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Abstract

Background: NeoSphere showed significantly higher pathologic complete response (pCR) with neoadjuvant
pertuzumab, trastuzumab, and docetaxel compared with trastuzumab plus docetaxel, pertuzumab plus
trastuzumab, or pertuzumab plus docetaxel. We assessed associations between human epidermal growth factor
receptor 2 (HER2) pathway-related biomarkers and clinical outcome in response to these regimens.

Methods: Tumor, serum, and whole blood samples were collected at baseline and post neoadjuvant treatment
before surgery. Associations between biomarkers and pCR, and between biomarkers and clinical variables were
assessed in the overall and estrogen receptor (ER)-positive and ER-negative populations. Changes in serum marker
levels between baseline and post-neoadjuvant treatment were examined.
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Results: No markers were associated with pCR across all groups; however, significant associations were observed
for two markers in individual groups. High HER2 was significantly associated with higher pCR rates (P = 0.001) and a
significant treatment interaction (P = 0.0236) with pertuzumab, trastuzumab, and docetaxel (odds ratio 2.07, P = 0.01).
Low serum transforming growth factor alpha (TGFα) was associated with higher pCR rates with pertuzumab plus
trastuzumab (P = 0.04) without a significant treatment interaction. Presence of truncated HER2 did not affect pCR. A
non-significant decreased pCR benefit was observed consistently across groups in patients with mutated PIK3CA while
the treatment benefit from pertuzumab was maintained when comparing the trastuzumab plus docetaxel and
pertuzumab, trastuzumab, and docetaxel groups. Notably, PIK3CA exon 9 mutations were associated with residual
disease (pooled groups), which was not found for exon 20 mutations. Serum HER2 extracellular domain levels were
significantly increased between baseline and post-neoadjuvant treatment in the non-trastuzumab-treated group, and
decreased in the trastuzumab-containing groups (likely due to trastuzumab’s mechanism of action). Differences in
biomarker profiles according to ER status were observed.

Conclusions: The observed associations of HER2 protein levels with sensitivity to pertuzumab, and of PIK3CA exon 9
mutation to lack of sensitivity to HER2-targeted monoclonal antibody treatment, warrant further investigation.
Previously reported findings of truncated forms of HER2 as resistance markers to HER2-targeted treatment could not be
confirmed in NeoSphere. Conventional HER2 assessment should continue and HER2 remains the only biomarker
suitable for patient selection in this population.

Trial registration: Clinicaltrials.gov, NCT00545688. Registered on 16 October 2007.

Keywords: Biomarker, Breast cancer, Docetaxel, HER2, Neoadjuvant, Pertuzumab, Trastuzumab

Background

Human epidermal growth factor receptor 2 (HER2) is

the clinically validated biomarker for HER2-targeted

therapies, several of which are approved in the neoadju-

vant, adjuvant, and metastatic settings for HER2-positive

breast cancer. Pertuzumab (PERJETA®, F. Hoffmann-La

Roche Ltd., Basel, Switzerland) is directed at the

dimerization domain of HER2 and inhibits dimerization

with other HER receptors while stimulating antibody-

dependent cell-mediated cytotoxicity (ADCC) [1–3].

Trastuzumab (Herceptin®, F. Hoffmann-La Roche Ltd.)

binds to the transmembrane domain to inhibit mitogenic

signaling, block HER2 cleavage, and stimulate ADCC

[4–6]. Due to their different binding modalities, trastu-

zumab and pertuzumab have complementary proposed

mechanisms of action [7].

In the NeoSphere study, patients treated with neoadju-

vant pertuzumab, trastuzumab, and docetaxel (Taxotere®,

Sanofi-Aventis, Paris, France) (group B) had a signifi-

cantly higher pathologic complete response (pCR) rate

compared with those treated with trastuzumab plus do-

cetaxel (group A), pertuzumab plus trastuzumab (group

C), or pertuzumab plus docetaxel (group D) (45.8% ver-

sus 29.0%, 16.8%, and 24.0%, respectively) [8]. The com-

bination of pertuzumab, trastuzumab, and docetaxel has

also been shown to be superior to trastuzumab plus do-

cetaxel in the first-line treatment of metastatic breast

cancer [9, 10]. The combination is now approved by the

European Medicines Agency (EMA) and the US Food

and Drug Administration (FDA) in both settings.

HER2-positive/estrogen receptor (ER)-positive and

HER2-positive/ER-negative breast cancer are known to

have different patterns of gene expression, and treatment

outcome seems to be driven by different biologic path-

ways [8, 11–14]. Hormone-receptor-negative status was

associated with an increase in treatment benefit with

pertuzumab plus trastuzumab when groups A and B

were compared in NeoSphere [8]. It is known that HER2

expression in ER-negative, HER2-positive tumors is

higher than that in ER-positive, HER2-positive tumors

[15].

We assessed a panel of biomarkers, in tumor speci-

mens and in sera, to characterize the molecular profile

of the biomarker population of NeoSphere, and to ex-

plore biomarkers correlated with different treatments

and/or different subsets of patients in this trial. The ob-

jective of this exploratory analysis was to identify those

biomarkers (or combinations of biomarkers) with the

best association (positive or negative) with pCR in re-

sponse to the treatment regimens used in the NeoSphere

study. In particular, we attempted to identify biomarkers

that would predict a benefit from the addition of pertu-

zumab to a trastuzumab-based regimen. The markers

tested included those that are involved in downstream

signaling of HER2, belong to a group of related receptor

tyrosine kinases that could serve as salvage routes for an

inhibited HER2 pathway, or are ligands of HER family

proteins that induce activation of the HER2 pathway.

We also assessed the presence of truncated forms of

HER2, including p95HER2, with regards to pCR, as p95
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was previously reported to predict worse outcomes in

patients with HER2-positive breast cancer [16].

Methods
Study design and patients

The study design and patient characteristics have been re-

ported previously [8]. Briefly, NeoSphere (NCT00545688)

[17] was a multicenter, open-label, phase II study.

Treatment-naive women with HER2-positive breast can-

cer were randomized (1:1:1:1) centrally and stratified by

operable, locally advanced, and inflammatory breast can-

cer, and by hormone receptor expression, to receive four

neoadjuvant cycles of study treatment. The clinical end-

point was pCR, defined as the absence of invasive neoplas-

tic cells at microscopic examination of the primary tumor

at surgery. Remaining in situ lesions were allowed [8].

Specimen characteristics

Collection of core biopsies, sera, and whole blood from

all patients was mandatory at baseline. Tumor samples

were obtained as formalin-fixed, paraffin-embedded tis-

sue. Tissue obtained after the neoadjuvant treatment

period was derived from resection specimens.

Assay methods

Tissue processing, immunohistochemistry (IHC), fluor-

escence in situ hybridization (FISH), RNA extraction,

quantitative reverse transcription polymerase chain reac-

tion (qRT-PCR), and DNA isolation were performed

centrally by Targos Molecular Pathology GmbH, Kassel,

Germany. Targos followed the protocols and processing

instructions developed by Roche Diagnostics GmbH,

Penzberg, Germany. Commercially available assays or

kits were used where specified, and performed according

to the manufacturer’s instructions. All other assays were

developed by Roche Diagnostics for exploratory research

purposes only.

Expression of HER2 (HercepTest, Dako, Glostrup,

Denmark), HER3 (HER3 M7297, Dako), insulin-like

growth factor 1 receptor (IGF1R, Clon 1.004.168, Roche

Diagnostics), phosphatase and tensin homolog (PTEN,

AF847, R&D Systems, Minneapolis, MN, USA), and

pAKT (#3787, Cell Signaling Technology, Danvers, MA,

USA) were assessed by IHC, and a modified H-score

[18] was derived for each marker. The modified H-score

was calculated as the percentage of cells stained per in-

tensity level, multiplied by a factor composed of the in-

tensity category plus 1:

Modified H� score ¼ 1 þ 1ð Þ � P1 þ 2 þ 1ð Þ
� P2 þ 3 þ 1ð Þ � P3

Therefore the modified H-score has a maximum value

of 400 instead of the standard H-score of 300. The

percentage of cells stained with an intensity of 0 was

used only for quality control. Cases with no staining on

the tissue section were assigned a score of 0. Modified

H-scores were calculated for subcellular compart-

ments for which specific staining was identified and

for which there was a biologic rationale for the sub-

cellular location of the respective marker (e.g. for

PTEN and AKT nuclear staining).

Image acquisition and analysis of HER2 staining inten-

sity took place at the Royal Marsden Hospital (London,

UK) using the Ariol image analysis system (Leica Micro-

systems (Gateshead) Ltd., UK) equipped with a BX61

microscope (Olympus, Southend-on-Sea, UK) and a

black and white MegaPlus ES 4.0/E camera (Redlake

MASD, Inc., San Diego, CA, USA). Slides were scanned

and analyzed as previously described [19], except that

five representative invasive breast cancer areas in each

image were selected. The mean membrane intensity of

all five representative areas selected for analysis was used

as a measurement of HER2 staining intensity.

HER1, HER2, HER3, Amphiregulin (AREG) and Beta-

cellulin mRNA levels in tumor tissue were assessed rela-

tive to the G6PD gene by qRT-PCR (Roche Diagnostics,

research-only assay). c-Myc amplification was assessed

by FISH (MYC/CEN-8 FISH Probe Mix, Dako).

Mutational analyses of eight mutations at four hot

spots in exons 7, 9, and 20 within the gene encoding the

catalytic subunit of phosphoinositide 3-kinase (PIK3CA)

on tumor DNA were performed using TaqMan-PCR

(Roche Diagnostics, research-only assay) at Roche Trans-

lational Research Sciences (TRS, Basel, Switzerland).

This led to a technical success rate of approximately

60%. To increase the sample size, a different method re-

quiring less DNA input was applied at Genentech La-

boratories, San Francisco, CA, USA. DNA was extracted

from IHC-stained slides, amplified, and subsequently

assessed using the DxS assay (DxS Ltd., Manchester,

UK), which detects mutations E542K, E545K/D, and

H1047R in exons 9 and 20. Mutational analysis per exon

is presented to allow for pooling of the data on 328 cases

overall. PIK3CA subgroups were defined based on the

presence or absence of any mutation (mutant versus

wild-type). “Wild-type” was only assigned to samples in

which all reactions gave a valid result for “no mutation.”

If one or more reactions failed, that sample was classi-

fied as “not assessable.”

Enzyme-linked immunosorbent assay (ELISA) was

used to detect AREG, EGF, serum HER2 extracellular

domain (sHER2), and transforming growth factor alpha

(TGFα) in serum using an immunologic multiparametric

chip technique (Roche Diagnostics). Levels of each

serum marker were compared at baseline and at surgery

in matched pairs from the same patients. Truncated

forms of HER2 (the intracellular domain (ICD) and
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HER2 extracellular domain (ECD), where a ratio <1 indi-

cates the presence of truncated forms), were measured

in formalin-fixed, paraffin-embedded breast cancer tis-

sue as described by Krüger et al. [20].

Statistical and analytical methods

The patient population used (the biomarker population)

was a subset of the intent-to-treat (ITT) population that

contributed meaningful data to the analysis (Additional

file 1: Table S1). In this analysis, median values were

used as cutoffs for high and low biomarker levels for

each of the continuous biomarkers, except for PIK3CA

mutation and c-Myc amplification, where cutoffs were

applied following a biologic rationale (wild-type versus

mutant PIK3CA and c-Myc:centromere ratio ≥2). Instead

of a data-driven cutoff, we used a prespecified median

cutoff to reduce the number of false-positive findings

due to the concomitant multiple testing and optimal

cutoff selection. Box and whisker plots and summary

statistics were used for initial data exploration and selec-

tion of relevant biomarkers. Spearman’s correlation was

performed to identify the correlated biomarkers. Bio-

markers with measurements near the limit of quantifica-

tion were excluded from analyses.

False discovery rate was implemented to adjust for

multiple comparisons at α = 0.05. Only groups A and B

were considered for determining the additional benefit

of adding pertuzumab to trastuzumab plus docetaxel.

Association between clinical variables (ER-positive ver-

sus ER-negative, local/inflammatory versus operable

breast cancer, node-positive versus node-negative dis-

ease, and age ≥50 versus <50 years) and biomarkers were

assessed in the overall biomarker population using the

Chi-square test.

The association between biomarkers and pCR by treat-

ment group were assessed by the Cochran–Mantel–

Haenszel Chi-square test, stratified by hormone receptor

status and breast cancer type. The treatment interaction

test was performed for groups A and B to analyze the

interaction between biomarkers and treatment in the as-

sociation with pCR.

Analyses of the association between biomarkers and clin-

ical variables, and of the association between biomarkers

and pCR by treatment group, were repeated in ER-positive

and ER-negative subgroups. These analyses were explora-

tory and secondary in nature, and therefore were not taken

into account when adjusting for multiple comparisons.

Results

Overall population

Samples

The sample size per biomarker varied depending on

technical success along with tissue quality and quantity

(Additional file 1: Table S1). The biomarker group subset

of each individual marker was fairly representative of the

overall study population (data not shown). The levels of

AREG and Betacellulin measured by qRT-PCR were

Fig. 1 Relationship between biomarkers and pathologic complete response (pCR) by treatment group. CR concentration ratio, cyt cytoplasmic,
EGF epidermal growth factor, EGFR epidermal growth factor receptor, IGF1R insulin-like growth factor 1 receptor, Mem membranous, Mut mutant,
Nuc nuclear, PIK3CA gene encoding phosphoinositide 3-kinase catalytic subunit, PTEN phosphatase and tensin homolog, qRT-PCR quantitative re-
verse transcription polymerase chain reaction, sHER2 serum HER2 extracellular domain, TGF transforming growth factor, WT wild-type
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generally very low (less than the limits of variability for

these assays); hence, detailed interpretation of the data

was not considered meaningful. The baseline levels of all

biomarkers were well-balanced across all four treatment

groups (Additional file 1: Table S2).

Association between median biomarker levels and pCR

In the overall biomarker population (Fig. 1 and Add-

itional file 1: Table S3), high HER2 membrane protein

expression, measured by modified H-score and stratified

by ER status and breast cancer type, was associated with

a significantly higher pCR rate in group B (pertuzumab,

trastuzumab, and docetaxel) (P = 0.0002) (Fig. 2a). These

findings were consistent with the assessment of HER2

when applying digital image analyses (Fig. 2b). In group

B, higher HER2 levels, assessed by staining intensity

score, were associated with higher pCR rates. Low serum

TGFα was also associated with a significantly higher

pCR rate in group C (P = 0.045) while the remaining bio-

markers showed no significant difference when adjusted

for ER status and breast cancer type (Additional file 1:

Table S3).

In an exploratory analysis performed on truncated

forms of HER2 without using high/low cutoffs, there

was no association observed between pCR and these

truncated proteins via the HER2 ECD/ICD ratio (Fig. 3).

Treatment interactions

When comparing group A with group B (Additional file 1:

Table S4), only HER2 membrane protein expression had a

significant interaction with treatment (P = 0.0236) with a

large benefit from the combination of pertuzumab, trastu-

zumab, and docetaxel in the group with expression of

HER2 above the median (odds ratio (OR) 2.07 (80% CI,

1.42 to 3.03, P = 0.01)) and no significant benefit for low

HER2 expression. However, clustering of H-scores within

a small dynamic range (median 380, maximum 400;

Fig. 2c) limits the practical application of results.

PIK3CA

In the overall population, PIK3CA mutations were found

in 32% of all cases. A decreased pCR rate in patients car-

rying a PIK3CA mutation was seen consistently through-

out all four groups, but this was not statistically

significant in any of the groups or when the groups were

pooled (Fig. 4a).

In a per-exon analysis, there was no trend of associ-

ation between PIK3CA mutations and patterns of re-

sponse to specific regimens (Table 1); therefore, the

study groups were pooled for further analyses. Results

showed that exon 9 mutations were associated with re-

sidual disease; a trend which was not seen for exon 20

mutations (Table 1). The number of cases was too small

to interpret the results for exon 7.

Fig. 2 Human epidermal growth factor receptor 2 (HER2) membrane
(Mem) analyses. a HER2 membrane scores versus outcome (pathologic
complete response (pCR)) in all four treatment groups. b HER2
membrane staining intensity versus outcome in all four treatment
groups (patients with missing pCR were excluded). c HER2 membrane
score by outcome
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Serum marker analyses

A comparison of baseline levels of the serum markers

AREG, EGF, TGFα, and sHER2 between patients achiev-

ing pCR and those with residual disease did not predict

pCR (P > 0.05 in all groups).

Changes in marker levels from baseline to post-

neoadjuvant treatment were observed. Changes in EGF,

TGFα, and sHER2 observed in the groups with pCR ver-

sus the groups with residual disease were comparable

and did not allow us to discern a treatment benefit.

Differences in AREG were observed in those achieving

pCR versus those with residual disease but these were

inconsistent across treatment groups.

There were no significant differences in the levels of EGF,

TGFα, or sHER2 post-neoadjuvant treatment in the groups

achieving pCR versus those with residual disease. Again

AREG levels differed to some extent according to pCR

status, but this was inconsistent between treatment groups.

In general, the patterns of the serum markers were

fairly consistent across treatment groups, with the ex-

ception of sHER2 (Fig. 5). In treatment groups A, B, and

C the levels significantly decreased regardless of out-

come. In treatment group D, which did not include tras-

tuzumab, a significant increase was observed.

ER-positive and ER-negative subgroups

As reported previously, ER status was correlated with

pCR rates [8]. There were significantly different distribu-

tions of biomarker expression in the ER-positive versus

ER-negative subgroups (false discovery rate <0.05).

Membrane IGF1R protein expression, HER3 mRNA ex-

pression, HER3 protein expression, cytoplasmic PTEN

protein expression, and serum AREG were higher in ER-

positive samples, while the HER2:HER3 ratio (assessed

by mRNA expression), EGFR mRNA expression, sHER2,

HER2 mRNA expression, and membrane HER2 pro-

tein expression were higher in ER-negative samples

(Additional file 1: Table S5).

In general, the proportion of patients with PIK3CA

mutations was comparable in the ER-positive and ER-

negative subgroups. The subgroups were small, so it was

not possible to investigate any imbalance on a per-exon

basis, or on a potential correlation-to-outcome basis.

The decreased benefit observed for patients carrying a

PIK3CA mutation could not be attributed to an ER sub-

group, as the benefit was comparable in ER-negative and

ER-positive subgroups (Fig. 4b).

We investigated whether there was a different pattern

of association for each biomarker with pCR according to

ER status. For example, high HER2 mRNA levels were

associated with a higher pCR rate in group C (pertu-

zumab plus trastuzumab) with ER-negative tumors

(P = 0.05) but not ER-positive tumors (P = 0.21).

Detailed analyses of biomarker levels by ER status

are available online (Additional file 2: Figure S1 and

Additional file 1: Table S6).

Low levels of IGF1R were associated with higher pCR

in group B (pertuzumab, trastuzumab, and docetaxel)

versus group A (trastuzumab plus docetaxel) in the ER-

negative (P = 0.004) but not the ER-positive subgroup

(P = 0.54) (Fig. 6).

Higher levels of HER2 protein, cytoplasmic PTEN,

sHER2, EGFR mRNA, HER2 mRNA, and HER2/HER3

mRNA were associated with ER-negative disease, while

higher levels of HER3 protein, IGF1R protein, serum

AREG, AREG mRNA, and HER3 mRNA were associated

with ER-positive disease. Other clinical variables were

associated with higher levels of certain biomarkers;

Fig. 3 Human epidermal growth factor receptor 2 (HER2) extracellular domain (ECD)/intracellular domain (ICD) ratio. pCR pathologic
complete response
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however, no clear biologic explanations were evident and

multiplicity of testing may have introduced bias.

Discussion

NeoSphere demonstrated that mandatory biomarker

sampling is feasible in a clinical trial setting. Samples

were available from nearly all patients and the planned

panel of biomarkers could be assayed reliably in 99.8%

(HER2) to 65.9% (c-Myc) of cases. While no new single

marker could be confirmed as predictive of treatment

benefit, these analyses revealed several important obser-

vations that will impact future trial designs.

Higher levels of HER2 membrane protein expression

were associated with higher pCR rates with the combin-

ation of pertuzumab, trastuzumab, and docetaxel (group

B) using both the modified H-score and digital image

analyses. The digital readout resulted in a wider dynamic

range compared with the manual scoring, showing a

more pronounced effect in predicting pCR. While digital

image analyses allowed us to better discern the pCR and

non-pCR subgroups, HER2 levels remained highly over-

lapping between patients experiencing pCR versus pa-

tients not experiencing pCR and did not allow us to

define clearly distinct populations that were either clinic-

ally or biologically meaningful.

The PIK3CA mutational status appears to have a rele-

vant role in defining the likelihood of pCR with all treat-

ment regimens tested in NeoSphere. However, while a

decreased benefit was observed, the magnitude of the

treatment effect with the addition of pertuzumab was

maintained (a difference in pCR rates of approximately

15% in the pertuzumab, trastuzumab, and docetaxel

group between patients with wild-type and mutant

genes). This was similar to associations reported in the

Fig. 4 PIK3CA analyses. a PIK3CA status and relationship to outcome per treatment group. b Analysis of PIK3CA mutations by estrogen receptor
(ER) status and relationship to outcome. Mut mutant, pCR pathologic complete response, PIK3CA gene encoding phosphoinositide 3-kinase, cata-
lytic subunit, WT wild-type
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CLEOPATRA trial [21]. CLEOPATRA demonstrated

shorter median progression-free survival with PIK3CA

mutant tumors, regardless of treatment regimen [21].

Interestingly, in NeoSphere, only PIK3CA mutations in

exon 9 were linked to a lack of sensitivity to HER2-

directed monoclonal antibodies. Although independent

confirmation is needed, due to the lower frequency and

lack of statistical power for exon 9 mutations, this find-

ing might be explained by the different mechanisms and

downstream effects that are proposed based on preclin-

ical observations for the gain of function mutations in

helical (exon 9) versus kinase (exon 20) domain [22].

In CLEOPATRA, there was an association between

poorer prognosis and pooled PIK3CA mutations at

exons 9 and 20, although the benefit from pertuzumab

was maintained regardless of mutation status [21].

Similar analyses from the TRYPHAENA study showed

that pCR rates were lower, although not significantly, in

patients with PIK3CA mutant tumors regardless of treat-

ment regimen [23]. In addition, data from the EMILIA

trial showed that patients with PIK3CA mutations had

worse outcomes compared with those with wild-type tu-

mors when treated with lapatinib plus capecitabine [24].

This was not the case with ado-trastuzumab emtansine,

where the treatment benefit was similar for patients with

wild-type and mutant tumors. This is an interesting

finding and future trials should ascertain whether ado-

trastuzumab emtansine can overcome the impact of

PIK3CA mutation on outcome, either when given as

monotherapy or in combination with other therapeutics

such as PI3K inhibitors, with the goal of improving the

poor prognosis of patients carrying PIK3CA mutations.

Table 1 Analysis of PIK3CA mutations per exon and treatment group

Group A Group B Group C Group D Overall (pooled groups)

Exon
n (Mut/total)

pCR,
n (%)

non-pCR,
n (%)

pCR,
n (%)

non-pCR,
n (%)

pCR,
n (%)

non-pCR,
n (%)

pCR,
n (%)

non-pCR,
n (%)

pCR,
n (%)

non-pCR,
n (%)

Exon 7 n = 2 n = 1 n = 1 n = 0 n = 4

(4/290) 0 2 (100) 0 1 (100) 0 1 (100) 0 0 0 4 (100)

Exon 9 n = 8 n = 5 n = 5 n = 10 n = 28

(28/328) 0 8 (100) 1 (20.0) 4 (80.0) 0 5 (100) 1 (10.0) 9 (90.0) 2 (7.1) 26 (92.9)

Exon 20 n = 20 n = 15 n = 17 n = 14 n = 66

(66/338) 7 (35.0) 13 (65.0) 7 (46.7) 8 (53.3) 2 (11.8) 15 (88.2) 3 (21.4) 11 (78.6) 19 (28.8) 47 (71.2)

Mut mutant, pCR pathologic complete response, PIK3CA gene encoding phosphoinositide 3-kinase, catalytic subunit

Fig. 5 Matched pair analyses of serum human epidermal growth factor receptor 2 extracellular domain (sHER2) levels at baseline and at surgery
(S). *P < 0.05 (exploratory analyses). BL baseline, pCR pathologic complete response
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The data from NeoSphere suggest that such an approach

could be useful only in tumors carrying the activating

exon 9 mutation.

Our results also provide clinical support for the block-

ade of HER2 cleavage by trastuzumab [5]. Trastuzumab

is thought to inhibit HER2 shedding, as through binding

to HER2 it may sterically hinder the metalloproteinases

from accessing the cleavage sites [5]. By comparing

serum marker levels at baseline and surgery, we showed

that sHER2 levels decreased in all study groups except

group D regardless of pCR status. Although serum

HER2 extracellular domain did not predict pCR, this is a

salient finding, as group D was the only group that did

not include trastuzumab. To our knowledge this is the

first report of clinical data to support this component of

the proposed mechanism of action of trastuzumab. Al-

though this is a reasonable mechanism based on our

data, others cannot be ruled out.

Another relevant aspect that emerged from our ana-

lyses is the distinct difference between ER-positive and

ER-negative tumors [15]. HER2-positive/ER-positive and

HER2-positive/ER-negative breast cancer have different

patterns of gene expression, and treatment outcome

seems to be driven by different biologic pathways [11].

This effect was also seen in NeoSphere, where ER nega-

tivity was associated with increased likelihood of pCR

with pertuzumab and trastuzumab [8], and in NOAH,

where ER-/progesterone receptor- negativity was associ-

ated with increased benefit from trastuzumab [25, 26].

The different treatment effects according to ER status

are reflected in a different molecular biomarker profile

in ER-positive versus ER-negative tumors. At this point

our data do not provide information that would result in

patients receiving altered treatment, but future trial de-

signs should take into account the intrinsic differences

in marker profiles and related sensitivity to treatment.

A limitation of the biomarker analysis was that there

was a narrow range of HER2 protein levels with little

numerical difference between cutoffs, hindering an ap-

propriate exploration of HER2 protein-related impact on

treatment outcome. In addition, there was no significant

difference in the pCR rates of patients in the subgroups

with higher and lower HER2 levels, who received pertu-

zumab plus trastuzumab without docetaxel (group C).

As the chemotherapy backbone is not known to impact

HER2-related effects, the association between HER2

protein levels and pCR rates should have been detectable

in both of the groups receiving trastuzumab plus

pertuzumab.

Given that we were limited by small numbers of pa-

tients in some subpopulations, our analyses did not pro-

vide any additional predictive markers supporting a

refinement of the HER2-positive target population

treated with trastuzumab, pertuzumab, and docetaxel. It

Fig. 6 Insulin-like growth factor 1 receptor (IGF1R) expression
according to estrogen receptor (ER) status. a Low IGF1R level/ER-
positive group. b High IGF1R level/ER-positive group. c Low IGF1R
level/ER-negative group. d High IGF1R level/ER-negative group. pCR
pathologic complete response
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should be acknowledged that the use of the median cut-

off for biomarker assessment could have overlooked a

predictive value of some of these biomarkers at different,

biologically meaningful, cutoffs that have not been ex-

plored in this study. However, our analysis did highlight

the different biology of ER-positive and ER-negative

HER2-positive tumors. The observation of a lower likeli-

hood of pCR with trastuzumab, pertuzumab, and doce-

taxel in tumors harboring PIK3CA mutation at exon 9 is

limited by the small sample size and warrants further ex-

ploration in larger datasets.

Conclusions

In conclusion, our data show that conventional assess-

ment of HER2 by IHC or FISH should continue at this

time, and that HER2 remains the only biomarker suit-

able for patient and/or regimen selection in this popula-

tion. The observations in NeoSphere, however, may

guide future neoadjuvant trial designs.

Additional files

Additional file 1: Table S1. Biomarker analyses on the intent-to-treat
population: sample sizes and technical success rates. *As a percentage of
the ITT population (N = 417). CR concentration ratio, Cyt cytoplasmic, EGF
epidermal growth factor, EGFR epidermal growth factor receptor, ELISA
enzyme-linked immunosorbent assay, FISH fluorescence in situ

hybridization, IGF1R insulin-like growth factor 1 receptor,
IHC immunohistochemistry, Mem membranous, Nuc nuclear, PIK3CA gene
encoding phosphoinositide 3-kinase catalytic subunit, PTEN phosphatase
and tensin homolog, qRT-PCR quantitative reverse transcription PCR,
sHER2 serum HER2 extracellular domain, SNP single nucleotide
polymorphism, TGF transforming growth factor. Table S2. Baseline levels of
all biomarkers in all four treatment groups (biomarker population, based on
the intent-to-treat population). CR concentration ratio, Cyt cytoplasmic, EGF
epidermal growth factor, EGFR epidermal growth factor receptor, ELISA
enzyme-linked immunosorbent assay, FISH fluorescence in situ hybridization,
IGF1R insulin-like growth factor 1 receptor, IHC immunohistochemistry, Mem

membranous, Nuc nuclear, PIK3CA gene encoding phosphoinositide 3-
kinase catalytic subunit, PTEN phosphatase and tensin homolog, qRT-PCR
quantitative reverse transcription PCR, sHER2 serum HER2 extracellular domain,
SNP single nucleotide polymorphism, TGF transforming growth factor. Table
S3. Relationship between biomarkers and pCR, adjusted for hormone receptor
status and breast cancer type (biomarker population, based on the intent-to-
treat population). CR concentration ratio, Cyt cytoplasmic, EGF epidermal
growth factor, EGFR epidermal growth factor receptor, ELISA enzyme-linked
immunosorbent assay, FISH fluorescence in situ hybridization, IGF1R insulin-like
growth factor 1 receptor, IHC immunohistochemistry, Mem membranous,
Mut mutant, Nuc nuclear, pCR pathologic complete response, PIK3CA gene
encoding phosphoinositide 3-kinase catalytic subunit, PTEN phosphatase
and tensin homolog, qRT-PCR quantitative reverse transcription PCR, sHER2
serum HER2 extracellular domain, SNP single nucleotide polymorphism, TGF
transforming growth factor, WT wild-type. Cochran–Mantel–Haenszel
Chi-square test based on biomarker subgroup x pCR status (2 × 2) stratified by
hormone receptor status and breast cancer type. Table S4. Treatment and
biomarker interaction tests comparing groups A (trastuzumab plus docetaxel)
and B (pertuzumab, trastuzumab, and docetaxel) (median cut-point; biomarker
population, based on the intent-to-treat population). *Subgroup defined by
using a cutoff for target:centromere ratio of 2. †Subgroup defined using
mutation versus no mutation. CR concentration ratio, Cyt cytoplasmic, EGF
epidermal growth factor, EGFR epidermal growth factor receptor, ELISA
enzyme-linked immunosorbent assay, FISH fluorescence in situ hybridization,
IGF1R insulin-like growth factor 1 receptor, IHC immunohistochemistry, Mem

membranous, Nuc nuclear, pCR pathologic complete response, PIK3CA gene
encoding phosphoinositide 3-kinase catalytic subunit, PTEN phosphatase
and tensin homolog, qRT-PCR quantitative reverse transcription PCR, SNP
single nucleotide polymorphism, TGF transforming growth factor. Table S5.

Relationship between biomarkers and pCR by hormone receptor status
(biomarker population, based on the intent-to-treat population). CR concentra-
tion ratio, Cyt cytoplasmic, EGF epidermal growth factor, EGFR epidermal
growth factor receptor, ELISA enzyme-linked immunosorbent assay, FISH
fluorescence in situ hybridization, IGF1R insulin-like growth factor 1 receptor,
IHC immunohistochemistry, Mem membranous, Nuc nuclear, pCR pathologic
complete response, PIK3CA gene encoding phosphoinositide 3-kinase catalytic
subunit, PTEN phosphatase and tensin homolog, qRT-PCR quantitative reverse
transcription PCR, sHER2 serum HER2 extracellular domain, TGF transforming
growth factor. Table S6. Detailed analyses of biomarker levels by ER status. CR
concentration ratio, Cyt cytoplasmic, EGF epidermal growth factor, EGFR
epidermal growth factor receptor, ELISA enzyme-linked immunosorbent assay,
FISH fluorescence in situ hybridization, IGF1R insulin-like growth factor 1
receptor, IHC immunohistochemistry, Mem membranous, Nuc nuclear, pCR
pathologic complete response, PIK3CA gene encoding phosphoinositide 3-
kinase, catalytic subunit; PTEN phosphatase and tensin homolog, qRT-PCR
quantitative reverse transcription PCR, sHER2 serum HER2 extracellular domain,
TGF transforming growth factor; WT wild-type. Cochran–Mantel–Haenszel
Chi-square test based on biomarker subgroup × pCR status (2 × 2) stratified by
breast cancer type. (DOCX 59 kb)

Additional file 2: Figure S1. Relationship between biomarkers and pCR
by treatment group and estrogen receptor status. CR concentration ratio,
Cyt cytoplasmic, EGF epidermal growth factor, EGFR epidermal growth
factor receptor, ELISA enzyme-linked immunosorbent assay, FISH fluores-
cence in situ hybridization, IGF1R insulin-like growth factor 1 receptor, IHC
immunohistochemistry, Mem membranous, Nuc nuclear, pCR pathologic
complete response, PIK3CA gene encoding phosphoinositide 3-kinase, cata-
lytic subunit; PTEN phosphatase and tensin homolog, qRT-PCR quantitative
reverse transcription PCR, sHER2 serum HER2 extracellular domain, TGF
transforming growth factor; WT wild-type. (PDF 836 kb)
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