
72 COMMUNICATIONS OF THE ACM | OCTOBER 2011 | VOL. 54 | NO. 10

review articles

Biology as
Reactivity

A living cell, we claim, is not only reac-

tive in nature, but is the ultimate exam-

ple of a reactive system, and so are col-

lections thereof. As explained in Cohen

and Harel 2007,16 a cell succeeds by be-

ing robust and resilient. It reacts to in-

puts and perturbations and continues

to survive thanks to its reactive dynam-

ics. The cell is a reactive system that ex-

presses a dynamic narrative, in which

the DNA code is one of many formative

inputs. Structural proteins, enzymes,

carbohydrates, lipids, hormones, and

other molecules also play key roles in

forming and informing the system.

Biological systems are also highly

adaptive, to both internal and external

changes; they use signals coming in

from receptors and sensors, as well as

emergent properties to fine-tune their

functioning. This adaptivity is another

facet of the reactivity of such systems.

We are well aware of the fact that

there are many aspects of biology that

are not reactive, or that reactivity is not

the best way to view them. These in-

clude, for example, structural aspects

of chemicals. While we point to the im-

portance of combining other model-

ing methods with reactive models, the

main thrust of this article is to explain

the connection of biology with reactive

systems, and the benefits that can be

gained from adopting such a view.

Viewing biology as reactivity is not

just an illustrative analogy, but has

BIOLOGY IS NOT an exact science. Biological systems are
messy and noisy, and our understanding of many
biological scenarios remains extremely vague and
incomplete. We cannot assign precise rules to the way
cells behave and interact with one another, and we often
cannot quantify the exact amounts of molecules, such
as genes and proteins, in the resolution of a single cell.
To make matters worse (so to speak), the combinatorial
complexity observed in biological networks (for
example, metabolic and signaling pathways) is
staggering, which renders the comprehension and
analysis of such systems a major challenge.

One way to explain a certain class of complex
dynamical systems is to view them as highly
concurrent reactive systems.42 We argue that this
perspective is a natural fit for many biological
systems.40 A reactive system is characterized by the
way it responds to its inputs, as they arrive over time,
sequentially, or concurrently. The system’s behavior
and outputs are not just a function of the input values
but also of the order in which the inputs arrive, their
arrival times, speeds, and locations, and so forth.

 key insights

 Living cells, and collections thereof, can

be viewed as reactive systems.

 Reactive models emphasize important

aspects of biological systems, such

as executability, concurrency and

interaction, multiple scales, and

combinatorial complexity.

 Concepts, languages, and tools for the

description and analysis of reactive

systems can help in the process

of biological discovery, ultimately

by providing biologists with virtual

experimentation environments.

 Biological experimentation needs to

obtain quantitative data across different

levels, and reactive modeling needs

to focus on incorporating and linking

such data.

DOI:10.1145/2001269.2001289

Exploring the connection of biology with
reactive systems to better understand
living systems.

BY JASMIN FISHER, DAVID HAREL, AND THOMAS A. HENZINGER

OCTOBER 2011 | VOL. 54 | NO. 10 | COMMUNICATIONS OF THE ACM 73

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 J
.F

.
P

O
D

E
V

I
N

far-reaching consequences. Complex

reactive behavior is difficult to com-

prehend because it is neither predomi-

nantly computation-rich nor primarily

data-intensive, and does not yield well

to techniques based on algorithmics,

mathematics, and data management.

Rather, reactive systems “live” (if we

may use a pun in an article on biology)

in order to react.

Within computer science, several ap-

proaches have been offered for dealing

with reactivity. One of the richest and

most fruitful is that of finite automata,

or finite state machines, which are used

widely in many stages of the design of

hardware and software systems. It suf-

fices to observe the central role of state

machines in standards for the engineer-

ing of embedded and real-time software

and systems, such as the UML.

The original theory of finite autom-

ata, which was conceived of in order to

model hardware circuits, has brought

in its wake many extensions and vari-

ants, such as automata on infinite

words and trees; communicating, hi-

erarchical, and timed state machines;

Statecharts, and many others.1,75 In

addition, and related to these, special

logics, algebras, and calculi have been

devised for reactivity, first and foremost

among which are the varieties of tempo-

ral logic63 and process algebra.57 Scenar-

io-based languages have been used to

model biology too, such as live sequence

charts (LSC).19 All of this, in turn, has re-

sulted not only in numerous languages

and tools for specifying and program-

ming reactive behavior, but has also

given rise to powerful means for analy-

sis, such as model checking.15

However, when reviewing the great

efforts made in understanding and

building complex reactive systems, it

is not only the final results—languages

and tools—that stand out. An even more

important contribution can be found

in the fundamental insights, concepts,

and ways of thinking that have result-

ed from this research. Hand-in-hand

with the central notion of reactivity go

the discrete event-based execution and

simulation of dynamical systems, which

74 COMMUNICATIONS OF THE ACM | OCTOBER 2011 | VOL. 54 | NO. 10

review articles

distributed processes. In the case of the

fruit fly Drosophila Melanogaster, for ex-

ample, a 165 million base-pair program

defines approximately 13K functions

(proteins). Such programs deal with two

entangled and inseparable tasks: how

to evolve the machine (cell collection)

from a single cell, and how to run the

machine so that it eventually creates

other such machines. At all stages, both

the development and maintenance

are determined by which genes are ex-

pressed and which are not. Effectively,

in each cell, the expressed genes consti-

tute a local control state of the program,

which tells the cell which functions it

should execute and which are irrelevant

to its (current) role. The state is local

because it may be different in different

cells. At all points, communication with

other cells and reaction to the environ-

ment are the keys to determine what

happens next.

More precisely, the expressed genes

tell the cell and its machinery which

proteins to produce and how many of

them, and which proteins not to pro-

duce. Gene expression and the corre-

sponding protein production are the

basic mechanisms that govern all ac-

tions of a cell. Proteins serve various

purposes in the cell itself and also act as

mediators of communication between

cells. The protein concentration levels

within a cell can be considered to be

the local data state of the machine. As in

computer programming, the data state

helps prescribe the control flow, in that

the proteins determine which genes are

expressed and which are not.

Consider the first part of the pro-

gram, the one that tells the system how

to evolve. All multicellular organisms

evolve from a single cell. The main en-

gine driving this part is called differen-

tiation, which is the process by which

a cell that divides can give rise to what

will ultimately become very different

types of cells. There are mainly two

mechanisms for cell differentiation.

One, which is mostly active in the early

stages of development of the machine,

is by asymmetric segregation—asymmet-

ric accumulation of substances inside

a single cell that divides into two differ-

ent kinds of cells. The second, which be-

comes active after a few initial divisions

have taken place, is governed by com-

munication between cells, by morpho-

gen gradient or inductive signaling. The

requires a fundamental understanding

of parallelism, interaction, and causal-

ity; the design of complex systems from

building blocks, requiring means for

composition and encapsulation; and the

description of systems at different lev-

els of granularity, requiring methods for

abstraction and refinement.

Of course, many of these concepts

are not exclusive to reactive systems,

but they are critical for understanding

them, and they are among the main

ideas that render possible the reliable

development of truly complex reactiv-

ity. The claim made in this article is that

these ideas can be of great benefit in the

modeling and analysis of biology.

Reactivity and Biology

The process of modeling a piece of biol-

ogy is very different from that of mod-

eling a human-made system. The mo-

tivation is different, the goals are very

different, the people involved are also

different, the scales are different, and so

on. Still the underlying maxim of this ar-

ticle is that a fighter jet and a fruit fly, for

example, have many things in common,

and that there is much to be gained

from using ideas from engineering the

former to reverse-engineering the latter,

even though the fly is in a way far more

complex than the airplane.

Biological systems are ultimately mo-

lecular and cellular machines. Using a

fixed set of building blocks (molecules)

with some fixed functionalities (for ex-

ample, cleavage, connection, ioniza-

tion, phosphorylation), cells emerge,

and these multilevel machines then

utilize various combination techniques

to give rise to the life we see around

us. The “execution” of a biological sys-

tem is distributed to a level that is still

beyond comprehension. In a sense, a

biological system can be viewed, almost

on a philosophical level, as a collection

of cells (each containing a multitude

of molecules) that work in concert and

independently to achieve a mutual

goal without a central controller that

coordinates them all. The cells in such

a collection communicate and pass in-

formation to each other in order to help

achieve their mutual goal. In doing this,

they can also affect limited control on

their environment.

Let us now concentrate on the pro-

grams (to put it simply, the DNA mol-

ecules) that drive these enormously

former breaks the symmetry between a

group of equivalent cells, by one cell, ex-

ternal to the group, secreting a gradient

of molecules (for example, according to

distance from the secreting cell). The

latter involves direct communication

between cells, leading them to choose

different fates through the passage of

information. All communication is car-

ried out by transferring and manipu-

lating molecules. Such a process may

start, for example, by one cell sending

a molecule to a neighboring cell, which

will then trigger the creation of another

molecule in that neighboring cell (func-

tion activation).

The differentiation phase of cells

leads to a global system state where dif-

ferent cells have specialized to perform

certain roles that are necessary for the

mutual fulfillment of their common

goal (reproduction). The second part

of the program guides the system’s

behavior after having evolved from an

embryo, although major pieces are al-

ready in use throughout development

because the cells are alive and need to

maintain themselves during the pro-

cess. Initially, this part of the program

includes little coordination and com-

munication between cells. However, as

the cells specialize, they start to com-

municate and to manipulate their en-

vironment in order to perform basic

actions such as transferring nutrients

from one place to the other, transfer-

ring oxygen, and so on.

Perhaps the most magical part of

this program controls movement (actu-

ation). This process is slightly different,

as it involves a new form of communica-

tion through electrical signals that are

transmitted via nerve cells, and which

are then translated into local molecu-

lar mechanisms. But notice that when

a muscle contracts, the nerve reaches

only some of the muscle cells, and re-

sponsibility for the remainder of the sig-

nal’s effect must be taken over by other

mechanisms. In the reverse direction,

sensors such as eyes, ears, and taste

buds pass information from chemical

to electrical signals. Moreover, as men-

tioned earlier, the ability of biological

systems to adapt, as a result of incom-

ing signals, is also a highly relevant fea-

ture of their reactivity.

These are the kinds of processes that

we aim to understand better by creat-

ing executable reactive models. The ul-

review articles

OCTOBER 2011 | VOL. 54 | NO. 10 | COMMUNICATIONS OF THE ACM 75

The process of
modeling a piece
of biology is very
different from
that of modeling
a human-made
system. The
motivation is
different, the goals
are very different,
the people involved
are also different,
and the scales are
different.

timate challenge is to understand how

the behavior of an organism, or a part

thereof, emerges from the individual

behaviors of the cells in the collection.

We believe this is best done by focusing

on the reactivity of cells and the com-

munication between them.

Concurrency and interaction. The es-

sence of a reactive system is that differ-

ent parts of the system are simultane-

ously active (“alive”) and interact with

each other. In the case of computerized

systems, these can be software process-

es, hardware components, intelligent

agents, or the environment, and in the

case of biology they can be molecules

and molecular processes, cells, tissues,

bacteria, or again, the environment.

The operation that combines several

simultaneously active parts of a system

is called parallel composition because

the individual activities happen concur-

rently, in “parallel,” rather than sequen-

tially (one after the other). However, in

computer science there are several dif-

ferent interpretations of what “in par-

allel” actually means. At one extreme

is the clock synchronous interpretation,

where execution proceeds in lockstep

with a global clock, as a sequence of

discrete steps, with each building block

(component) of a system contributing

one action to each time unit. This hap-

pens, for example, in a clocked hard-

ware circuit built from individual logic

gates without combinational loops,

where each gate performs one opera-

tion per clock tick. At the other extreme

is the interleaved asynchronous interpre-

tation, where each action represents the

contribution of a single component, but

different actions, possibly carried out at

different time rates, may represent dif-

ferent components. This happens, for

example, in distributed software sys-

tems where the individual processes

proceed at independent speeds. Implic-

it to the asynchronous interpretation

is a scheduler, which chooses for each

step the component that will contribute

to that step. The scheduler is usually as-

sumed to be “fair,” the simplest inter-

pretation of which is that it cannot ne-

glect to choose any component forever.

Both kinds of concurrency occur in

biology, for example, in molecular pro-

cesses “running” in parallel, and tech-

niques for capturing both have found

their way into biological models.

Still, sticking religiously to these two

interpretations may be inadequate

for representing the parallelism that

arises in a large collection of indi-

vidual cells. Cells, for example, often

proceed “roughly” in lockstep, but not

completely so: some reactions may be

a bit faster here but a bit slower there,

but biological reactions do not pro-

ceed at completely independent rates

either. An example of how to adapt

useful computer science techniques

to biology can be found in the recent

compromise between these two called

bounded asynchrony.33 It allows the

components of a system (for example,

cells) to proceed independently while

bounding the differences in their rates.

Bounded asynchrony has been used to

accurately model some of the experi-

mental observations made about cer-

tain cell-cell interactions: it captures

the variability observed in cells that,

although equally potent, assume dis-

tinct fates, and thus can be used to

provide mechanistic explanations for

some phenomena that are observed

during cell-fate determination.

Bounded asynchrony is but one ex-

ample of how the modeling of biologi-

cal systems may give rise to new varia-

tions of reactive concepts. Once it is

agreed upon what the most suitable

interpretation of “parallel progress”

means for a collection of cells, the

communication between these cells

needs to be modeled. Again, there are

several standard alternatives, designed

for modeling hardware and software,

which may not be readily adequate for

our purposes. Traditionally, the inter-

action between concurrent processes

can happen through sharing state or

through sending messages. This dis-

tinction has led, for example, to thread-

based programming languages on one

hand, and actor-based languages on

the other. The transfer of molecules

between cells seems more akin to mes-

sage passing, but within that paradigm

itself there exists a wide spectrum of

design choices, ranging from rendez-

vous, which stops the execution of two

processes until simultaneously the

sending process is ready to send and

the receiving process is ready to receive

a message, to unbounded message

buffers, which retain sent messages

until they are received. Explicitly spa-

tial models11,69 are natural candidates

for capturing morphogen gradients.

76 COMMUNICATIONS OF THE ACM | OCTOBER 2011 | VOL. 54 | NO. 10

review articles

Verification can
become very
expensive, or
impossible, for
human-made
systems, and
biological systems
are often even
more complex.
The good news
is program and
system verification
has made
enormous strides
in recent years.

While a biological scenario may sug-

gest a particular execution and interac-

tion model, often it is a matter of style

and the availability of analysis tools that

determines the choice of model. If there

is any lesson to be learned from several

decades of research on concurrency

theory in computer science, it is that we

should not preach the use of any partic-

ular modeling languages or methods,

but the very notion of reactive model-

ing itself, and the freedom of choice it

offers through a wide variety of different

execution and interaction mechanisms.

Towers of abstraction. Every model is

necessarily a simplification of a physi-

cal situation. The modeler is interest-

ed in some, but not all, aspects of the

physical system. The key to modeling a

complex system is to design a simplifi-

cation, such that (1) the behavior of the

model is correlated to behavior of the

system and (2) the model is amenable

to mathematical or computational

analysis. Point (1) measures models

according to their precision; point (2),

according to their performance. Preci-

sion must be sacrificed in order to gain

performance, but this must be done in

a quantifiable way.

Computer science offers a very rich

and useful theory, called abstraction,

for trading off precision against per-

formance in a principled manner.17

The theory of abstraction is used in

computer science very beneficially in

work on verification and testing, and

is aimed at relating models of differ-

ent precision. It thus differs greatly

from theories of approximation, which

measure the precision of a model in

terms of an error bound on how much

a model may deviate from the system. A

theory of abstraction, by contrast, mea-

sures the precision of a model in terms

of which properties of the system are

preserved in the model—hence the rel-

evance to verification.

Consider, for example, the property

that event A is never followed by event B.

A model may preserve such a property,

despite possibly introducing a very large

error. On the other hand, even a model

that introduces only a very small error

may violate the property when the actu-

al system does not. The preservation of

properties can ensure that it suffices to

check a property on the model (simple)

in order to conclude that it holds for the

real system (complex). This principle

lies at the heart of all hardware and soft-

ware design. Modern computer systems

could not be built without several layers

of abstraction—the gate-level abstrac-

tion of the underlying physics (transis-

tors); the register level; the machine

instruction level; the programming lan-

guage; among others.

In analogy, a biological system may

be viewed at many different levels,

ranging from the molecular level to

the cell level to the level of organs and

entire organisms. The power of an ab-

straction layer derives from the fact that

all lower-level details may be omitted

from consideration. For example, when

designing a logical circuit from Bool-

ean gates, the designer does not need

to know about voltages and capacities.

Different layers may exhibit different

scales in space and time, even switch-

ing between continuous and discrete

scales (for example, continuous volt-

ages representing Boolean values). By

contrast, in biology, we have not (yet)

been able to identify building blocks

from which we can explain metabolic

pathways and cell behavior without re-

ferring to the underlying biochemical

(molecular) mechanisms.

In multiscale reactive systems, an ad-

ditional characteristic phenomenon is

the emergence of new high-level proper-

ties. An emergent property is a behavior

of the system that is not easily expressed

at a lower scale. Life, for example, is an

emergent property; none of the compo-

nent molecules of a cell are alive, only

a whole cell lives. The cell as a whole

emerges only when we zoom out, so to

speak, reaching the scale at which it

functions as an object with its own inter-

actions with other cells and molecules.

Thus, interactions at one scale create

new objects at a higher scale, which

is the essence of emergence. Quoting

from Cohen and Harel,16 “A major goal

of systems biology is to learn how the

concurrent reactions and interactions

of the lower-scale components of a cell,

organism, or society generate emergent

properties visible at higher scales and

higher layers of reality.“

All this leads to the need to be able

to observe and manipulate biological

systems on multiple scales. Abstraction

can work wonders here, and if carried

out multiple times we get a tower of ab-

stractions. A unique feature of software

that helps in handling multiple scales

review articles

OCTOBER 2011 | VOL. 54 | NO. 10 | COMMUNICATIONS OF THE ACM 77

is inheritance, where an existing behav-

ior is taken and augmented with a few

modifications. This encapsulates the

previous behavior and overrides or ex-

tends parts of it. One of the major chal-

lenges in biological modeling is to find

similar means to encapsulate biological

and biochemical complexity that will

allow us to use abstraction beneficially

to bridge and relate different scales in

order to manage the immense complex-

ity observed in living systems. Once we

have such multiscale models we will

need to search for the right computa-

tional frameworks that will allow us to

zoom back and forth between lower-

scale data and higher-scale behavior,

while experimenting in-silico. This, we

feel, is an ideal way to study emergence

computationally. A modest attempt in

this direction can be found in the Bio-

charts approach of Kugler et al.52

Noise and choice. Stochasticity has

received much attention in systems bi-

ology,4,55,56 as numerous experimental

studies have reported the presence of

probabilistic mechanisms in cellular

processes.26,29,61 The investigation of sto-

chastic properties of biological systems

requires that computational models

take into consideration the inherent

randomness of biochemical reactions.

Stochastic kinetic approaches give rise

to dynamics that differ significantly

from those predicted by deterministic

models because a system may follow

very different scenarios with non-zero

but varying likelihoods.

The dogma for this kind of model-

ing assumes that a molecular mixture

is well stirred and has fixed volume and

temperature (though PDEs can be used

to model variations in these too). The

state of a network of biochemical reac-

tions at any point in time is then given

by the population vector of the involved

chemical species (such as, molecules).

The temporal evolution of the system

can be described by a continuous-

time Markov process,37 which is usu-

ally represented as a system of ordinary

differential equations (ODEs) called

the chemical master equation (CME).

While individual system parameters,

such as the mean of the state distribu-

tion changing in time, can be studied

using deterministic differential equa-

tions, this is inadequate for uncovering

branching, switching, or oscillatory

behavior, such as cell fate determina-

tion (the mean between two alternative

cell fates is hardly meaningful). Such

phenomena require a fully stochastic

analysis.

However, building a stochastic

model that would mimic sufficiently ac-

curately the stochastic behavior of the

actual biological system is extremely

difficult when sufficiently accurate rates

of change are not known, as is usually

the case. In addition, we have no satis-

factory theory for abstracting stochastic

models. This becomes a central issue

when we wish to analyze the higher-lev-

el tiers of a biological model—say, those

at the intercellular level—by hiding the

underlying molecular reactions. In such

situations, a nondeterministic model-

ing of the possible behavioral alterna-

tives of a system may be justified. For

example, for determining possible cell

fates, it has proved fruitful to quantize

concentration levels of molecules into

a few discrete ranges (for example, low,

medium, high) with nondeterministic

transitions between the possible rang-

es.32,34 A nondeterministic model can

only provide potential outcomes, with-

out the corresponding probabilities,

but it does provide hypotheses that can

be confirmed or refuted experimentally.

In computer science, many formal-

isms have been designed—or existing

ones have been extended—to support

nondeterministic transitions for mod-

eling alternative choices; for example,

Petri nets, various kinds of interacting

state machines, live sequence charts

(for example, Peterson,62 Harel,38 Harel

and Gery,41 Damm and Harel19). Many

of these formalisms have been used to

model biology as well.6,23,25,32,49,73 The

question of how such discrete, non-

deterministic models relate to the un-

derlying continuous, stochastic mech-

anisms, and which properties they

preserve, remains an interesting topic

of investigation. Hybrid (mixed discrete-

continuous) abstractions can also play a

central role to bridge the gap.35,45,74 To

find an optimal trade-off between pre-

cision and performance, it may be best

to treat some system parameters as vari-

ables that change continuously in time,

while others can be safely represented

as Boolean switches.

One main advantage of nondeter-

ministic over stochastic models, and

of discrete over continuous models,

is the former more efficiently support

a broad class of techniques, generally

subsumed under the title of verification,

which we discuss here.

From simulation to verification.

Computer science offers a rich spec-

trum of means for assessing the dy-

namic properties of reactive models,

ranging from simulation to verifica-

tion. While simulation generates one

behavior of a model at a time, verifica-

tion looks systematically at the set of

all possible behaviors.

Simulation has a long tradition in

computational science, based mostly

on numerical methods for solving equa-

tional models of a system. For exam-

ple, from the CME for a system of (bio)

chemical reactions, stochastic simula-

tion can be used to generate trajecto-

ries of the underlying Markov process.36

Simulation methods are in widespread

use because they are easy to implement,

and each simulation run can be viewed

as a single “in silico’’ experiment, thus

fitting well into the methodology of ex-

perimental science. However, if we are

interested in properties of the set of all

runs, such as estimates for probability

distributions on the system state at a

given point in time, then the number of

trajectories required for statistical ac-

curacy is very large.21 This is because in

order to halve the confidence interval of

an estimate, four times more trajecto-

ries have to be generated. Consequent-

ly, even when computationally feasible,

stochastic simulation may often result

in a very low level of confidence in the

accuracy of the results.

More information can be obtained,

for example, by a reachability analysis

of the model, which explores the state

space from an initial state or state dis-

tribution in a breadth-first, rather than

depth-first, manner. The distinction

between simulation and reachabil-

ity analysis is akin to the distinction

between program testing and program

verification. A reachability analysis can

provide insights into biochemical mod-

els,22 but many techniques that have

been developed for coping with large

and unbounded state spaces in the

reachability analysis of nondeterminis-

tic models—such as model abstraction,

model decomposition, symbolic data

structures, symmetry, and partial-or-

der reduction—have yet to be adapted

satisfactorily to stochastic models.

It goes without saying that one must

78 COMMUNICATIONS OF THE ACM | OCTOBER 2011 | VOL. 54 | NO. 10

review articles

a compact syntactic description of a

dynamical system. The actual number

of states and transitions of a biologi-

cal system—its semantics—is usually

very large or unbounded. Scientists

and mathematicians often make little

distinction between the semantics

of a system, say, as a Markov process,

and its description, say, as a transition

probability matrix. By not differentiat-

ing sufficiently between the two, a po-

tential critical advantage of syntax is

lost; namely, that the description of a

system can be much smaller than the

system itself. For example, the rule-

based description of a (bio)chemical

system can be exponentially smaller

than the matrix description of the same

system; in fact, even many infinite state

systems have finite descriptions. The

syntax of a language can offer scaling

operations, such as parallel composi-

tion and encapsulation, which greatly

magnify this effect.

Syntax matters also in other ways.

For one, the right choice of syntax

can substantially improve the perfor-

mance of analysis methods. Certain

crucial optimizations of reachability

analysis, such as on-the-fly state-space

generation and partial-order reduc-

tion (things that can be extremely

helpful when analyzing a piece of bi-

ology), are only available when the in-

dividual transitions of the underlying

system are described compactly, by a

syntactic expression (a rule, a process

algebraic term, or a state machine)

rather than a matrix equation. Fur-

thermore, an inductively defined syn-

tax, which features operators on basic

expressions for constructing more

complex expressions, offers the pos-

sibility of defining a structured opera-

tional semantics. In such semantics,

the execution engine is defined com-

positionally; that is, it is put together

from small primitives by using the

syntactic operators of the language.

Finally, a visual syntax makes model-

ing appeal to a larger group of people,

such as biologists, and reactive mod-

els offer natural opportunities for vi-

sual representations.

State of the Art and Challenges

A large number of efforts to construct

and analyze complete reactive models

of various biological systems are under

way. For lack of space, we can point only

not forget the main difference between

simulation and verification: the worst-

case computational intractability

of the latter. In general, as is so well-

known, verification can become very

expensive, or impossible, for human-

made systems, and biological systems

are often even more complex. The good

news is that program and system veri-

fication has made enormous strides

in recent years: the worst-case perfor-

mance can sometimes be alleviated by

clever and powerful means, though ob-

viously this is outside the scope of the

present article. It is these advances that

we hope to be able to utilize in model-

ing and verifying biology, too.

As discussed earlier, higher preci-

sion in the model generally means

lower performance in the analysis. The

modeler therefore aims at the lowest

possible precision that preserves the

property of interest. Reachability anal-

yses offer the possibility of dynami-

cally changing the level of abstraction

during the analysis.14 In this way, the

precision of a model can be refined

on demand, precisely in those areas

of the state space where more detail is

required for determining the truth or

falsehood of a given property. Reach-

ability analysis can also be equipped

with rich languages for defining and

checking temporal properties of sys-

tems, such as temporal logics—a re-

search direction known as model check-

ing; for example, see Calzone et al.,10

which describes the BIOCHEM tool

used in the arena of systems biology.

Reactive models come with an oper-

ational semantics; that is, every model

defines a virtual machine with instruc-

tions for executing the model step by

step. This is true not only of textual

modeling and programming languag-

es, but also of visual formalisms, such

as Petri nets62 and Statecharts.38 This is

in contrast with most equational and

denotational models, where generat-

ing trajectories is a mathematical task

that requires algorithmic and numeric

insights. This benefit of reactive mod-

els has led to the term “executable biol-

ogy.’’32 An operational semantics is not

only enormously helpful in simulation

and reachability analysis, but also of-

fers the possibility of interactive execu-

tion—or “playing in silico.’’39

A second important attribute of

models of reactivity is that they offer

to a few of these efforts. We arrange

them in a way that proceeds from more

detailed, molecular-level models to

more abstract, cell-level models. Alas,

establishing formal relationships be-

tween the various levels, that would en-

able seamless combinations of execut-

able models, still remains one of the key

challenges in this area (see Kugler52).

Individual molecules can be mod-

eled and combined as processes within

a process algebra. Such process-calculus

models stress the importance of con-

currency and interaction between mol-

ecules as the main driver behind the

dynamics of biological systems. Initial

work suggested the use of the pi-calcu-

lus59 as a modeling language for mo-

lecular interactions,70 using it to study

the cancer-related signal transduction

pathway RTK-MAPK and to build the

BioSPI simulation environment. The

language was later extended to the sto-

chastic pi-calculus66 in order to model

a gene-regulatory positive feedback

loop.68 These initial successes have led

to the design of several bio-inspired

and location-aware process calculi,

such as BIO-PEPA, the ambient cal-

culus,69 and the brane calculus.11 The

methodology was applied, among oth-

ers, to transcription factor activation

and the glycolysis pathway,18 RKIP inhi-

bition of ERK,9 the FGF pathway,51 and

EGFR signaling.76 These approaches

are very beneficial on the level of path-

ways and molecular interactions, but

lack natural power of expression when

dealing with larger biological systems,

say, on the intercellular level.

On a higher level, instead of repre-

senting individual molecules as compu-

tational objects, we may refer to quan-

tities of molecules through variables

in a programming language. A single

reaction may increment or decrement

such variables. Inspired by guarded

commands and reactive modules,2 lan-

guages in this style were used for build-

ing qualitative models7,32 and discrete-

time Markov processes.50 They were

later extended to continuous time, for

describing biochemical reaction net-

works. Such transition-class models may

use general arithmetic expressions for

specifying reaction rates.45 These mod-

els can be executed (interpreted) direct-

ly, without the need for constructing a

separate simulation engine. They can

compactly represent unbounded quan-

review articles

OCTOBER 2011 | VOL. 54 | NO. 10 | COMMUNICATIONS OF THE ACM 79

The research
directions described
in this article are
intended, first
and foremost, to
yield beneficial
results in biology
and medicine, thus
enhancing our
ability to improve
our lives.

tities of molecules. It is their execut-

ability and compactness that allows the

stochastic analysis and model checking

of complex molecular systems, often in-

volving many different molecule types

and very large molecule quantities,

such as a genetic toggle switch. Further

extensions lead to hybrid systems, han-

dling particularly large quantities in a

continuous domain.36,45

Another class of languages for mod-

eling biology is based on term-rewrite

systems.24 Rule-based models can of-

fer an even more compact syntax than

guarded-command definitions of mo-

lecular reactions, by defining the reac-

tive behavior of molecules in terms of

what happens at individual binding

sites within molecules. By formulat-

ing rewrite rules whose patterns are

matched against fragments of mole-

cules, one can avoid referring explicitly

to the state of an entire molecule, and

instead specify only the state of the af-

fected sites before and after the appli-

cation of the rule. Such rules, which

may simultaneously apply to many

different sites within a single complex

molecule, can lead to a further reduc-

tion in the size of the description of a

model. Rule-based modeling has been

applied to an increasing number of

systems such as signal transduction in

the immune system,29,54,55 bacterial mi-

gration,6,61 cancer-related signaling,9,21

mechanisms by which various proteins

regulate cell signaling through their as-

sociation with membrane proteins,44

and more.48 Ideas from programming

languages, such as abstract interpre-

tation, have influenced the design of

more recent rule-based languages for

biological applications.31

At the highest, non-molecular level,

state-machine based models provide a vi-

sual approach for defining the behavior

of complex objects, such as collections

of cells, over time. Interaction mecha-

nisms between state machines can

specify causal relationships between

events and state changes in different

objects. A hierarchical structure allows

one to view a system at different levels

of detail (for example, whole organism,

tissues, cells). For example, the lan-

guage of Statecharts supports interact-

ing and hierarchical state-based model-

ing,39 based on a visual syntax, and has

been used to model immune-cell acti-

vation and differentiation;25,49 cellular

decision-making processes during ani-

mal development;32,35,50,72 as well as or-

gan formation.74 State-machine models

are particularly suitable for describing

mechanistic models of multicellular

systems that are well-understood quali-

tatively. Such models do not require

detailed quantitative data relating to

the number of molecules and reaction

rates, and indeed are inadequate when

it comes to modeling pathways and

molecular interactions. The possibility

of hierarchical structuring is particu-

larly useful in cases where behavior is

distributed over many cells and where

multiple copies of the same process

are executed in parallel. These mod-

els also allow the application of strong

analysis tools such as model checking.

Combined methods seem very promis-

ing when it comes to systems for which

one wants to model intercellular as well

as intermolecular behavior, such as the

Biocharts approach that is sketched in

Kugler, Larjo and Harel.53

There are many additional efforts in

modeling biological systems that have

not found their way into this article,

mainly because they are less along the

reactive system lines presented here.

Some of these are particularly exciting

and insightful. They include abstract

chemical machines,13 work on the

brane and ambient calculi mentioned

earlier, and other efforts to integrate

behavior directly with space and move-

ment considerations. In addition, the

reader is referred to Priami’s recent

article in Communications68 for a differ-

ent perspective, more algorithmic, and

thus somewhat complementary to ours.

Are we doing science or engineering? It

is worth briefly addressing the connec-

tions between biological modeling and

both science and engineering. Our dis-

cussion follows recent insights voiced

by Luca Cardelli.

In science and engineering we find

notions of “systems,” which are the

objects of study, and “models,” which

are formal or semiformal descriptions

of those systems. The scientific method

starts from a given natural system of in-

terest, and through a discovery process

we gain knowledge about the system,

until we are in a position to formulate

a model that aims to characterize its

important features. Scientists then at-

tempt to falsify that model, showing

that it is inaccurate or incorrect, usu-

80 COMMUNICATIONS OF THE ACM | OCTOBER 2011 | VOL. 54 | NO. 10

review articles

ally by experimentation based on the

model’s predictions. This process of fal-

sification is the defining characteristic

of scientific models.65 If it is successful,

we have discovered a property of the sys-

tem that is not captured correctly by the

model, which may lead to an improved

model and to a new falsification cycle.

If it is unsuccessful, the model stands,

which does not necessarily mean that it

is correct: it simply means that it has not

yet been proven wrong (and we should

keep trying). A main feature of the scien-

tific method is that the “truth” is in the

system, while the model is in principle

never fully correct.

This Popperian approach has been

adopted as part of the recent idea of a

Turing test aimed at biological model-

ling,40 where the model is deemed valid

if it cannot be told apart from the actual

biology. Here, of course, we do not advo-

cate comparison of the actual material,

but just of the behavior (as is the case

for Turing’s original test for machine-

generated intelligence). However, in

contrast to Turing’s original test, falsify-

ing the model here is something that we

actually strive for, since it is a wonderful

way to encourage further research.

The engineering method starts by

producing a model (for example, a

blueprint, or a specification) of what

we want to build, and proceeds by

building it. We then aim to show that

what we built is in fact an implementa-

tion of the model. Such a verification

process compares the outcomes of the

system to the predicted outcomes of the

model, by testing and model checking,

which is in many ways similar to scien-

tific experimentation. If this is unsuc-

cessful, it means that we have discov-

ered a property of the model that is not

correctly implemented by the system,

which may lead to an improved sys-

tem and a new verification cycle. If it

is successful, the system stands, which

does not mean that it is correct: it sim-

ply means that we have not yet found

the next bug (and we should keep try-

ing, by making the model/specifica-

tion more complete). A main feature

of the engineering method is that the

“truth” is in the model, while the sys-

tem is in principle never fully correct.

Thus, science and engineering work in

opposite directions.

Incidentally, reverse engineering,

the process of deriving an unknown

Modeling a complete organism. We

feel that it might be beneficial to use

the ideas and methods discussed here

to model a complete biological system.

In fact, a “grand challenge” of modeling

a full multicellular organism has been

proposed,39 motivated by the belief that

unprecedented depth of understanding

life and its mechanisms will result from

such a model. The dream is to model

the organism as a reactive system, the

backbone of which would be its multi-

tude of cells and their interactions, but

to include the relevant inner behavioral

aspects of the cell on the molecular and

biochemical level as well. The 1000-

cell Caenorhabditis elegans nematode

worm, better known simply as C. el-

egans, was suggested in Harel39 as a pos-

sible system to model.

Obviously, this is less ambitious

than modeling, say, the entire popula-

tion of a species, and more ambitious

than modeling a mere cell. The choice

of which system to address is a matter

of taste, but our feeling is that an organ-

ism would be a good compromise that

would yield enormous benefits, if it can

indeed be done satisfactorily. The ques-

tion of when to stop, that is, when is the

model deemed valid or complete, is a

very interesting one, and we have pro-

posed that the Turing test mentioned

previously could be a good first approxi-

mation: We are done when the model’s

behavior cannot be distinguished from

that of the real thing, in which case the

model can be said to be a theory of the

organism; see Harel.40

This whole organism project (WOP)

would take many years of work, and

would entail using a variety of methods

and to interconnect them all smoothly

into a full, true-to-all-known-facts,

4-dimensional model of the creature.

We would want the model to be easily

modifiable and extendable as new facts

are discovered, to have an animated,

anatomically correct front-end, which

would have to be tightly linked to a re-

active system model of the organism.

The front-to-back linking could be done

using the idea of reactive animation.24

Most importantly, the model would en-

able realistic simulation of the organ-

ism’s development and behavior (this is

the fourth dimension), and would lend

itself to the kinds of analysis techniques

discussed earlier. All of this could help

uncover gaps, correct errors, suggest

model from an existing system, fol-

lows very much the scientific method.

Conversely, (direct) engineering could

be also called reverse science. As an ex-

ample of the difference within a single

discipline, consider systems biology,

which is largely a scientific enterprise,

as opposed to synthetic biology, which

is largely an engineering enterprise. Of

course, there are strong interactions

between science and engineering, with

one inspiring the other. Many engi-

neered systems are inspired by biologi-

cal systems that have been scientifically

investigated (for example, genetic algo-

rithms, neural networks), and converse-

ly, as we have argued, modeling biologi-

cal systems can be inspired by modeling

techniques in engineering.

Indeed, when considering complex

systems, both in science and in engineer-

ing one is usually in a position where the

model is so complex that it is in constant

flux, and where new knowledge about

the system is expanding so fast that it is

difficult to tell what “the system” actu-

ally is. In these situations, what emerges

is a joint iterative method, in which our

understanding of the system continu-

ously improves, as a result of the mod-

eling being continuously refined, which

is turn is done by discovering the dis-

crepancies between system and model;

and all this in an endless cycle. This sit-

uation is actually quite common in soft-

ware engineering, possibly more than

in any other branch of engineering,

where the model (the specification)

typically evolves while the system (the

code) is being built. And this situation

is also quite common in modern biol-

ogy, where scientific discovery is closely

coupled with the construction of arti-

ficial systems, for example, by genetic

engineering, so that not even nature is

taken as a given. In such complex situa-

tions we must combine the conflicting

views of systems and models into a wid-

er scientific-engineering method, which

still works by two opposite cycles. Dis-

covery can still be coupled with falsifi-

cation (when starting from the system)

and construction can still be coupled

with verification (when starting from

the model), but there is no longer a priv-

ileged starting point for the process. In

this sense, computing and biology are

already remarkably close to each other,

in the kind of general methods they use

to expand knowledge.

review articles

OCTOBER 2011 | VOL. 54 | NO. 10 | COMMUNICATIONS OF THE ACM 81

new experiments, and help predict un-

observed phenomena. More generally,

the expectation is that it would allow

researchers to see and understand the

organism, its development, and its be-

havior in ways not otherwise possible.

Of course, this idea might be far too

vast to be practical, but it seems worthy

of consideration, if only as a very dis-

tant holy grail of sorts, toward which it

would be beneficial to aspire.

Challenges for computer science.

The research directions described

in this article are intended, first and

foremost, to yield beneficial results in

biology and medicine, thus enhanc-

ing our ability to improve our lives.

The central challenges they raise are

also biological in nature, involving

the need for biology to become a more

formal, precise, and quantitative sci-

ence, and the need for acquiring and

consolidating sufficient information

about the biology of interest to model

it as a reactive system. This is especial-

ly true of the WOP and the work that

is necessary to lead up to it. However,

most readers of this article are com-

puter scientists, who will be primarily

interested in the new challenges this

area of work raises for computer sci-

ence, and in the benefits it can yield

“at home.” The two are linked, of

course: once our field rises to the rele-

vant challenges, the new ideas that are

found to work well in the modeling of

complex biological systems will ben-

efit the development of human-made

computerized software and systems

as well. So, what are the main chal-

lenges for computer science? What

new ideas are needed, and what kinds

of extensions should be sought for the

methods used in the modeling efforts

mentioned earlier?

Our feeling is that we need ways to

build models that seamlessly combine

qualitative and quantitative data, and

which come with appropriately pow-

erful analysis methods. And we need

to find ways to make our models more

robust and less sensitive to faults and

gaps in the available data. In other

words, not only biology needs to be-

come a more quantitative science, also

computer science needs to become

more quantitative. Formal methods

have excelled in structuring and han-

dling large, complex discrete systems,

but we have neglected the incorpora-

tion of quantitative data. Similarly,

we need to move our focus away from

Boolean properties of systems, such as

correctness (which really has no mean-

ing in biology), toward quantitative

properties such as fitness, robustness,

and resilience. We believe the study of

such quantitative properties will greatly

benefit computer science itself which,

as an engineering discipline, ought to

have ways of expressing and measur-

ing quantitative preferences between

different implementations of a system,

and estimating their reliability, cost,

and performance. Preliminary ideas

in this direction can be found in Cerny

et al.13 Needless to say, by studying

biological systems in this way, we may

also learn a thing or two about building

more adaptive and robust software and

hardware systems.

Two major deficiencies of current

reactive models that need to be re-

searched thoroughly are genericity and

linkage. Genericity is related to inheri-

tance, but for temporal, reactive be-

havior. We would like to have a generic

model of, say, a cell or a central intra-

cell substance, and be able to specialize

it to specific types of cells or substanc-

es in a relatively painless way; see Amir-

Kroll et al.3 for a preliminary attempt at

this. As far as linkage is concerned, we

attach great importance to developing

means for linking heterogeneous parts

of biological models both horizontally

and vertically, to yield compound mod-

els that can be seamlessly visualized,

executed, and analyzed. Horizontal

linkage refers to compositionality—the

ability to compose side-by-side parts of

the desired model into a whole, which

is a particular challenge when the in-

dividual parts have different execution

semantics,72 an issue that is central

also to embedded-systems design.46

Vertical linkage is related to abstrac-

tion, and is the ability to link higher

levels of the model with lower levels,

for example, models of the intracellu-

lar pathway and network information

with models of the reactive intercel-

lular effects.52 Ideally, we hope to pro-

vide biologists with computational “ex-

perimentation environments,” where

they can effortlessly play in a cycle of

changing the model and looking at the

resulting behaviors, all the time zoom-

ing in and out between different levels.

We believe that such experimentation

environments will go a long way toward

efficiently identifying new, interesting

hypotheses, testing them first “in-sili-

co,” and ultimately comparing them

with nature.

We hope this article will help in-

crease interest, within the computer

science community, in the process of

modeling and analyzing biological sys-

tems, viewing them as reactive systems

of the most complex and challenging

kind. The potential benefits of this,

we feel, are difficult to overestimate,

and we believe that concepts and ideas

from software and systems engineer-

ing can form the basis of such work.

Computer science is thus poised to

play a role in the science of the 21st cen-

tury, which will be dominated by the

life sciences, similar to the role played

by mathematics in the science of the

20th century, much of which was domi-

nated by the physical sciences.

Acknowledgments

We would like to thank our past col-

laborators on these topics, for the

wisdom and ideas they have contrib-

uted to us over the years. They include

Luca Cardelli, Yaron Cohen, Sol Efro-

ni, Walter Fontana, Alex Hajnal, Jane

Hubbard, Na’aman Kam, Maria Ma-

teescu, Nir Piterman, Yaki Setty, Mi-

chael Stern, Verena Wolf, and the late

Amir Pnueli.

This research was supported in part

by the ERC Advanced Grant LIBPR

(Liberating Programming) awarded to

DH, by the John von Neumann Minerva

Center for the Development of Reac-

tive Systems at the Weizmann Institute

of Science, and by the ERC Advanced

Grant QUAREM (Quantitative Reactive

Modeling), awarded to TAH.

References

1. Alur, R. and Dill, D. Automata for modeling real-time
systems. In Proc. Int. Conf. Automata, Languages,
and Programming 17 (1990), 322−335.

2. Alur, R. and Henzinger, T.A. Reactive modules.
Formal Methods in System Design 15, 7 (1999), 48.

3. Amir-Kroll, H., Sadot, A., Cohen, I.R. and Harel, D.
GemCell: A generic platform for modeling
multi-cellular biological systems. Theoret. Comput.
Sci. 391, 3 (2008), 276−290.

4. Arkin, A., Ross, J. and McAdams, H.H. Stochastic
kinetic analysis of developmental pathway
bifurcation in phage lambda-infected escherichia coli
cells. Genetics 149 (1998), 1633−1648.

5. Baker, M.D., Wolanin, P.M. and Stock, J.B. Signal
transduction in bacterial chemotaxis. Bioessays 28
(2006), 9–22.

6. Barjis, J. and Barjis, I. Formalization of the protein
production by means of petri nets. Proc. Int. Conf. on
Information Intelligence Systems (1999), IEEE.

7. Batt, G., Ropers, D., de Jong, H., Geiselman, J.,
Mateescu, R., Page, M., and Schneider, D. Validation

82 COMMUNICATIONS OF THE ACM | OCTOBER 2011 | VOL. 54 | NO. 10

review articles

Springer, 2008.
34. Fisher, J., Piterman, N., Hubbard, E.J., Stern, M.J. and

Harel, D. Computational insights into Caenorhabditis
elegans vulval development. In Proc. Natl. Acad. Sci.
USA 102, (2005), 1951–1956.

35. Ghosh, R. and Tomlin, C.J. Symbolic reachable set
computation of piecewise affine hybrid automata and
its application to biological modeling: Delta-Notch
protein signaling. IEE Transactions on Systems
Biology 1, 1, (2004), 170−183.

36. Gillespie, D.T. Exact stochastic simulation of coupled
chemical reactions. J. of Physical Chemistry 81,
(1977), 2340−2361.

37. Gillespie, D.T. Markov Processes. 1992: Academic
Press.

38. Harel, D. Statecharts: A visual formalism for complex
systems. Sci. Comput. Programming 8, (1987),
231−274.

39. Harel, D. A grand challenge for computing: Full
reactive modeling of a multi-cellular animal. Bulletin
of the EATCS 81, (2003), 226-235. (Reprinted in
Current Trends in Theoretical Computer Science:
The Challenge of the New Century, Algorithms and
Complexity, Vol I. G. Paun et al. eds. World Scientific,
(2004), 559−568.

40. Harel, D. A Turing-like test for biological modelling.
Nature Biotechnology 23, (2005), 495−496.

41. Harel, D. and Gery, E. Executable object modeling with
statecharts. Computer 30, 7, (July 1997). IEEE Press,
31−42.

42. Harel, D. and Pnueli, A. On the development of
reactive systems. In Logics and Models of Concurrent
Systems. K.R. Apt, ed. NATO ASI Series, Vol. F-13,
Springer-Verlag, NY, (1985), 477−498.

43. Haugh, J.M., Schneider, I.C. and Lewis, J.M. On the
cross-regulation of protein tyrosine phosphatases and
receptor tyrosine kinases in intracellular signaling. J.
Theor. Biol. 230, (2004), 119–132.

44. Henzinger, T.A., Jobstmann, B. and Wolf, V.
Formalisms for specifying Markovian population
models. In Proc. 3rd Int. Workshop on Reachability
Problems. LNCS 5797, Springer, 2009.

45. Henzinger, T.A., Mateescu, M., Mikeev, L. and Wolf,
V. Hybrid numerical solution of the chemical master
equation. In Proc. 8th Int. Conf. on Computational
Methods in Systems Biology. Lecture Notes in
Bioinformatics, Springer, 2010.

46. Henzinger, T.A., and Sifakis, J. The discipline of
embedded systems design. IEEE Computer 40, 10,
(2007), 36−44.

47. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G.,
Hucka, M., and Fontana, W. Rules for modelling signal
transduction systems. Science STKE 2006/344/re6.

48. Kam, N., Harel, D. and Cohen, I.R. Visual Languages
and Formal Methods. (Stressa, Italy, Sept. 5−7, 2001).
IEEE, 2001.

49. Kam, N., Kugler, H., Marelly, R., Appleby, L., Fisher, J.,
Pnueli, A., Harel, D., Stern, M.J. and Hubbard, E.J.A.
Scenario-based approach to modeling development:
A prototype model of C. Elegans vulval cell fate
specification. Developmental Biology 323 (2008), 1−5.

50. Kwiatkowska, M., Norman, G. and Parker, D. PRISM:
Probabilistic symbolic model checker. In Proc. TOOLS
2002. T. Field et al. eds. LNCS 2324, (2002), 200−204.

51. Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn,
O., Heath, J., and Gaffney, E. Simulation and
verification for computational modeling of signalling
pathways. In Proc. Winter Simulation Conference
(Monterey, CA, Dec. 2–6, 2006). IEEE, 2006,
1666–1674 .

52. Kugler, H., Larjo, A. and Harel, D. Biocharts: A visual
formalism for complex biological systems. J. Royal
Society Interface, 2010.

53. Lee, K.H., Dinner, A.R., Tu, C., Campi, G., Raychaudhuri,
S., Varma, R., Sims, T.N., Burack, W.R., Wu, H., Wang, J.,
Kanagawa, O., Markiewicz, M., Allen, P.M., Dustin, M.L.,
Chakraborty, A.K. and Shaw, A.S. The immunological
synapse balances T cell receptor signaling and
degradation. Science 302, (2003), 1218–1222.

54. Li, Q.J., Dinner, A.R., Qi, S., Irvine, D.J., Huppa, J.B.,
Davis, M.M., and Chakraborty, A.K. CD4 enhances
T cell sensitivity to antigen by coordinating Lck
accumulation at the immunological synapse. Nat.
Immunol. 5, (2004)791–799.

55. McAdams, H.H. and Arkin, A. Stochastic mechanisms
in gene expression. Proceedings of the National
Academy of Science 94, (1997), 814−819.

56. McAdams, H.H. and Arkin, A. It’s a noisy business!
Trends in Genetics 15, 2 (1999), 65−69.

57. Milner, R. A Calculus of Communicating Systems.
Springer Verlag, 1980

of qualitative models of genetic regulatory networks
by model checking: Analysis of the nutritional stress
response in Escherichia coli. Bioinformatics 21 (2005),
19−28.

8. Blinov, M.L., Faeder, J.R., Goldstein, B. and Hlavacek,
W.S. BioNetGen: Software for rule-based modeling
of signal transduction based on the interactions
of molecular domains. Bioinformatics 20 (2001),
3289−3291.

9. Calder, M., Vyshemirsky, V., Gilbert, D. and Orton, R.
Analysis of signaling pathways using the prism model
checker. In Proc. 3rd International Conference on
Computational Methods in Systems Biology. G. Plotkin,
ed. (Edinburgh, Scotland, 2005), 179–190.

10. Calzone, L., Fages, F. and Soliman, S. BIOCHAM: An
environment for modeling biological systems and
formalizing experimental knowledge. Bioinformatics
22, 14 (2006), 1805−1807.

11. Cardelli, L. Brane caluli. In Proc. Computational
Methods in Systems Biology (Paris, May 26, 2004) V.
Danos and V. Schächter, eds. LNCS 3082, 257 (2004).

12. Cardelli, L. Abstract machines of systems biology. In
Transactions on Computational Systems Biology III.
C. Priami et al. eds. LNCS 3737, (2005), 145−168.

13. Cerny, P., Henzinger, T.A. and Radhakrishna, A.
Simulation distances. In Proc. Concurrency Theory
2010. LNCS 2011, 253−268.

14. Clarke, E., Grumberg, O., Jha, S., Lu, Y. and Veith,
H. Counterexample-guided abstraction refinement
for symbolic model checking. J. ACM 50, (2003),
752−794.

15. Clarke, E., Grumberg, O. and Peled, D. Model Checking,
MIT Press, 2000.

16. Cohen, I.R. and Harel, D. Explaining a complex living
system: Dynamics, multi-scaling and emergence. J.
Royal Society Interface 4, (2007), 175−182.

17. Cousot, P. and Cousot, R. Abstract interpretation. In
Proc. Symp. Principles of Programming Languages 4,
(1977), 238−252.

18. Curti, M., Degano, P., Priami, C. and Baldari, C.
Modeling biochemical pathways through enhanced
pi-calculus. Theor. Comput. Sci. 325, (2004), 111−140.

19. Damm, W. and Harel, D. LSCs: Breathing life into
message sequence charts. Formal Methods in System
Design 19, 1, (2001), 45−80.

20. Danos, V., Feret, J., Fontana, W., Harmer, R. and Krivine,
J. Rule-based modelling of cellular signalling. Concur
2007, LNCS 4703, 17−41.

21. Didier, F., Henzinger, T.A., Mateescu, M. and Wolf, V.
Approximation of event probabilities in noisy cellular
processes. Computational Methods in Systems Biology
7, (2009) 173−188.

22. Didier, F., Henzinger, T.A., Mateescu, M. and Wolf, V.
Fast adaptive uniformization of the chemical master
equation. High-Performance Computational Systems
Biology 1, (2009).

23. Dill, D.L., Knapp, M.A., Gage, P., Talcott, C., Laderoute,
K. and Lincoln, P. The pathalyzer: A tool for analysis
of signal transduction pathways. In Proc. 1st Annual
Recomb Satellite Workshop on Systems Biology, 2005.

24. Efroni, S., Harel, D. and Cohen, I.R. Reactive animation:
Realistic modeling of complex dynamic systems.
Computer 38, (2005), 38−47.

25. Efroni, S., Harel, D., and Cohen, I.R. Emergent
dynamics of thymocyte development and lineage
determination. PLoS Computational Biology 3, 1 (
2007), 127−136.

26. Elowitz, M.B., Levine, A.J., Siggia, E.D. and Swain, P.S.
Stochastic gene expression in a single cell. Science
297, (2002), 1183−1186.

27. Emerson, E.A. Temporal and modal logic. In Handbook
of Theoretical Computer Science, (1990), 995−1072.

28. Faeder, J.R., Hlavacek, J.S., Reischl, I., Blinov, M.L.,
Metzger, H., Redondo, A., Wofsy, C. and Goldstein,
B. Investigation of early events in FcεRI-mediated
signaling using a detailed mathematical model. J.
Immunol. 170, (2003), 3769−3781.

29. Fedoroff, N. and Fontana, W. Small numbers of big
molecules. Science 297, (2002), 1129−1131.

30. Feret, J., Danos, V., Krivine, J., Harmer, R. and Fontana,
W. Internal coarse-graining of molecular systems.
Proc. Natl. Acad. Sci. 106, 16, (2009), 6453–6458.

31. Fisher, J., Piterman, N., Hajnal, A., and Henzinger, T.A.
Predictive modeling of signaling crosstalk during C.
elegans vulval development. PLoS Computational
Biology 3, 5, (2007) 92.

32. Fisher, J. and Henzinger, T.A. Executable cell biology.
Nat. Biotechnol. 25, 11, (2007), 1239−49.

33. Fisher, J., Henzinger, T.A., Mateescu, M. and Piterman,
N. Bounded asynchrony: A biologically-inspired notion
of concurrency. In Proc. of FMSB ’08 Cambridge, UK.

58. Milner, R. Operational and algebraic semantics of
concurrent processes. Handbook of Theoretical
Computer Science B, (1990), 1201−1242.

59. Milner, R. Communicating and Mobile Systems: The
pi-Calculus. Cambridge University Press, Cambridge,
UK, 1999).

60. Parkinson, J.S., Ames, P. and Studdert, C.A.
Collaborative signaling by bacterial chemoreceptors.
Curr. Opin. Microbiol. 8, (2005), 116−121.

61. Paulsson, J. Summing up the noise in gene networks.
Nature 427, (2004), 415−418.

62. Peterson, J.L. Petri Net Theory and the Modeling of
Systems. Prentice Hall 1981

63. Pnueli, A. The temporal logic of programs. In Proc.
Symp. Found. Computer Science, (1977) 46−57.

64. Pnueli, A. and Rosner, R. On the synthesis of a reactive
module. In Proc. Symp. Principles of Programming
Languages 16, (1989), 179−190.

65. Popper, K. The logic of scientific discovery. Hutchinson,
London, 1959.

66. Priami, C. The stochastic pi-calculus. Comp. J. 38,
(1995), 578–589.

67. Priami, C. Algorithmic systems biology. Comm. ACM
52, 5, (May 2009) 80−88.

68. Priami, C., Regev, A., Shapiro, E.Y., and Silverman, W.
Application of a stochastic name passing calculus to
representation and simulation of molecular processes.
Inf. Process. Lett. 80, (2001) 25−31.

69. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., and
Shapiro, E.Y. Bioambients: An abstraction for biological
compartments. Theor. Comput. Sci. 325, (2004),
141–167.

70. Regev, A., Silverman, W., and Shapiro, E.
Representation and simulation of biochemical
processes using the pi-calculus process algebra. Pac.
Symp. Biocomput. (2001) 459–470.

71. Sadot, A., Fisher, J., Barak, D., Admanit, Y., Stern,
M.J., Hubbard, E.J.A. and Harel, D. Towards verified
biological models, Transactions on Computational
Biology and Bioinformatics 5,(2008), 1−12.

72. Schaub, M.A., Henzinger, T.A., and Fisher, J. Qualitative
networks: A symbolic approach to analyze biological
signaling networks. BMC Systems Biology 1, (2007).

73. Setty, Y., Cohen, I.R., Dor, Y., and Harel, D. Four-
dimensional realistic modeling of pancreatic
organogenesis. In Proc. Natl. Acad. Sci. 105, 51
(2008), 20374−20379.

74. Shen, X., Collier, J., Dill, D., Shapiro, L., Horowitz,
M. and McAdams, H.H. Architecture and inherent
robustness of a bacterial cell-cycle control system.
PNAS. 105, 32 (2008), 11340−11345.

75. Thomas, W. Automata on infinite objects. In Handbook
of Theoretical Computer Science B, (1990), 133−192.

76. Wang, D., Cardelli L., Phillips A., Piterman N. and
Fisher J. Computational modeling of the EGFR
network elucidates control mechanisms regulating
signal dynamics. In BMC Systems Biology 3, 118,
(2009), 22.

77. Wolf, V., Goel, R., Mateescu, M. and Henzinger, T.A.
Solving the chemical master equation using sliding
windows. BMC Systems Biology 4, 42, (2010).

Jasmin Fisher (Jasmin.Fisher@microsoft.com) is a
researcher at Microsoft Research Cambridge in the
Programming Principles and Tools Group, Cambridge, UK.

David Harel (dharel@weizmann.ac.il) is the William
Sussman Professorial Chair of the Dept. of Computer
Science and Applied Mathematics at the Weizmann
Institute of Science, Rehovot, Israel.

Thomas A. Henzinger (tah@ ist.ac.at) is president
of the Institute of Science and Technology Austria
(IST Austria) and an adjunct professor of electrical
engineering and computer sciences at the University
of California, Berkeley.

© 2011 ACM 0001-0782/11/10 $10.00

