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Abstract Portal hypertension develops as a result of

increased intrahepatic vascular resistance often caused by

chronic liver disease that leads to structural distortion by

fibrosis, microvascular thrombosis, dysfunction of liver

sinusoidal endothelial cells (LSECs), and hepatic stellate

cell (HSC) activation. While the basic mechanisms of

LSEC and HSC dysregulation have been extensively

studied, the role of microvascular thrombosis and platelet

function in the pathogenesis of portal hypertension remains

to be clearly characterized. As a secondary event, portal

hypertension results in splanchnic and systemic arterial

vasodilation, leading to the development of a hyperdy-

namic circulatory syndrome and subsequently to clinically

devastating complications including gastroesophageal

varices and variceal hemorrhage, hepatic encephalopathy

from the formation of portosystemic shunts, ascites, and

renal failure due to the hepatorenal syndrome. This review

article discusses: (1) mechanisms of sinusoidal portal

hypertension, focusing on HSC and LSEC biology,

pathological angiogenesis, and the role of microvascular

thrombosis and platelets, (2) the mesenteric vasculature in

portal hypertension, and (3) future directions for vascular

biology research in portal hypertension.

Keywords Thrombosis � Platelets � Endothelial

dysfunction � Hyperdynamic circulation

Introduction

As a disorder of portal venous pressure, portal hypertension

can be conceptualized using the hydraulic derivation of

Ohm’s Law (pressure = flow 9 resistance) [1], composed

of variables grounded in basic vascular biology. Initially,

portal hypertension develops as a result of increased

intrahepatic vascular resistance most commonly [2] caused

by chronic liver disease leading to multiple pathological

events in the sinusoidal circulation, such as structural dis-

tortion by fibrosis, microvascular thrombosis, dysfunction

of liver sinusoidal endothelial cells (LSECs), and hepatic

stellate cell (HSC) activation [3–5]. While the basic

mechanisms of LSEC and HSC dysregulation have been

extensively explored, clarification of the role of

microvascular thrombosis and platelet function in the

pathogenesis of portal hypertension lags behind.

As a secondary event, portal hypertension leads to

splanchnic and systemic arterial vasodilation, contributing

to increased splanchnic blood flow to the liver and

increased portal pressure despite collateral formation [3–7].

An excessive vasodilation of the mesenteric arteries facil-

itates this hyperdynamic circulation, and along with

increasing blood flow to portosystemic collaterals results in

clinically devastating complications including gastroe-

sophageal varices and variceal hemorrhage, hepatic

encephalopathy from the formation of portosystemic

shunts, ascites, and renal failure due to the hepatorenal

syndrome [8–10].

In this review article, we discuss the following topics:

(1) mechanisms of sinusoidal portal hypertension, focusing

on HSC and LSEC biology, pathological angiogenesis, and

the role of microvascular thrombosis and platelets, (2) the

mesenteric vasculature in portal hypertension, and (3)
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future directions for vascular biology research in portal

hypertension.

Mechanisms of sinusoidal portal hypertension

Hepatic sinusoids are small blood vessels that comprise of

the liver microcirculation. Blockage of sinusoids and the

resulting increased hepatic vascular resistance to portal

venous flow is the primary cause of portal hypertension.

Sinusoids consist of LSECs and are circumscribed by

HSCs, which are essential for sinusoidal function and key

in the development of portal hypertension. Thrombosis is

another important factor that disturbs the hepatic micro-

circulation and increases hepatic vascular resistance. In this

section, we discuss the mechanisms of sinusoidal portal

hypertension with a focus on HSCs, LSECs, and

thrombosis.

Hepatic stellate cell biology

Fibrosis and architectural distortion

Hepatic fibrosis is the first factor to be considered in

explaining the increased resistance in the cirrhotic liver. In

a classic paper, Bhathal and Grossman demonstrated

through vasodilator challenges in an animal model of cir-

rhosis that 80 % of the increased resistance to portal flow is

due to architectural distortion in the cirrhotic liver, while

20 % is due to a reversible, hypercontractile phenotype

[11]. While a complete examination of the pathobiology of

hepatic fibrosis is outside the scope of this review, this is an

area of liver disease with constant and exciting new

advances. The key pathway of fibrosis in the liver is

proinflammatory signaling causing activation of HSCs and

thereby leading to extracellular matrix deposition. As

recently reviewed by experts in the field, the understanding

of this pathway has led in turn to an understanding of its

reversal and the regression of fibrosis, which holds great

therapeutic potential for chronic liver disease and portal

hypertension [12, 13].

Hepatic stellate cells as pericytes

Hepatic stellate cells (HSCs) are positioned in the space of

Disse. They are thus thought to play another role in portal

hypertension beyond fibrosis as a possible hepatic pericyte,

a perivascular nonendothelial cell with myriad functions

including regulation of flow through smooth muscle-like

contractility, formation of extracellular matrix (as above),

and regulation of endothelial proliferation [14–17]. This

observation arises from work demonstrating that HSCs

‘‘activate’’ and acquire a myofibroblast-like phenotype

with acquisition of alpha-smooth muscle actin during the

response to liver injury [18], as well as exhibit a contractile

phenotype, shown in a gel contraction assay using activated

HSCs from a rat model of toxic liver injury [19]. Thus

HSCs, through perivascular contraction, are thought to be

key contributors to the dynamic and reversible component

of portal hypertension in cirrhosis.

Regulation of HSC contraction

Endothelin signaling A key pathway regulating the HSC

contractile phenotype is endothelin signaling. Endothelin

binds to G-protein coupled receptors endothelin A (ETA)

and endothelin B (ETB), which are typically found on

vascular smooth muscle cells and endothelial cells,

respectively. Endothelin-1 (ET-1) is the major subtype

relevant to liver disease and is preferentially bound to ETA

more so than the other two subtypes ET-2 and ET-3 [20].

Levels of endothelin-1 protein are elevated in the setting of

liver injury along with ET-1 messenger RNA (mRNA),

demonstrating increased production in this setting [21].

Whereas in the normal liver the endothelial cells produce

the majority of ET-1, liver injury shifts this production

primarily to HSCs [22], which also markedly upregulate

ETA and ETB receptors [23, 24], suggesting increased

sensitivity to this signal. ET-1 has been shown to induce

contraction of the sinusoidal vasculature [25], and antag-

onism of ETA has been shown to reduce portal pressure in a

cirrhotic animal model [26]. Studying the mechanism of

ET-1-mediated HSC contraction has yielded the insight

that it functions through both a pathway of increasing

intracellular calcium, leading to myosin light chain kinase

activation and myosin light chain phosphorylation, and via

Rho-kinase and protein kinase C pathways leading to

inhibition of myosin light chain dephosphorylation by

myosin light chain phosphatase and enhanced calcium

sensitivity [27].

Other inducers of HSC contraction Other mechanisms of

HSC contraction have been elucidated as well, including

C-X-C chemokine receptor 4 (CXCR4) expressed on

activated stellate cells. Chemokine (C-X-C motif)

ligand 12 (CXCL12) binds CXCR4 and leads to increased

myosin light chain phosphorylation and contractility in a

Rho kinase-dependent manner, which can be reversed by a

Rho kinase inhibitor [28]. Another interesting recent find-

ing is that ammonia may play a direct role in HSC con-

tractility. HSCs exposed to ammonia demonstrated a more

contractile phenotype than controls on gel contraction
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assay and produced higher levels of myosin IIa, which is

important for contraction, in a dose-dependent manner

[29]. Preclinical data are also emerging on the role of

relaxin and its receptor in reducing HSC contraction and

portal pressure [30]. A recent study has also pointed to a

role for the farnesoid X receptor (FXR) in regulation of the

endothelin pathway and HSC contractility, demonstrating

that FXR stimulation decreases ET-1 levels and phospho-

rylated moesin, a biochemical marker of HSC contractility,

as well as portal pressure in an animal model of cirrhosis

with portal hypertension, though the exact mechanism is

uncertain [31].

Liver sinusoidal endothelial cell biology

Fenestration and capillarization

Liver sinusoidal endothelial cells (LSECs) are distinct from

endothelial cells elsewhere in the liver, as well as else-

where in the body. Their most distinguishing feature is

fenestration, with fenestrae measuring approximately

0.1 microns organized into groups of sieve plates and

thought to facilitate the transport of macromolecules from

the hepatic sinusoids to the space of Disse, where they can

interact with hepatocytes. Another characteristic setting

LSECs apart from endothelial cells in other organs is the

lack of a basement membrane, which again maximizes

permeability between the lumen of the sinusoid and the

space of Disse [32].

LSECs lose their fenestrae and develop a basement

membrane as a consequence of liver fibrosis, and become

‘‘capillarized’’ [33, 34]. Vascular endothelial growth factor

(VEGF) has been shown to be a key factor in maintaining

the endothelial fenestrae, and increasing concentrations of

the molecule can increase the porosity of LSECs [35]. The

VEGF signaling necessary for maintaining LSEC pheno-

type, or maintenance of their fenestrae without a basement

membrane, is thought to come from HSCs and hepatocytes,

since coculture of HSCs or hepatocytes restores this phe-

notype that is lost with anti-VEGF antibody. This VEGF

maintenance of normal LSEC phenotype is dependent on

nitric oxide production and is blocked by the NO synthase

inhibitor Nx-nitro-L-arginine methyl ester hydrochloride

(L-NAME) [36]. Removal of VEGF signaling in an animal

model, via a transgenic system in which liver-specific

secretion of a soluble VEGF decoy receptor sequesters

endogenous VEGF, has been shown to lead to loss of

LSEC fenestration and result in portal hypertension and

HSC activation independent of hepatic parenchymal dam-

age, with reversal of portal hypertension with restoration of

VEGF [37]. In addition, the composition of collagen in the

space of Disse may play a role in maintenance or loss of

endothelial cell fenestration [38]. Further, a role of lipid

rafts in regulation of fenestration has also been elucidated.

Utilizing superresolution fluorescence microscopy,

researchers recently demonstrated an inverse relationship

between areas of the endothelial cell with lipid rafts and

areas of the membrane with fenestration. Additionally, it

was shown that inhibiting lipid raft formation via 7-keto-

cholesterol or actin disruption increased fenestration, and

increasing raft formation with a low concentration of Tri-

ton X-100 decreased fenestration [39].

Crosstalk between LSECs and HSCs

The communication between LSECs and HSCs is impor-

tant in the pathogenesis of portal hypertension, as evi-

denced by the fact that loss of LSEC phenotype can be

permissive for HSC activation [40]. Research into LSEC

and HSC communication demonstrated that an isoform of

fibronectin produced by LSECs in a bile duct ligation

model of liver damage was able to activate HSCs [41],

though a subsequent study revealed it to be a factor

important for HSC motility but not differentiation to a

myofibroblast phenotype [42]. Recent literature has also

revealed a mechanism for LSECs to communicate with

HSCs through signaling via exosomes containing sphin-

gosine kinase-1 (SK1) and its product sphingosine-1

phosphate, providing a signal for HSC migration [43],

which is closely tied to their activated phenotype. Con-

versely, LSEC signaling can also be responsible for the

maintenance of HSC quiescence. LSEC induction of HSC

deactivation has been shown to be possible via paracrine

signaling via the Kruppel-like factor 2 (KLF2)–nitric

oxide–guanylate cyclase pathway in endothelial cells [44].

Various pathways of LSEC/HSC crosstalk are depicted in

Fig. 1.

Nitric oxide, which is produced by LSECs and plays a

direct role in regulation of vascular tone in the liver as

discussed below, also plays a key role in LSEC/HSC

crosstalk. LSECs are able to induce HSC reversion from

activation to quiescence via an NO-dependent mechanism

[45], which may have relevance in diseases such as alco-

holic liver injury and nonalcoholic fatty liver disease, in

which loss of normal LSEC phenotype has been shown to

occur before fibrosis [40]. Studies relevant to this NO-de-

pendent mechanism have shown that NO donors are able to

inhibit proliferation and chemotaxis of activated HSCs in

response to platelet-derived growth factor by disruption of

its intracellular signaling pathway via prostaglandin E2-

mediated effects [46], and that NO inhibits HSC migration

via cyclic guanosine monophosphate (cGMP)-dependent
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protein kinase (PKG)-mediated inhibition of the Rac1

pathway [47, 48]. Nitric oxide signaling has also been

shown to induce HSC apoptosis [49] via a caspase-inde-

pendent mechanism possibly related to increased mito-

chondrial oxidative stress and increased mitochondrial

membrane permeability, along with a possible lysosomal

stress component.

Endothelial nitric oxide: function and dysfunction

Nitric oxide (NO) is a crucially important regulator of

normal hepatic vascular tone and portal pressure [50], and

the source of NO in the hepatic vasculature is the LSECs

and endothelial cells of blood vessels. These cells express

an endothelial nitric oxide synthase (eNOS) and produce a

baseline level of NO. Production of NO increases in

response to flow [51] and can also be upregulated by VEGF

[52]. Studies have demonstrated that, although LSECs in

the cirrhotic liver contain similar amounts of eNOS as in

the normal liver, it is dysfunctional under these pathologic

conditions and there is diminished NO release in disease

[53]. Additionally, LSECs in cirrhosis have a diminished

ability to respond to increases in flow with increased NO

production compared with the healthy state [54]. This

derangement leads to impaired vasodilation in the hepatic

microcirculation in cirrhosis and is an important contribu-

tor to sinusoidal portal hypertension. The regulation of

eNOS function involves multiple players acting in concert,

with stimulatory signaling found to occur via phosphory-

lation by the protein kinase Akt [55], and subsequent work

elucidating the G-protein coupled-receptor kinase interac-

tor-1 (GIT1) as a facilitator of Akt-dependent eNOS acti-

vation [56, 57]. The function of eNOS may also be

inhibited by binding to caveolin-1 in an interaction that can

in turn be disrupted by calmodulin [58].

Because endothelial dysfunction leads to increased

resistance in the sinusoidal microcirculation and promotes

activation of HSCs, a pharmacological approach that

reverses the dysfunctional LSEC phenotype could be an

effective therapeutic strategy. An emerging example is the

use of statins. Studies have shown that statins ameliorate

portal hypertension in cirrhotic patients [59] and experi-

mental models of portal hypertension [60, 61]. These

studies demonstrated that statins improve endothelial dys-

function by increasing NO bioavailability in the sinusoidal

microcirculation. Several candidate mechanisms for this

observed effect have been proposed. One is the ability of

statins to inhibit synthesis of isoprenoids, which are nec-

essary for membrane anchoring and activation of small

guanine triphosphatases (GTPases), such as RhoA. Given

that RhoA/Rho-kinase signaling could downregulate eNOS

activity [62] and expression [63], statins, by decreasing

RhoA activity, could enhance NO bioavailability and

decrease intrahepatic vascular resistance [61]. Another

Fig. 1 LSEC/HSC crosstalk. Liver injury leads LSECs to produce

the EIIIA isoform of fibronectin, which signals to HSCs through

integrin a9b1 to promote motility, which is important for their

activated phenotype [41, 42]. LSECs also signal to promote HSC

motility through sphingosine kinase 1–sphingosine-1-phosphate

(SK1–S1P)-containing exosomes, which adhere to HSCs via fibro-

nectin binding to an integrin receptor [43]. Nitric oxide (NO)

production by sinusoidal endothelial cells is important in maintaining

HSC quiescence, with a Kruppel-like factor (KLF) 2 pathway

enhancing NO and guanylate cyclase production [44], and NO

production from LSECs also inhibiting the Rac/Rho pathway in HSCs

[47, 48]. NO also causes HSC apoptosis, and may thereby limit the

number of activated HSCs in the liver [49]. Vit A, vitamin A
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potential mechanism is that statins increase activity of Akt/

protein kinase B, which phosphorylates and activates

eNOS, thereby increasing NO bioavailability [60]. In

addition to reducing endothelial cell dysfunction, statins

could target the RhoA/Rho-kinase pathway in pericytes

(e.g., activated HSCs) and decrease their contractile phe-

notype, thereby lowering intrahepatic resistance and

reducing portal hypertension [61].

Angiogenesis

Angiogenesis, or the process of new blood vessel formation

from preexisting vascular beds, has been implicated in

portal hypertension as well. Hepatic angiogenesis could

cause irregular intrahepatic circulatory routes and thus

could increase intrahepatic resistance. Pathological angio-

genesis in the splanchnic circulation has been thought to

worsen portal hypertension because increased vasculature

created via angiogenesis could enhance blood flow to the

portal venous system, thereby increasing portal pressure.

Blocking pathological angiogenesis by kinase inhibitors,

such as sorafenib [64, 65], sunitinib [66], imatinib [67],

pioglitazone [68], and the combination of Gleevec and

rapamycin [69], has been shown to ameliorate portal

hypertension in experimental models.

In addition, the Notch1 signaling pathway, which is

known to be important in endothelial cell differentiation

and vascular development, has been shown to be important

in portal hypertension, with knockout of the pathway in the

liver leading to nodular regenerative hyperplasia (NRH), a

common cause of noncirrhotic portal hypertension. Inter-

estingly, knockout animals developed portal hypertension

even before the onset of NRH, which was thought to be

caused by a disordered intrahepatic vasculature [70].

Angiogenesis has also been shown to be associated with

fibrosis progression in the liver [71, 72], although this

relationship is complex and could be causative or correla-

tive due to hypoxia, with modulation of angiogenesis not

having a predictable effect on liver fibrosis [73].

Microvascular thrombosis/platelets

Role of thrombosis in the pathogenesis of portal

hypertension

The study of intrahepatic portal hypertension is evolving to

include the study of platelets and thrombosis as important

contributors to its pathophysiology. Ian Wanless and others

were instrumental contributors in this area, observing what

they termed ‘‘parenchymal extinction’’ accounting for

fibrosis progression due to intrahepatic vascular thrombosis

[74]. Though cirrhosis had been previously felt to confer a

bleeding tendency, more advanced and physiologic tests to

assess coagulation status [75] and systematic studies of

bleeding complications [76] have led to a growing con-

sensus that hemostatic status in cirrhosis is delicately

rebalanced or perhaps even prothrombotic. These obser-

vations set the stage for exploration of the role of throm-

bosis in sinusoidal portal hypertension.

Animal studies

Animal studies lend support to the importance of throm-

bosis in fibrosis progression and portal hypertension. An

early study utilized mice on a susceptible genetic back-

ground infected with the murine hepatitis virus, an RNA

coronavirus that can cause a spectrum of liver disease

including fulminant hepatic failure. These mice exhibited

thrombi in the hepatic microvasculature concordant with

viral liver injury [77], suggesting a link between sinusoidal

thrombosis/microvascular blockage and liver damage that

was supported in further studies [78]. Other animal studies

using a model of carbon tetrachloride (CCl4)-induced liver

damage demonstrated sinusoidal deposition of fibrin/fib-

rinogen and fibronectin in the damaged liver in the short-

term, and deposition in fibrous septa in long-term liver

damage, leading to the hypothesis that clotting was an

important step in the fibrotic response of the liver [79]. In

more mechanistic preclinical studies, administering a novel

thrombin antagonist (SR182289) in a CCl4 model was

shown to decrease liver fibrosis [80], and mice deficient in

the prothrombinase fgl2/fibroleukin, responsible for

cleaving prothrombin to thrombin and ultimately the

deposition of fibrin by this pathway, had reduced fibrin

deposition and necrosis in a model of viral hepatitis [81].

Low-molecular-weight heparins as anticoagulants were

studied and shown to reduce fibrosis in a bile duct ligation

model, a thioacetamide model (in which aspirin was also

shown to reduce fibrosis), and a CCl4 model of hepatic

fibrosis [82–84]. Again in a CCl4 model, factor V Leiden

homozygous mice had more hepatic fibrosis than wild-type

mice, and anticoagulation with warfarin reduced hepatic

fibrosis in wild-type mice compared with control [85].

Notably in this study, warfarin treatment did not have an

antifibrotic effect in factor V Leiden homozygous mice,

which the authors speculate was because the dose was not

adequate to overcome the profibrotic phenotype. In a recent

study mechanistically linking portal hypertension with

hepatic sinusoidal thrombosis and fibrosis, an inferior vena

cava (IVC) ligation model of post-hepatic portal hyper-

tension resulted in sinusoidal thrombosis and hepatic

fibrosis, which was ameliorated by pharmacologic
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treatment with warfarin and genetic inhibition of the clot-

ting cascade, and fibrin was shown to promote extracellular

matrix deposition by HSCs [86]. An important recent paper

in rat models of liver injury/fibrosis with CCl4 or thioac-

etamide with and without enoxaparin demonstrated

reduced portal pressure, reduced HSC activation, reduced

fibrosis, and reduced fibrin deposition in treated animals as

compared with control animals, pointing to a role for

anticoagulation in reducing classic structural and dynamic

mechanisms of portal hypertension, possibly via reduction

of thrombosis [87]. Rivaroxaban has also been shown in

thioacetamide and CCl4 models of cirrhosis in the rat to

reduce portal pressure, likely through a combination of

reductions in HSC activation, endothelial dysfunction, and

microvascular thrombosis rather than fibrosis [88].

Platelets

Platelets are intimately associated with the typical physi-

ology of vascular thrombosis, and investigation into their

biology in cirrhosis is an emerging area of careful study.

Initially, the assessment of the cirrhotic platelet was that it

was dysfunctional and predisposed the patient to a bleeding

tendency [89, 90]. More recently, however, investigators

have found that the activity of cirrhotic platelets in

hemostasis and thrombosis is potentially preserved [91] or

even increased [92], although there are conflicting data

[93]. As recently reviewed [94], the function of platelets in

various types of liver injury is quite complex, with multiple

situation-specific factors determining whether platelets will

play a profibrotic role versus an antifibrotic, pro-regener-

ative role. Of particular relevance to portal hypertension,

platelet-derived serotonin in a model of viral hepatitis

results in hepatic microcirculatory dysfunction in the

sinusoids leading to reduced flow [95], consistent with

other studies demonstrating serotonin-mediated low sinu-

soidal flow reversed by serotonin receptor antagonism

[96, 97]. This effect may be mediated by serotonin-induced

calcium influx into sinusoidal endothelial cells and myosin

light chain phosphorylation causing fenestral contraction

[98, 99], or by serotonin-mediated HSC activation, possi-

bly through increasing intracellular calcium [100, 101].

Given that nonalcoholic steatohepatitis (NASH) is

associated with the metabolic syndrome, with its associated

platelet dysfunction resulting in a hypercoagulable platelet

with increased expression of glycoprotein (GP) IIb/IIIa

receptors and resistance to antiaggregating stimuli such as

NO and prostaglandins [102], platelet function in this dis-

ease is of particular interest. In an animal model of NASH,

antiplatelet drugs such as aspirin, ticlopidine (a thienopy-

ridine adenosine diphosphate receptor antagonist) [103],

and cilostazol (a phosphodiesterase III inhibitor) were all

found to reduce hepatic steatosis, inflammation, and

fibrosis, and cilostazol also led to increased eNOS pro-

duction measured by mRNA expression. However,

cilostazol had the largest antifibrotic effect and is postu-

lated to impact lipid and glucose metabolism in addition to

its antiplatelet activity, so these observations may not be

entirely because of antithrombotic effects [104]. The

putative roles of platelets and thrombosis in portal hyper-

tension are shown schematically in Fig. 2.

Future experimentation and clinical trials will continue

to expand our knowledge regarding thrombosis, cirrhotic

platelet biology, and portal hypertension. In particular, the

ongoing Multicenter Prospective Randomized Trial of the

Effectiveness of Rivaroxaban (a direct factor Xa inhibitor)

[103] on Survival and Development of Complications of

Portal Hypertension in Patients with Cirrhosis (CIRROX-

ABAN) will provide evidence for any effect of anticoag-

ulation to alter the course of cirrhosis and portal

hypertension (ClinicalTrials.gov NCT02643212).

Antithrombotic and antiplatelet drugs that have been

shown to have some role in ameliorating portal hyperten-

sion, fibrosis, or hepatic decompensation are depicted

along with their site(s) of action in the coagulation cascade

in Fig. 3.

The mesenteric vasculature in portal hypertension

In addition to the liver vasculature, the mesenteric vascu-

lature plays a key role in portal hypertension. Foundational

understanding of the physiology of this vascular bed comes

from classic studies by Groszmann and others which

demonstrated that, even with the development of por-

tosystemic collaterals, the splenchnic circulation was

hyperdynamic in portal hypertension [105, 106]. Accord-

ingly, portal pressure remains elevated due to the increased

splanchnic flow to the liver [4, 5]. Excessive vasodilation

of splanchnic arteries mediated by overproduction of NO

by eNOS contributes to this increased flow. A study using

rats with partial portal vein ligation showed higher eNOS

levels and increased NO production precede the develop-

ment of the hyperdynamic circulation [107] and that VEGF

is an important mediator of eNOS activation [52]. Other

studies have demonstrated higher eNOS activity leading to

NO overproduction in the mesenteric vasculature in portal

hypertension via an Akt-dependent pathway leading to

eNOS phosphorylation (an active form of eNOS) [108].

Other mechanisms by which splanchnic vasodilation

occurs in cirrhosis are via ACE2 conversion of angiotensin

(Ang) II to Ang (1–7) and subsequent activation of the Mas
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receptor [109]. Other pathways via carbon monoxide,

prostacyclin, endocannabinoids, adrenomedullin, and

endothelium-derived hyperpolarizing factor play a role in

this pathology as well [5]. As previously reviewed [1],

arterial thinning [110] and smooth muscle hypocontractil-

ity also promote the disordered physiology of the mesen-

teric vasculature in portal hypertension.

The impaired sympathetic nervous system has also been

implicated in hypocontractility of mesenteric arteries and

the development of the hyperdynamic circulatory syn-

drome in portal hypertensive rats [111–113]. These animals

exhibited mesenteric sympathetic nerve atrophy/regression,

but administration of agents that inhibit these nerve dis-

orders (e.g., capsaicin [114] and gambogic amide [115])

ameliorated the hyperdynamic circulatory syndrome. These

impaired neuronal functions were also associated with

decreased release of neuropeptide Y, a neurotransmitter

and potent vasoconstrictor produced by the sympathetic

nervous system [116]. Administration of exogenous neu-

ropeptide Y decreased excessive vasodilation of mesen-

teric arteries of portal hypertensive rats, indicating that

hypocontractility of mesenteric arteries is at least in part

mediated by an impaired production of neural factors

[116, 117].

More recent studies have explored agents for amelio-

rating the hyperdynamic and hypocontractile mesenteric

vascular phenotype in cirrhosis using thalidomide [118]

and an arginine vasopressin receptor 1a partial agonist

[119].

Future directions

Several important biological systems that ought to be rel-

evant to the pathophysiology of portal hypertension have

not yet been adequately explored. Of particular interest are

immune cells, platelets, and the lymphatic vascular system.

Immune cells

It is not known whether immune cells are directly related to

the development of portal hypertension. However, since

Fig. 2 Sinusoidal thrombosis and portal hypertension. Sinusoidal

thrombosis and platelet aggregation/activation contribute to portal

hypertension through multiple pathways. Hepatocyte damage results

in release of tissue factor (TF) [132], which promotes activation of

factor VIIa and Xa and ultimately prothrombin conversion to

thrombin, which converts fibrinogen to fibrin in an intravascular

thrombus [133]. Parenchymal extinction may occur due to the

presence of this thrombus. Fgl2/fibroleukin found on endothelial cells

may also promote fibrin clot formation [81]. Thrombin may activate

HSCs through protease-activated receptor 1 (PAR1) [134] as well as

promote platelet aggregation/activation through PAR4 [135], with

platelet adhesion to the endothelium mediated by glycoprotein (GP)

Ib and the integrins aIIb3 and aVb3 [136]. Platelets can then activate

HSCs through release of serotonin [100, 101] and platelet-derived

growth factor B (PDGF-B) [137]. Serotonin also leads to increased

myosin light chain phosphorylation (P-MLC) in LSECs, fenestral

contraction, and microvascular dysfunction [98, 99]. Sinusoidal fibrin

may also reach HSCs and promote fibronectin deposition into

extracellular matrix (ECM) via aVb1 integrin [86]. Vit A, vitamin A,

5HT2R, 5-HT2 receptor
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immune cells play an important role in hepatic fibrogenesis

and fibrosis is a major cause of portal hypertension, they

can be considered as a key regulator of it. The role of

macrophages is particularly noteworthy. Macrophages

have been shown to facilitate hepatic fibrosis and patho-

logical angiogenesis in fibrotic/cirrhotic mice, and con-

versely inhibition of macrophage infiltration reduced these

pathological events [120]. A direct interaction of macro-

phages with endothelial cells was also shown, suggesting a

paracrine signaling relationship between them [121].

In fact, LSECs serve as a layer for adhesion of a variety

of resident immune cell populations by expressing various

chemokine receptors and adhesion molecules [122]. LSECs

also regulate immune cell functions and phenotypes, such

as T cell differentiation and macrophage polarization.

Portal hypertension is associated with LSEC dysfunction,

which could thus affect immune cell function. In addition

to regulation of intrahepatic vascular tone, elucidation of

how LSEC dysfunction influences immune cell function is

important to advance our understanding of hepatic vascular

biology.

Platelets

As discussed above, platelet biology in cirrhosis has

received increasing attention and is becoming an area of

active investigation, with our understanding of platelet

function and fibrinolysis remaining insufficient [123].

More studies to define coagulation states in cirrhotic

patients are needed using reliable methodologies and with

consideration of their diverse clinical presentations.

Platelet adhesion and aggregation are critical steps in

coagulation and thrombosis, and key to these functions is the

interaction of platelets with endothelial cells [124].

Endothelial cells produce potent inhibitors of platelet activa-

tion, such as NO and prostacyclin, along with an adenosine

diphosphatase (ADPase) enzyme, CD39, which decomposes

ADP, a strong activator of platelets. When endothelial dys-

function or damage occurs, these platelet inhibitory functions

are impaired, and instead generation and deposition of platelet

adhesion factors, such as vonWillebrand factor, collagen, and

fibrinogen, occur on the endothelial cell surface, facilitating

platelet adhesionand activation.Given thatLSECdysfunction

Fig. 3 The coagulation cascade. The coagulation cascade, with the

points of action of antithrombotic/antiplatelet compounds that have

been demonstrated to have antifibrotic effects, reduce portal hyper-

tension, or have clinical benefits in liver disease. Warfarin, low-

molecular-weight heparin (LMWH), cilostazol, ticlopidine, aspirin,

and SR182289 have been shown to have antifibrotic effects in

experimental models. Rivaroxaban and LMWH have both been

directly shown to reduce portal hypertension in experimental models,

and LMWH reduced hepatic decompensation in cirrhotic patients in

one clinical study
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is a well-known condition in liver cirrhosis and portal

hypertension [6, 7, 125], an interaction between LSECs and

platelets as it relates to thrombosis should be better defined.

Platelets also influence LSEC function, modulating their

production of growth factors such as interleukin (IL)-6 [126].

Additionally, platelets produce transforming growth factor

beta (TGFb) [124], the most potent factor that causes

endothelial-to-mesenchymal transition [127, 128]. This

wealth of biology leaves many interesting and important

questions as to the role of platelets in the pathogenesis of liver

cirrhosis and portal hypertension, especially regarding their

interaction with LSECs.

Lymphatic vascular system

The role of lymphatic vessels in the liver is largely

unknown. However, an increase in lymphatic vessels has

been reported in liver fibrosis, idiopathic portal hyperten-

sion, and hepatocellular carcinoma (HCC), suggesting their

involvement in these pathological conditions [129–131].

There are many questions to be answered including the

functional significance of these vessels, their role in pro-

moting or mitigating pathogenesis, mechanisms of lym-

phangiogenesis, and the relationship between

lymphangiogenesis and hemodynamics. Elucidating the

mechanisms of lymphangiogenesis associated with portal

hypertension will be an interesting area of investigation.

Conclusions

The pathogenesis of portal hypertension is complex,

because portal hypertension involves not only the hepatic

circulation, but also the hyperdynamic physiology in the

systemic and splanchnic circulations. Many pathophysio-

logic questions remain to be explored, including the roles

of immune cells, platelets, and the lymphatic vascular

system mentioned above. An understanding of the

involvement of such factors will advance our knowledge of

portal hypertension in the hope of discovering new thera-

peutic interventions.
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