, which is
significantly enhanced by swollenin (Brotman et al. 2008)
or invading them, they are also carried through soil and
occupy new niches. This interaction with plants as well as
their rhizosphere competence leads to enhanced root
proliferation, better growth, and protection of the plants
against toxic chemicals, against which Trichoderma spp.
themselves show a remarkable resistance. Hence, these
fungi are promising agents that can be applied for
remediation of polluted soil and water by treatment of
appropriate plants with spores (Harman et al. 2004).

Secondary metabolites

In order to survive and compete in their ecological niche,
fungi apply not only enzymatic weapons but also have a
potent arsenal for chemical warfare at their disposal (Vinale
et al. 2008). Thereby, not only potential antibiotics (for
example the peptaibols) but also mycotoxins and more than
100 metabolites with antibiotic activity including polyke-
tides, pyrones, terpenes, metabolites derived from amino
acids, and polypeptides (Sivasithamparam and Ghisalberti
1998) were detected in Trichoderma spp. and have been
suggested to be used for chemotaxonomy of these species.
However, the evolution of peptaibol formation seems to be
too complex to allow for prediction of peptaibol production
profiles form phylogenetic relationships (Daniel and Filho
2007; Kubicek et al. 2007; Neuhof et al. 2007; Degenkolb
et al. 2008). One of the first characterized secondary
metabolites of Trichoderma spp. was the peptide antibiotic
paracelsin (Bruckner and Graf 1983; Bruckner et al. 1984).
A wide variety of peptaibols was identified in Trichoderma
thereafter (Degenkolb et al. 2003, 2007, 2008; Stoppacher
et al. 2008). Interestingly, the four trichothecene
mycotoxin-producing species (Trichoderma brevicompac-
tum, Trichoderma arundinaceum, Trichoderma turrial-
bense, and Trichoderma protrudens) are not closely
related to those species used in biocontrol, which not only
means that the application of biocontrol in agriculture does
not pose a risk in this respect but also indicates that these
mycotoxins do not play a major role in the defense
mechanisms of these fungi (Nielsen et al. 2005; Degenkolb
et al. 2008). As many other fungi, also Trichoderma spp.
have been shown to produce a broad array of volatile
organic compounds, which recently have received closer
attention (Stoppacher et al. 2010). With respect to regula-
tion of peptaibol biosynthesis in Trichoderma spp., several
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factors are known to be relevant. Environmental cues such
as light, pH, nutrients, starvation, or mechanical injury
impact this process. Efficient production of peptaibols
predominantly occurs in solid cultivation and correlates
with conidiation (Kubicek et al. 2007; Tisch and Schmoll
2010). Signaling molecules involved range from the blue
light photoreceptors BLR1 and BLR2 to the G-alpha
subunits GNA3 (TGA3) and GNA1 as well as protein
kinase A (Reithner et al. 2005; Komon-Zelazowska et al.
2007a). Thereby, GNA3 is essential for peptaibol forma-
tion, but on the other hand, stimulation of peptaibol
formation in the absence of BLR1 and BLR2 is still
possible (Komon-Zelazowska et al. 2007a).

Trichoderma spp. as industrial workhorses

Shortly after the discovery of T. viride QM6a by the US
army during World War II (Reese 1976), the outstanding
efficiency of its cellulases led to extensive research toward
industrial applications of these enzymes. Later on, this
species was renamed T. reesei in honor of Elwyn T. Reese
(Simmons 1977) and became the most important cellulase
producer worldwide. Until now, this species is the most
important one of the genus for industrial purposes.

Cellulases and plant cell wall-degrading enzymes

Rising energy costs and the imminent climate change led to
an increased attention to biofuel production (Somerville
2007; Rubin 2008). As a potent cellulase producer, research
with T. reesei is nowadays particularly focused on im-
provement of efficiency of the enzyme cocktail produced in
order to decrease overall costs of production of bioethanol
from cellulosic waste material (Kumar et al. 2008),
although applications in the pulp and paper industry
(Buchert et al. 1998) and textile industry (Galante et al.
1998a) are also important. After the early mutation
programs (El-Gogary et al. 1998) and strain improvement,
the protein secretion capacity of industrial strains now
reaches 100 g/l, with up to 60% of the major cellulase
Cel7a (CBHI) and 20% of Cel6a (CBHII). High levels of
cellulase and hemicellulase gene expression can be
achieved upon cultivation on cellulose, xylan, or a mixture
of plant polymers (Mach and Zeilinger 2003) as well as on
lactose (Seiboth et al. 2007), all of which are agricultural or
industrial byproducts. The natural inducer of at least a
subset of these enzymes is believed (yet not definitely
proven) to be sophorose, a transglycosylation product of
cellobiose (Sternberg and Mandels 1979; Vaheri et al.
1979). Targeted strategies to further enhance the efficiency
of the enzymes secreted include elucidation of regulatory
mechanisms both at the promotor level (Mach and Zeilinger

2003; Schmoll and Kubicek 2003) as well as with respect
to signal transduction (Schmoll et al. 2010). However,
auxiliary components acting on the substrate could also
enhance efficiency of its degradation (Saloheimo et al.
2002; Schmoll and Kubicek 2005).

Metabolic engineering in recent years provided intrigu-
ing insights into these processes (Kubicek et al. 2009), and
exploration of the genome sequence of T. reesei revealed
that this industrial workhorse possesses the smallest amount
of genes within Sordariomycetes encoding the enzymes
which made it so popular—plant cell wall-degrading
enzymes (Foreman et al. 2003; Martinez et al. 2008).
Availability of the genome sequence also spurred genome
wide analysis of early mutant strains and identification of
putatively beneficial mutations, which caused their high
efficiency (Le Crom et al. 2009). Interestingly, it seems that
even early mutants such as RutC-30 bear considerable
alterations of their genome (Seidl et al. 2008). These novel
tools also facilitated characterization of the enzyme cock-
tails secreted by these strains (Herpoel-Gimbert et al. 2008).
In addition to these efforts enzyme engineering approaches
(Bansal et al. 2009), improvement of the secretion
machinery (Conesa et al. 2001; Kruszewska et al. 2008)
as well as screening of the enormous variety of plant cell
wall-degrading enzymes from nature isolates (Kubicek et
al. 1996) or other organisms secreting cellulases (Dashtban
et al. 2009) and directed evolution (Nakazawa et al. 2009)
complement the optimization of the regulatory mechanism
of available production strains. Hence, with the aid of
Trichoderma, economically reasonable production of sec-
ond generation biofuels from waste products is on the way.

Heterologous protein production

Filamentous fungi are versatile cell factories and frequently
used for heterologous protein expression (Adrio and
Demain 2003), especially if they have generally regarded
as safe status (Nevalainen et al. 2005), as has T. reesei
(Nevalainen et al. 1994). The industrial use of T. reesei as a
producer of heterologous proteins started more than 20 years
ago with the production of calf chymosin (Harkki et al.
1989; Uusitalo et al. 1991). Shortly thereafter, even
expression of immunologically active antibody fragments
(Nyyssonen et al. 1993) in T. reesei was achieved and
numerous enzymes and performance proteins followed.
Nowadays, T. reesei is one of the most commonly used
filamentous fungi for heterologous protein production
(Penttila 1998; Nevalainen et al. 2005).

Based on the efficient expression as well as the
considerable knowledge on regulation of cellulase genes,
their promotors are routinely used for heterologous protein
production (Penttila 1998; Schmoll and Kubicek 2003).
Consequently, improvements in cellulase transcription are
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also beneficial for these applications. In many cases, the
signal peptide of Cel7a (CBHI) is used to facilitate efficient
secretion of the product into the culture medium. Never-
theless, also alternative promotors were also shown to be
useful for certain applications (Keränen and Penttilä 1995).
In general, the high efficiency and the inducibility of the
cellulase promotors have proven beneficial in many
applications. Using the cellulase promotors, also relatively
cheap carbon sources such as cellulose or lactose can be
used for production. Nevertheless, it must be considered
that the large amount of enzymes secreted into the culture
medium can be an issue in specific purification of the
heterologous protein, and the complex substrates used
could induce extracellular proteases, which are deleterious
for the yield of the process (Keränen and Penttilä 1995).
For further improvement, promotor modifications, for
example with the chb1-promotor (Liu et al. 2008), can
increase yields of the protein to be expressed.

Food industry

With their long history of safe industrial scale enzyme
production, Trichoderma spp. have also been extensively
applied for production of food additives and related
products (Nevalainen et al. 1994; Blumenthal 2004).
Currently, various Trichoderma enzymes are applied to
improve the brewing process (β-glucanases), as macerating
enzymes in fruit juice production (pectinases, cellulases,
hemicellulases), as feed additive in livestock farming
(xylanases) and for pet food. Cellulases are mainly applied
in baking, malting, and grain alcohol production (Galante et
al. 1998b). However, not only enzymes but also metabolites
of Trichoderma spp. are used as additives. One of the first
products isolated from T. viride was a chemical with
characteristic coconut-like aroma, a 6-pentyl-α-pyrone with
antibiotic properties, the production of which was constant-
ly improved to reach concentrations of more than 7 g/L in
extractive fermentation cultures in T. atroviride nowadays
(Collins and Halim 1972; Oda et al. 2009). An interesting
idea is the application of cell wall-degrading enzymes, for
example of T. harzianum, as food preservatives because of
their antifungal effect (Fuglsang et al. 1995), but so far this
suggestion has not found broad application. With a similar
aim, T. harzianum mutanase can be used in toothpaste to
prevent accumulation of mutan in dental plaque (Wiater et
al. 2005).

Black sheep in the genus Trichoderma

In addition to the highly beneficial and frequently used
species, the genus Trichoderma also comprises opportunis-

tic human pathogens, which show efficient growth at body
temperature and mycoparasitic species, which are a signif-
icant threat to mushroom farms.

Human pathogenic species

Besides such long-known and well-studied pathogenic
fungi as Candida, Aspergillus, or Crypotcoccus, also the
genus Trichoderma comprises opportunistic human patho-
gens, which pose a serious and often lethal threat—
especially to HIV-infected persons and other immunocom-
promised patients. Belonging to the emerging fungal
pathogens, these fungi are often not recognized or diag-
nosed in a stadium when efficient treatment is problematic
(Walsh et al. 2004). Trichoderma species have been
reported to cause respiratory problems due to volatile
organic compounds they produce (Larsen et al. 1998), but
more importantly, they can infect immunocompromised
patients (Trichoderma citrinoviride, T. harzianum, and
Trichoderma longibrachiatum and Hypocrea orientalis)
after transplantations or suffering from leukemia or HIV
(Kredics et al. 2003). The typically poor prognosis of such
infections is (besides delayed diagnosis) predominantly due
to the low susceptibility of these fungi to commonly used
antifungal agents (Chouaki et al. 2002; Kratzer et al. 2006),
which often necessitates combined treatment with different
drugs (Kratzer et al. 2006; Alanio et al. 2008). Neverthe-
less, few data on investigation of virulence factors of these
fungi are available (Kredics et al. 2004). Among the clinical
isolates, T. longibrachiatum and H. orientalis are the most
common ones. Interestingly, no specific phylogenetic
characteristics of the clinical isolates as compared to
environmental isolates could be found, and no correlation
between virulence or pathogenicity and genomic structure
was detected (Antal et al. 2005, 2006; Druzhinina et al.
2008). However, most intriguingly, T. longibrachiatum not
only causes disease; at the same time, it seems to be a
source for potential antifungal drugs efficient against
Candida and Aspergillus species (Vicente et al. 2001).

Green mold disease

Cultivation of the edible mushrooms Agaricus bisporus
(champignon) and Pleurotus ostreatus (oyster mushrooms)
on mushroom farms all over the world is of considerable
economic importance. In the 1980s, a mixture of strains at
first identified as T. harzianum was found to cause
deleterious infections in these farms (Seaby 1987) with
losses between 30% and 100% (Seaby 1998). Actually,
these strains represented two new species, Trichoderma
aggressivum fsp. europeae and T. aggressivum fsp. aggres-
sivum (Samuels et al. 2002b). Since then, this “green mold
disease” has spread all over the world (Komon-Zelazowska
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et al. 2007b) and was shown to be mainly caused by
Trichoderma pleurotum, Trichoderma pleuroticola in P.
ostreatus (Park et al. 2006), and T. aggressivum in A.
bisporus. Nevertheless, also T. harzianum, T. longibrachia-
tum, Trichoderma ghanense, T. asperellum, and T. atrovir-
ide have been detected in Agaricus compost and Pleurotus
substrates (Hatvani et al. 2007), but aggressive colonization
of the substrate has not been proven for these species. This
threat to commercial mushroom production has recently
also led to the development of methods for rapid and
specific detection of these fungi in cultivation substrates
(Kredics et al. 2009). A similar objective led to the
development of a key for identification of Trichoderma
species commonly associated with commercially grown
mushrooms (Muthumeenakshi et al. 1998; Samuels et al.
2002b).

Future prospects

More than ever before sustainable economy and protection
of our environment are dominant topics in our everyday life
and one alarming report about contaminated landscapes or
catastrophes caused by climate change follows another.
Today, 87% of energy used in the world comes from
nonrenewable sources like natural gas, oil, and coal
(Merino and Cherry 2007). Although biofuel production is
now being pushed in order to decrease the requirement for
fossil fuels, the raw materials therefore originate from
commodities and land also needed for food. In this respect,
production of the so-called second generation biofuels from
agricultural waste products by the aid of cellulases and
hemicellulases produced for example by T. reesei and
fermentation of the resulting oligosaccharides by yeast
provides an alternative strategy. However, for an econom-
ically competitive process an increase in efficiency of more
than 40-fold would be necessary, which is a formidable
challenge for research with Trichoderma.

Sustainability is also the major driving force for
investigation of biocontrol with Trichoderma. As opportu-
nistic plant symbionts and effective mycoparasites, numer-
ous species of this genus have the potential to become
commercial biofungicides. The challenge in this field of
research will be the development of reliable screening
techniques, which allow for prediction of the biocontrol
efficiency of a given isolate by determination of the key
factors for this process. Nevertheless, also the ecological
effects of widespread application of a single (or few) fungal
species in agriculture remain to be investigated in order to
ensure a truly beneficial effect for the environment.

Besides these major applications of Trichoderma spp.,
also the fields of green and white biotechnology become
increasingly important for environmentally safe production

of enzymes and antibiotics. These industrial applications
will also benefit from studies on molecular physiology and
regulatory processes, which continuously reveal novel and
valuable metabolites and enzymes as well as components to
be modified or adjusted for cost effective high yield
production.

Last but not least, the extensive studies on diverse
physiological traits available and still progressing for
Trichoderma make these fungi versatile model organisms
for research on both industrial fermentations as well as
natural phenomena.
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