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The TAM receptors—Tyro3, Axl, and Mer—comprise a unique family of receptor tyrosine
kinases, in that as a group they play no essential role in embryonic development. Instead, they
function as homeostatic regulators in adult tissues and organ systems that are subject to
continuous challenge and renewal throughout life. Their regulatory roles are prominent in
the mature immune, reproductive, hematopoietic, vascular, and nervous systems. The TAMs
and their ligands—Gas6 and Protein S—are essential for the efficient phagocytosis of apo-
ptotic cells andmembranes in these tissues; and in the immune system, theyact as pleiotropic
inhibitors of the innate inflammatory response to pathogens. Deficiencies in TAM signaling
are thought to contribute to chronic inflammatory and autoimmune disease in humans, and
aberrantly elevated TAM signaling is strongly associatedwith cancer progression, metastasis,
and resistance to targeted therapies.

T
he name of the TAM family is derived from

the first letter of its three constituents—

Tyro3, Axl, and Mer (Prasad et al. 2006). As de-
tailed in Figure 1, members of this receptor ty-

rosine kinase (RTK) family were independently

identified by several different groups and appear
in the early literature under multiple alterna-

tive names. However, Tyro3, Axl, and Mer (offi-

cially c-MerorMerTK for the protein,Mertk for
the gene) have now been adopted as the NCBI

designations. The TAMs were first grouped in-

to a distinct RTK family (the Tyro3/7/12 clus-
ter) in1991, throughPCRcloningof their kinase

domains (Lai and Lemke 1991). The isolation

of full-length cDNAs for Axl (O’Bryan et al.
1991), Mer (Graham et al. 1994), and Tyro3

(Lai et al. 1994) confirmed their segregation

into a structurally distinctive family of orphan
RTKs (Manning et al. 2002b). The two ligands

that bindandactivate theTAMs—Gas6andPro-

tein S (Pros1)—were identified shortly thereaf-

ter (Ohashi et al. 1995; Stitt et al. 1995; Mark
et al. 1996; Nagata et al. 1996).

Subsequent progress on elucidating the

biological roles of the TAM receptors was con-
siderably slower and ultimately required the

derivation of mouse loss-of-function mutants

(Camenisch et al. 1999; Lu et al. 1999). The
fact that Tyro32/2, Axl2/2, andMer2/2 mice

are all viable and fertile permitted the genera-

tion of a complete TAM mutant series that in-
cluded all possible doublemutants and even tri-

ple mutants that lack all three receptors (Lu et

al. 1999). Remarkably, these Tyro32/2Axl2/2

Mer2/2 triple knockouts (TAM TKOs) are via-

ble, and for the first 2–3 wk after birth, super-

ficially indistinguishable from their wild-type
counterparts (Lu et al. 1999). Because many
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RTKs play essential roles in embryonic develop-
ment, even single loss-of-function mutations

inRTKgenes often result in an embryonic-lethal

phenotype (Gassmann et al. 1995; Lee et al.
1995; Soriano 1997; Arman et al. 1998). The

postnatal viability of mice in which an entire

RTK family is ablated completely—the TAM
TKOs can survive for more than a year (Lu

et al. 1999)—is therefore highly unusual. Their

viability notwithstanding, the TAMmutants go
on to develop a plethora of phenotypes, some of

them debilitating (Camenisch et al. 1999; Lu

et al. 1999; Lu and Lemke 2001; Scott et al.
2001; Duncan et al. 2003; Prasad et al. 2006).

Almost without exception, these phenotypes

are degenerative in nature and reflect the loss
of TAM signaling activities in adult tissues that

are subject to regular challenge, renewal, and
remodeling. These activities are the subject of

this review.

TAM RECEPTOR/LIGAND STRUCTURE
AND SIGNALING FEATURES

The extracellular domains of TAM receptors are

composed of two structural modules that are
used repeatedly in other RTK ectodomains,

but that are configured in a defining two-plus-

two combination in the TAMs (Fig. 1). The ami-
no-terminal regions of these ectodomains carry

tandem immunoglobulin-related domains that

mediate ligand binding (Heiring et al. 2004; Sa-
saki et al. 2006), which are followed by tandem

fibronectin type III repeats (O’Bryan et al. 1991;
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Figure 1. TAM receptors and ligands. The TAM receptors (red) are Tyro3 (Lai and Lemke 1991; Lai et al. 1994)—
also designated Brt (Fujimoto and Yamamoto 1994), Dtk (Crosier et al. 1994), Rse (Mark et al. 1994), Sky
(Ohashi et al. 1994), and Tif (Dai et al. 1994); Axl (O’Bryan et al. 1991)—also designated Ark (Rescigno et al.
1991), Tyro7 (Lai and Lemke 1991), and Ufo (Janssen et al. 1991); and Mer (Graham et al. 1994)—also
designated Eyk (Jia and Hanafusa 1994), Nyk (Ling and Kung 1995), and Tyro12 (Lai and Lemke 1991). The
TAMs are widely expressed by cells of the mature immune, nervous, vascular, and reproductive systems. The
TAM ligands (blue) are Gas6 and Protein S (Pros1). The carboxy-terminal SHBG domains of the ligands bind to
the immunoglobulin (Ig) domains of the receptors, induce dimerization, and activate the TAM tyrosine kinases.
When g-carboxylated in a vitamin-K-dependent reaction, the amino-terminal Gla domains of the dimeric
ligands bind to the phospholipid phosphatidylserine expressed on the surface on an apposed apoptotic cell or
enveloped virus. See text for details. (FromLemke and Burstyn-Cohen 2010; adapted, with permission, from the
authors.)
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Graham et al. 1994; Lai et al. 1994; Lemke and

Rothlin 2008). All three TAM receptors have
a single-pass trans-membrane domain, and all

carry a catalytically competent protein-tyrosine

kinase (Fig. 1). High-resolution crystal struc-
tures have been determined for the Tyro3

(Powell et al. 2012) and Mer kinase domains

(Huang et al. 2009; Liu et al. 2012).
In many cells, the activation of this tyrosine

kinase is coupled to the downstream activation

of the phosphoinositide 3 kinase (PI3K)/AKT
pathway. Most of this downstream PI3K sig-

naling is nucleated through a TAM-autophos-

phorylated Grb2-binding site, which is located
18 residues carboxy terminal to the kinase do-

main and is conserved in all three TAMs (Fig. 2)

(Fridell et al. 1996; Ling et al. 1996; Braunger
et al. 1997; Goruppi et al. 1997; Georgescu et

al. 1999; Lan et al. 2000; Ming Cao et al. 2001;

Son et al. 2007; Tibrewal et al. 2008; Weinger
et al. 2008). Coupling to phospholipase C,

ERK1/2, Ras, and MAP kinase activation have

also been described inmanydifferent cells (Keat-
ing et al. 2010; Lijnen et al. 2011; Ou et al.

2011). These TAM-activated signaling pathways

(Fig. 2), which involvewhatmight be called “the
usual suspects” downstream from RTK activa-

tion, operate in all TAM-expressing cells. Mac-

rophages, dendritic cells, and other sentinel cells
of the immune system, however, also express

cytokine receptor signaling systems—in partic-

ular, the type I interferon (IFN) receptor—that
are directly coupled to, interact with, and are

codependent on the TAM receptors. In these

cells, the TAM-activated PI3K/AKT pathway is
often dominated and obscured by a stronger

TAM-activated JAK/STAT signaling pathway

(Zong et al. 1996; Rothlin et al. 2007; Lemke
and Rothlin 2008). Differential TAM activation

ofPI3K/AKTversus JAK/STATsignalingmaybe

important for the differential activation of dis-
tinct TAM-regulated bioactivities (Fig. 2).

TAM receptors are among the last RTKs to

have appeared during evolution (Manning et
al. 2002a,b). Unlike the FGFR, EGFR, or ROR

families, for example, there are no TAM repre-

sentatives in either Drosophila or Caenorhabdi-
tis elegans. A single TAM-like receptor gene and

a single Gas6/Pros1-like ligand gene are first

seen in the genomes of prevertebrate urochor-

dates such as Ciona (Kulman et al. 2006; Lemke
and Rothlin 2008), coincident with the first ap-

pearance of type I and type II cytokines (e.g.,

interferons) and cytokine receptors.
The two TAM ligands—Gas6 and Pros1

(Manfioletti et al. 1993; Stitt et al. 1995; Mark

et al. 1996)—are large (≏80-kDa) proteins that
are ≏42% identical and share the same multi-

domain arrangement (Fig. 1). They have two

unusual structural features that are key to their
bioactivities. The first is a carboxy-terminal-

ly positioned “sex hormone-binding globulin”

(SHBG) domain composed of two laminin G
domains (Fig. 1). This SHBG domain binds to

the Ig domains of the receptors and induces

their dimerization and subsequent kinase acti-
vation (Nyberg et al. 1997; Tanabe et al. 1997;

Evenas et al. 2000; Sasaki et al. 2002, 2006). The

second is a so-called Gla domain positioned at
the very amino terminus of both Gas6 and

Pros1 (Stitt et al. 1995; Ishimoto et al. 2000;

Rajotte et al. 2008). (The SHBG and Gla do-
mains are separated by four EGF-related do-

mains.) This ≏60-amino-acid Gla domain is

rich in glutamic acid residues whose g-hydroxyl
groups are posttranslationally carboxylated in a

vitamin K-dependent modification (Huang et

al. 2003; Li et al. 2004; Bandyopadhyay 2008).
Gas6 and Pros1 share Gla domains with several

proteins of the blood coagulation cascade, such

as factors VII, IX, and X (Dahlback 2000; Staf-
ford 2005). Indeed, in addition to acting as a

TAM ligand, Pros1 also functions as an antico-

agulant in this cascade (Dahlback 2000; Bur-
styn-Cohen et al. 2009).

g-Carboxylation of Gla domains allows

them to bind to phosphatidylserine (PtdSer).
In most cells, the activity of a set of P4-

ATPases—so-called flippases—ensures that this

phospholipid is confined to the inner, cyto-
plasm-facing leaflet of the plasma membrane

(van Meer et al. 2008). In activated platelets

and apoptotic cells (among other sites), these
flippases are disabled such that PtdSer is dis-

played on the extracellular membrane surface

as well. For apoptotic cells (ACs), extracellular-
ly displayed PtdSer is among the most potent

“eat-me” signals by which these dead cells are
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Figure 2. TAM receptor signaling pathways. (A) Free TAMs. As receptor dimers, activated TAM proteins drive a
conventional RTK signaling pathway that is dominated by the phosphorylation and activation of Akt. The
positions of major tyrosine autophosphorylation sites shared between Tyro3, Axl, and Mer are indicated (P).
The tyrosine immediately downstream from the kinase domain (Y821 in human Axl) is bound by the SH2
domain of Grb2, which recruits the p85 subunit of PI3 kinase through an SH3 (Grb2)-proline-rich domain
(p85) interaction. Alternatively, p85 can bind this phosphotyrosine directly using its own SH2 domain. P85 also
binds to the indicated phosphotyrosinewithin the kinase domain (see, e.g.,Weinger et al. 2008).Mobilization of
the joint p85/p110 PI3K complex results in the downstream phosphorylation and activation of Akt. Mer
activation has also been found to drive the downstream activation of PLC-g, by a mechanism that is not
delineated biochemically (Tibrewal et al. 2008). These pathways are required for TAM regulation of cell survival
and the mobilization of the actin cytoskeleton required for the engulfment of apoptotic cells by phagocytes.
(B) TAM receptors complexed with the type I interferon receptor (IFNAR). In dendritic cells, TAM receptors—
when activated by the binding of a TAM ligand—form a coimmunoprecipitable complex specifically with the R1
(or a) chain of the IFNAR (Rothlin et al. 2007). This may be associated with the activation of Jak1 (J1) (Zong
et al. 1996). Direct activation of the hybrid TAM-IFNAR receptor by the addition of Gas6 leads to the rapid
tyrosine phosphorylation and activation of Stat1. This dimeric transcription factor then translocates to the
nucleus, where it drives the expression of the cytoplasmic cytokine inhibitors SOCS1 and 3. This pathway is
required for the inhibition of inflammatory responses in dendritic cells (Rothlin et al. 2007; Lemke and Rothlin
2008). See text for details.
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recognized by phagocytes (Ravichandran 2010).

Gla-domain-containing proteins can therefore
bind the surface membranes of ACs. As dis-

cussed below, the interaction of the g-carboxyl-

ated amino-terminal Gla domains of Gas6 and
Pros1 with a PtdSer-containing membrane is a

crucial feature of their activation of TAM recep-

tors, and it is possible that in vivo these ligands
always signal in the context of membrane asso-

ciation.

As depicted in Figure 1, Gas6 and Pros1 ap-
pear to bind toTAMreceptors as dimers, and for

Pros1, multimerization is required for TAM ac-

tivation (Uehara and Shacter 2008). Apart from
this, receptor–ligand pairing relationships and

signaling interactions for the TAM system re-

main incompletely understood. For example,
we do not know the extent to which Pros1 and

Gas6 may heterodimerize, and if this occurs,

how receptor binding and activation profiles of
the heterodimer may differ from those of Gas6

or Pros1 homodimers. Similarly, the extent to

which individual TAM receptors may heterodi-
merize in different cellular settings is also poorly

understood. The preponderance of evidence in-

dicates that Gas6 functions as a ligand for all
three TAM receptors, with reduced binding af-

finity for Mer relative to Axl and Tyro3 (Ohashi

et al. 1995; Stitt et al. 1995; Mark et al. 1996;
Nagata et al. 1996; Chen et al. 1997; Lemke and

Rothlin 2008). Pros1, in contrast, appears to

bind and activate Tyro3 and Mer, with little or
no affinity for Axl (Stitt et al. 1995; Prasad et al.

2006; Lemke and Rothlin 2008; Uehara and

Shacter 2008; Zhong et al. 2010). In an active
area of research, the extent to which Gas6 and/
or Pros1 contribute to the observed activity of

specific TAM receptors has just begun to be dis-
sected genetically. As discussed below, the first

example of such a differential genetic analysis

has recently been reported for Gas6 and Pros1
action inMer-expressing retinalpigmentepithe-

lial cells of the eye (Burstyn-Cohen et al. 2012).

In some settings, the biologically relevant
cellular sources of Gas6 and/or Pros1 required

for TAM activation also remain to be deter-

mined. In several cell types, TAM signaling
appears to be autocrine/paracrine, in that a

TAM-positive cell has frequently been found

to express Pros1 and/or Gas6 (Lu et al. 1999;

Prasad et al. 2006; Rothlin et al. 2007). Pros1 is
expressed at ≏300 nM in the blood, into which

it is secreted by hepatocytes and vascular endo-

thelial cells (Burstyn-Cohen et al. 2009). (In
contrast, Gas6 is present at �0.2 nM in serum,

and nearly all of this is complexed with soluble

Axl ectodomain [Ekman et al. 2010].) Tyro3-
and Mer-expressing cells that transit through

the circulation are therefore exposed to saturat-

ing levels of Pros1. In the immune system, an
important source of Pros1 for TAM-expressing

macrophages and dendritic cells (see below)

may be activated T cells (Smiley et al. 1997).

TAM MEDIATION OF THE PHAGOCYTOSIS
OF APOPTOTIC CELLS

TAM receptor signaling plays an especially im-

portant role in the engulfment and phagocy-
tic clearance of apoptotic cells (ACs) and mem-

branes in adult tissues (Lemke and Rothlin

2008; Lemke and Burstyn-Cohen 2010). In this
process, a TAM ligand, Gas6 or Pros1, serves as a

“bridgingmolecule” that physically links a TAM

receptor, generally Mer or Axl, expressed on the
surface of the phagocyte, to PtdSer, which is

displayed on the surface of the AC that will be

engulfed (Fig. 1) (Wu et al. 2006; Nagata et al.
2010). At the same time, this ligand must also

activate the tyrosine kinase activity of the TAM

receptor for the process of phagocytosis to go
forward (Scott et al. 2001; Mahajan and Earp

2003; Tibrewal et al. 2008; Todt et al. 2008;

Lemke and Burstyn-Cohen 2010).
The first phenotype described in the TAM

TKOs was male infertility, which is tied to the

degenerative death of nearly all germ cells in the
testes (Lu et al. 1999). This cell death results

from a dramatic pileup of AC corpses in the

seminiferous tubules and is degenerative rather
than developmental in nature (Lu et al. 1999);

this is due to the loss of TAM receptor function

in Sertoli cells (Lu et al. 1999; Chen et al. 2009;
Sun et al. 2010). These somatic support cells are

phagocytes; among their most important roles

is the PtdSer-dependent clearance of the enor-
mous number of apoptotic germ cells that are

generated duringmeiosis (Kawasaki et al. 2002).
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It has been estimated that more than half of the

meiotic population dies during each cycle of
mammalian spermatogenesis, and thus the

clearance of these AC corpses (on the order of

108/d in a human male) by Sertoli cells is crit-
ical. This process is TAM dependent; Sertoli

cells express all three TAMs and both TAM li-

gands, and in the absence of TAM signaling, the
phagocytosis of apoptotic germ cells in the tes-

tes is significantly attenuated (Lu et al. 1999).

A similarlydramaticphenotype is seen in the
retina of both TAM TKOs and Mer2/2 single

mutants. These mutants are born with normal

retinas, but by 2 mo after birth, most of their
photoreceptors (PRs) have died (Lu et al. 1999;

Duncan et al. 2003). This is a nonautonomous

phenotypewith respect to PRs, in that these cells
do not express the TAMs. Rather, both Mer and

Tyro3 are expressed by cells of the retinal pig-

ment epithelium(RPE) (Prasad et al. 2006). Like
Sertoli cells in the testes, RPE cells are phago-

cytes (Sparrow et al. 2010). Unlike Sertoli cells,

however, they do not engulf ACs. Rather, the
apical microvilli of these cells engulf andmetab-

olize only part of a living cell—the distal ends

of PR outer segments. These outer segments
(OS) are the rhodopsin-containing organelles

in which light is detected. PRs synthesize and

insert new membrane at the proximal base of
their OS every day, and the distal tips of these

organelles are phagocytozed by RPE cells—also

on a daily basis—to remove toxic oxidative
products generated by phototransduction and

to maintain a constant OS length (Prasad et al.

2006; Coleman et al. 2009; Strick et al. 2009;
Nandrot and Dufour 2010). In Mer2/2 mice,

RPE cells differentiate normally but fail to per-

form this phagocytosis, which leads to the apo-
ptotic death of nearly all PRs (Feng et al. 2002;

Duncan et al. 2003). Unlike the situation with

germ cells in the testes, PR apoptosis does not
occur normally but is instead triggered by the

failure of mutant RPE cells to phagocytose PR

OS. Consistent with the phenotype of the
Mer2/2mice, the PR degeneration seen in the

RoyalCollege of Surgeons rat, a decades-oldmod-

el of retinitis pigmentosa (Bourne et al. 1938;
Edwards and Szamier 1977), has been found

to be due to mutation of the rat Mertk gene

(D’Cruz et al. 2000; Nandrot and Dufour

2010); and in humans, 12 distinct pathogenic
sequence variants in the Mertk gene lead to in-

herited forms of retinitis pigmentosa and retinal

dystrophy (Gal et al. 2000; Ostergaard et al.
2011). Gas6 and Pros1 have been found to func-

tion as independent and interchangeable Mer

ligands in this system. Mouse mutants in which
all Gas6 or all Pros1 are singly eliminated from

the retina have a wild-type number of PRs, but

mice inwhich both Gas6 and Pros1 are removed
display PR degeneration that perfectly pheno-

copies the degeneration seen in Mer2/2 mice

(Burstyn-Cohen et al. 2012).
The TAMs play similarly critical roles in AC

clearance by phagocytes of the immune sys-

tem—most prominently macrophages (Scott
et al. 2001). In humans,.109ACs are generated

every day, but at steady state, these dead cells are

nearly impossible to detect. This is because they
are almost immediately cleared by macrophages

and other phagocytes. In many settings, these

cells rely on the eat-me signal PtdSer to recog-
nize dead cells as targets for engulfment (Ravi-

chandran 2010). Phagocytic removal of ACs is

also prominent during the resolution phase
of inflammation, when large numbers of infil-

trating granulocytes and lymphocytes undergo

apoptosis and must be cleared to terminate an
inflammatory response (Elliott and Ravichan-

dran 2010; Nagata et al. 2010). Incomplete

phagocytosis of ACs leads to the accumulation
of secondary necrotic cells, which constitute a

source of self-antigens. Not surprisingly then,

defects in these TAM-dependent processes are
associated with the development of human au-

toimmune diseases (Gaipl et al. 2007; Shao and

Cohen 2011), and autoimmune phenotypes are
prominent features of the TAMmouse mutants

(Scott et al. 2001; Seitz et al. 2007; Ait-Oufella

et al. 2008; Thorp et al. 2008; Shao et al. 2009;
Lemke and Burstyn-Cohen 2010).

TAM REGULATION OF THE INNATE
IMMUNE RESPONSE

Mechanistically linked to their role in thephago-
cytosis of ACs is the role that the TAMs play in

the feedback inhibition of the innate immune
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response to pathogens. This important regula-

tory activity has been studied in both macro-
phages and dendritic cells (DCs), although the

mechanism of inhibition is known in detail only

in the latter (Rothlin et al. 2007). DCs and other
sentinel cells use Toll-like receptors (TLRs) and

other pattern recognition receptors to detect

the presence of invariant molecular patterns,
such as lipopolysaccharide and double-strand-

ed RNA, which are associated with bacteria,

viruses, and other pathogens (Akira 2006; Beut-
ler et al. 2006). Activation of these receptors

leads to the production of proinflammatory

cytokines such as tumor necrosis factor (TNF)
a, interleukin (IL)-6, and type I interferons

(Fig. 3) (Iwasaki and Medzhitov 2004). Al-

though these cytokines are required to combat
infection, they are powerful agents that must

be controlled after the innate immune response

is mobilized, because unrestrained cytokine sig-
naling results in chronic inflammation and can

lead to a response against self (Marshak-Roth-

stein 2006).
InDCs, theAxl gene is expressed at amodest

steady-state level before pathogen encounter

but is strongly induced by TLR activation and
subsequently by type I IFNs through a JAK-

Stat1-dependent mechanism (Rothlin et al.

2007). The up-regulated Axl protein then binds
to and co-opts the type I IFN receptor (IFNAR)

by forming a complex with the R1 chain of

this receptor (Figs. 2 and 3). In so doing, Axl
switches the IFNAR signaling modality from

proinflammatory to immunosuppressive, by

driving the activation of the genes encoding
the suppressor of cytokine signaling (SOCS) 1

and3(Rothlin et al. 2007;Yoshimuraet al. 2007).

An SH2 domain of these cytoplasmic inhibitors
binds to phosphotyrosine residues in JAKkinas-

es that are associated with the IFNAR and other

cytokine receptors (and to phosphorylated
tyrosine within the receptors themselves), and

a carboxy-terminal SOCS box then mediates

proteosomal degradation of associated pro-
teins. The amino-terminal regions of SOCS1

and SOCS3 also contain a kinase-inhibitory re-

gion that acts as a JAK pseudosubstrate (Yoshi-
mura et al. 2007; Croker et al. 2008). In this way,

the induced SOCS proteins, whose expression

in DCs is very largely dependent on activation

of the TAM-IFNAR multimeric complex, ter-
minate the inflammatory response to pathogens

(Fig. 3) (Rothlin et al. 2007).

This pathway is an important inhibitor
of inflammation in DCs and macrophages.

The induction of SOCS 1 and 3 by type I IFNs

is markedly blunted in Axl-deficient DCs. At
the same time, the induction of these proteins

by direct activation of the TAM receptors—

through addition of Gas6—is equally depen-
dent on the presence of both the IFNAR and

associated Stat1 (Rothlin et al. 2007). The co-

dependence of the TAM and IFNAR receptor
systems for immunosuppression provides an

explanation for the long-standing conundrum

that type I IFNs can be both proinflammatory
and immunosuppressive in sentinel cells of the

immune system. If a type I IFN binds to the

free IFNAR, it delivers a proinflammatory
stimulus, but if it binds to the TAM-IFNAR

receptor complex, it drives an immunosuppres-

sive response (Fig. 3) (Sharif et al. 2006; Rothlin
et al. 2007; Lemke and Rothlin 2008). The pro-

vision of an immune stimulus—for example,

through activation of TLR4 with LPS—to a
TAM-deficient cell or mouse inevitably leads

to a hyperelevated inflammatory response (Ca-

menisch et al. 1999; Lu and Lemke 2001; Roth-
lin et al. 2007). This means that deficiencies

in TAM signaling are always associated with

sustained immune activation and chronic in-
flammation.

TAM SIGNALING AND AUTOIMMUNE
DISEASE

It is therefore not surprising that mouse mu-
tants in TAM receptor genes eventually develop

broad-spectrum autoimmune disease (Lu and

Lemke 2001; Scott et al. 2001; Radic et al. 2006;
Wallet et al. 2008; Rothlin and Lemke 2010;

Shao et al. 2010). This disease, which is partic-

ularly severe inAxl2/2Mer2/2double mutants
and in TAM TKOs (Lu and Lemke 2001), has

clinical features of both systemic lupus erythe-

matosus (SLE) and rheumatoid arthritis (RA),
and is characterized by swollen joints, IgG de-

posits in the kidneys and other tissues, and pro-
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nounced splenomegaly and lymphadenopathy.

TAM mutant mice also display relatively high

titers of antibodies to autoantigens, includ-
ing double-stranded DNA, phospholipids, and

ribonucleoproteins (Lu and Lemke 2001; Scott

et al. 2001; Radic et al. 2006). Crossing Mer or

Axlmutants into existing mouse models of au-

toimmune disease has generally been found to
exacerbate disease (Weinger et al. 2011; Ye et al.

2011).
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Figure 3. A TAM-regulated cycle of inflammation in dendritic cells. An initial recognition phase (1, green),
mediated by Toll-like receptors (e.g., TLR4 on the cell surface and TLR3 in endosomes) and other pattern
recognition receptors triggers a kinase cascade that leads to the activation of transcription factors (IRF3/7, AP-1,
NF-kB) that drive the production of an initial bolus of type I interferons (IFNs) and other proinflammatory
cytokines. In a second response phase (2, blue), the levels of these cytokines are elevated via a feed-forward, JAK-
STAT-dependent amplification loop. This same JAK-SAT pathway drives the transcription of the Axl gene. In a
final resolution phase (3, red), the induced Axl protein binds to the R1 chain of the type I IFN receptor (IFNAR).
The hybrid TAM-IFNAR receptor activates a Stat1 dimer that drives the transcription of the genes encoding
SOCS1 and SOCS3. These proteins inhibit both TLR and cytokine receptor signaling, and thereby return the
dendritic cell to baseline (Rothlin et al. 2007; Lemke and Rothlin 2008). The features of this self-limiting cycle
predict that the provision of an immune stimulus to a dendritic cell with diminished TAM signaling will always
result in a hyperelevated inflammatory response. See text for details. (From Rothlin et al. 2007; adapted and
reprinted, with permission, from the author.)
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Defects in the clearance of apoptotic cells

and unabated type I IFN signaling—both of
which are direct consequences of TAM de-

ficiency—are also both thought to drive the

development of human autoimmune diseases,
including SLE, RA, and inflammatory bowel

diseases (IBDs) (Gaipl et al. 2007; Ronnblom

and Pascual 2008; Nagata et al. 2010). Corre-
spondingly, several lines of evidence suggest

that diminished TAM signaling may contribute

to human autoimmunity (Rothlin and Lemke
2010). There is an anecdotal medical literature

that ties low circulating levels of Pros1 to IBDs

(Song et al. 2000; Zezos et al. 2007; Cakal et al.
2010; Diakou et al. 2011) and a much larger

literature that establishes an association be-

tween low Pros1 and SLE (Song et al. 2000;
Brouwer et al. 2004; Meesters et al. 2007). A

recent analysis of a 107-patient SLE cohort

found that levels of free protein S—but not
Gas6—were significantly lower in SLE patients

with a history of serositis, neurologic disorder,

hematologic disorder, and immunologic disor-
der, and that low Pros1 levels were correlated

with other disease-associated risk factors such

as reductions in the complement proteins C3
and C4 (Suh et al. 2010). Polymorphisms in

the Mertk gene have been tied to SLE (Cheong

et al. 2007), and a clear genetic link has also been
made with respect to the development of mul-

tiple sclerosis (MS). Here, a large genome-wide

association study identified polymorphisms in
the Mertk gene as risk factors for the develop-

ment of MS (Ma et al. 2011; Sawcer et al. 2011).

The most widely prescribed drugs used to
treat the chronic inflammation associated with

many human autoimmune diseases—namely,

glucocorticoids (GCs) such as prednisone and
prednisolone—have recently been shown to po-

tentiate TAM signaling. One well-described im-

munosuppressive activity of GCs is their ability
to stimulate the phagocytosis of ACs by macro-

phages (Liu et al. 1999). Agonists for the liver-

X-receptor (LXR) family of nuclear hormone
receptors display this same activity (A-Gonzalez

et al. 2009). Remarkably, the ability of both

GCs and LXR agonists to stimulate macrophage
phagocytosis of ACs has recently been shown

to be due entirely to their ability to up-regulate

expression of Mer (A-Gonzalez et al. 2009;

McColl et al. 2009). These and related findings
suggest that activation of TAM signaling may be

therapeutic in the context of autoimmune dis-

ease. In this regard, in vivo delivery of adenovi-
ruses expressing either Gas6 or Pros1 has been

found to significantly diminish disease symp-

toms in a mouse model of collagen-induced
arthritis (van den Brand et al. 2013).

TAM RECEPTORS AS TARGETS FOR
VIRAL INFECTION

A very active area of current research relates to
the role of TAM receptors in infection by virus-

es. In a process termed “apoptotic mimicry”

(Mercer and Helenius 2010; Mercer 2011), the
eat-me signal PtdSer has been found to be dis-

played on the extracellular membrane surface

of several enveloped viruses, including vaccinia
virus, cytomegalovirus, Lassa fever virus, and

HIV (Callahan et al. 2003; Mercer and Helenius

2008; Soares et al. 2008). In facilitating infec-
tion, the TAMs do not function as direct virus

receptors. Rather, Gas6 and Pros1 again serve

as “bridging molecules”—this time between a
membrane that surrounds a virus capsid and

the cell that the virus will infect (Fig. 1).

Tyro3, Axl, and Mer have been found to
function as entry factors for the Ebola/Marburg

family of hemorrhagic fever filoviruses (Shi-

mojima et al. 2006, 2007). Closely related cell
lines that showmarked differences in infectivity

with pseudotyped viruses containing Ebola or

Marburg envelope glycoproteins, or in infectiv-
ity with the Zaire or Reston strains of bona fide

Ebola, were distinguished principally by TAM

expression. Lines with high levels of Axl and/
or Tyro3 were more readily infected than TAM-

negative cells. Introduction of either Tyro3 or

Axl into filovirus-resistant cells rendered these
cells susceptible to infection, and anti-Axl anti-

bodies antagonized infection of Axl-expressing

cells with MLV viruses pseudotyped with Ebola
glycoprotein (Shimojima et al. 2006).

Similar results have been obtained using in-

fection of endothelial cells with lentiviral vec-
tors pseudotyped with Sindbis virus glycopro-

teins (Morizono et al. 2011). These experiments
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also identified Gas6 and Pros1 as “bridging fac-

tors” that link PtdSer on the external surface
of the viral envelope to Axl on the target cell.

Depending on culture conditions, introduc-

tion of TAM cDNAs potentiated virus titers in
infection-resistant cell lines �50-fold. This has

also recently been observed for infection by the

Dengue (DENV) and West Nile viruses (WNV)
of the flavivirus family (Meertens et al. 2012).

An unbiased cDNA transfection screen in hu-

man 293T cells, which are resistant to infection
by these viruses, identified Tyro3 and Axl as

factors that greatly enhance infection. Consis-

tent with the interaction model depicted in Fig-
ure 1, this enhancementwas found to be entirely

dependent on the presence of a TAM ligand and

also on the expression of PtdSer on the extra-
cellular leaflet of the virus envelope (Meertens

et al. 2012). In general, the above findings have

been interpreted to suggest that TAM receptors
serve as docking sites for TAM-ligand-bound

virus particles. However, mutational analyses

also indicate that tyrosine kinase activity is
required for Axl potentiation of infection by

Ebola (Shimojima et al. 2007) and DENV

(Meertens et al. 2012), and thus active TAM
signaling appears to be required for the poten-

tiation of virus infection just as it is required for

the phagocytosis of ACs. Given that (1) Axl ac-
tivation potently suppresses type I IFN signaling

in DCs and macrophages (Sharif et al. 2006;

Rothlin et al. 2007; Shao et al. 2010), (2) type I
IFNs are strong antiviral agents (Diamond

2003), and (3) suppression of type I IFN signal-

ing is a mechanism that viruses exploit repeat-
edly as a means of immune evasion (Diamond

2003; Bonjardim et al. 2009; Versteeg and Gar-

cia-Sastre 2010), the activation of TAM receptor
signaling by viruses may prove to be an excep-

tionally effective mechanism of viral infection.

TAM RECEPTORS AND CANCER

There is a long association of TAM receptors
with cancer—the first cDNAs for Axl and Mer

were cloned from myeloid leukemia and lym-

phoblastoid lines, respectively (O’Bryan et al.
1991; Graham et al. 1994), and a truncated

form of Mer (designated v-eyk) was identified

initially as an avian retroviral oncogene (Jia et al.

1992; Jia and Hanafusa 1994). Axl was named
from the Greek anexelekto, meaning “uncon-

trolled.” Over the ensuing two decades, hun-

dreds of papers have appeared that link TAM
receptor and ligand expression to various forms

of cancer (Linger et al. 2008; Verma et al. 2011).

In general, these studies have reported overex-
pression or up-regulation of Axl, Mer, Tyro3,

and/or Gas6. In many settings, however, a de-

finitive demonstration that overexpression is
causal for particular features of cancer devel-

opment or progression has not been made. Ele-

vated expression of TAM signaling components
has been reported for leukemias (Graham et al.

1994, 2006;Hong et al. 2008), gliomas (Hutterer

et al. 2008; Keating et al. 2010), colorectal car-
cinomas (Craven et al. 1995), breast cancers

(Berclaz et al. 2001; Gjerdrum et al. 2010), gas-

trointestinal stromal tumors (Mahadevan et al.
2007), hepatocellularcarcinoma (He et al. 2010),

melanoma (Quong et al. 1994; Koorstra et al.

2009; Zhu et al. 2009), pancreatic adenocarcino-
ma (Song et al. 2010), and prostate cancer (Wu

et al. 2004; Sainaghi et al. 2005), among several

others.
Expression of Axl is correlated with an ad-

verse prognosis in acute myeloid leukemia

(Rochlitz et al. 1999), glioblastoma multiforme
(Hutterer et al. 2008), pancreatic cancer (Koor-

stra et al. 2009), and esophageal adenocarcino-

ma (Hector et al. 2010). Axl up-regulation and
activation have also been found to be a clinically

significant feature of resistance to EGF receptor

inhibitor and PI3K inhibitor therapies for non-
small-cell lung cancer (Zhang et al. 2012; Byers

et al. 2013). In many settings, Axl and/or Gas6
expression is most prominently associated with
tumormetastasis, rather than growth of the pri-

mary tumor (Gjerdrum et al. 2010; Song et al.

2010). Consistent with this association, a small-
molecule inhibitor of the Axl tyrosine kinase

has shown efficacy primarily with respect to a

reduced metastatic burden, rather than prima-
ry tumor growth, in mouse models of breast

cancer metastasis (Holland et al. 2010). The

link between TAM receptor expression and tu-
mor metastasis is interesting in light of the im-

portance of Axl and Tyro3 in the migration of
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gonadotropin-releasing hormone (GnRH) neu-

rons from the olfactory placode to hypothala-
mus of the brain (Allen et al. 2002a; Pierce et al.

2008). This migration of GnRH neurons in-

volves Gas6 activation of the same downstream
signaling pathways—PI3 kinase, ERK1/2, and
Rac via Ras (Allen et al. 2002a,b; Nielsen-Preiss

et al. 2007)—that are engaged downstream from
TAMs in tumor cells.

TAM REGULATION OF THE VASCULATURE
SYSTEM

TAM signaling plays an important role in the
homeostatic regulation of blood vessel integri-

ty and permeability. The TAM ligands Gas6

and Pros1 were first identified in and purified
from aortic endothelial cells (Stitt et al. 1995),

and studies using conditional Pros1 knockouts

have shown that vascular endothelial cells are
a major source of the Pros1 that appears in the

circulation (Burstyn-Cohen et al. 2009). Axl and

Tyro3 are also expressed by the vascular smooth
muscle cells that surround these endothelia,

and Gas6 and Pros1 have potent trophic effects

on these cells, both in vitro and in vivo (Gasic
et al. 1992; Fridell et al. 1998; Melaragno et al.

1999; Collett et al. 2007; Son et al. 2007; Cavet

et al. 2008). The PI3 kinase/Akt pathway is again
implicated as a key effector of TAM signaling in

smooth muscle.

Damage to blood vessels results in the up-
regulation of both Axl and Gas6 (Melaragno

et al. 1998), and a complex pattern of differen-

tial regulation of Axl, Mer, Gas6, and Pros1 has
been reported in human atherosclerotic plaques

(Hurtado et al. 2011). Defects in the clearance of

apoptotic cells from these plaques are linked to
progression of advanced atherosclerotic lesions,

and the role of compromised TAM signaling in

cardiovascular disease is a subject of active study
(Ait-Oufella et al. 2008; Thorp 2010). Pros1þ/2

micewith a 50% reduction in Pros1 display ves-

sel breaches, with leakage of blood into the
parenchyma of tissues (Burstyn-Cohen et al.

2009). Pros1 has also been linked to vascular

integrity in the brain. Pros1, signaling through
Tyro3, has been implicated in maintenance of

the blood–brain barrier and has been found to

ameliorate hypoxic/ischemic blood–brain bar-

rier disruption (Zhu et al. 2010).
In addition to these direct activities, TAM

signaling has been shown to affect vascular in-

tegrity indirectly, through the regulation of
platelet function. Loss of one or more TAM re-

ceptors has been observed to impair stabiliza-

tion of platelet aggregates, at least in part by re-
ducing platelet granule secretion. Gas6 activates

PI3K/Akt signaling in platelets and stimulates

tyrosine phosphorylation of b3 integrin, there-
by amplifying thrombus formation (Angelillo-

Scherrer et al. 2001, 2005).

PROSPECTS

In addition to the biological settings outlined

above, there is a significant body of literature
to suggest that TAM signaling may play regula-

tory roles in the nervous system. Microglia, the

tissuemacrophages of the brain, also express Axl
and Mer (Gautier et al. 2012), and there is evi-

dence that TAM signaling through these recep-

tors controls the phagocytosis of ACs and the
inhibition of inflammation in the CNS just as

it does inmacrophages andDCs in theperiphery

(Grommes et al. 2008; Weinger et al. 2011).
Tyro3 is also prominently expressed by many

CNS neurons (Lai and Lemke 1991; Lai et al.

1994; Prieto et al. 2000, 2007). Its role in these
neurons has for themost part remainedobscure,

however, and therefore this area is wide open for

future study.
As noted at the outset, TAM receptor and

ligand functions are, in the main, devoted to

the homeostatic regulation of phenomena that
are regular, cyclic, and circadian. These signal-

ing proteins operate in adult, fully differenti-

ated tissues that are subject to constant challenge
and regular renewal. These features, together

with the fact that the TAMs are RTKs expressed

on the cell surface, make the TAM system a par-
ticularly favorable target for therapeutic inter-

vention.
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