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Biology as 
Reactivity

A living cell, we claim, is not only reac-

tive in nature, but is the ultimate exam-

ple of a reactive system, and so are col-

lections thereof. As explained in Cohen 

and Harel 2007,16 a cell succeeds by be-

ing robust and resilient. It reacts to in-

puts and perturbations and continues 

to survive thanks to its reactive dynam-

ics. The cell is a reactive system that ex-

presses a dynamic narrative, in which 

the DNA code is one of many formative 

inputs. Structural proteins, enzymes, 

carbohydrates, lipids, hormones, and 

other molecules also play key roles in 

forming and informing the system. 

Biological systems are also highly 

adaptive, to both internal and external 

changes; they use signals coming in 

from receptors and sensors, as well as 

emergent properties to fine-tune their 

functioning. This adaptivity is another 

facet of the reactivity of such systems. 

We are well aware of the fact that 

there are many aspects of biology that 

are not reactive, or that reactivity is not 

the best way to view them. These in-

clude, for example, structural aspects 

of chemicals. While we point to the im-

portance of combining other model-

ing methods with reactive models, the 

main thrust of this article is to explain 

the connection of biology with reactive 

systems, and the benefits that can be 

gained from adopting such a view.

Viewing biology as reactivity is not 

just an illustrative analogy, but has 

BIOLOGY IS NOT an exact science. Biological systems are 
messy and noisy, and our understanding of many 
biological scenarios remains extremely vague and 
incomplete. We cannot assign precise rules to the way 
cells behave and interact with one another, and we often 
cannot quantify the exact amounts of molecules, such  
as genes and proteins, in the resolution of a single cell. 
To make matters worse (so to speak), the combinatorial 
complexity observed in biological networks (for 
example, metabolic and signaling pathways) is 
staggering, which renders the comprehension and 
analysis of such systems a major challenge. 

One way to explain a certain class of complex 
dynamical systems is to view them as highly 
concurrent reactive systems.42 We argue that this 
perspective is a natural fit for many biological 
systems.40 A reactive system is characterized by the 
way it responds to its inputs, as they arrive over time, 
sequentially, or concurrently. The system’s behavior 
and outputs are not just a function of the input values 
but also of the order in which the inputs arrive, their 
arrival times, speeds, and locations, and so forth. 

 key insights

    Living cells, and collections thereof, can 

be viewed as reactive systems.

    Reactive models emphasize important 

aspects of biological systems, such 

as executability, concurrency and 

interaction, multiple scales, and 

combinatorial complexity. 

    Concepts, languages, and tools for the 

description and analysis of reactive 

systems can help in the process 

of biological discovery, ultimately 

by providing biologists with virtual 

experimentation environments. 

    Biological experimentation needs to 

obtain quantitative data across different 

levels, and reactive modeling needs  

to focus on incorporating and linking  

such data. 

DOI:10.1145/2001269.2001289

Exploring the connection of biology with 
reactive systems to better understand  
living systems. 

BY JASMIN FISHER, DAVID HAREL, AND THOMAS A. HENZINGER



OCTOBER 2011  |   VOL.  54  |   NO.  10  |   COMMUNICATIONS OF THE ACM     73

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 J
.F

. 
P

O
D

E
V

I
N

far-reaching consequences. Complex 

reactive behavior is difficult to com-

prehend because it is neither predomi-

nantly computation-rich nor primarily 

data-intensive, and does not yield well 

to techniques based on algorithmics, 

mathematics, and data management. 

Rather, reactive systems “live” (if we 

may use a pun in an article on biology) 

in order to react. 

Within computer science, several ap-

proaches have been offered for dealing 

with reactivity. One of the richest and 

most fruitful is that of finite automata, 

or finite state machines, which are used 

widely in many stages of the design of 

hardware and software systems. It suf-

fices to observe the central role of state 

machines in standards for the engineer-

ing of embedded and real-time software 

and systems, such as the UML.

The original theory of finite autom-

ata, which was conceived of in order to 

model hardware circuits, has brought 

in its wake many extensions and vari-

ants, such as automata on infinite 

words and trees; communicating, hi-

erarchical, and timed state machines; 

Statecharts, and many others.1,75 In 

addition, and related to these, special 

logics, algebras, and calculi have been 

devised for reactivity, first and foremost 

among which are the varieties of tempo-

ral logic63 and process algebra.57 Scenar-

io-based languages have been used to 

model biology too, such as live sequence 

charts (LSC).19 All of this, in turn, has re-

sulted not only in numerous languages 

and tools for specifying and program-

ming reactive behavior, but has also 

given rise to powerful means for analy-

sis, such as model checking.15

However, when reviewing the great 

efforts made in understanding and 

building complex reactive systems, it 

is not only the final results—languages 

and tools—that stand out. An even more 

important contribution can be found 

in the fundamental insights, concepts, 

and ways of thinking that have result-

ed from this research. Hand-in-hand 

with the central notion of reactivity go 

the discrete event-based execution and 

simulation of dynamical systems, which 
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distributed processes. In the case of the 

fruit fly Drosophila Melanogaster, for ex-

ample, a 165 million base-pair program 

defines approximately 13K functions 

(proteins). Such programs deal with two 

entangled and inseparable tasks: how 

to evolve the machine (cell collection) 

from a single cell, and how to run the 

machine so that it eventually creates 

other such machines. At all stages, both 

the development and maintenance 

are determined by which genes are ex-

pressed and which are not. Effectively, 

in each cell, the expressed genes consti-

tute a local control state of the program, 

which tells the cell which functions it 

should execute and which are irrelevant 

to its (current) role. The state is local 

because it may be different in different 

cells. At all points, communication with 

other cells and reaction to the environ-

ment are the keys to determine what 

happens next. 

More precisely, the expressed genes 

tell the cell and its machinery which 

proteins to produce and how many of 

them, and which proteins not to pro-

duce. Gene expression and the corre-

sponding protein production are the 

basic mechanisms that govern all ac-

tions of a cell. Proteins serve various 

purposes in the cell itself and also act as 

mediators of communication between 

cells. The protein concentration levels 

within a cell can be considered to be 

the local data state of the machine. As in 

computer programming, the data state 

helps prescribe the control flow, in that 

the proteins determine which genes are 

expressed and which are not. 

Consider the first part of the pro-

gram, the one that tells the system how 

to evolve. All multicellular organisms 

evolve from a single cell. The main en-

gine driving this part is called differen-

tiation, which is the process by which 

a cell that divides can give rise to what 

will ultimately become very different 

types of cells. There are mainly two 

mechanisms for cell differentiation. 

One, which is mostly active in the early 

stages of development of the machine, 

is by asymmetric segregation—asymmet-

ric accumulation of substances inside 

a single cell that divides into two differ-

ent kinds of cells. The second, which be-

comes active after a few initial divisions 

have taken place, is governed by com-

munication between cells, by morpho-

gen gradient or inductive signaling. The 

requires a fundamental understanding 

of parallelism, interaction, and causal-

ity; the design of complex systems from 

building blocks, requiring means for 

composition and encapsulation; and the 

description of systems at different lev-

els of granularity, requiring methods for 

abstraction and refinement. 

Of course, many of these concepts 

are not exclusive to reactive systems, 

but they are critical for understanding 

them, and they are among the main 

ideas that render possible the reliable 

development of truly complex reactiv-

ity. The claim made in this article is that 

these ideas can be of great benefit in the 

modeling and analysis of biology.

Reactivity and Biology

The process of modeling a piece of biol-

ogy is very different from that of mod-

eling a human-made system. The mo-

tivation is different, the goals are very 

different, the people involved are also 

different, the scales are different, and so 

on. Still the underlying maxim of this ar-

ticle is that a fighter jet and a fruit fly, for 

example, have many things in common, 

and that there is much to be gained 

from using ideas from engineering the 

former to reverse-engineering the latter, 

even though the fly is in a way far more 

complex than the airplane.

Biological systems are ultimately mo-

lecular and cellular machines. Using a 

fixed set of building blocks (molecules) 

with some fixed functionalities (for ex-

ample, cleavage, connection, ioniza-

tion, phosphorylation), cells emerge, 

and these multilevel machines then 

utilize various combination techniques 

to give rise to the life we see around 

us. The “execution” of a biological sys-

tem is distributed to a level that is still 

beyond comprehension. In a sense, a 

biological system can be viewed, almost 

on a philosophical level, as a collection 

of cells (each containing a multitude 

of molecules) that work in concert and 

independently to achieve a mutual 

goal without a central controller that 

coordinates them all. The cells in such 

a collection communicate and pass in-

formation to each other in order to help 

achieve their mutual goal. In doing this, 

they can also affect limited control on 

their environment. 

Let us now concentrate on the pro-

grams (to put it simply, the DNA mol-

ecules) that drive these enormously 

former breaks the symmetry between a 

group of equivalent cells, by one cell, ex-

ternal to the group, secreting a gradient 

of molecules (for example, according to 

distance from the secreting cell). The 

latter involves direct communication 

between cells, leading them to choose 

different fates through the passage of 

information. All communication is car-

ried out by transferring and manipu-

lating molecules. Such a process may 

start, for example, by one cell sending 

a molecule to a neighboring cell, which 

will then trigger the creation of another 

molecule in that neighboring cell (func-

tion activation). 

The differentiation phase of cells 

leads to a global system state where dif-

ferent cells have specialized to perform 

certain roles that are necessary for the 

mutual fulfillment of their common 

goal (reproduction). The second part 

of the program guides the system’s 

behavior after having evolved from an 

embryo, although major pieces are al-

ready in use throughout development 

because the cells are alive and need to 

maintain themselves during the pro-

cess. Initially, this part of the program 

includes little coordination and com-

munication between cells. However, as 

the cells specialize, they start to com-

municate and to manipulate their en-

vironment in order to perform basic 

actions such as transferring nutrients 

from one place to the other, transfer-

ring oxygen, and so on. 

Perhaps the most magical part of 

this program controls movement (actu-

ation). This process is slightly different, 

as it involves a new form of communica-

tion through electrical signals that are 

transmitted via nerve cells, and which 

are then translated into local molecu-

lar mechanisms. But notice that when 

a muscle contracts, the nerve reaches 

only some of the muscle cells, and re-

sponsibility for the remainder of the sig-

nal’s effect must be taken over by other 

mechanisms. In the reverse direction, 

sensors such as eyes, ears, and taste 

buds pass information from chemical 

to electrical signals. Moreover, as men-

tioned earlier, the ability of biological 

systems to adapt, as a result of incom-

ing signals, is also a highly relevant fea-

ture of their reactivity.

These are the kinds of processes that 

we aim to understand better by creat-

ing executable reactive models. The ul-
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The process of 
modeling a piece 
of biology is very 
different from 
that of modeling 
a human-made 
system. The 
motivation is 
different, the goals 
are very different, 
the people involved 
are also different, 
and the scales are 
different.

timate challenge is to understand how 

the behavior of an organism, or a part 

thereof, emerges from the individual 

behaviors of the cells in the collection. 

We believe this is best done by focusing 

on the reactivity of cells and the com-

munication between them. 

Concurrency and interaction. The es-

sence of a reactive system is that differ-

ent parts of the system are simultane-

ously active (“alive”) and interact with 

each other. In the case of computerized 

systems, these can be software process-

es, hardware components, intelligent 

agents, or the environment, and in the 

case of biology they can be molecules 

and molecular processes, cells, tissues, 

bacteria, or again, the environment. 

The operation that combines several 

simultaneously active parts of a system 

is called parallel composition because 

the individual activities happen concur-

rently, in “parallel,” rather than sequen-

tially (one after the other). However, in 

computer science there are several dif-

ferent interpretations of what “in par-

allel” actually means. At one extreme 

is the clock synchronous interpretation, 

where execution proceeds in lockstep 

with a global clock, as a sequence of 

discrete steps, with each building block 

(component) of a system contributing 

one action to each time unit. This hap-

pens, for example, in a clocked hard-

ware circuit built from individual logic 

gates without combinational loops, 

where each gate performs one opera-

tion per clock tick. At the other extreme 

is the interleaved asynchronous interpre-

tation, where each action represents the 

contribution of a single component, but 

different actions, possibly carried out at 

different time rates, may represent dif-

ferent components. This happens, for 

example, in distributed software sys-

tems where the individual processes 

proceed at independent speeds. Implic-

it to the asynchronous interpretation 

is a scheduler, which chooses for each 

step the component that will contribute 

to that step. The scheduler is usually as-

sumed to be “fair,” the simplest inter-

pretation of which is that it cannot ne-

glect to choose any component forever. 

Both kinds of concurrency occur in 

biology, for example, in molecular pro-

cesses “running” in parallel, and tech-

niques for capturing both have found 

their way into biological models. 

Still, sticking religiously to these two 

interpretations may be inadequate 

for representing the parallelism that 

arises in a large collection of indi-

vidual cells. Cells, for example, often 

proceed “roughly” in lockstep, but not 

completely so: some reactions may be 

a bit faster here but a bit slower there, 

but biological reactions do not pro-

ceed at completely independent rates 

either. An example of how to adapt 

useful computer science techniques 

to biology can be found in the recent 

compromise between these two called 

bounded asynchrony.33 It allows the 

components of a system (for example, 

cells) to proceed independently while 

bounding the differences in their rates. 

Bounded asynchrony has been used to 

accurately model some of the experi-

mental observations made about cer-

tain cell-cell interactions: it captures 

the variability observed in cells that, 

although equally potent, assume dis-

tinct fates, and thus can be used to 

provide mechanistic explanations for 

some phenomena that are observed 

during cell-fate determination. 

Bounded asynchrony is but one ex-

ample of how the modeling of biologi-

cal systems may give rise to new varia-

tions of reactive concepts. Once it is 

agreed upon what the most suitable 

interpretation of “parallel progress” 

means for a collection of cells, the 

communication between these cells 

needs to be modeled. Again, there are 

several standard alternatives, designed 

for modeling hardware and software, 

which may not be readily adequate for 

our purposes. Traditionally, the inter-

action between concurrent processes 

can happen through sharing state or 

through sending messages. This dis-

tinction has led, for example, to thread-

based programming languages on one 

hand, and actor-based languages on 

the other. The transfer of molecules 

between cells seems more akin to mes-

sage passing, but within that paradigm 

itself there exists a wide spectrum of 

design choices, ranging from rendez-

vous, which stops the execution of two 

processes until simultaneously the 

sending process is ready to send and 

the receiving process is ready to receive 

a message, to unbounded message 

buffers, which retain sent messages 

until they are received. Explicitly spa-

tial models11,69 are natural candidates 

for capturing morphogen gradients.
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Verification can 
become very 
expensive, or 
impossible, for 
human-made 
systems, and 
biological systems 
are often even  
more complex. 
The good news 
is program and 
system verification 
has made  
enormous strides  
in recent years.

While a biological scenario may sug-

gest a particular execution and interac-

tion model, often it is a matter of style 

and the availability of analysis tools that 

determines the choice of model. If there 

is any lesson to be learned from several 

decades of research on concurrency 

theory in computer science, it is that we 

should not preach the use of any partic-

ular modeling languages or methods, 

but the very notion of reactive model-

ing itself, and the freedom of choice it 

offers through a wide variety of different 

execution and interaction mechanisms. 

Towers of abstraction. Every model is 

necessarily a simplification of a physi-

cal situation. The modeler is interest-

ed in some, but not all, aspects of the 

physical system. The key to modeling a 

complex system is to design a simplifi-

cation, such that (1) the behavior of the 

model is correlated to behavior of the 

system and (2) the model is amenable 

to mathematical or computational 

analysis. Point (1) measures models 

according to their precision; point (2), 

according to their performance. Preci-

sion must be sacrificed in order to gain 

performance, but this must be done in 

a quantifiable way. 

Computer science offers a very rich 

and useful theory, called abstraction, 

for trading off precision against per-

formance in a principled manner.17 

The theory of abstraction is used in 

computer science very beneficially in 

work on verification and testing, and 

is aimed at relating models of differ-

ent precision. It thus differs greatly 

from theories of approximation, which 

measure the precision of a model in 

terms of an error bound on how much 

a model may deviate from the system. A 

theory of abstraction, by contrast, mea-

sures the precision of a model in terms 

of which properties of the system are 

preserved in the model—hence the rel-

evance to verification. 

Consider, for example, the property 

that event A is never followed by event B. 

A model may preserve such a property, 

despite possibly introducing a very large 

error. On the other hand, even a model 

that introduces only a very small error 

may violate the property when the actu-

al system does not. The preservation of 

properties can ensure that it suffices to 

check a property on the model (simple) 

in order to conclude that it holds for the 

real system (complex). This principle 

lies at the heart of all hardware and soft-

ware design. Modern computer systems 

could not be built without several layers 

of abstraction—the gate-level abstrac-

tion of the underlying physics (transis-

tors); the register level; the machine 

instruction level; the programming lan-

guage; among others. 

In analogy, a biological system may 

be viewed at many different levels, 

ranging from the molecular level to 

the cell level to the level of organs and 

entire organisms. The power of an ab-

straction layer derives from the fact that 

all lower-level details may be omitted 

from consideration. For example, when 

designing a logical circuit from Bool-

ean gates, the designer does not need 

to know about voltages and capacities. 

Different layers may exhibit different 

scales in space and time, even switch-

ing between continuous and discrete 

scales (for example, continuous volt-

ages representing Boolean values). By 

contrast, in biology, we have not (yet) 

been able to identify building blocks 

from which we can explain metabolic 

pathways and cell behavior without re-

ferring to the underlying biochemical 

(molecular) mechanisms. 

In multiscale reactive systems, an ad-

ditional characteristic phenomenon is 

the emergence of new high-level proper-

ties. An emergent property is a behavior 

of the system that is not easily expressed 

at a lower scale. Life, for example, is an 

emergent property; none of the compo-

nent molecules of a cell are alive, only 

a whole cell lives. The cell as a whole 

emerges only when we zoom out, so to 

speak, reaching the scale at which it 

functions as an object with its own inter-

actions with other cells and molecules. 

Thus, interactions at one scale create 

new objects at a higher scale, which 

is the essence of emergence. Quoting 

from Cohen and Harel,16 “A major goal 

of systems biology is to learn how the 

concurrent reactions and interactions 

of the lower-scale components of a cell, 

organism, or society generate emergent 

properties visible at higher scales and 

higher layers of reality.“

All this leads to the need to be able 

to observe and manipulate biological 

systems on multiple scales. Abstraction 

can work wonders here, and if carried 

out multiple times we get a tower of ab-

stractions. A unique feature of software 

that helps in handling multiple scales 
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is inheritance, where an existing behav-

ior is taken and augmented with a few 

modifications. This encapsulates the 

previous behavior and overrides or ex-

tends parts of it. One of the major chal-

lenges in biological modeling is to find 

similar means to encapsulate biological 

and biochemical complexity that will 

allow us to use abstraction beneficially 

to bridge and relate different scales in 

order to manage the immense complex-

ity observed in living systems. Once we 

have such multiscale models we will 

need to search for the right computa-

tional frameworks that will allow us to 

zoom back and forth between lower-

scale data and higher-scale behavior, 

while experimenting in-silico. This, we 

feel, is an ideal way to study emergence 

computationally. A modest attempt in 

this direction can be found in the Bio-

charts approach of Kugler et al.52 

Noise and choice. Stochasticity has 

received much attention in systems bi-

ology,4,55,56 as numerous experimental 

studies have reported the presence of 

probabilistic mechanisms in cellular 

processes.26,29,61 The investigation of sto-

chastic properties of biological systems 

requires that computational models 

take into consideration the inherent 

randomness of biochemical reactions. 

Stochastic kinetic approaches give rise 

to dynamics that differ significantly 

from those predicted by deterministic 

models because a system may follow 

very different scenarios with non-zero 

but varying likelihoods.

The dogma for this kind of model-

ing assumes that a molecular mixture 

is well stirred and has fixed volume and 

temperature (though PDEs can be used 

to model variations in these too). The 

state of a network of biochemical reac-

tions at any point in time is then given 

by the population vector of the involved 

chemical species (such as, molecules). 

The temporal evolution of the system 

can be described by a continuous-

time Markov process,37 which is usu-

ally represented as a system of ordinary 

differential equations (ODEs) called 

the chemical master equation (CME). 

While individual system parameters, 

such as the mean of the state distribu-

tion changing in time, can be studied 

using deterministic differential equa-

tions, this is inadequate for uncovering 

branching, switching, or oscillatory 

behavior, such as cell fate determina-

tion (the mean between two alternative 

cell fates is hardly meaningful). Such 

phenomena require a fully stochastic 

analysis. 

However, building a stochastic 

model that would mimic sufficiently ac-

curately the stochastic behavior of the 

actual biological system is extremely 

difficult when sufficiently accurate rates 

of change are not known, as is usually 

the case. In addition, we have no satis-

factory theory for abstracting stochastic 

models. This becomes a central issue 

when we wish to analyze the higher-lev-

el tiers of a biological model—say, those 

at the intercellular level—by hiding the 

underlying molecular reactions. In such 

situations, a nondeterministic model-

ing of the possible behavioral alterna-

tives of a system may be justified. For 

example, for determining possible cell 

fates, it has proved fruitful to quantize 

concentration levels of molecules into 

a few discrete ranges (for example, low, 

medium, high) with nondeterministic 

transitions between the possible rang-

es.32,34 A nondeterministic model can 

only provide potential outcomes, with-

out the corresponding probabilities, 

but it does provide hypotheses that can 

be confirmed or refuted experimentally.  

In computer science, many formal-

isms have been designed—or existing 

ones have been extended—to support 

nondeterministic transitions for mod-

eling alternative choices; for example, 

Petri nets, various kinds of interacting 

state machines, live sequence charts 

(for example, Peterson,62 Harel,38 Harel 

and Gery,41 Damm and Harel19). Many 

of these formalisms have been used to 

model biology as well.6,23,25,32,49,73 The 

question of how such discrete, non-

deterministic models relate to the un-

derlying continuous, stochastic mech-

anisms, and which properties they 

preserve, remains an interesting topic 

of investigation. Hybrid (mixed discrete-

continuous) abstractions can also play a 

central role to bridge the gap.35,45,74 To 

find an optimal trade-off between pre-

cision and performance, it may be best 

to treat some system parameters as vari-

ables that change continuously in time, 

while others can be safely represented 

as Boolean switches. 

One main advantage of nondeter-

ministic over stochastic models, and 

of discrete over continuous models, 

is the former more efficiently support 

a broad class of techniques, generally 

subsumed under the title of verification, 

which we discuss here.

From simulation to verification. 

Computer science offers a rich spec-

trum of means for assessing the dy-

namic properties of reactive models, 

ranging from simulation to verifica-

tion. While simulation generates one 

behavior of a model at a time, verifica-

tion looks systematically at the set of 

all possible behaviors.

Simulation has a long tradition in 

computational science, based mostly 

on numerical methods for solving equa-

tional models of a system. For exam-

ple, from the CME for a system of (bio)

chemical reactions, stochastic simula-

tion can be used to generate trajecto-

ries of the underlying Markov process.36 

Simulation methods are in widespread 

use because they are easy to implement, 

and each simulation run can be viewed 

as a single “in silico’’ experiment, thus 

fitting well into the methodology of ex-

perimental science. However, if we are 

interested in properties of the set of all 

runs, such as estimates for probability 

distributions on the system state at a 

given point in time, then the number of 

trajectories required for statistical ac-

curacy is very large.21 This is because in 

order to halve the confidence interval of 

an estimate, four times more trajecto-

ries have to be generated. Consequent-

ly, even when computationally feasible, 

stochastic simulation may often result 

in a very low level of confidence in the 

accuracy of the results.

More information can be obtained, 

for example, by a reachability analysis 

of the model, which explores the state 

space from an initial state or state dis-

tribution in a breadth-first, rather than 

depth-first, manner. The distinction 

between simulation and reachabil-

ity analysis is akin to the distinction 

between program testing and program 

verification. A reachability analysis can 

provide insights into biochemical mod-

els,22 but many techniques that have 

been developed for coping with large 

and unbounded state spaces in the 

reachability analysis of nondeterminis-

tic models—such as model abstraction, 

model decomposition, symbolic data 

structures, symmetry, and partial-or-

der reduction—have yet to be adapted 

satisfactorily to stochastic models. 

It goes without saying that one must 
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a compact syntactic description of a 

dynamical system. The actual number 

of states and transitions of a biologi-

cal system—its semantics—is usually 

very large or unbounded. Scientists 

and mathematicians often make little 

distinction between the semantics 

of a system, say, as a Markov process, 

and its description, say, as a transition 

probability matrix. By not differentiat-

ing sufficiently between the two, a po-

tential critical advantage of syntax is 

lost; namely, that the description of a 

system can be much smaller than the 

system itself. For example, the rule-

based description of a (bio)chemical 

system can be exponentially smaller 

than the matrix description of the same 

system; in fact, even many infinite state 

systems have finite descriptions. The 

syntax of a language can offer scaling 

operations, such as parallel composi-

tion and encapsulation, which greatly 

magnify this effect. 

Syntax matters also in other ways. 

For one, the right choice of syntax 

can substantially improve the perfor-

mance of analysis methods. Certain 

crucial optimizations of reachability 

analysis, such as on-the-fly state-space 

generation and partial-order reduc-

tion (things that can be extremely 

helpful when analyzing a piece of bi-

ology), are only available when the in-

dividual transitions of the underlying 

system are described compactly, by a 

syntactic expression (a rule, a process 

algebraic term, or a state machine) 

rather than a matrix equation. Fur-

thermore, an inductively defined syn-

tax, which features operators on basic 

expressions for constructing more 

complex expressions, offers the pos-

sibility of defining a structured opera-

tional semantics. In such semantics, 

the execution engine is defined com-

positionally; that is, it is put together 

from small primitives by using the 

syntactic operators of the language. 

Finally, a visual syntax makes model-

ing appeal to a larger group of people, 

such as biologists, and reactive mod-

els offer natural opportunities for vi-

sual representations.

State of the Art and Challenges

A large number of efforts to construct 

and analyze complete reactive models 

of various biological systems are under 

way. For lack of space, we can point only 

not forget the main difference between 

simulation and verification: the worst-

case computational intractability 

of the latter. In general, as is so well-

known, verification can become very 

expensive, or impossible, for human-

made systems, and biological systems 

are often even more complex. The good 

news is that program and system veri-

fication has made enormous strides 

in recent years: the worst-case perfor-

mance can sometimes be alleviated by 

clever and powerful means, though ob-

viously this is outside the scope of the 

present article. It is these advances that 

we hope to be able to utilize in model-

ing and verifying biology, too.

As discussed earlier, higher preci-

sion in the model generally means 

lower performance in the analysis. The 

modeler therefore aims at the lowest 

possible precision that preserves the 

property of interest. Reachability anal-

yses offer the possibility of dynami-

cally changing the level of abstraction 

during the analysis.14 In this way, the 

precision of a model can be refined 

on demand, precisely in those areas 

of the state space where more detail is 

required for determining the truth or 

falsehood of a given property. Reach-

ability analysis can also be equipped 

with rich languages for defining and 

checking temporal properties of sys-

tems, such as temporal logics—a re-

search direction known as model check-

ing; for example, see Calzone et al.,10 

which describes the BIOCHEM tool 

used in the arena of systems biology.

Reactive models come with an oper-

ational semantics; that is, every model 

defines a virtual machine with instruc-

tions for executing the model step by 

step. This is true not only of textual 

modeling and programming languag-

es, but also of visual formalisms, such 

as Petri nets62 and Statecharts.38 This is 

in contrast with most equational and 

denotational models, where generat-

ing trajectories is a mathematical task 

that requires algorithmic and numeric 

insights. This benefit of reactive mod-

els has led to the term “executable biol-

ogy.’’32 An operational semantics is not 

only enormously helpful in simulation 

and reachability analysis, but also of-

fers the possibility of interactive execu-

tion—or “playing in silico.’’39

A second important attribute of 

models of reactivity is that they offer 

to a few of these efforts. We arrange 

them in a way that proceeds from more 

detailed, molecular-level models to 

more abstract, cell-level models. Alas, 

establishing formal relationships be-

tween the various levels, that would en-

able seamless combinations of execut-

able models, still remains one of the key 

challenges in this area (see Kugler52).

Individual molecules can be mod-

eled and combined as processes within 

a process algebra. Such process-calculus 

models stress the importance of con-

currency and interaction between mol-

ecules as the main driver behind the 

dynamics of biological systems. Initial 

work suggested the use of the pi-calcu-

lus59 as a modeling language for mo-

lecular interactions,70 using it to study 

the cancer-related signal transduction 

pathway RTK-MAPK and to build the 

BioSPI simulation environment. The 

language was later extended to the sto-

chastic pi-calculus66 in order to model 

a gene-regulatory positive feedback 

loop.68 These initial successes have led 

to the design of several bio-inspired 

and location-aware process calculi, 

such as BIO-PEPA, the ambient cal-

culus,69 and the brane calculus.11 The 

methodology was applied, among oth-

ers, to transcription factor activation 

and the glycolysis pathway,18 RKIP inhi-

bition of ERK,9 the FGF pathway,51 and 

EGFR signaling.76 These approaches 

are very beneficial on the level of path-

ways and molecular interactions, but 

lack natural power of expression when 

dealing with larger biological systems, 

say, on the intercellular level.

On a higher level, instead of repre-

senting individual molecules as compu-

tational objects, we may refer to quan-

tities of molecules through variables 

in a programming language. A single 

reaction may increment or decrement 

such variables. Inspired by guarded 

commands and reactive modules,2 lan-

guages in this style were used for build-

ing qualitative models7,32 and discrete-

time Markov processes.50 They were 

later extended to continuous time, for 

describing biochemical reaction net-

works. Such transition-class models may 

use general arithmetic expressions for 

specifying reaction rates.45 These mod-

els can be executed (interpreted) direct-

ly, without the need for constructing a 

separate simulation engine. They can 

compactly represent unbounded quan-



review articles

OCTOBER 2011  |   VOL.  54  |   NO.  10  |   COMMUNICATIONS OF THE ACM     79

The research 
directions described 
in this article are 
intended, first 
and foremost, to 
yield beneficial 
results in biology 
and medicine, thus 
enhancing our 
ability to improve 
our lives. 

tities of molecules. It is their execut-

ability and compactness that allows the 

stochastic analysis and model checking 

of complex molecular systems, often in-

volving many different molecule types 

and very large molecule quantities, 

such as a genetic toggle switch. Further 

extensions lead to hybrid systems, han-

dling particularly large quantities in a 

continuous domain.36,45 

Another class of languages for mod-

eling biology is based on term-rewrite 

systems.24 Rule-based models can of-

fer an even more compact syntax than 

guarded-command definitions of mo-

lecular reactions, by defining the reac-

tive behavior of molecules in terms of 

what happens at individual binding 

sites within molecules. By formulat-

ing rewrite rules whose patterns are 

matched against fragments of mole-

cules, one can avoid referring explicitly 

to the state of an entire molecule, and 

instead specify only the state of the af-

fected sites before and after the appli-

cation of the rule. Such rules, which 

may simultaneously apply to many 

different sites within a single complex 

molecule, can lead to a further reduc-

tion in the size of the description of a 

model. Rule-based modeling has been 

applied to an increasing number of 

systems such as signal transduction in 

the immune system,29,54,55 bacterial mi-

gration,6,61 cancer-related signaling,9,21 

mechanisms by which various proteins 

regulate cell signaling through their as-

sociation with membrane proteins,44 

and more.48 Ideas from programming 

languages, such as abstract interpre-

tation, have influenced the design of 

more recent rule-based languages for 

biological applications.31 

At the highest, non-molecular level, 

state-machine based models provide a vi-

sual approach for defining the behavior 

of complex objects, such as collections 

of cells, over time. Interaction mecha-

nisms between state machines can 

specify causal relationships between 

events and state changes in different 

objects. A hierarchical structure allows 

one to view a system at different levels 

of detail (for example, whole organism, 

tissues, cells). For example, the lan-

guage of Statecharts supports interact-

ing and hierarchical state-based model-

ing,39 based on a visual syntax, and has 

been used to model immune-cell acti-

vation and differentiation;25,49 cellular 

decision-making processes during ani-

mal development;32,35,50,72 as well as or-

gan formation.74 State-machine models 

are particularly suitable for describing 

mechanistic models of multicellular 

systems that are well-understood quali-

tatively. Such models do not require 

detailed quantitative data relating to 

the number of molecules and reaction 

rates, and indeed are inadequate when 

it comes to modeling pathways and 

molecular interactions. The possibility 

of hierarchical structuring is particu-

larly useful in cases where behavior is 

distributed over many cells and where 

multiple copies of the same process 

are executed in parallel. These mod-

els also allow the application of strong 

analysis tools such as model checking. 

Combined methods seem very promis-

ing when it comes to systems for which 

one wants to model intercellular as well 

as intermolecular behavior, such as the 

Biocharts approach that is sketched in 

Kugler, Larjo and Harel.53

There are many additional efforts in 

modeling biological systems that have 

not found their way into this article, 

mainly because they are less along the 

reactive system lines presented here. 

Some of these are particularly exciting 

and insightful. They include abstract 

chemical machines,13 work on the 

brane and ambient calculi mentioned 

earlier, and other efforts to integrate 

behavior directly with space and move-

ment considerations. In addition, the 

reader is referred to Priami’s recent 

article in Communications68 for a differ-

ent perspective, more algorithmic, and 

thus somewhat complementary to ours.

Are we doing science or engineering? It 

is worth briefly addressing the connec-

tions between biological modeling and 

both science and engineering. Our dis-

cussion follows recent insights voiced 

by Luca Cardelli.

In science and engineering we find 

notions of “systems,” which are the 

objects of study, and “models,” which 

are formal or semiformal descriptions 

of those systems. The scientific method 

starts from a given natural system of in-

terest, and through a discovery process 

we gain knowledge about the system, 

until we are in a position to formulate 

a model that aims to characterize its 

important features. Scientists then at-

tempt to falsify that model, showing 

that it is inaccurate or incorrect, usu-
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ally by experimentation based on the 

model’s predictions. This process of fal-

sification is the defining characteristic 

of scientific models.65 If it is successful, 

we have discovered a property of the sys-

tem that is not captured correctly by the 

model, which may lead to an improved 

model and to a new falsification cycle. 

If it is unsuccessful, the model stands, 

which does not necessarily mean that it 

is correct: it simply means that it has not 

yet been proven wrong (and we should 

keep trying). A main feature of the scien-

tific method is that the “truth” is in the 

system, while the model is in principle 

never fully correct. 

This Popperian approach has been 

adopted as part of the recent idea of a 

Turing test aimed at biological model-

ling,40 where the model is deemed valid 

if it cannot be told apart from the actual 

biology. Here, of course, we do not advo-

cate comparison of the actual material, 

but just of the behavior (as is the case 

for Turing’s original test for machine-

generated intelligence). However, in 

contrast to Turing’s original test, falsify-

ing the model here is something that we 

actually strive for, since it is a wonderful 

way to encourage further research.

The engineering method starts by 

producing a model (for example, a 

blueprint, or a specification) of what 

we want to build, and proceeds by 

building it. We then aim to show that 

what we built is in fact an implementa-

tion of the model. Such a verification 

process compares the outcomes of the 

system to the predicted outcomes of the 

model, by testing and model checking, 

which is in many ways similar to scien-

tific experimentation. If this is unsuc-

cessful, it means that we have discov-

ered a property of the model that is not 

correctly implemented by the system, 

which may lead to an improved sys-

tem and a new verification cycle. If it 

is successful, the system stands, which 

does not mean that it is correct: it sim-

ply means that we have not yet found 

the next bug (and we should keep try-

ing, by making the model/specifica-

tion more complete). A main feature 

of the engineering method is that the 

“truth” is in the model, while the sys-

tem is in principle never fully correct. 

Thus, science and engineering work in 

opposite directions.

Incidentally, reverse engineering, 

the process of deriving an unknown 

Modeling a complete organism. We 

feel that it might be beneficial to use 

the ideas and methods discussed here 

to model a complete biological system. 

In fact, a “grand challenge” of modeling 

a full multicellular organism has been 

proposed,39 motivated by the belief that 

unprecedented depth of understanding 

life and its mechanisms will result from 

such a model. The dream is to model 

the organism as a reactive system, the 

backbone of which would be its multi-

tude of cells and their interactions, but 

to include the relevant inner behavioral 

aspects of the cell on the molecular and 

biochemical level as well. The 1000-

cell Caenorhabditis elegans nematode 

worm, better known simply as C. el-

egans, was suggested in Harel39 as a pos-

sible system to model. 

Obviously, this is less ambitious 

than modeling, say, the entire popula-

tion of a species, and more ambitious 

than modeling a mere cell. The choice 

of which system to address is a matter 

of taste, but our feeling is that an organ-

ism would be a good compromise that 

would yield enormous benefits, if it can 

indeed be done satisfactorily. The ques-

tion of when to stop, that is, when is the 

model deemed valid or complete, is a 

very interesting one, and we have pro-

posed that the Turing test mentioned 

previously could be a good first approxi-

mation: We are done when the model’s 

behavior cannot be distinguished from 

that of the real thing, in which case the 

model can be said to be a theory of the 

organism; see Harel.40

This whole organism project (WOP) 

would take many years of work, and 

would entail using a variety of methods 

and to interconnect them all smoothly 

into a full, true-to-all-known-facts, 

4-dimensional model of the creature. 

We would want the model to be easily 

modifiable and extendable as new facts 

are discovered, to have an animated, 

anatomically correct front-end, which 

would have to be tightly linked to a re-

active system model of the organism. 

The front-to-back linking could be done 

using the idea of reactive animation.24 

Most importantly, the model would en-

able realistic simulation of the organ-

ism’s development and behavior (this is 

the fourth dimension), and would lend 

itself to the kinds of analysis techniques 

discussed earlier. All of this could help 

uncover gaps, correct errors, suggest 

model from an existing system, fol-

lows very much the scientific method. 

Conversely, (direct) engineering could 

be also called reverse science. As an ex-

ample of the difference within a single 

discipline, consider systems biology, 

which is largely a scientific enterprise, 

as opposed to synthetic biology, which 

is largely an engineering enterprise. Of 

course, there are strong interactions 

between science and engineering, with 

one inspiring the other. Many engi-

neered systems are inspired by biologi-

cal systems that have been scientifically 

investigated (for example, genetic algo-

rithms, neural networks), and converse-

ly, as we have argued, modeling biologi-

cal systems can be inspired by modeling 

techniques in engineering.

Indeed, when considering complex 

systems, both in science and in engineer-

ing one is usually in a position where the 

model is so complex that it is in constant 

flux, and where new knowledge about 

the system is expanding so fast that it is 

difficult to tell what “the system” actu-

ally is. In these situations, what emerges 

is a joint iterative method, in which our 

understanding of the system continu-

ously improves, as a result of the mod-

eling being continuously refined, which 

is turn is done by discovering the dis-

crepancies between system and model; 

and all this in an endless cycle. This sit-

uation is actually quite common in soft-

ware engineering, possibly more than 

in any other branch of engineering, 

where the model (the specification) 

typically evolves while the system (the 

code) is being built. And this situation 

is also quite common in modern biol-

ogy, where scientific discovery is closely 

coupled with the construction of arti-

ficial systems, for example, by genetic 

engineering, so that not even nature is 

taken as a given. In such complex situa-

tions we must combine the conflicting 

views of systems and models into a wid-

er scientific-engineering method, which 

still works by two opposite cycles. Dis-

covery can still be coupled with falsifi-

cation (when starting from the system) 

and construction can still be coupled 

with verification (when starting from 

the model), but there is no longer a priv-

ileged starting point for the process. In 

this sense, computing and biology are 

already remarkably close to each other, 

in the kind of general methods they use 

to expand knowledge.
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new experiments, and help predict un-

observed phenomena. More generally, 

the expectation is that it would allow 

researchers to see and understand the 

organism, its development, and its be-

havior in ways not otherwise possible. 

Of course, this idea might be far too 

vast to be practical, but it seems worthy 

of consideration, if only as a very dis-

tant holy grail of sorts, toward which it 

would be beneficial to aspire.

Challenges for computer science. 

The research directions described 

in this article are intended, first and 

foremost, to yield beneficial results in 

biology and medicine, thus enhanc-

ing our ability to improve our lives. 

The central challenges they raise are 

also biological in nature, involving 

the need for biology to become a more 

formal, precise, and quantitative sci-

ence, and the need for acquiring and 

consolidating sufficient information 

about the biology of interest to model 

it as a reactive system. This is especial-

ly true of the WOP and the work that 

is necessary to lead up to it. However, 

most readers of this article are com-

puter scientists, who will be primarily 

interested in the new challenges this 

area of work raises for computer sci-

ence, and in the benefits it can yield 

“at home.” The two are linked, of 

course: once our field rises to the rele-

vant challenges, the new ideas that are 

found to work well in the modeling of 

complex biological systems will ben-

efit the development of human-made 

computerized software and systems 

as well. So, what are the main chal-

lenges for computer science? What 

new ideas are needed, and what kinds 

of extensions should be sought for the 

methods used in the modeling efforts 

mentioned earlier? 

Our feeling is that we need ways to 

build models that seamlessly combine 

qualitative and quantitative data, and 

which come with appropriately pow-

erful analysis methods. And we need 

to find ways to make our models more 

robust and less sensitive to faults and 

gaps in the available data. In other 

words, not only biology needs to be-

come a more quantitative science, also 

computer science needs to become 

more quantitative. Formal methods 

have excelled in structuring and han-

dling large, complex discrete systems, 

but we have neglected the incorpora-

tion of quantitative data. Similarly, 

we need to move our focus away from 

Boolean properties of systems, such as 

correctness (which really has no mean-

ing in biology), toward quantitative 

properties such as fitness, robustness, 

and resilience. We believe the study of 

such quantitative properties will greatly 

benefit computer science itself which, 

as an engineering discipline, ought to 

have ways of expressing and measur-

ing quantitative preferences between 

different implementations of a system, 

and estimating their reliability, cost, 

and performance. Preliminary ideas 

in this direction can be found in Cerny 

et al.13 Needless to say, by studying 

biological systems in this way, we may 

also learn a thing or two about building 

more adaptive and robust software and 

hardware systems.

Two major deficiencies of current 

reactive models that need to be re-

searched thoroughly are genericity and 

linkage. Genericity is related to inheri-

tance, but for temporal, reactive be-

havior. We would like to have a generic 

model of, say, a cell or a central intra-

cell substance, and be able to specialize 

it to specific types of cells or substanc-

es in a relatively painless way; see Amir-

Kroll et al.3 for a preliminary attempt at 

this. As far as linkage is concerned, we 

attach great importance to developing 

means for linking heterogeneous parts 

of biological models both horizontally 

and vertically, to yield compound mod-

els that can be seamlessly visualized, 

executed, and analyzed. Horizontal 

linkage refers to compositionality—the 

ability to compose side-by-side parts of 

the desired model into a whole, which 

is a particular challenge when the in-

dividual parts have different execution 

semantics,72 an issue that is central 

also to embedded-systems design.46 

Vertical linkage is related to abstrac-

tion, and is the ability to link higher 

levels of the model with lower levels, 

for example, models of the intracellu-

lar pathway and network information 

with models of the reactive intercel-

lular effects.52 Ideally, we hope to pro-

vide biologists with computational “ex-

perimentation environments,” where 

they can effortlessly play in a cycle of 

changing the model and looking at the 

resulting behaviors, all the time zoom-

ing in and out between different levels. 

We believe that such experimentation 

environments will go a long way toward 

efficiently identifying new, interesting 

hypotheses, testing them first “in-sili-

co,” and ultimately comparing them 

with nature.  

We hope this article will help in-

crease interest, within the computer 

science community, in the process of 

modeling and analyzing biological sys-

tems, viewing them as reactive systems 

of the most complex and challenging 

kind. The potential benefits of this, 

we feel, are difficult to overestimate, 

and we believe that concepts and ideas 

from software and systems engineer-

ing can form the basis of such work. 

Computer science is thus poised to 

play a role in the science of the 21st cen-

tury, which will be dominated by the 

life sciences, similar to the role played 

by mathematics in the science of the 

20th century, much of which was domi-

nated by the physical sciences.
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