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Abstract

Previously regarded as minor nuisance pests, psocids belonging to the genus
Liposcelis now pose a major problem for the effective protection of stored
products worldwide. Here we examine the apparent biological and opera-
tional reasons behind this phenomenon and why conventional pest manage-
ment seems to be failing. We investigate what is known about the biology,
behavior, and population dynamics of major pest species to ascertain their
strengths, and perhaps find weaknesses, as a basis for a rational pest manage-
ment strategy. We outline the contribution of molecular techniques to clar-
ifying species identification and understanding genetic diversity. We discuss
progress in sampling and trapping and our comprehension of spatial distri-
bution of these pests as a foundation for developing management strategies.
The effectiveness of various chemical treatments and the availability and po-
tential of nonchemical control methods are critically examined. Finally, we
identify research gaps and suggest future directions for research.
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include raw and
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foodstuffs, and durable
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INTRODUCTION

Relegated to the category of minor pests, along with other incidental invaders such as silverfish
and cockroaches, psocids have mostly been ignored by entomologists who were preoccupied with
combating the ravages of the larger, more prominent and more destructive beetle and moth pests
of stored commodities (79). Generally associated with moist conditions, psocids were dismissed
as incidental mold feeders (99), present as a result of poor storage practice, inflicting negligible
or no damage to the commodity. More broadly, psocids were best known as nuisance pests, often
encountered in books and stacks of papers (from which they derive the common name booklice),
or as pantry pests (99, 100). They have received only superficial or passing mention even in the
most recent texts on stored-product protection (30).

The pest status of psocids began to change internationally in the late 1980s as the first reports
of large infestations rapidly establishing in stored grains emerged from West Africa and South-
east Asia (81). These accounts were followed by reports of heavy infestations in stored grains in
Indonesia (38, 92), India (84), China (108), and Australia (85, 64). Severe infestations have also
been reported from such diverse locations as food-processing facilities and feed and flour mills in
Ttaly (97) and the United States (3, 71), tobacco-processing houses in Zimbabwe (48), museums
and bakeries in Czechoslovakia (68), and railroad cars used for transporting grain in Canada (94).

Pest management treatments and practices, aimed primarily at the major beetle pests, were
clearly failing against psocids. The challenge for entomologists was to discover why these treat-
ments were apparently suddenly failing and to determine the best approach to manage these pests.
To do this, we needed a much greater understanding of the insects themselves and of their bio-
logical and ecological interactions with the stored commodity environment. Initial investigation
determined that several species were responsible for control failures and that these belonged to the
genus Liposcelis (Liposcelididae: Psocoptera) (46). However, information on the biology and ecol-
ogy of these insects that could be used to support a rational pest management strategy was sparse.

In this review we describe progress of international efforts to develop our understanding and
management of Liposcelis psocid pests. We synthesize the significant experimental data and explain
how this information has framed our comprehension of these insects and how it has informed pest
management strategies.

IDENTIFICATION AND KEY CHARACTERISTICS

Identification

Psocids belonging to the genus Liposcelis are small (about 1.0 mm), wingless, soft-bodied, brown
to creamy yellow in color, and active insects with large heads and protruding eyes (Figure 14,b).
Approximately 100 species have been reported to infest stored products (46), 4 of which are
economically significant worldwide: Liposcelis bostrychophila Badonnel, L. decolor (Pearman),
L. entomophila (Enderlein), and L. paeta Pearman. Other pests of regional importance include
L. corrodens Heymons, L. brunnea Motschulsky, and L. 7ufa Broadhead.

Infestations of more than one species are often encountered (66, 18), and because species have
differing ecologies and therefore may vary in their responses to pest management actions, accurate
and timely identification is vital. Morphological keys are available for identifying adults (55), but
most species are difficult to recognize using traditional methods and require special expertise.
Molecular methods offer a precise identification of species that is not limited to adults. Both the
mitochondrial cytochrome ¢ oxidase I (COI) gene (33) and the ribosomal internal transcribed
spacer (I'TS) region (116) are used successfully to identify insect species—a technique known as
barcoding. Some progress has been made in developing a molecular species identification kit for
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Figure 1

(@) A microscopic view of Liposcelis bostrychophila. (b) Liposcelis bostrychophila on wheat. Photos courtesy of Manoj K. Nayak, Department

of Agriculture, Fisheries and Forestry, Queensland, Australia.

psocids. A multiplex PCR method based on I'TS2 sequences was used for rapid identification of six
psocid species, and this is an easier and more reliable method that could be widely applicable (112).
Recently, 16S rDNA sequences and the COI gene were used to successfully differentiate eight com-
mon species of Liposcelis; the identifications were verified by morphological examination (83, 115).

Key Characteristics

Contrary popular belief, Liposcelis psocids are not just mold grazers. Numerous reports indicate
that they can live on virtually any kind of food material of animal or plant origin so long as the
moisture content or ambient relative humidity (RH) is favorable (~70-80% RH) (39). Further-
more, experimental evidence has demonstrated that psocids can survive and even thrive on a diet
of broken wheat grains in conditions not conducive to mold growth (<70% RH) (87). An attribute
crucial to the survival of these insects is their ability to actively absorb water from the atmosphere
(39). Other important characteristics include their small size, which gives them the ability to ex-
ploit cracks and crevices and to remain concealed and unnoticed; short development period (2—
3 weeks at 30-35°C and 75% RH) (Supplemental Table 1; follow the Supplemental Material
link from the Annual Reviews home page at http://www.annualreviews.org), long adult stage
(Supplemental Table 6); and the ability to survive adverse conditions, such as a lack of food, for
relatively long periods (102). Furthermore, some species are predominantly parthenogenic, with
all eggs developing into females, enabling a rapid increase in population (46).

The combination of these key factors enables Liposcelis species, particularly L. bostrychophila,
L. entomophila, L. decolor, and L. paeta, to successfully colonize and then repeatedly reinfest stored
commodities even when control treatments are applied. Access to moisture either from the com-
modity itself or from the atmosphere is crucial. A small, unnoticed residual population can explode
to unmanageable proportions with a sudden increase in ambient humidity (>70%) during mon-
soon periods or an increase in moisture content (>13%) of the stored product in any storage
environment. In heavy infestations, populations of 1,500 to 4,000 live psocids per kilogram of
grain have been recorded (44). This phenomenon of repeated reinfestation by psocids has been
documented from bulk wheat, sorghum, and barley storages (64) and from processed food ware-
houses (18) in warm temperate regions of Australia, and in bagged paddy rice, wheat, sorghum,
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cassava, and animal feed stored in warehouses in the humid tropics of China (17, 108), India (84),
and Indonesia (38, 92).

ECONOMIC IMPACT
Why Are They A Pest Now?

The relatively sudden increase in the pest status of psocids appears to be linked to changes or
improvements in the management of the major coleopteran pests of stored products. Field trials
in Indonesia (82) indicated that psocid populations tended to flourish after the grain was treated
with the pyrethroid insecticide permethrin, suggesting that the insects had a higher tolerance to
the insecticide and that they benefited from the reduction of predators and competitors. This
conclusion is supported by experiments performed in Australia demonstrating that psocid popu-
lations recover much more rapidly from poorly applied phosphine fumigations than beetle pests
do, and that the red flour beetle Tribolium castaneum (Herbst) could markedly suppress L. paeta
and L. entomophila populations through predation (91). The higher tolerance to insecticides has
been confirmed in extensive work testing a range of materials (5, 19, 21, 60, 62, 64-66), although
the response to chemicals by these insects is complex and varies across species (see below). It was
suggested that increasing frequency and severity of psocid infestations in Australia were linked
to the industry transitioning from broad use of contact insecticides to reliance on the fumigant
phosphine (85), particularly the introduction of technology that allowed a continuous delivery
of phosphine gas at relatively low concentrations through grain in open-top silos. Other factors
include the relatively long period spent as eggs, which is the stage most tolerant to phosphine
(63), and the development of pesticide resistance in several species (59, 80, 84). The development
of phosphine resistance and the greater tolerance of eggs to phosphine may explain the surge of
control failures in countries in South and Southeast Asia. Many of these countries are developing
export markets and are increasing their use of phosphine to meet international requirements for
insect-free produce.

Economic and Human Impact of Infestations

Although not quantified, direct damage to the germ of rice (87) by L. bostrychophila, L. entomophila,
and L. paeta and to wheat kernels by L. bostrychophila (54) has been recorded. Under laboratory
conditions, McFarlane (50) estimated a weight loss of 5% and discernible deterioration in the
quality of milled rice as a direct result of heavy infestations of L. bostrychophila over a six-month
period. In a similar experiment, Kucerovd (40) measured an average weight loss of 9.7% of bro-
ken wheat kernels due to infestations of L. bostrychophila for three months. This weight loss was
correlated with progeny production.

Figures on actual economic damage are difficult to obtain, as in most cases this information is
considered proprietary in commercial operations. In addition, it is often the presence of psocids
in a commodity rather than any measurable damage that triggers control interventions and
threatens market access, as is the case for beetle and moth pests (79). Major costs, therefore, are
prevention of damage and action taken against infestations to ensure acceptance of the commodity
by markets and quarantine authorities. Damage attributable to heavy psocid infestation has been
estimated for commercial rice storage in India (40,000 tonnes) and Indonesia (150,000 tonnes)
(38) where annual costs were calculated to be £115,000 (US$180,000) and £50,000 (US$75,000),
respectively, in 1994. These costs included weight loss and cleaning costs involving both labor and
materials. Weight loss was 0.17% during the four months of storage from a stable infestation of
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4,000 psocids/kg. In a recent study it was revealed that, although weight loss due to L. entomophila
and L. paeta infestations was low in intact kernels (0.2% and 0.4%, respectively) compared with
damaged wheat seeds (8.5% and 3.3%, respectively), germination in intact kernels was reduced
by 32% owing to L. paeta infestations (27).

Large psocid infestations have significant effects on health and safety. Psocids swarm over
storage walkways and ladders, making them slippery and exposing workers to risk of injury (38,
44, 84). L. bostrychophila is commonly found in homes (86, 101), although L. brunnea and L. decolor
have also been recorded (11). Psocids have been implicated in the development of allergies in
workers, caused by transmission of microorganisms (104), and psocids may be responsible for
transmitting bacterial diseases (68, 98), although there is no direct evidence for this. Instances of
delusory parasitosis caused by psocids have also been reported (34, 100).

BIOLOGY AND ECOLOGY

Laboratory Rearing

The ability to culture insects in the laboratory is a prerequisite for obtaining detailed life-history
data and greatly facilitates initial screening and optimization of management options. Fortunately,
psocids are relatively easy to rear on stored products (58, 71) as long as RH is between 70% and
80%. The key attributes of Liposcelis, including the ease with which they can be cultured, small
size, short life cycle, high reproductive rates, worldwide distribution, and occurrence of multiple
species, suggest that these insects will provide excellent model organisms for many aspects of
biology.

Immature Development

Psocids are paurometabolous insects, with eggs developing into adults through simple, incomplete
metamorphosis involving several nymphal stages that resemble small adults. Generally, psocids
can develop from egg to adult at temperatures ranging from 20°C to 40°C, depending on the
species (Supplemental Table 1), although development from egg to adult at temperatures lower
than 20°C has not been tested. Duration of egg development varies from 15-24 days at 20°C to
4-8 days at 32.5-35°C, which is generally longer than that for most other stored-product insect
pests. Nymphal development varies with species but ranges from 22-53 days at 20°C to 8-24 days
at 32.5-35°C (Supplemental Tables 1 and 2). Four nymphal instars is typical, with most mor-
tality occurring in the first instar (71, 72) (Supplemental Table 3). For bisexual species, females
always have more instars than males and take longer to develop. Time taken to develop from egg
to adult varies from 42-72 days at 20°C to 14-30 days at 32.5-35°C (Supplemental Table 1).
L. paeta (106) and L. decolor (95) have the shortest egg to adult development times at 32.5-35°C,
which may help explain why they are two of the most economically important psocid pest species
worldwide. However, L. entomophila, another worldwide pest species, tends to have longer egg to
adult development times than other species (108). The percentage of the immature life (egg and
nymphal stages) spentin the egg stage varies between 19.7% and 52.3 % and is not correlated with
temperature.

The preoviposition period can be as short as 1 day at 37.5°C for L. paeta (106) and as long
as 18 days at 20°C for L. bostrychophila (107) (Supplemental Table 4). The oviposition period
ranges from 18 days at 37.5°C for L. decolor (95) and as long as 145 days at 22.5°C for L. rufa (26)
(Supplemental Table 5). Adult longevity varies from 21 days at 35°C for L. badia (37) to as long
as 229 days at 22.5°C for L. rufa (26) (Supplemental Table 6). Lifetime fecundity can vary greatly
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among psocid species. For example, L. yunnanensis Li & Li laid only 10 to 33 eggs at 20-37.5°C
(31), whereas L. decolor and L. paeta laid over 100 eggs (95, 106) (Supplemental Table 7).

Population Growth

Understanding the factors that influence population growth is important when making pest
management decisions and predicting the potential geographical distribution of psocids. Envi-
ronmental temperature and RH are major determinants of the rate of psocid population growth.
Experimental evidence shows that psocid populations increase at temperatures ranging from
22.5°C to 42°C (Supplemental Table 8). Population levels did not increase, however, in the few
tests conducted below 22.5°C, which included temperatures as low as 15°C (87), but five L. paeta
females produced over 250 progeny in 56 days at 42°C (87). L. paeta is the only species known to
increase in population level at temperatures above 37.5°C. In general, greatest population growth
occurs at temperatures of 30-32.5°C and >70% RH, except for L. paeta, for which population
growth is greatest at 35°C at 80% RH (87). At RH below 70%, greatest population growth occurs
at cooler temperatures, presumably because the combination of high temperature and low humid-
ity results in reduced survival. In laboratory studies, no live psocids have been found when reared
at <50% RH; however, L. brunnea, L. pearmani Lienhard, and L. rufa populations all increased
when reared at 55% RH (2, 25, 72). L. brunnea is the only species studied so far that had a greater
increase in population at <70% (63 % RH) than at >70% (75% RH) (72), although L. entomophila
and L. paeta have greater increase in population at 70% RH than at 80% RH (87). Generally,
70-80% RH appears optimal for growth for most psocid species (Supplemental Table 8).

Both grain type and quality can affect psocid population growth. Experiments using
L. bostrychophila, L. decolor, L. entomophila, and L. paeta showed that more psocids were produced
on sorghum, wheat, and rice than on maize or oats (9). In contrast, maize was optimal for
population growth of L. yunnanensis (32). Population growth was greater on durum wheat than
on seven other classes of wheat (9). Adding cracked wheat to whole kernels generally did not
change population growth of L. bostrychophila or L. paeta, but there was an increase in the rate of
L. decolor population growth when the proportion of cracked wheat was 20% or greater (9).

Endosymbiotic Bacteria, Parthenogenesis, and Genetic Diversity

Endosymbiotic intracellular bacteria are common in invertebrates (20, 113) and can influence
reproduction and other fitness-related traits of their hosts (77). They have been detected in the
usually parthenogenic species L. bostrychophila [the only known sexually reproducing population
of this species occurs on a remote Hawaiian island (56)] but are absent from sexually reproducing
species, including L. corrodens, L. entomophila, L. brunnea, and L. paeta (78, 118). An exception is
the discovery of Wolbachia infection in L. tricolor (24).

Wolbachia-like strains of bacteria have been detected in the ovaries and developing oocytes of
L. bostrychophila from the United Kingdom and Australia (51, 117). These endosymbionts were
subsequently identified as Rickettsia (78), and removal of this infestation resulted in complete cessa-
tion of egg-laying but no other effect was apparent. The endosymbiontin L. bostrychophila has been
identified as Rickettsia felis, a human pathogen transmitted by fleas that causes serious morbidity and
occasional mortality (13, 96). Whether R. felis in psocids causes disease in vertebrates is not known.
A population of L. bostrychophila infected with “Candidatus Cardinium” was detected in China (105).
Removal of these bacteria resulted in a reduced reproductive rate and a longer generation time
(36). Removal of Wolbachia infection from L. tricolor resulted in a ~20% reduction in egg-laying,
shorter adult female longevity, longer development times, and lower rates of survival (24).
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These bacteria are symbiotic and mutualistic, conferring significant fitness advantages to
infected individuals. Parthenogenic reproduction appears key to the worldwide success of
L. bostrychophila. Without the need to mate to reproduce, this species can potentially double its
reproductive rate. L. bostrychophila has the highest population growth rate of any psocid species
tested (87). Furthermore, despite an expectation that asexual reproduction reduces genetic
variation, surveys indicate that populations of L. bostrychophila are highly diverse. For example,
47 distinct allozyme morphs were found in 116 British populations of L. bostrychophila. This high
level of interpopulation variation appeared to be randomly distributed and showed no apparent
trends (1). High overall genetic variability was also observed in L. bostrychophila populations from
Australia, China, Mexico, Spain, United Kingdom, and United States analyzed using RAPD
(randomly amplified polymorphic DNA) markers (45, 52). In contrast, sequences from both
mitochondrial and nuclear DNA from L. entomophila, a sexually reproducing species, had lower
levels of genetic diversity than L. bostrychophila (111). Microsatellite markers providing evidence
for relatively low levels of genetic variation and only moderate levels of gene flow were also found
in L. decolor (53), although this finding may have been influenced by the presence of null alleles.

Spatial Distribution

Grain, along with associated insects, has been transported around the world for millennia. Thus,
the major pest species of grain, including psocids, are broadly distributed worldwide. For example,
molecular methods have shown that L. bostrychophila was probably first introduced into eastern
Australia and then spread to other regions of the country; however, there have also been multiple
introductions from a range of sources (52). In Australia, L. decolor was most common in cooler
regions, whereas L. entomophila had a warm temperate to tropical distribution (86). L. decolor
was found only in central and on-farm grain storage structures. L. entomophila was found most
frequently in central storage structures and in mills, infrequently in farm storage structures, and
notatall in homes. L. bostrychophila was found across Australia, and it was the only species found in
homes. It was also common in on-farm storage structures and mills but was found less frequently
in bulk storage structures (86).

Like stored-product beetles, psocids are found throughout the year in grain stored in temperate
regions, although numbers trapped are reduced in winter (75). Infestation by only one psocid
species can occur. For example, L. entomophila was the only species found to infest stored oats in
the United States (3) and in tobacco-processing houses in Zimbabwe (48), and Sinha (93) rarely
found two psocid species in the same bin in a number of multiyear studies conducted over a 20-year
period in Canada. In a study of two farm bins in the United States, only L. entomophila was present
but this species was replaced by L. decolor following fumigation with phosphine (75). In Australia,
however, infestation of grain by multiple psocid species is more common (66). When there were
differences in the spatial distribution of psocids in the bins, more psocids were located at the center
of the bin, where there is usually more dockage, higher moisture, and higher temperatures in the
autumn (75). In addition, a higher number of psocids were found at a depth of 0.85-1.96 m than
at 0-0.84 m, and this may have been a result of higher temperatures at lower depths in the grain
mass in the autumn as surface temperatures decreased (75).

Sampling and Trapping

Cost-effective sampling methods that can be used to accurately estimate psocid populations are
fundamental to the developmentand implementation of any psocid pest management plan. Because
of the difficulty and cost of manually sampling grain bulks, a number of traps, some of which use
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lures or baits, have been developed as detection and sampling tools. Devices developed for sampling
beetle populations range from simple baited refuges made from corrugated cardboard (22) to traps
that automatically count insect catch (79). Some of these devices have been evaluated and adopted
for monitoring psocids in grain storage structures.

In silos where access is limited, corrugated cardboard refuges have been shown to be highly
cost-effective. Packing whole wheat flour within the corrugations caught more L. entomophila than
other baits, including whole wheat grain, whole wheat flour/carob powder, or wheat germ oil, in
a trial undertaken in a disused grain terminal in Australia (114). The refuges needed to be left
on the grain for at least 3 days. Other devices including probe traps (27 x 370 mm), cone-shaped
pitfall traps (125 x 95 mm), and grain-baited bags were compared in trials in seven silos at three
feed milling companies in northeastern Australia (90).

Probe traps caught just as many psocids (L. bostrychophila, L. entomophila, and L. paeta) as
manual (spear) sampling, but pitfall traps were more reliable as they could detect low density and
thus gave early warning of infestations. However, all trapping methods correlated with manual
sampling and more than one trap per silo did not improve correlation. Reasonable correlation
between manual sampling and several trapping devices was found in trials conducted over two
years in two steel farm bins (32.6 ton capacity) in Kansas (73). Although probe traps caught the
greatest number of psocids (L. entomophila), it was concluded that corrugated cardboard refuges,
placed either on the surface of the grain or on the underside of bin hatches, were the most
cost-effective method as they were inexpensive and quick to inspect. The data from these trials
were used to evaluate the utility of binomial (presence-absence) and numerical sampling using
cardboard refuges for monitoring populations of L. decolor and L. entomophila (74). Statistical
analysis revealed that at densities of 25 psocids or fewer per refuge, numerical sampling was the
most efficient method as only 10 refuges per bin are required, whereas at densities of 25-100
psocids, binomial sampling using 20 refuges per bin was the most efficient sampling strategy.

Behavior

Psocids are active insects, and L. bostrychophila and L. entomophila have been recorded to move at
velocities of 3.6 and 4.9 mm/s, respectively (28). Large numbers of L. decolor have been observed
leaving grain bins when the RH in the bin drops over the course of the day. Rees (86) suggested that
female psocids, in particular, tended to leave the bin to obtain moisture needed for egg production
and returned to the bin when the RH increased. Similar diurnal fluctuations have been reported
for L. entormophila on stored rice stacks in Indonesia (38). Interaction between psocids and other
pests in the commodity, apart from a report on predation of Indianmeal moth [Plodia interpunctella
(Hibner)] eggs by L. bostrychophila (47) and an observation of the predation of psocids by predatory
mites (82), is poorly understood.

MANAGEMENT TACTICS: CHEMICAL

Contact Insecticides

An apparent tolerance to insecticides was observed in a number of early control failures with
psocids. Admixing permethrin, fenitrothion, and malathion with paddy rice and spraying surfaces
of bag stacks failed to suppress populations of L. bostrychophila and L. entomophila in Indonesia
and India (35, 82, 84, 92). Whether these failures were due to resistance or other factors was
not established. Similarly, initial laboratory evaluations of the efficacy of contact insecticides
against psocids showed variable degrees of tolerance of L. bostrychophila to pyrethroids, including
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permethrin, cypermethrin, and deltamethrin (103); L. entomophila and L. bostrychophila to the
organophosphates fenitrothion, malathion, and pirimiphos-methyl (42); and L. bostrychophila to
the insect growth regulators methoprene and fenoxycarb (16, 41).

The complex response of psocids to insecticides was confirmed by a series of comprehensive
studies using field-collected populations. Treatments registered to control beetle and moth grain
pests were tested against several Liposcelis species at registered rates. These experiments showed
that L. bostrychophila and L. decolor could be effectively controlled by fenitrothion, chlorpyrifos-
methyl, and pirimiphos-methyl and by bioresmethrin and bifenthrin synergized with piperonyl
butoxide, but that both species were tolerant to deltamethrin, carbaryl, and methoprene (21, 57, 62,
64). In contrast, L. entomophila and L. paeta were tolerant to all these treatments (21, 64). Variable
degrees of tolerance of these Liposcelis species were also recorded against the bacterium-derived
spinosad (7, 8, 67), imidacloprid (65), and diatomaceous earth (5). Together these experiments
demonstrate that certain psocid species possess a naturally higher tolerance to contact insecticides
compared with other insect pests of stored products.

Interspecific differences in response to chemical treatments have serious implications for con-
trol in the field, as psocid infestations often involve more than one species, particularly if either
L. entomophila or L. paeta is involved (18, 64, 67, 85). Efforts to combine treatments to overcome this
problem have yielded variable results. Mixtures of chlorpyrifos-methyl and bifenthrin + piperonyl
butoxide applied to sorghum in a silo-scale trial in Australia (21) provided up to 7 months of pro-
tection against L. bostrychophila and L. decolor, but only 3 months of protection against L. paeta, and
failed to achieve complete mortality against L. entomophila. Moreover, in laboratory experiments,
a mixture of chlorpyrifos-methyl + deltamethrin and pirimiphos-methyl were superior to either
spinosad or pyrethrum alone at protecting wheat, rice, and maize against L. paeta, L. entomophila,
and L. bostrychophila (6). However, spinosad + chlorpyrifos-methyl mixtures successfully protected
wheat against L. bostrychophila, L. entomophila, L. paeta, and L. decolor for up to 3 months (66), but fell
short of the required 9 months protection expected from a registered grain protectant in Australia.

Storage Structure Treatments

Stored-product psocids are wingless and move actively over the commodity and the walls and
other parts of the storage structure. This behavior provides storage managers an opportunity to
control infestations by applying contact insecticides to the structure of the storage. Most storage
structures, grain-processing facilities, and food storage warehouses worldwide are composed of
either galvanized steel, concrete, or both. Extensive laboratory evaluations of several registered
surface treatments in Australia exposed the difficulties in achieving long-term control (6-9 months)
of L. bostrychophila, L. decolor, L. entomophila, and L. paeta on concrete surfaces (19, 60-62). In
contrast, carbaryl combined with an organophosphate such as chlorpyrifos-methyl, pirimiphos-
methyl, or azamethiphos applied to galvanized steel controlled these four species for 9 months. In
addition, B-cyfluthrin and chlorfenapyr are effective against L. bostrychophila and L. entomophila at
their current US registration rates for relatively short periods on concrete surfaces (28), whereas
the insect growth regulator pyriproxyfen is unable to provide complete control even for only
35 days after application of L. bostrychophila, L. decolor, or L. paeta (4). In the only study of the
potential use of insecticidal aerosols against psocids, esfenvalerate, methoprene, and a combination
of these two insecticides were ineffective against all major species (70).

Fumigants

Investigations into why L. entormophila survive fumigations with phosphine established that the egg
stage was the most tolerant (80). The relatively long egg stage of psocids can pose a real challenge to
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RESISTANCE TO PHOSPHINE: A WORLDWIDE CHALLENGE

Phosphine’s formulation, application, and mode of action are unique. Its low cost and acceptance by markets and
environmental authorities, coupled with a lack of viable alternatives, make it the key treatment for biosecurity, food
security, and market access of dry food commodities worldwide.

Key pests, however, are evolving resistance to phosphine. The challenge is to develop strategies that allow its
continued use despite resistance.

Unlike resistance to conventional insecticides, phosphine resistance is mediated by two major genes that sepa-
rately show only weak levels of resistance but together synergize to produce a high level of resistance. The need for
insects to be homozygous for both genes for full expression of resistance delays spread of resistance and provides
time to develop and implement management strategies.

Successful management is based on tactics and responses informed by a monitoring program and grounded on
research. Manipulating the variables that affect phosphine toxicity has greatly improved control, even of resistant
insects. New molecular methods are unraveling the genetics and mechanisms of resistance, as well as its mode of
action, and providing rapid and accurate diagnostic tools. However, although we have some understanding of how
phosphine is selected, we are only beginning to comprehend how insect ecology influences resistance frequencies
and gene flow.

control efforts. It was not determined whether these insects were resistant to phosphine. However,
widespread resistance was later confirmed for this species in China (17) (see sidebar, Resistance
to Phosphine: A Worldwide Challenge). Very high levels of resistance to phosphine have been
detected in L. bostrychophila populations from India (84) and Australia (59, 63). Not only is the
egg stage the most tolerant stage in this species, exposure to phosphine significantly delays egg

hatch. The delay occurs to a limited extent in susceptible insects but is much stronger in resistant
individuals (63). In addition, the length of the delay correlates with phosphine concentration—
higher concentrations result in longer times to hatch. This phenomenon was not observed in

L. entomophila (80).

The nature of phosphine is such that despite resistance, concentration and exposure period

protocols that will control resistant insects can be found. Higher concentrations and longer fu-

migation periods were developed for resistant L. bostrychophila (59) over a temperature range of
20-35°C under humidity regimes of 55% and 70% RH. It was found that at any concentration
of phosphine, a combination of higher temperature and lower humidity provides the shortest

fumigation period to control this resistant psocid.

There has been some limited evaluation of other fumigants for efficacy against psocids, which

reinforced the robustness of the egg stage and the variability of species’ responses to chemicals.
Experiments using ozone (O3) (15) showed that eggs of L. bostrychophila and L. paeta survived
70 ppm for 4 days (highest rate tested), although adults were controlled after one day. Sulfuryl
fluoride is a potential replacement for methyl bromide or phosphine. Experiments on the activity

of this fumigant against several psocid species (10) showed that dosages well below the maximum
recommended dose of 1,500 g-h/m* (or 31.25 g/m?* for 48 h) controlled adults and nymphs of all
major pest species except for L. decolor. In contrast, eggs of L. decolor were completely controlled
at 72 g/m?, whereas complete mortality of L. paeta was not achieved at 96 g/m? in 48 h, dosages

that are two and three times the label rate, respectively.
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MANAGEMENT TACTICS: NONCHEMICAL

The difficulties encountered controlling psocids with fumigants and contact insecticides have
stimulated research into other tactics that could be used as alternatives or used to support chemical
application.

Drying and Cooling

As discussed above, psocids thrive within the RH range of 70-85% (39) but their populations suffer
rapid decline at RH less than ~60% (23). For example, L. knullei, L. rufus, and L. bostrychophila
cannot survive more than 10 days if they are kept below 58% RH (39). Reducing commodity
moisture content and hence the equilibrium RH is crucial for controlling these insects, although
this is not practical in many cases. However, because psocids have the ability to obtain moisture
from the atmosphere, reducing the temperature of the commodity to limit population growth is
also crucial. For example, observation of L. entomophila in tobacco-processing buildings on farms
in Zimbabwe (49) showed a significant drop in psocid numbers once the humidity and temperature
levels in the storage structure were kept below 70% RH and 18°C, respectively.

Heat Disinfestation

Evidence from life table experiments suggests that psocid infestations could be controlled by
moderately elevating temperatures of the commodity (87, 107). The egg stage is the most tolerant
(12) and extensive experiments conducted at 43-51°C for 1-150 h showed that heating to 46°C
over a period of 35 h controls eggs of L. bostrychophila, L. decolor, and L. paeta. L. decolor was the
most tolerant species at 46-51°C and L. paeta was most tolerant below 46°C but most susceptible
at 47-51°C. L. bostrychophila was generally less tolerant than L. decolor (12). The potential of heat
treatment was demonstrated in a full-scale trial in empty concrete silos in Oklahoma (69). Heat was
applied to the silos with the aim of achieving 49°C for 6 h in all parts of the structure. Complete
control of L. corrodens in cages was achieved, but L. decolor survived in areas where temperatures
reached only 40.6-46.9°C. The trial made it clear that this technology would need to be used in
conjunction with thorough storage cleanup as the presence of grain residues compromised the
efficacy of the treatment. Psocid species vary in their tolerance to heat treatment (12, 29), and these
differences may be due partly to the physiological protection afforded by the generation of heat
shock proteins in some species. L. entomophila exposed to temperatures of 37.5-47.5°C produced
small heat-inducible proteins, HIP23 and HIP27, which was correlated with lethal time estimates
(29). This species is most common in warm temperate to tropical regions (86) and warmer parts of
grain storage structures (69), and the ability to generate protective heat shock proteins in response
to high temperatures may help explain its predominance in those areas.

Diatomaceous Earths

The efficacy of three commercial formulations of diatomaceous earth against L. decolor and
L. entomophila at recommended application rates on three grain types was tested in the laboratory
(5). Efficacy was influenced little by grain type, and formulations were nearly as effective.
However, after 7 days exposure to treated grain at 30°C and 75% RH, the mortality of adults was
only ~50% and reproduction was suppressed but not to a satisfactory level. In general, L. decolor
was more tolerant than L. entomophila. These experiments were undertaken at relatively high
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humidity, and it is possible that diatomaceous earth would be much more effective in systems
with lower atmospheric humidity. Indeed, field trials undertaken in large, disused grain silos
at a maritime terminal in warm temperate Australia demonstrated that diatomaceous earth can
dramatically reduce L. entomophila populations (114).

Controlled and Modified Atmosphere

Air with concentrations of carbon dioxide (CO;) at 40-50% will control L. entomophila (43) and
L. bostrychophila (14, 88) populations; a combination of 35% CO, and 64% nitrogen (N,) is effective
against L. bostrychophila (109, 110). However, these methods require an exposure period of at least
3 weeks to achieve complete control.

Natural Enemies

There is anecdotal evidence of mites [Blattisocius tarsalis (Berlese) (89), Cheyletus malaccensis Oude-
mans, and Cheletormorpha lepidopterorum (Shaw) (76)] and pseudoscorpions [Withius piger (Simon)
(76)] preying on psocids. However, owing to possible allergic sensitivities of humans, the practical
application of these organisms in psocid management has never been evaluated.

CONCLUSIONS

This review synthesizes the significant experimental data available on psocid biology, ecology,
and control tactics, and explains how this understanding might support effective management of
these pests. Life-history analyses of the major pest species have indeed delineated their strengths
and exposed some weaknesses. There is little or no increase in population for major species at
temperatures lower than 22°C. However, we have only a preliminary understanding of psocid
field ecology and the factors that trigger their characteristic massive infestations. In addition, the
literature demonstrates that our traditional pest management tools are inadequate to effectively
manage psocid outbreaks. Their tolerance to grain-protecting chemicals and the development of
resistance to phosphine coupled with their unique behavior and capability for rapid population
growth present serious challenges to the development of effective pest management programs.
That there are multiple pest species and that infestations can comprise more than one species add
significantly to the challenge. This review has revealed that we are still relying on reactive chemical
treatments and that alternatives to chemicals are poorly developed, with data limited mostly to
a few laboratory-scale experiments. Although relatively simple population-monitoring tools are
available, we do not have a clear understanding of the key factors needed for an effective pest
management strategy. Finally, we hope that our presentation of this fascinating genus of insects
consisting of about 100 species and with many attributes, including rapid population growth, short
generation time, presence of endosymbiotic bacteria, and ease of culturing, recommends them as
ideal models systems for biology, ecology, and evolution.

SUMMARY POINTS

1. Previously regarded as a nuisance and incidental invader, psocids of the genus Liposcelis
have become major pests of stored products worldwide, particularly in tropical and
warm temperate regions. The four major cosmopolitan pest species are L. bostrychophila,
L. decolor, L. entomophila, and L. paeta.

Nayak et al.



2. Psocids are small, active, omnivorous insects with short life cycles, high reproductive
rates, and long adult lives. They thrive in warm temperatures at an RH of 70-80%. In
addition, they have the ability to absorb water from the atmosphere.

3. Chemical treatments designed to control beetle and moth pests are failing against psocids.
Itappears that psocids are tolerant to most treatments and their populations recover faster
from poorly applied treatments compared with the beetle species that normally would
prey on them. A significant challenge is that infestations can comprise more than one
species, each of which has different responses to treatments.

4. A number of sampling devices, normally used for beetle pests, have been tested for
monitoring psocid infestations. Catch number correlated with manual sampling in all
devices. The corrugated cardboard trap was found to be the most cost-effective, but
pitfall traps could detect lower densities of psocids.

5. Tolerance to contact insecticides varies among species but organophosphorus materials
are most effective in general. The egg stage is quite tolerant to the fumigants phos-
phine and sulfuryl fluoride, and strong resistance to phosphine has been detected in
L. bostrychopbhila.

6. Nonchemical alternatives are poorly developed and are desperately needed as a basis for
integrated pest management strategies.

FUTURE ISSUES
1. Research is required to comprehend movement of psocids in the landscape and initia-
tion of colonization of stored products; an understanding of adaptations to the storage

environment and population growth rates in relation to storage type, climate, and stored
product is also needed.

2. A better understanding of genetic basis for adaptations such as heat stress, growth and
development, and development of resistance to chemical treatments is required.

3. Development of effective pest management tactics, including new chemical options and
applications and nonchemical, biorational alternatives, and integration of these into pest
management strategies incorporating all major pest species and major commodities are
essential.

4. Effective application and timing of pest management actions require development of
decision aids and systems.

5. Rapid, accurate molecular methods for species identification are required.
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Supplemental Table 1. Effects of temperature on duration of development of immature stages of Liposcelis spp. and Lepinotus reticulatus at 75 to 80% RH (over
a saturated sodium chloride solution)

Duration of development (days + SE)
Life stage/species
Temperature (°C)

Egg 20 22.5 25 27.5 30 32.5 35 37.5 40
L. badia’ 243+0.4 14.9+0.2 12.7+0.2 9.0+0.1 7.8+0.2 7.2+0.1 7.4+0.2 - -
L. bostrychophila™ 13.8+0.9 13.4+05 12.6+0.2 8.8+0.3 8.2+0.2 6.4+0.1 7.6+0.3 - -
L. brunnea females” - 129+0.4 9.9+0.3 8.3+0.3 6.6+0.3 6.0+0.4 6.3+0.5 - -
L. brunnea males" - 14.1+0.4 11.5+0.5 9.4+0.5 7.1+0.6 7.3+05 6.7+0.6 - -
L. decolor females' 14.1+0.2 8.7+0.2 8.2+0.2 7.6+0.3 5.7+0.1 46+0.1 4.8+0.2 5.2+0.1 -
L. decolor males' 15.1+0.3 9.2+0.2 89+0.2 7.0+£0.2 6.2+0.2 5.0+0.1 47+0.1 56+0.2 -
L. entomophila" 18.8+0.4 | 13.8+0.5 10.1+0.3 7.9+0.1 6.5+0.2 5.4+0.4 5.2+0.6 - -
L. paeta® - 18.5+0.2 13.7+0.2 10.3+0.1 8.9+0.1 7.5+0.1 6.7+0.1 56+0.1 -
L. pearmani females® - 144 +0.4 10.0+0.3 8.7+0.2 6.9+0.1 6.4+0.1 6.5+0.2 - -
L. pearmani males® - 13.7+0.3 10.3+0.3 9.2+0.3 8.0+0.4 6.5+0.2 7.2+03 - -
L. reticulatus" - 11.9+04 9.0+04 7.4+04 7.0+0.4 6.4+0.4 6.6+0.5 - -

L. rufa males’ - 15.6+0.2 11.6+0.2 8.8+0.2 7.5+0.2 6.4+0.2 5.1+0.2 53+0.2 5.8+0.3
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L. rufa females' - 14.2+0.3 10.2+0.2 8.4+0.2 6.7+0.2 5.7+0.2 51+0.2 5.0+0.2 45+0.5
L. tricolor' 15.4 15.2 11.2 9.1 9.5 7.7 9.1 - -
L. yunnaniensis® 18.9+0.2 12.6+0.1 9.7+0.1 8.1+0.1 8.0+0.2 8.3+0.1 4.7+0.1 43101 -be
Nymph (N)
L. badid’ 21.8+0.5 18.5+0.4 17.0+£0.3 143+0.4 12.0+£0.5 10.0+0.4 11.9+0.6 - -
L. bostrychophila™ 28.1+0.9 24.7+0.3 22.1+0.1 15.6+04 | 12.4+0.7 11.6 £0.3 13.9+0.2 - -
L. brunnea females” - 36.7+1.6 29.2+1.1 | 286+1.1 | 26.1+1.2 24.4+15 21.5+1.7 - -
L. brunnea males" - 295+1.0 229+1.1 21.2+1.1 18.7+1.5 17.5+14 184+1.5 - -
L. decolor females' 32.5+0.7 23.0+0.5 18.7+0.3 15.2+0.4 14.3+0.5 11.6£0.2 11.3+0.4 14.8+0.5 -
L. decolor males' 26.6 0.7 19.7+0.6 15.1+0.3 13.7+04 | 115104 8.9+0.2 8.9+0.3 10.7£0.6 -
L. entomophila" 53.1+0.4 | 438+04 344+05 | 27.1+01 | 18.0%0.3 17.7+0.4 16.5+0.7 - -
L. paeta® - 275+1.1 18.8+0.3 16.2+0.4 13.7+0.3 8.1+0.2 7.8+0.2 6.3+0.1 -
L. pearmani females® - 35.5+1.2 247+0.6 | 19.0+0.6 | 17.7+0.7 15.4+0.5 17.3+0.6 - -
L. pearmani males® - 25.1+0.8 179+04 | 16.1+0.8 | 13.9%1.2 12.2+0.6 14.4+0.9 - -
L. reticulatus® - 32.7+2.0 253120 21.6+2.0 19.3+2.0 16.6+2.1 16.8+2.9 - -
L. rufa females' - 33.2+0.9 27.0+0.8 | 21.1+08 | 17.2+0.7 15.9+0.9 19.4+0.7 16.6 £ 0.8 17.4+1.38
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L. rufa males’ - 27.7+0.7 21.1+0.6 | 181+06 | 13.1+0.6 11.5+0.6 12.7+0.7 12.3+0.6 14.2+0.9
L. tricolor' 40.0 333 27.8 22.2 21.7 23.3 23.8 - -
L. yunnaniensis® 45.4+1.9 333114 28.0+0.9 158+0.6 | 17.6+0.7 14.4+0.9 11.5+0.3 12.0+0.4 -
Egg to adult
L. badid’ 46.5+0.6 33.4+05 29.7+0.3 233104 19.8+0.5 17.2+0.5 19.3+0.6 P -
L. bostrychophila™ 419+1.0 | 36.4%1.0 34.8+0.3 | 24.4+05 | 21.0%0.2 18.1+0.2 21.5+0.1 - -
L. brunnea females” - 496+1.6 39.1+1.1 | 368+1.1 | 32.7%1.2 30.5+1.5 27.7+1.7 - -
L. brunnea males" - 437+1.0 344+1.1 30.6+1.1 257115 246+14 25.2+1.5 - -
L. decolor females' 46.2 £ 0.6 31.7+0.5 26.9+0.3 22.8+0.5 20.0+0.5 16.2+£0.2 16.1+0.4 20.0+0.5 -
L. decolor males' 41.8+0.8 | 28.910.6 24.0+0.3 | 20.7+04 | 17704 14.0+0.2 13.6+0.4 16.3+0.6 -
L. entomophila" 71.9+0.5 57.6+0.4 445+0.2 | 35.0+0.1 | 245101 23.1+0.1 21.7+0.4 - -
L. paeta® - 454+1.0 32.2+04 264+0.4 22.5+0.3 15.6+0.2 14.2£0.2 11.5+0.1 -
L. pearmani females® - 49.2+1.0 349106 |268+1.0 | 24.2+1.0 219405 23.8+0.7 - -
L. pearmani males® - 38.8+0.9 28.2+0.6 | 253+0.7 | 219%1.2 18.7+0.7 216+1.1 - -
L. reticulatus® - 446+2.1 343121 29.1+21 263121 229+2.2 234+30 - -
L. rufa females' - 47.4+1.0 373109 |295+08 | 24.5+0.7 21.7+0.9 24.6+0.8 21.6+0.9 22.0+1.9
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L. rufa males’ - 43.4+0.7 32.6+0.6 26.9+0.6 20.6 £0.7 17.8+0.6 17.9+0.8 17.5+0.6 199+1.0
L. tricolor 57.1 47.6 38.5 31.7 32.2 32.2 32.0 - -
L. yunnaniensis® 64.3+1.9 45.8+1.4 37.8+0.8 23.9+0.6 25.6+0.7 22.6+0.9 16.1+0.3 16.2+0.3 -

’Development on cracked wheat (Aminatou BA, Gautam SG, Opit GP, Talley J, Shakya K. 2011. Population growth and development of Liposcelis pearmani
(Psocoptera: Liposcelididae) at constant temperatures and relative humidities. Environ. Entomol. 40:788-96).

®No survivors at this temperature.
“This temperature not tested.

0'Development on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Hassan MW, Dou W, Chen L, Jiang H, Wang J. 2011. Development,
survival, and reproduction of the psocid Liposcelis yunnaniensis (Psocoptera: Liposcelididae) at constant temperatures. J. Econ. Entomol. 104:1436-44).

°Eggs hatched at 39°C, but not at 41°C.

‘Development on cracked wheat (Gautam SG, Opit GP, Giles KL. 2010. Population growth and development of the psocid Liposcelis rufa (Psocoptera:
Liposcelididae) at constant temperatures and relative humidities. J. Econ. Entomol. 103:1920-28).

éDevelopment on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Wang JJ, Ren Y, Wei XQ, Dou W. 2009. Development, survival, and
reproduction of the psocid Liposcelis paeta (Psocoptera: Liposcelididae) as a function of temperature. J. Econ. Entomol. 102:1705-13).

"Development on cracked wheat (Opit GP, Throne JE. 2009. Population growth and development of the psocid Liposcelis brunnea (Psocoptera:
Liposcelididae) at constant temperatures and relative humidities. J. Econ. Entomol. 102:1360-68).

'Development on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Tang PA, Wang JJ, He Y, Jiang HB, Wang ZY. 2008. Development,
survival, and reproduction of the psocid Liposcelis decolor (Psocoptera: Liposcelididae) at constant temperatures. Ann. Entomol. Soc. Am. 101:1017-25).

Development on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Jiang H, Liu J, Wang Z, Wang J. 2008. Temperature-dependent
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development and reproduction of a novel stored product psocid, Liposcelis badia (Psocoptera: Liposcelididae). Environ. Entomol. 37:1105-12).

“Development on cracked wheat (Opit GP, Throne JE. 2008. Population growth and development of the psocids Lepinotus reticulatus at constant
temperatures and relative humidities. J. Econ. Entomol. 101:605-15).

'Development (days estimated from graph in manuscript) on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Dong P, Wang JJ, Hu F, Jia
FX, Hu F. 2007. Development and reproduction of the psocid Liposcelis tricolor (Psocoptera: Liposcelididae) as a function of temperature. J. Econ. Entomol.
100:228-35).

"Development on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Wang J1J, Tsai JH, Zhao ZM, Li LS. 2000. Development and reproduction
of the psocid Liposcelis bostrychophila (Psocoptera: Liposcelididae) as a function of temperature. Ann. Entomol. Soc. Am. 93:261-70).

"Development on a diet of whole wheat flour and yeast powder (10:1) (Wang J, Zhao Z, Li L. 1998. Studies on bionomics of Liposcelis entomophila
(Psocoptera: Liposcelididae) infesting stored products. Entomol. Sinica 5:149-58). Development time of eggs at 17.5°C and 75% RH was 27.2 + 0.6 days, and
was 8.1+0.5,8.0+0.3,7.3+0.1, and 6.8 £ 0.5 days at 28°C and 60, 70, 80, and 90% RH, respectively. Development time of nymphs was 26.3 +1.2,22.0 +
0.7,21.2+£0.1, and 16.2 + 0.3 days at 28°C and 60, 70, 80, and 90% RH, respectively, and development time from egg to adult was 34.4 £ 0.7, 30.0 £ 0.5,
28.5+ 0.1, and 23.0 £ 0.4 days at 28°C and 60, 70, 80, and 90% RH, respectively.
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Supplemental Table 2. Effects of temperature on duration of development of nymphal instars of Liposcelis spp. and Lepinotus reticulatus at 75 to 80% RH

(over a saturated sodium chloride solution)

Instar/species

Duration of development (days + SE)

Temperature (°C)

Nymph 1 20 22.5 25 27.5 30 32.5 35 37.5 40
L. badia" 8.3+0.5 7.1+0.3 6.8+0.2 59+0.3 41+0.3 29+0.2 3.7+0.3 - -
L. bostrychophilak 80+1.0 74+0.1 7.1+0.7 59103 3.3+0.3 2.7+0.2 3.3+0.1 - -
L. brunnea females' - 11.6+0.7 8.6+0.5 8.2+0.5 7.3+0.6 6.5+0.7 6.1+0.7 - -
L. brunnea males - 10.9+0.5 9.0+ 0.6 8.3+0.6 6.2+0.8 6.8+0.7 51+0.8 - -
L. decolor females® 9.5+0.3 8.3+0.3 6.3+0.3 49+0.1 3.8+0.2 3.6+0.1 2.8+0.2 4.7+0.2 -
L. decolor males® 10.3+0.3 | 81+0.3 6.4+0.3 6.0+0.3 3.6+0.2 3.4+0.2 3.1+0.2 42+0.4 -
L. paeta® - 5.1+0.3 52+03 3.2+0.2 4.0+0.2 28+0.1 20+0.1 23+0.1 -
L. pearmani females® - 9.2+0.4 6.4+0.3 6.2+0.2 5.0+0.2 5.0+0.3 45+0.3 - -
L. pearmani males® - 9.7+0.8 57+0.3 6.3+0.4 4.9%0.3 4.4+0.3 4.8+0.5 - -
L. reticulatus' - 8.7+0.5 6.5+0.6 5.7+0.7 45+0.6 4.1+0.7 3.8+1.3 - -

L. rufa females® - 10.0+0.3 7.6+0.3 6.4+0.3 5.8+0.2 5.2+0.3 6.1+0.3 59+0.3 53+0.6
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L. rufa males® - 79+0.3 7.8+0.2 6.3+0.2 5.8+0.2 49+0.2 59+0.3 5.8+0.2 53+04
L. tricolor 111 9.1 7.7 6.3 6.1 6.9 7.1 - -
Nymph 2
L. badia" 7.2+04 5.6+0.2 5.1+0.2 4.1+0.2 3.8+0.3 3.5+0.2 40+0.3 - -
L. bostrychophilak 6.9+0.2 531+0.1 50+04 3.6x04 3.7+0.1 3.8+0.1 43+0.2 - -
L. brunnea females’ - 6.8+0.5 57+0.3 6.1+0.3 59+0.4 5.9+0.5 4.6 +0.5 - -
L. brunnea males - 8.1+0.3 57+04 6.0+04 6.1+0.5 48+0.4 55+0.5 - -
L. decolor females® 7.2+04 51+0.3 4.8+0.2 3.9+0.2 3.8+0.2 29+0.1 2.7+0.1 3.5+0.2 -
L. decolor males® 8.0+0.5 6.2+04 4.7+0.2 43+0.3 3.9+0.2 29+0.2 29+0.2 3.310.2 -
L. paeta® - 7.0+04 4.4+0.2 3.3+0.2 35+0.2 26+0.1 19+0.1 1.7+0.1 -
L. pearmani females® - 7.4+0.5 54+03 54+0.3 5.0+0.4 4.6+0.2 4.7+0.4 - -
L. pearmani males® - 7.4+0.5 5.8+0.3 5.7+0.5 4.4+0.5 45104 4704 - -
L. reticulatus' - 8.7+0.6 6.1+0.7 3.5+0.8 3.8+0.8 44+0.8 45+1.8 - -
L. rufa females® - 6.8+0.4 6.0+0.3 55+0.3 43+0.3 46104 5.8+0.3 43+0.3 49+0.7
L. rufa males® - 73104 6.1+0.3 58+0.3 45103 4.8+0.3 51+04 45103 43+0.5
L. tricolor! 111 10.5 7.1 5.6 5.9 6.3 6.4 - -
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Nymph 3
L. badia" 6.3+04 58+0.3 51+0.2 43+0.2 41+0.3 3.610.2 42+04 £ -
L. bostrychophi/ak 6.2+0.2 5.7+0.3 47+0.4 3.6+0.5 3.0+0.1 28+0.1 3.2+0.2 - -
L. brunnea females’ - 7.6+0.6 7.2+0.4 6.7+0.4 6.4+0.4 5.8+0.6 43+0.7 - -
L. brunnea males’ - 10.6 £ 0.6 8.1+0.7 6.91+0.7 6.3+0.9 6.0+0.8 7.8+0.9 - -
L. decolor females® 7.7+04 | 4.8+0.2 3.7+0.2 3.3+0.2 3.6+0.2 3.0+0.1 2.9+0.2 3.4+0.2 -
L. decolor males® 8.3+0.3 5503 4.0+0.2 3.5+0.2 39+0.2 2.7+0.1 29+0.2 3.2+0.3 -
L. paeta® - 7.6+£0.5 55103 3.9+0.3 3.9+0.2 26+0.1 20101 14+0.1 -
L. pearmani females® - 8.3+04 6.5+0.5 5.6+0.3 51+04 43+0.3 4.7+0.3 - -
L. pearmani males® - 8.1+0.6 6.2+0.4 5.0+0.5 4.9+0.7 3.7+0.3 3.8+0.2 - -
L. reticulatus' - 9.1+0.8 7.0+0.9 54+09 55+0.9 42+0.9 55+1.8 - -
L. rufa females® - 7.1+04 6.4+0.3 5.0+0.3 4.7+0.3 46104 52+03 49+04 3.5+0.8
L. rufa males® - 7.2+0.3 5.7+0.3 54+0.3 40+0.4 5.0+0.5 3.4+0.7 3.8+04 45+0.5
L. tricolor 10.0 8.0 6.7 5.7 4.2 4.5 5.0 - -
Nymph 4
L. bostrychophilak 7.1+0.3 6.2+0.1 5.4+0.8 25+0.6 24+03 23+0.2 3.1+0.3 - -
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L. brunnea females’ - 10.8+ 1.0 7.5+0.8 7.5+0.8 6.3+0.8 57+1.0 6.6+1.1 - -
L. decolor females® 77104 4.8+0.2 3.8+0.2 3.1+0.2 3.1+0.2 26+0.1 29+0.2 3.7+0.1 -
L. paeta® - 8.3+0.8 52+04 5.0+0.3 3.6+0.3 2.8+0.2 25+0.2 1.3+0.2 -
L. pearmani females® - 9.9+0.7 8.0+0.5 5.6 +0.4 6.0+0.5 4.1+0.4 5.1+0.6 - -
L. reticulatus' - 9.8+1.1 9.2+1.3 6.0+14 82+13 47+14 43128 £ -

L. rufa females® - 7.4+0.5 6.4+£0.4 5.61+0.5 5.310.6 4.7+0.9 5.810.6 4.7+0.9 48+1.0
L. tricolor 10.0 8.3 6.5 4.5 5.1 4.4 5.6 - -

’Development on cracked wheat (Aminatou et al. 2011, refer to Supplemental Table 1).

®No survivors at this temperature.

“This temperature not tested.

dDevelopment on cracked wheat (Gautam et al. 2010, refer to Supplemental Table 1).

°Development on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Wang et al. 2009, refer to Supplemental Table 1).

‘Development on cracked wheat (Opit and Throne 2009, refer to Supplemental Table 1).

éDevelopment on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Tang et al. 2008, refer to Supplemental Table 1).

"Development on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Jiang et al. 2008, refer to Supplemental Table 1).

'Development on cracked wheat (Opit and Throne 2008, refer to Supplemental Table 1).
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IDevelopment (days estimated from graph in manuscript) on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Dong et al. 2007, refer to

Supplemental Table 1).

kDevelopment on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Wang et al. 2000, refer to Supplemental Table 1).
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Supplemental Table 3. Effects of temperature on immature survivorship of Liposcelis spp. at 75 to 80% RH (over a saturated sodium chloride solution)

Life stage/species

Immature survivorship (% + SE)

Temperature (°C)

Egg 20 22.5 25 27.5 30 32.5 35 37.5 40

L. badia® 69.9 6.8 83.1%5.9 89.5+2.2 | 80.6%52 | 56.7+53 | 81.8+14 | 545+8.0 - b

L. bostrychophild' 59.3+3.1 69.1+2.0 742+0.7 | 926+0.2 | 883+0.5 | 784+08 | 71.7+1.1 P P

L. decolor’ 84.2+1.9 86.5+0.7 89.0+13 | 90.6+1.7 | 93.5+1.1 | 89.4+14 | 82.6+0.5 67.2+1.2 b

L. entomophild 721+1.2 78.9+0.4 793+03 | 733%0.7 | 733%0.7 | 67.8+09 | 63.3+0.7 - b

L. paeta® P 52.0+0.0 69.6+0.1 | 67.3+0.0 | 584+0.1 | 77.3+0.1 | 55.5+0.1 65.0 + 0.0 P

L. yunnaniensis® 60.5 + 8.2 69.2+5.2 789+29 | 63.0+13 | 651+93 | 57.9+52 | 70.7+3.3 76.0+2.9 0.0%0.0

Nymph 1 (N1)

L. badia® 32.8+3.9 40.8 +5.7 643+46 | 663+0.0 | 60.8+23 | 55.6+2.4 | 382+14 P P

L. bostrychophild' 76.7+1.0 87.3+25 90.9+0.5 | 925+0.2 | 935+04 | 89.2+1.1 | 80.0+1.1 P P

L. paeta N1° b 52.840.1 68.9+0.0 | 683%0.0 | 66.7+0.0 | 79.2+0.1 | 66.5+0.0 68.6 £ 0.0 -
Nymph 2 (N2)

L. badia® 90.5+1.5 84.7+5.9 80.1+2.6 | 969+18 | 87.9+7.8 | 76.0+52 | 87.4+3.1 P P
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L. bostrychophila' 91.7+0.9 92.2+1.0 933+0.7 | 96801 | 982+0.1 | 96.2+0.8 | 94.7+0.7 -
L. paeta N2° P 88.7+0.1 955+0.0 | 91.8+0.0 | 90.2+0.1 | 91.9+0.1 | 93.7+0.0 68.6 + 0.0
Nymph 3 (N3)
L. badia® 97.2+2.8 93.4+4.6 947400 | 93.2+58 | 90.3+4.3 | 88929 100+ 0.0 b
L. bostrychophild 96.3+0.3 96.3+0.3 96.3+0.2 100 + 0.0 100+0.0 | 959+1.0 | 954+1.0 -
L. paeta N3° b 84.9+0.1 99.0+0.0 | 949+0.0 | 99.1+0.0 | 94.9+0.0 | 97.4+0.0 98.5+0.0
Nymph 4 (N4)
L. bostrychophild’ 93.1+0.5 98.2+0.1 100 + 0.0 100 + 0.0 100 + 0.0 100 + 0.0 96.7 £ 0.2 P
L. paeta N4° - 98.7 £ 0.0 100.0 100.0 100.0 100.0 99.2 +0.0 99.2 £0.0
Nymph
L. badia® 28.7%2.9 32.4+5.8 485+16 | 59900 | 484+55 | 373+15 | 333+14 -
L. bostrychophila' 63.0+ 1.5 76.2+1.3 81.7+1.0 | 89.6+08 | 91.9+06 | 823+12 | 69.8+1.6 P
L. brunnea® - 0.82 0.78 0.75 0.62 0.48 0.38 -
L. decolor’ 456+1.2 49.0+0.8 484+11 | 54909 | 547+10 | 64.0+0.9 | 489+13 28.3+1.7
L. entomophild 44.5+0.8 57.5+0.4 67.3+0.7 | 88.0+0.2 | 80.6+05 | 755+1.3 | 584+1.3 -
L. paeta® P 36.3+0.1 65.1+0.0 | 59.5+0.0 | 59.9+0.1 | 69.4+0.1 | 60.3+0.1 44.6 +0.0
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L. reticulatus” K 46.7+119 | 40.0+4.0 | 40.0+25 | 46.0+9.5 | 333+6.6 8.7+4.7 K -
L. rufa® - 76 +3 90+1 86 + 3 91+3 88+4 78 +2 82+4 34+8

L. yunnaniensis® 94.4 +3.0 50.5+1.5 59.9+6.6 | 59.7+7.6 | 48.8+4.3 | 533+6.3 | 46.7+3.2 51.5+9.6 b

Egg to Adult
L. badia® 19.8+2.0 27.1+5.9 435+23 | 483+3.1 | 280+54 | 30.5+0.0 | 18.0+2.1 P -
L. bostrychophild' 37.4+1.2 52.6+1.9 606+1.2 | 829+09 | 81.1+10 | 624+0.7 | 50.7+1.1 P P
L. decolor’ 38.4+0.8 42.4+0.4 43.1+0.8 | 49.7+1.1 | 512412 | 57.3+0.8 | 40.4+0.8 19.0+ 1.5 b
L. entomophild’ 32.1+0.3 45.4+0.6 53.4+0.4 | 645+0.6 | 59.1+0.2 | 51.2+0.2 | 37.0+0.8 b b
L. paeta® - 18.8+0.0 451+0.0 | 405+0.0 | 363+0.1 | 52.8+0.0 | 34.1+0.1 28.8+0.0 b
L. yunnaniensis® 56.6 + 6.2 349+2.4 46.8+3.6 | 37.7+51 | 31.3+3.1 | 30.8+4.4 | 33.2+36 38.6+5.6 b

Temperature had no effect on egg or nymphal survivorship of L. pearmani. Survivorship of eggs averaged 0.87 (range 0.83 to 0.90) and nymphal
survivorship averaged 0.52 (range 0.42 to 0.59) across all temperatures (Aminatou et al. 2011, refer to Supplemental Table 1). 63-73% of nymphal mortality
occurred during the first and second instars.

Temperature had no effect on egg survivorship of L. rufa. Survivorship of eggs averaged 0.90 (range 0.85 to 0.95) across all temperatures (Gautam et al.
2010, refer to Supplemental Table 1).

Temperature had no effect on egg survivorship of L. brunnea. Survivorship of eggs averaged 0.8 (range 0.7 to 1.0) across all temperatures (Opit and Throne
2009, refer to Supplemental Table 1). 87-100% of nymphal mortality occurred during the first and second instars.
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Temperatures between 22.5 and 35°C had no effect on egg survivorship of L. reticulatus. Survivorship of eggs ranged between 0.8 and 0.9 across all
temperatures (Opit and Throne 2008, refer to Supplemental Table 1). No eggs hatched at 40°C. 80-100% of the total nymphal mortality was due to N1 and
N2 mortality.

®Most mortality occurred in the first stadium (Hassan et al. 2011, refer to Supplemental Table 1).

®This temperature not tested.

‘58-71% of total nymphal mortality was due to N1 and N2 mortality (Gautam et al. 2010, refer to Supplemental Table 1).

Survivorship on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Wang et al. 2009, refer to Supplemental Table 1).
Survivorship on cracked wheat (Opit and Throne 2009, refer to Supplemental Table 1). Data in table were read from graph in published study.
'Survivorship on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Tang et al. 2008, refer to Supplemental Table 1).
Survivorship on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Jiang et al. 2008, refer to Supplemental Table 1).
"Survivorship on cracked wheat (Opit and Throne 2008, refer to Supplemental Table 1).

'Survivorship on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Wang et al. 2000, refer to Supplemental Table 1).

ISurvivorship on a diet of whole wheat flour and yeast powder (10:1) (Wang et al. 1998, refer to Supplemental Table 1). Survivorship of eggs at 17.5°C and
75% RH was 45.4 + 1.4%, and was 64.9 £ 0.3, 68.6 £ 0.7, 78.9+ 1.2, and 73.0 £ 1.1% at 28°C and 60, 70, 80, and 90% RH, respectively. Survivorship of
nymphs was 47.9+£2.9,79.5+1.0,85.9+ 1.5, and 85.6 + 1.1% at 28°C and 60, 70, 80, and 90% RH, respectively, and survivorship from egg to adult was 31.2
+1.8,54.5+0.4,67.8+0.2,and 62.5 + 0.4% at 28°C and 60, 70, 80, and 90% RH, respectively.
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Supplemental Table 4. Effects of temperature on preoviposition period of Liposcelis spp. and Lepinotus reticulatus at 75 to 80% RH (over a saturated

sodium chloride solution)

Species Preoviposition period (days + SE)
Temperature (°C)
20 22.5 25 27.5 30 32.5 35 37.5 40
L. badid’ 6.4+0.4 54+0.4 5.0+0.3 4.7+0.4 38+0.6 | 3.8+0.4 4.4+0.3 b b
L. bostrychophila" 17.9+3.2 103+ 1.1 49+0.3 3.3+0.6 35403 | 4.0+0.1 43+0.6 b -
L. decolor® 6.8 +0.5 56+0.4 42+0.3 42+0.3 3.0+03 | 2.8+0.2 2.3+0.1 3.8+0.3 b
L. paeta” > 6.3+0.9 3.4+0.4 32+04 20+0.2 | 1.3%0.2 1.1+0.2 0.8+0.1 P
L. reticulatus® b 44403 4.4+0.3 3.6+0.2 33+0.2 | 2.8+0.2 2.7+0.2 b b
L. rufa’ b 4.4+0.2 2.5+0.2 1.5+0.2 1.0+0.2 | 1.1+0.2 0.9+0.2 2.2+0.2 2.0+0.2
L. tricolor® 50.0 66.7 14.3 8.3 3.5 5.9 6.3 P -
L. yunnaniensis® 16.3+0.2 18.5+1.5 10.3+0.6 163+1.0 | 9.6+1.1 | 11.8+11 | 3.1+05 49+1.0 b

®Days on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Hassan et al. 2011, refer to Supplemental Table 1).

®This temperature not tested.

‘Days on cracked wheat and colored diet containing rice krispies and red dye (Opit GP, Throne JE, Payton ME. 1010. Reproductive parameters of the

parthenogenetic psocid Lepinotus reticulatus (Psocoptera: Trogiidae) at constant temperatures. Environ. Entomol. 39:1004-1011)
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Days on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Wang et al. 2009, refer to Supplemental Table 1).
°Days on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Tang et al. 2008, refer to Supplemental Table 1).
"Days on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Jiang et al. 2008, refer to Supplemental Table 1).

€Days (estimated from graph in manuscript) on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Dong et al. 2007, refer to Supplemental
Table 1).

"Days on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Wang et al. 2000, refer to Supplemental Table 1).

'Days on cracked hard red winter wheat, rice krispies, and wheat germ (93:5:2) (Gautam SG, Opit GP, Giles KL. 2012. Effects of constant temperatures on
reproductive parameters of the psocid Liposcelis rufa (Psocoptera: Liposcelididae). Entomol. Ornithol. Herpetol. S1:002).
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Supplemental Table 5. Effects of temperature on oviposition period of Liposcelis spp. and Lepinotus reticulatus at 75 to 80% RH (over a saturated sodium

chloride solution)

Oviposition period (days * SE)

Species
Temperature (°C)

20 22.5 25 27.5 30 32.5 35 37.5 40

L. badid 69.8 +10.6 55.1+5.6 49.8+5.7 20.3+1.9 29.6+42 | 26.1+36 | 12.8+1.1 b b

L. decolor* 85.0 8.4 61.4+7.0 60.8 4.2 49.6 +3.6 414+41 | 51.4+3.0 | 37.0%3.1 17.8+2.1 b

L. paeta® b 101.8+9.7 | 100.7+4.8 | 75.0+4.9 76.2+52 | 50.9+3.8 | 60.7+3.2 20.3+0.9 P

L. reticulatus® b 65.5+2.3 48.8+2.3 40.6+2.1 33.242.2 | 309+22 | 18.4+2.1 P P
L. rufa® b 144.7+49 | 108.1+49 | 89.7+5.1 66.6+4.8 | 452+4.8 | 409+438 29.8+5.0 26.2+4.9

L. yunnaniensis® 75.1+8.7 37.0+4.9 60.1+3.9 452 +4.2 33.4+3.0 | 389+3.1 | 341+24 21.6+2.4 P

’Days on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Hassan et al. 2011, refer to Supplemental Table 1).

®This temperature not tested.

‘Days on cracked wheat and colored diet containing rice krispies and red dye (Opit et al. 2010, refer to Supplemental Table 1).
Days on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Wang et al. 2009, refer to Supplemental Table 1).

“Days on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Tang et al. 2008, refer to Supplemental Table 1).
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"Days on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Jiang et al. 2008, refer to Supplemental Table 1).

Days on cracked hard red winter wheat, rice krispies, and wheat germ (93:5:2) (Gautam et al. 2012, refer to Supplemental Table 4).



Supplemental Material: Annu. Rev. Entomol. 2014. 59:279-97
doi: 10.1146/annurev-ento-011613-161947
Biology and Management of Psocids Infesting Stored Products

Nayak et al.

Supplemental Table 6. Effects of temperature on adult longevity of Liposcelis spp. and Lepinotus reticulatus at 75 to 80% RH (over a saturated sodium

chloride solution)

Adult longevity (days + SE)

Species
Temperature (°C)
20 22.5 25 27.5 30 32,5 35 37.5 40
L. badid 76.9+99 | 63.8+57 | 59.6+6.0 | 29.8+20 | 41.2+43 | 352+3.7 20.7+1.3 b b
L. bostrychophila® | 80.4+10.2 | 82.1+57 | 852+47 | 864+40 | 89.4+39 | 788+4.1 60.1+7.1 - -
L. decolor® 101.5+85 | 77.4+75 | 705+43 | 581+35 | 526+42 | 56.8+3.3 42.3+3.3 26.8+2.3 b
L. entomophila" 64.4+2.9 55.4+0.5 542+0.4 | 53.4+0.1 | 457+0.2 | 37.5+0.4 324+1.2 P P
L. paeta® b 110.3+9.6 | 106.8+4.7 | 82.6+50 | 81.2+55 | 555+3.8 66.0 + 3.3 24.9+0.7 b
L. reticulatus females* - 82.9+23 61.6+2.4 | 487+22 |394+22 | 356+23 23.8+2.2 P P
L. rufd’ b 2289+6.1 | 169.8+6.1 | 121.2+6.3 | 87.4+6.1 | 55.7+6.0 52.0+5.9 38.2+6.3 36.4 6.2
L. yunnaniensis 1341+95 | 80.0+45 | 981439 | 745+41 | 609438 | 575435 | 504+16 | 39.4+18 »

females®

’Days on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Hassan et al. 2011, refer to Supplemental Table 1).

®This temperature not tested.

‘Days on cracked wheat and colored diet containing rice krispies and red dye (Opit et al. 2010, refer to Supplemental Table 4).

Days on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Wang et al. 2009, refer to Supplemental Table 1).
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“Days on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Tang et al. 2008, refer to Supplemental Table 1).
"Days on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Jiang et al. 2008, refer to Supplemental Table 1).
Days on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Wang et al. 2000, refer to Supplemental Table 1).
"Days on a diet of whole wheat flour and yeast powder (10:1) (Wang et al. 1998, refer to Supplemental Table 1).

'Days on cracked hard red winter wheat, rice krispies, and wheat germ (93:5:2) (Gautam et al. 2012, refer to Supplemental Table 4).
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Supplemental Table 7. Effects of temperature on fecundity of Liposcelis spp. and Lepinotus reticulatus at 75 to 80% RH (over a saturated sodium chloride

solution)
Fecundity (number of eggs laid during lifetime * SE)
Species
Temperature (°C)
20 22.5 25 27.5 30 32.5 35 37.5 40
L. badid’ 52.4+7.3 40.7 4.6 33.4+3.7 18.7+1.6 30.4+3.1 18.1+2.1 14.6 + 1.4 b b
L. bostrychophila® | 51.9+9.4 55.4 + 8.0 64.6 7.2 74.7 £3.3 74.6 £3.0 64.9 + 4.4 61.0+7.1 - -
L. decolor® 65.1+6.9 68.5 + 8.1 87.8+4.4 91.1+6.1 | 107.5+8.1 | 130.4+7.2 | 743+56 24.7+4.0 b
L. paeta” > 50.5+ 5.6 72.7+54 | 107.6+7.1 | 103.8+8.1 | 985+84 | 102.1+7.3 | 205+1.8 -
L. reticulatus® b 31.7+2.1 38.9+2.1 40.7 £2.0 36.4+2.0 39.2+2.0 21.3+2.0 b b
L. rufa” b 345+3.0 445 +3.0 54.6+3.1 62.5+3.2 58.7 +3.0 54.1+2.9 44.4+3.1 27.9+3.1
L. yunnaniensis® | 13.8+1.3 10.3+1.9 27.0+2.2 245+2.4 21.9+2.1 29.7+2.8 32.6+2.7 12.5+2.1 b

Eggs (Hassan et al. 2011, refer to Supplemental Table 1).

®This temperature not tested.

“Eggs on cracked wheat and colored diet containing rice krispies and red dye (Opit et al. 2010, refer to Supplemental Table 4).

9Eggs on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Wang et al. 2009, refer to Supplemental Table 1).
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°Eggs on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Tang et al. 2008, refer to Supplemental Table 1).
"Eggs on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Jiang et al. 2008, refer to Supplemental Table 1).
Eggs on a diet of whole wheat flour, skim milk, and yeast powder (10:1:1) (Wang et al. 2000, refer to Supplemental Table 1). No eggs were laid at 17.5°C.

"Eggs on cracked hard red winter wheat, rice krispies, and wheat germ (93:5:2) (Gautam et al. 2012, refer to Supplemental Table 4).
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Supplemental Table 8. Effects of temperature and relative humidity on population growth of Liposcelis spp. and Lepinotus reticulatus

Number of psocids (+ SE)

RH/species Temperature (°C)
22,5 25 27.5 30 32.5 35 37.5 40
80%
L. bostrychophild’ 34.6+2.9 158.3+7.7 | 682.4+61.0 | 3505.2 +238.3 1910.8 + 96.7 14.1+4.3 K 9
L. entomophild’ 31.5+4.8 77.0£9.9 169.8 + 53.7 333.2+30.4 167.0 + 56.7 0.0%0.0 - -9
L. paetd’ 45+0.5 69.0+6.1 | 249.9+11.4 501.5 +42.6 717.9 £ 60.2 837.8 £ 60.0 374.9 £32.1 K
75%
L. brunnea® 48.0 + 3.4b 50.4 % 4.5 49.9+4.1 55.0+ 4.3 51.7+3.5 7.7+2.2 - -4
L. pearmani® 39.7+3.9 79.5+8.1 97.1+11.6 120.5+12.3 161.9+16.8 69.2+8.2 0.0%0.0 0.0+0.0
L. reticulatus® 46.0 +10.2 50.3+8.2 55.4+13.4 94.8+48.8 102.9 + 6.6 4.0+4.0 K K
L. rufa® 27.0+3.6 60.8+6.8 70.4+7.7 138.4+17.5 323.9+23.4 363.4 +32.9 300.7+245 |2.7+13
70%
L. bostrychophilad’ 309+1.1 112.0+3.9 | 204.1+11.0 | 3344.0+2445 235.1+63.7 10.7 +3.9 K K
L. entomophild’ 14.7+3.8 55.8+12.7 | 229.0+72.4 353.4+26.1 79+7.4 0.0+0.0 K d
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L. paetd’ 46+0.5 89.4+59 | 306.5%13.0 963.7 +39.1 1803.5+111.8 | 1174.2+53.7 | 1092.4 +48.7 K
63%
L. brunnea® 50.6 + 2.8 61.2 £5.6 69.4+7.0 75.8+6.9 86.6 + 8.2 14.6 +3.2 K K
L. pearmani® 52.4+6.9 65.4 6.9 48.1+5.0 69.5+11.2 35.1+6.4 13.2+3.6 0.0+0.0 0.0+0.0
L. rufa® 38.1+4.0 75.8+7.3 80.1+6.3 144.6 +15.8 251.5+37.0 130.8 +20.1 17.7+7.6 | 0.0+0.0
60%
L. bostrychophila 18.9+3.3 48.5+6.2 62.7+7.4 9.4+4.0 0.0+0.0 0.0£0.0 K K
L. entomophild’ 0.1+0.1 3.2+22 0.0+0.0 0.0+0.0 0.3+0.3 0.0+0.0 K K
L. paetd 3.0£0.5 63.5+4.8 19.8+6.1 92.9+40.0 842.3+135.4 | 495.0+120.2 | 269.0+59.2 K
55%
L. brunnea® 44.1+4.9 43.8+5.9 57.4+9.2 58.0 + 8.9 27.2+6.1 2.3+0.9 K -
L. pearmani® 12.3+1.3 12.8+3.5 1.83+0.8 1.1+0.5 0.0+0.0 0.0£0.0 0.0£0.0 0.0%0.0
L. reticulatus® 0.0+0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0£0.0 K K
L. rufa® 15.6 + 2.0 12.9+2.3 13.1+2.0 58.4+7.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+0.0
50%
L. bostrychophild’ 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 K 9
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L. entomophild’ 0.0+0.0 0.0£0.0 0.0£0.0 0.0%0.0 0.0£0.0 0.0£0.0 K K
L. paetd’ 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 K K
43%
L. brunnea® 0.0+0.0 0.0%0.0 0.0%0.0 0.0%0.0 0.0%0.0 0.0%0.0 - -9
L. pearmani® 0.0+0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0%0.0
L. reticulatus® 0.0+0.0 0.0%0.0 0.0%0.0 0.0+0.0 0.0+0.0 0.0%0.0 - K
L. rufa® 0.0+0.0 0.0£0.0 0.0%0.0 0.0+0.0 0.0+0.0 0.0£0.0 0.0%0.0 0.0+0.0
40%
L. bostrychophila’ K K 0.0+0.0 0.0+0.0 0.0+0.0 K K -
L. entomophild’ K K 0.0+0.0 0.0+0.0 K K K K
L. paetd K 0.0+0.0 0.0+0.0 0.0+0.0 K K K -9
32%
L. reticulatus® 0.0+0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0£0.0 K K

®Number of psocids on 5 g cracked wheat infested with five 1- to 2-wk-old adult females for 30 days (Aminatou et al. 2011, refer to Supplemental Table 1).

®Number of psocids on 5 g cracked wheat infested with five 1- to 2-wk-old adult females for 30 days (Gautam et al. 2010, refer to Supplemental Table 1).

‘Number of psocids on 5 g cracked wheat infested with five 1- to 2-wk-old adult females for 30 days (Opit and Throne 2009, refer to Supplemental Table 1).
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“This temperature/r.h. combination not tested.

*Number of psocids on 5 g diet of 97% cracked hard red winter wheat, 2% rice krispies, and 1% brewer’s yeast infested with five 1- to 2-wk-old adult
females for 46 days (Opit and Throne 2008, refer to Supplemental Table 1).

*Number of adult psocids on 5 g of diet (4.25 g whole brown rice, 0.5 g ground brown rice, and 0.25 g fine ground skimmed-milk powder) infested with five
adult females and two males (except for L. bostrychophila) for 56 days. Actual temperatures tested were 15, 18, 21, 24, 27, 30, 33, 36, 39, and 42. There
were 3.8 +0.4,3.1£0.3, and 0.0 L. paeta in vials at 15, 18, and 42°C and 60% RH. There were 3.4 + 0.3 L. entomophila in vials at 18°C and 70% RH. There
were 5.5+ 0.4,3.8+0.3,and 0.0 L. paeta in vials at 15, 18, and 42°C and 70% RH. There were 3.6 £ 0.6 L. entomophila in vials at 18°C and 80% RH. There
were 6.3 +0.3,4.4+0.4,and 252.4 + 28.9 L. paeta in vials at 15, 18, and 42°C and 80% RH. (Rees DP, Walker AJ. 1990. The effect of temperature and
relative humidity on population growth of three Liposcelis species (Psocoptera: Liposcelidae) infesting stored products in tropical countries. Bull. Entomol.
Res. 80:353-58)
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