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ABSTRACT

Sensory stimuli, such as auditory, visual, or somatosen-
sory, evoke neural responses in very localized regions of the
brain. A SQUID biomagnetometer can measure the very
weak fields that are generated outside of the head by this
response. A simple source and head model of current
dipoles inside a conducting sphere is typically used io inter-
pret these magnetic field measurements or magnetoenceph-
alogram (MEG). Locating dipole sources using data
recorded from an array of biomagnetic sensors is distin-
gui.bed from conventional array source localization tech-
niques by the quasi-static transient nature of the data. Here,
the basic MEG model is reviewed, then a localization exam-
ple is given to motivate the need for partitioning the data to
improve estimator perfonnance. Time-eigenspectrum anal-
ysis is introduced as a means of partitioning and interpreting
spatic-temporal biomagnetic data. Examples using both
simulated and somatosensory data are presented.

1. INTRODUCTION

A sensory stimulus, such as auditory, visual, or soma-
tosensory, evokes a neural response in a very localized
region of the brain. An array of Superconducting QUantum
Interference Device (SQUID) biomagneiometers may be
used to measure the very weak magnetic field generated by
these aeural currents. These magnetic field measurements
or magnetoencephalogram (MEG) provide a non-invasive
mecthod for studying functional activity in the human brain
with millisecond temporal resolution. One approach to the
interprettion of MEG data is to estimate the parameters
describing the internal sources that produce the evoked
fichd.

The inverse problem in MEG is highly ill-posed unless a
simplifying source model is introduced. The simplest model
for an evoked response is the “dipole in a sphere,” where the
poimary ncural currents are modeled &s a current dipole or
set of dipoles, and the head is modeled as a set of bomoge-
neous spherical conductive shells, The global volume cur-
rents distributed over the shells are modeled as the return
currents from these dipoles. The made! for MEG contains a
transfer function or lead ficid model that relates the dipoles’
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intensities, orientations, and locations to the extemally mea-
sured field. The general inverse problem is then to find the
location and moment parameters that describe each dipole.

The simplest appreach to localization is (¢ fit one or
more dipoles to each temporal snapshot. Our previous study
of the Cramer-Rao Lower Bounds (CRLB) [2] associated
with MEG based localization of multiple dipoles indicates
that acceptabie accuracy will probably not be attzined with
a single snapshot. Under the assumptica that the dipole is
“stationary,” i.e., the sources do not move over time, tnulti-
ple snapshots can be used to improve localization
accuracy {3].

Arn important property of evoked response measure-
ments is that they are inberently transient, The transient
evoked response is typically captured inside a larger acqui-
sition window, and no gencrally agreeable temporal model
exists 1o assist in isolating the re¢sponse from the back:
ground activity and experimental artifacts. In this paper, we
introduce a technique for parsing the data w isolate the tran-
sient events using the SVD of the spatio-temporal data as a
function of window width and delay. In addition, this iech-
nique can be used to identify the total number of dipoles
involved and their individual activation periods within the
transicat event,

2. FORWARD MODEL

The simplest model in use is a dipele in a spherically
syminetric head. Radially oriented dipoles produce no mag-
netic field outside the concentric conducting spheres,
regardless of the number of spheres we consider, and return
volume currents produce no extemal magnetic tields in the
radial direction. Sarvas [4) provides a thorough derivation
of the gencral MEG formulas, then presents the simplihica-
tons that result for the spherically symmetric head model
with ndially oriented sensors, For radially oriented sensors,
the measured field is a relatively simple function of onl 7 the
tangential components of the dipole moments. The radially
oricnted MEG sensor coil is assumed to make o point mei
surement of the mdial magnetic fickd. For a dipole Jocuted
atl, the sealar radial magnetic ficld B(p; acsensor location p
cin be expressed as the inner product of gain veetor g oand
the dipole moment ¢,

Bip) =gl rlq. (g



For the case of the spherical head model and the radial
sensor measurements, this gain vector is a special case of
the Biot-Savart taw and can be expressed as
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where the coordinate system is assumed to be head
centered, r is the unit radial orientation of the sensor coil,
My is the permeabuity of free space, and ** x ™ denotes the
vector Cross product.

For multiple dipoles, the vector of measured samples at
time ¢ can be modeled as

(EQ2)
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where A(f) represents the column vector of magnetic field
measurements. The vector I, represents the three-
dimensicnal location of the ith current dipole, and ¢ (1)
represents the corresponding three-dimensional  dipole
moment at time (. The MEG gain matrix G(I;) for a single
dipole is the concatenation of all gain vectors g(l;) for all
sensor locations. G(l) represents the “gain transfer”
matrix for the ith dipole, which relates the dipoles’
moments to the vector of measarements and has a
nonlincai dependence on the dipole locations. Column
vectors 1 and q(f) are both concatenat 'ns of the
paratacters for p dipoles,

T T
I = [I,. I’:l and q(1) = [q,(r). ....qp(l)] :
3. LOCALIZATION

An important inverse problem is W determine the loca-
ton of the dipoles thit could generate the observed spatio-
temporal daw. In (1], we examined localization based on
standard nonlincar least-squares and showed that the vari-
ous models could be brought into a unifying algebraic
model o which modern array processing technigues could
be: applicd. Problems associated with the nonlinear least-
squarces method include strong local minima amdd unknown
maodel order. By introducing a variation of “diversely potar-
ized” MUSIC, we were able (0 scan the three dimensional
volurne of the brain scarching for multiple dipoles and thus
avoid local minima. The number of elemental dipole
sources is determined by the rank of the signal subspace.

Least-squares and subspace estimators implicitly or
explicitly make use of the spatial conelation matrix. In a
typical MG application, we might collect 200 ms of data,
yet abserve that the signal only exists from about 75 ms to
125 ms. If we form the spatial correlation matrix from the
entire 200 ms of data, we reduce the SNR in the correlition
matrix by effectively averaging i too much noise, which
degmdes estimator performance

As an example, we simulated a spherical head model and
37 sensor array pattern, as described in [2]. We simulated
the placement of two dipoles spaced two cm apant just under
the surface of the skull, and gave each dipole a Hamming
window shaped activation sequence with a peak amplitude
of 10 nanoamps. The sequences were arranged such that the
first dipole fired completely, then the second dipole fired
with no overlap with the first. The overlay of all simulated
time series measured at the 37 sensors is shown in the top
portion of Fig. 1.

A nonlinear least squares estimator (as described in [1])
was then run with 200 different realizations of white ran-
dom noise with a standard deviation of 70 femtoteslas. The
choice of signal strength and noise selections are described
in [2]. The standard deviations on the locatization error for
the two dipoles was 1.81 mm and 2.14 mm, when estimated
using all of the data.

We then partitioned the sequence in half, reducing the
estimation to two one-dipole problems. The standard devia-
tion on the localization error drops to 1.00 mm and 1.13 mm
for the two dipoles. Thus the partitioning of the data from
one two-dipole problem into two one-dipole problems
improved the efficiency of the estimator.

This simulation asswmed known mode! order. By focus-
ing the problem to two one-dipole probiems, the nonlinear
estimator can discard noisy snapsho’s that degrade its per-
formance. As discussed in [1), MEG-MUSIC was intro-
duced to overcome some of the problems with order
selection and local mninima encountered in nonlincar least-
squares. However, estiinating the subspace also requires
careful attention to partioning, since the subspace estimates
arc sensitive (0 noisy snapshots,

In order w improve the subspace and localization esti-
mates, we must identify the extents of the events of interest
and partition the time series accordingly. Most signal detec-
tion algorithms rely on an explicit temporal model, but tem-
poral models in MEG rescarch are subject to controversy,
Consequently, a nonparametric approach to partitioning is
more appropriate.

4. TIME-EIGENSPECTRUM ANALYSIS

We approach the partitioning problem by using the em-
poral coherence across the sensors evident from the guasi-
static formulation of the problem. Time-cigenspectrum
(TE) analysis is & novel method of examining the similarity
of the response of several sensors over a prescribed hlock of
time. As the intensity of a dipolar source fluctuates, its sig-
nal arrives simultancously at all sensors. If we place an
appropriately sized window at the proper instance in time
around a single dipole, we tind that the rank of this window
is one, 1., the temporal signals arriving at all sensors are
perfectly coherent. M two independent signals are active in
this window, we observe that the rank is two.

At a particular instance in time, we begin the analysis by
creating a window of width one. Obviously, a single time
slice is perfectly similar with itself. We proceed by adding
the previous tme slice to form a window of width twao, then
three, four, cic,, until we reach some upper window width
by design or dita limitation. For each window width, we
take a measure of the similarity ot the window, describwed
below. We then slide this window forward one time shice,
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FIGURE 1. Simulation Time-Eigenspectrum. The rank 1
contour plots reveal that the two signals together are
insufficiently described by a rank one subspace. Each
signal can however be temporally isolated.

and repeat the process. The result is a two-dimensional
function, /(¢ w), with onc dimension corresponding to the
most recent sample, £, in the window and the other the win-
dow width, w.

The similarity measure we employ is multidimensional
and is derived from the singular values obtained from an
SVD of the window. We form a matrix from w sequential
snapshots of the data, ending at ime slice A(1). Denoting the
singular values by the ordered vector s(f,w), we form a vec-
tor of the cumulative square of the singular values, normal-
ized by the sum of the squared singular values. Thus, the jth
element of the vector similarity measure at ume ¢ for win-
dow width w is calculaied as

s(t, w)= svU([A(r—w+ 1).. . AWD))])

(EQ 4)
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forj = I,.., min(w,m), where m is the nutnber of sensors,

The element of our measare vector that approaches unity
is our indication of the rank of the window; the last clement
of fis always unity. Thus a rank two window would have its
second and greater clements equal to 1. In practice, noise
always prevents such a perfect rank estimate, but this SVD-
based measwe £ allows us 10 observe at which element we
are “close enough” 0 a lower rank matrix,

FIGURE 2. Simulation Time-Eigenspectrum (cont'd).
The rank 2 conteur piots reveal that the individual
responses are not much improved with a secord
sigenvalue.

4.1. Simuiation

Using the Hamming-shaped activation sequence
described above, we simulated two dipoles firing sequen-
tially. The noiseless time series was five points of no signal,
then a 40 point Hamming sequence for the first dipole, then
a 40 point Hamming sequence for the second, then finally S
points of no signal, for a total of 90 samples. The time trace
across all 37 simulated sensors is shown in the top portions
of Fig. 1 and Fig. 2, with additive random white noise; the
standard deviation was 70 femtoteslas. The bottom portions
of these figures show the rank 1 and rank 2 time-eigenanal-
ysis contours, i.c., f;(t,w) and f5(1,w) respectively. The
abscissn gives the ime index of the leading edge of the win-
dow, and the ordinate gives the wiath of the sliding window,

The contour intervals indicate the percentage of total
“encrgy” (square of the Frobenius norm) in the window
contained in the subspace. In Fig. 1, the contours are above
RO% for small windows centered on the responses, indicat-
ing that 80% of the signal energy in the given window can
be described by the first eigenvalue. The contours rapidly
drop for small windows centered on the noise intervals, and
the contour shows that the Erst eigenvalue only accounts for
25% of the signal energy in the transistion and end regions.
Although the center of the responses is visible in this simu-
lated data, the transistioas in the contours more clearly show
the segments dominated by either noise or signal,

In Fig. 2, the contours represent the percentage energy
contained by the first two dipoles. The windows contiuning
only one active dipole show small increases in percentage
energy that those containing both dipoles. The 75% con-
tours are beginning to merge in the upper regions whichrep-



FIGURE 3. Ring Finger Stimulation, Rank 1 analysis.

resent windows that encompass both dipoles. Although the
noiseless data is rank two, the proximity of the dipoles and
the intensity of the noise make it difficult in this simulation
to distinguish the overall data as rank two; however, we do
appear clearly justificd in partitioning the data into two dis-
unct sets.

This simulation is somewhat transparent, since the two
response sequences are mostly visible, and ,..udent parti-
tioning might be possible by inspection alone. However, the
simulation was simplified to highlight some of the contours
seen in actual data and to assist in their interpretation. In the
next example, we apply this technigue 1o MEG somatosen-
sory data.

4.2. Somatosensory Response

In this experiment, biomagnetic sensors at 77 positions
about the surface of the head recorded the evoked response
of the ring finger to piczoelectric stimulation, Fig. 3 and
Iig. 4 show in their top portions the overlzy of the response
(averaged from 300 trials) across all sensors, The tme index
corresponds to 2 ms intervals, and the first 20 samples visi-
blc are part of the pre-stimulus interval. A stimulus artifact
is present at time sample S8, and the first dominant neural
response occors 40 ms later at time index 75, A secondary
response is evident beginning around tiune sample 1060,

We ignore the stitnulus artifact and focus on the two
evoked responses. The contours indicate that the first
respouse is of low rank for only about 15 samples and s pre-
ceded and followed by relatively incoherent and low power
regions. The secomd response appears to lic more appropri-
ately in a rank 2 subspace, but only up to about time
sample 125 Although the signal levels remain relatively
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FIGURE 4. Ring Finger Stimulation, Rank 2 analysis.

active beyond sample 125, the contours indicate a drop in
sitnilanity.

The contour transitions guide bow we might partition the
data to extract the two responses, The first response region
is also obvious in the data, but not so obvious is the high
rank of the fow power regions surrounding it. The onset of
the second response is also somewhat visible in the data, but
the contours assist in trimming the upper end of the
response, where visible inspection of the data does not indi-
cate where we should trim.

Finally, we commeut on the computational load in per-
forming the numerous SVDs reguired. The two examples
presented each required about five minutes on a SPARC 330
or fifteen minutes on 4 486-33 MHz, both running
MATLAB.
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