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BIOMAGNETIC LOCALIZATION FROM
TRANSIENT QUASI-STATIC EVENTS

John C. Moshec Richard M. Leahy, and Paul S. Lewis

LOS AiaMOS NationalLaboratory, MEE-3, Los AhIMOS, NM 87545
Signal and Image Processing Institute, University of Southern California Los Angeles, CA 9QOW -2564

ABSTRACT

Sensory stimuli, such as auditory, visual, or somato.sen-
say, evoke neural responses in very localized legions of the
brain. A SQUID biomagnetometer can measure the very
weak fiekk that are generated outside of the head by this
response. A simple sorrrce and head model of current
dipoles inside a conducting sphere is typically used ;O inter-
pret these magnetic field measurements or rnagnetoenceplr-
alogram (MEG). Locating dipole sources using data
recorded from an array of biomagrretic sensors is distin-
gui ,bed from conventional army source loerdization tech-
niques by the quasi-static transient nature of the data, Here,
the basic MEG model is reviewed, then a localization exam-
ple is given to motivate the need for partitioning the data to
improve estimator performance. Tme-eigenqiectrum anai-
ysis is introduced as a means ofpiu-titioning and interpreting
spatio-temporal biomagne(ic data, Examples using both
simulated and somatosensory data arc pre.senwd.

1. INTRODUCTION
A sensory stimulus, such as auditory, visual, or .sorna-

tosensory, evokes a neural response in a very localized
region of the brain. An array of Superconducting QIJanturn
Interference Device (SQIJID) biomagnetometcrs may be
used to measure the vciy weak magnetic field generated by
the.w ntxrrai cumcnLs. Ihxe magnetic field mca\uremcnL$
or magnctocnccphaiograrn (MkX3) provide a non-inva.sivc
method for studying functional activity in the humrm bruin
with millisecond temporal rc.soluti(m, Onc apprwch to the
intcrprctati(m of MEG data is to estimaw the Imrarnetcrs
describing the inlcrmd SOIJWCSthal proriucc the evoked
field,

The inverw prvbicm in MIX is highiy iii-posed unicss a
simplifying source modci ISirItrwiuccxi, “Ihc simpicst modci
for an evoked response is the “dipr)ic in ii sphere,” where the
Priw ncurai currents arc modeiwi as a currcnl (Iipoic or
set of dipoics, and the head hi mndckxi M rr set of homogc-
ncowi sphcrkxi Lwnchctivc xhciis, The gloimi voiwrw cur-
rents distributed over the shcils arc modt’icd M the return
currcnL\ from (he,scdipr)ics, ‘Il~c m(rricl for MIX; contains it

trnnsfcr fwlction (K icxd lichl n)(~ici thnl rcialcs (hc (iip)ics’

“rhlflw{~k #M RU~MNWl hy Ihr IAW AIUIH,RNatl,M\al i.AhlMWMy, {qwftlcd

l*y tk I lnlvrfsll y {)(( dif(unla (tw hr I lnllr41 Slalrw lkpMtIwIIl (I( I:twfgy
umk c[)ntrac! W 1405 IIN(I 1(1, an(l by IIIr liap IIrl IaII lI~m Iva IIvr

Nrwuttl I+lnd d Ill? [Iluvrtally (If Suullletll ( ‘dlflmlua ( ‘olIrqMmdrnlr

10 Ih k I.eahy, Stand A Inmgr I’t[wennlng in.IIIuIr, I Imvrtmy (If SINIIII
ern (’dlf,xnlm, I IW Anaclra, (’A Wlollt) 1$(A

intensities, orientations, and locations to the externally mea-
sured field. The general inverse problem is then to find the
location and moment parameters that describe exh dipole,

The simpiest approach to localization is m fit one or
more dipoles to each temporal snapshot, Our previous study
of the Cramer-Rio Lower Bounds (CRLB) [2] associated
with MEG based localization of multiple dipoies indicates

that acceptable accuracy will probably not be atwjned with
a singie snapshot, Under the assumption that the dipole is
“stationary,” i.e., the sources do not move over time, uml~i-
ple snapshots can be used to improve localization
accuracy [3].

An important property of evoked response measure-
ments is that they are inherently transient, The transient
evoked rcspon.se is typically captured inside a iargcr acqui-
sition window, and no gerwrally agrtxnble uxqxxai m(xicl
exists to assist in isolating the icspoow from the back
ground activity and experimental artifacts. In this paper, we
introduce a technique for parsing the data to isoia!r the tran-
sient events using the SVD of the spatio-temporai dati~a$ ti
function of window width and deiiiy, In addition, this tech-
nique can be used to identify tie total number of dipoles
involved and thciJ individual activation periods within the

transicilt event.

2. FORWARD MODEL

TIc simpicsl modci in usc is it dipoit in a sphwicuiiy
symmetric head. Radiaiiy oriented dipoies produce no rnag.

nctic fieid outside the cnncenlric conducting sphcrr!s,
regardless of the number of spheres wc c(msidcr, umi return
voiunw cum*nL\ fWodUCCno CXtCt?lid mii~wtk Iic!itis in thl!
IWdiili direction. Safvw [4] proviciw il Ih(rrougil (icrivi~tion
of OK gcncrni MM; fmmuius, then presents the sin@d~ca-
tk)n~ that rcrwit for the sphcricatiy syrnnwtric herd mcdri
With radi:diy oricnte(i .scnwxs, }:or rtiiidiy oricnttxl ,Wnsom,

Urc mcwurmxi ficid is Ml’CiiltiVCiy simpic function 0[ tnli,~ Ihu
tWlgC[ltilli componrnm+ of thC dipr)ic Inoil)cllts, ‘il)(! riidiidl~

or’iurkxi MIX; sen~w coii is nswuncd to make A p)inl IIILIJ
surcmcnl of Ihc flldiid llliigll(!tiC fkill, I;or u di~)ic kn’iltt’ti

tit /, [he ,sciii:wrndiili miqJUMiC fieir-t11(~j ,gtxnsor i(KatI()~ p
CIUI h’ l!Xill(’WCd ii%111(’inner pr(ldm:t {)1’~iilll Vlx’hll g :UNI
Ihc (liiM)ic Inonwnt q,

II(/?) =g’f(l, p)q , (! ’(.JIJ



F& the ease of the spherical head modei and the Aid
sensor measurements, this gain vector is a special ea.. of
the Biot-Savart law and can be expressed as

where the cotxdina(c systcm is assumed to be head
centered, r is the unit radial orientation of the sens(w coil,
~ is the perrneabdity of free space, and “ x “ denotes the
vector Cross producL

For multiple dipoles, the vector of measured samples at
time f can be-modiled as

A {I) = [G(/,) G(f2) .. . G($ij

= G(lj~~(l)

J
‘?2(0
...

qp(l)

(EQ 3)

where A(f) repments the column vector of magnetic field
measurements. lhe vector 1{ refwtwents the three-
dimensimaf location of the Ith current dipole, and q{l)
represents the eorresponcfing three-dimensioned dipole
moment at drm: 1, The MF~I gain matrix G(l) for a single
dipole is tbe coneatenalimr of all gain vectors g(li) for all
sensor locations. G(l,) represents the “gain tmnsfrx”
matrix for the dh dqwlc, which relates the dipoles’
momenLs tc~ the vector of mea.w.m!mtmts and hw it
nonlincw dependence on tilt dipole locations. Column
vcctols 1 and q(r) are both concatenate”ms of the
ptrarnetm for p dipoles,

T T

1 = [/,, ,.., /J’ and q(I) = [q,(t),....qp(f]’.
3. LOCALIZATION

An important inverse protdcrn is w dclc!rnine the IOU-
tion of Ute dipoles that 1(mid generate the observed $pilli(b
tempordl daut. In [1], wc cxtimincd Ioadization haul on
standard nonlinear Iciwt-squams and showed [hii( the vari-
ous models could he brought into ii unifying algclwaic
model to which modm array pl [nwssing techniques couid
br! applied. Problems iissoci:llcd with lhr! rwnlinrxu lcMt-
squarc~ method inuludc slnmg I(xA minima tind unknown
model (wdcr, Ily irrtroducing /1variathm of “divcr,scly ~Lu-
jmd” Ml JS1(’, wc WLW$MC [() .~iu) UW three r.finwnsi(mal
volurnc f)!’ the twain .SCiUChillJJ [(X mullifrk diprks and 11)11s
rlvo~d local Ininilnil. “I”k number of CICIIl(!I1[ill dipt~lc
sources is dekxrnincd by lhe rwrk of Uw sigtud suhspncc,

I.cast-squares anfl suhsp,icr! cstimat[mi tmplicilly (w
explicitly llMkl! ‘Ml! [d’ lhC !i[liiliid conchti(m tllillri X, In it
t ypictd MI;(; ltppli~’i~tioti, wc IIIi@I Lxdlw’t 2(N)IIM of d;it;~,
yCt (lhWVL! lM lhC kigllill (rely exists fnml :dxjul 751115t{)
12S 111sIf WC l’(mn Ihc! Spiltiid cx~rmliltitm malrix l’r{~n Ihc
entire 2(N} tlls (~f (bti], WC rcducc the SNR in thr c(}tl~lillitjl]
millriX b)’ c(lcctivcly llVCrilpillg Ill I(M) U)IK’11m)i,u’, Whi(’h

dt’~llt(k’i C!41illliitor ~tlollliiU1l’(”

As an example, we simulated a sphericaf head model and
37 sensor array pattern, as described in [2]. We simulated
the placement of two dipoles spaced two em apart just under
the surface of the skull, and gave each dipole a Hamming
window shaped activation sequence with a peak ampli(udt!
of 10nanoamps. The sequences were arranged such UM the
first dipole freed completely, then tie second dipole fired
wiUr no overlap with the first. The overlay of afl simulated
time series measured at the 37 sensors is shown in the top
portion of Ilg. 1.

A nonlinear least squares estimator (as described in [1])
was then run with 200 different realization: of while ran-
dom noise with a standard deviation of 70 femtoteslas. ‘Ilw
choice of signal suength and noise selections are described
in [2], llc standard deviations on the localization emor for
the two difmles was 1.81 mm and 2.14 mm, when estimated
using afl of the data.

We then partitioned the sequence in half, reducing the
estimation to two one-dipole problems. ‘I%e standard dcwia-
t.ionon the localization error drops to 1.00 mm and 1.13 mm
for the two dipoles. Thus the partitioning of t.be data from
one two-dipole problem into two one-dipole problems
improved the efficiency of the Arnator.

This simulation assumed known model order, By focus-
ing the problem to two one-dipole problems, tbe nonlinear
estimator can discard noisy snapshoki that degrade its per-
formance. As discussed in [1], MEG-M LJSIC WASintro-
duced to overcome some of the problems with order
wlection and local minima encountered in nonlinear leMl-
squares. }Iowever, estimating the strbspace also requires
careful attention m partirming, since the subspacc es(imirtcs
are sensitive to noisy snapshots,

In order to improve the subspace and Ioealizatiorr esti-
mates, we must identify the extents of the evcrms of intertist
and partition the time series accordingly, Most signaf delcc-
tion algorithms rely on an explicit temixral model, but tern-
poml models in MFZI rewarch arc subjrxt to controversy,
Consequcndy, a nrrnpammetric approach to partitioning is
more appropriate,

4. TIME-EIGENSPECTRUM ANALYSIS
Wc approach the pardtioning problcm by using Urc tcm-

pori cohcr-ence across the srmsors evident lrom lhc quasi-
static forrnula(ion of the problem. Time-cigcnsfw(rum
01:) UtlilfySiSis ii novel mcUtod of examining ttw SilltlliUity

of Urc mpon.w of several sensors over a prcsmibrx! block of
time. As the intensity of a dlpoliu source !Iuctuatcs, its sig-
llid arrives SilIIUlliUMX)USly ill till sensors. If WC pliKC illl

appropriatdy sired window tit Uw proper instance in lime
~(}und u s! I)@ dpolc, wc fhIIJ thii[ the mnk of (his window
is One, ICC.,h! IclI]p)rid SiglldS itlTi Villg itl ttil SCllS()~ MC

perfectly cohmmt, If two indcpendcn[ signals u.rcaclivc in
this window, wc ob,servc tint UU9rank is two

At n piuti~uliu instnncc in time, wc begin the iuudy~is hy
crculing M window d width OIIC, obviously, a sin~k Iimc
slice is pcrlcctly simihu wiU\ ikelf, Wc pr(rcccd hy Iuldiny
UK!prcwitm~ Iimc dice to form il windr)w of width Iwo, Illrll
Ihmc, hmr, clc,, uulil wu m’lwh .somc upper wimh~w widlh
by dcsigll or dnt}i limitation I;t)f cac.h window width, wr
take i! nwasurl’ {}( UN similarity ()( MC windt~w, (Imc’riluxl
Mh)w Wc Ihrn slide this window lt)rw;ml (mc Iimc sli(c,

-Y
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FIGURE 1, Simulation Time-Eigenspectrum, The rank 1
contour plots reveal that the two signals together are
insutfieiently described by a rank one subspace. Each
signal can however be te~orally isolated,

and repeat the process. TM resull is a two-dimensionaf
function. $( I w), with one dimension corresponding to the
most recent sample, (, in the window and the other the win-
dow Width, W.

The simifarhy measum we employ is multidimensional
and is derived from the singular values obtained from an
SW] of the window We form ii matrix from w .sequendal
snspshofs of tie Ma+ ending al time slice A(r), [krwfing ~lw
singular vahws by fhe orderedvector s(f,tv), we form a vec-
torof lhe cumulative square of the singtrfar values, nommf-
i7zd by (he sum of the .squart’dsingular vafucs, Thus, thcjtfr
elcrm.mt of tic vector similarity memurr: af tirnc t for win-
dow widfr w is cafcu!akd as

I(I, w)= svif(lA(/ -w+ 1). . A(l)])

~
~ (f u).\, , ‘ (l:Q 4)

~ (f, w) = !:-!..-.—i
IIS(I, W)l[
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FIGURE 2. Simulation Tima-Eigenspectrum (cent’d),
The rank 2 contour plots reveal that the individual
responses are not much improved with a second
eigenvalue.

4.1. Simulation
Using the Hamming-shaped activa[iorr sequcncc

descrihcd shove, we simulated two dipoles fuing sequen-
tially, ‘l?Ie noiseless time series was five poinLs of no signaf,

then a 40 pohrt 1{amning sequence for the first dipole, lfwn

a 40 point Hsmming sequtmee for the seeond, then finally 5
pohtLs of no signal, for a Iotii] of 90 sarnpltw, The time mu
across all 37 simulated .sen.sorsis shown in the KY portions
of Fig, f and Fig, 2, with additive random white noise; WC
standarddeviation wixs 70 fcmlotesfiw Ile bolwm pwtions
of these figures show tbc rank 1 and rank 2 time-eigcnanal-
ysis contours. i.e., ~l(l,w) and j2(l, w’) respcctivcly, ‘1’hc
ahsciwi gives the time index of h Icading edge of the win-
dow. and thr ordinate gwcs (he width of the sliding window,

The contour intcrwds indicate tie perccrmigc of I()[itl
“energy’” (square of the h’robcnius norm) in Lhu window
CXMNAMX1in th~ suhspil~~. In i-ig, 1, VW coumurs are iihov~
f!()% for small wiwh)ws ccnm cd {m the rcsfxmse$o indicat
ing that M)% of the signid energy in Urcgiven window Ciill
he WCrikf by the first ci~cnvaluc, ‘1’hc contlmrs riipidly

drop for srrmll windows rmkmxl on Ihc noise inlcrvuls, and
tltCconumr Shows [hill Ik first cigl!IIViilUC oldy ilCCOUIllSIor

25% 0[ the signal cncr~y in the Iriinsisli[m and cnd rcgi(ms.
Altfmugh O)ccxm!er of Uw msprm.ses is visihlc in (his sin!u-
Imd dat;h the frarls!slimls in the contours mtm clearly shr)w
tic scyntcnts dominiw!d hy either noise [jr sigmd,

in Fig, 2, Ihc contours refrrcsem t.hc perccnmgc energy
CotttitinWl hy the tirst [w() dipoles, ‘IM windows conImnIII~
otdy onc mlivc dipdc .Sh(NVSrrlnfl Inmewics in p!rc’tlllil~c’
cncrfly Ihlll (h(~,w v{ml;lining h~th diprdcs ‘1’hc 75(K f’t)ll.
hmrsurc tw~inttit)g 10 merge in the uplwrrc~itmkwhl{lt lcp-
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FIGURE 3. Ring Finger Stimulation, Rank 1 analysis.

resent windows that encompm both dipoles. AJthough UM
noiseless data is rank IWO, the proximity of the dipoles and
tbe intensily of Ure noise make it diftiwll in this simulation

k) distinguish the ovelafl data w rank Iwo; howr!ver, wc do
appe.w clearfy justified in partitioning the data imo two dis-
tinct wt.!!.

This simulation is somewhat transpanmt, since the two
response .sequenccs are mostly visible, and ,.. udenl parti-
tioning might be possible by inspection afone, However, tlw
simulation was simplified to highligh[ some of UW c<mlours
m*n in aetuaf data and to assist in their in(crprcuation. In lhc
next example, we apply this techniqrrc to MIX] somalosen-
S(rry data.

4.2.Somatosensory Response

In this experiment, hiomagnetiu sensors at 77 ~Jsilitws
about the surface of the hexf recorded UJCevoked rest~mw
of *C ring finger 10 picz(relrx:tric slimuluti(m I:ig, 3 and

Fig. 4 show in tbcir top portions the ovcrfa y of tbc rcsfnm.w
(avemgcd from 3(N) triafs) amoss all sensors The timc”intfcx
corresponds 102 ms intcrwtls, and t.hcfirst 20 .samfiu visi -
hk! arc part of the pfr!-stimllhs inlt!tvaf, A slhmrlus Wtifacl
is prrxm at t.imc sampk 55, and lhc first dominant twurid

rcsp)mc occurs 40 ms Inter at tirnc in(k x 75, A ,Sec(mdary
response is cvidcn[ beginning nnmnd lunc sample i (10

Wc ignore the stimulus artil:lct id focus (m the [w[~
evoked rciponscs. ‘1’hc ctm~ours indicwc thi~t the first
rcspmsc is 0( low rank for t~IIIY ittrn)ut 15 sitltlrl~~ :JJNINprc-
mxicdnnd f(dh)wcd by rcl;ltIvrty itw(~fwlcntand low Ix)wcr

regions ‘Ilk scc(mtf rrsfn)mc ilplWllr\ to lic more appropri-
tilr.’ly In n rnnk 2 SUl)Sp}i(+Ctbut only up I() uhout time
SIUIiplC 12f. Althtmgl) ihc sigwl It’v($ls f($nl;iin [~lil[iv~ly

I
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FIGURE 4. Ring Finger Stimulation, Rank 2 anatysis.

active beyond sample 125, the contours indicate a drop in
similarity.

Tbc contour transitions guide bow we mighl partition the
data m extract tbe two responses, The first response region
is also obvious in the data but not so obvious is U)c high
rank of tbc low power regions surrounding it. ‘he onset of
the seared response is also somewhal vkiblc in the data, hut
the contours assist in trimming tbc upper end of the
resfxmse, wbcre visible inspection of the data &Ks nol indi-
cate where we xbould trim.

Finally, we mrrrncnt on the computational load in per-
forming the numerous SVDS required Tbc two examples
prescnttxf each required about five minutesonaSPAR(’330
or fifwxn minutes on u 486-33 Mllz, both running
MA’11.AII.
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