
Biomarker development in the precision medicine era: lung 

cancer as a case study

Ashley J. Vargas1,2Curtis C. Harris1

1Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, 
Room 3068A, MSC 425, 837 Convent Drive, Bethesda, Maryland 20892-4258, USA.

2Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland 20850, USA.

Abstract

Precision medicine relies on validated biomarkers with which to better classify patients by their 

probable disease risk, prognosis and/or response to treatment. Although affordable ‘omics’-based 

technology has enabled faster identification of putative biomarkers, the validation of biomarkers is 

still stymied by low statistical power and poor reproducibility of results. This Review summarizes 

the successes and challenges of using different types of molecule as biomarkers, using lung cancer 

as a key illustrative example. Efforts at the national level of several countries to tie molecular 

measurement of samples to patient data via electronic medical records are the future of precision 

medicine research.

As announced by the US President Barack Obama during the 2015 State of the Union 

Address1, with further details provided by leaders at the US National Institutes of Health2,3, 

the Precision Medicine Initiative promises to improve human health by combining clinical 

data and biomarker measurements on a massive scale. The goal of these precision medicine 

efforts is to use multiple types of data to classify patients into precise groups that will benefit 

from a given treatment approach. Similar efforts have already begun in the United 

Kingdom4, in Denmark5 and in Germany5, where universal health care has made data 

collection easier. The term ‘precision medicine’ gained momentum with the publication of 

the 2011 US Institute of Medicine’s National Research Council report Toward Precision 

Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy 

of Disease6. This report summarizes a research pathway to redefine and unite the taxonomic 

systems by which the medical and scientific communities classify diseases. Patients with 

different biomarkers present with different risks of developing a disease, different disease 

prognoses or different responses to treatment; therefore, new biomarkers will be added to the 

current standards of phenotypic features (symptoms and histology) and medical history to 

revise the definition of a disease to include a new subtype (taxa) (FIG. 1). New standards of 
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care will then be developed for these newly defined disease taxa. For example, epidermal 

growth factor receptor (EGFR)-positive non-small cell lung adenocarcinoma is currently its 

own taxon as opposed to being included in the general lung adenocarcinoma taxon and is 

treated with different chemotherapy from that of non-EGFR-driven adenocarcinomas7. The 

term precision medicine is new and arguably more accurate than its predecessor 

‘personalized medicine’, but the overarching approach to developing improved biomarkers 

has not appreciably changed (BOX 1). Rather, the primary difference between the precision 

medicine research approach and traditional biomarker development is the magnitude of data 

collected and the speed at which data from different sources is (usually simultaneously) 

analysed. The Institute of Medicine’s report serves as a unified reference document that 

includes standard terminology that researchers of multiple disciplines can use when 

designing precision medicine studies.

The precision with which a disease can be classified into subtypes (or taxa) rests heavily on 

the success of the research framework outlined in the Institute of Medicine’s report6 and on 

supportive mechanistic research. Specifically, this report proposes that an ‘Information 

Commons’ will serve as a giant reservoir of medical history, demographic, molecular 

measurement and disease outcome data (FIG. 2). The data mined and analysed from this 

Information Commons should then be integrated with other published biomedical literature 

on mechanisms of action to generate an educated Knowledge Network, which will identify 

biomarkers that classify patients by differential risk, diagnosis, response or outcome. 

Insights gained from the Knowledge Network will then be used to revise subtype definitions 

and standard of care for each disease subtype. This process of Information Commons-

Knowledge Network-redefining taxon definitions is an iterative one that is ideally evaluated 

in real time to improve the precision with which patients can be diagnosed with a disease 

subtype. That is, the entire process is actively provided updated patient outcome data or 

relevant mechanistic data as soon as they are available to continually improve taxonomy, 

apply the new taxonomy and collect more data on patient outcomes using the new taxonomy. 

The real-time update of patient and biomarker data is a goal of the US Precision Medicine 

Initiative for its national cohort of 1,000,000 citizens; this Initiative will therefore be a true 

test of the limits of the precision medicine approach to define new disease taxonomy3.

Biomarkers are the foundation of improving diagnostic precision. Biomarkers can be 

correlational (that is, only associated with disease) and/or functional (that is, they have an 

identified mechanism of action related to disease). Functional biomarkers can also be used 

as potential therapeutic targets. Biomarkers can be measured alone or in a group, often 

called a biomarker panel, to infer risk, diagnosis, prognosis and therapeutic response. DNA, 

RNA, proteins, metabolites, host cells and microorganisms can all function as biomarkers, 

and are now often measured using ‘omics’ methodology. Lower throughput, tissue 

visualization-and imaging-based biomarkers are also commonly used due to the availability 

of formalin-fixed, paraffin-embedded clinical specimens. Biomarkers can be measured in a 

variety of biological material (for example, blood, organ tissue, stool, saliva and urine). 

Analogous to the phases of drug development, Pepe et al.8 outlined a set of five phases to 

serve as an early guide for researchers aiming to bring biomarkers to the clinic. These five 

phases are as follows: preclinical, exploratory studies; clinical assay development and 

validation studies; longitudinal, retrospective studies; prospective, screening studies; and 
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studies to determine whether the biomarker reduces morbidity or mortality in the population. 

The vast amount of data generated by precision medicine research is likely to affect each of 

these phases.

The development of biomarkers is directed by regulatory guidelines. In this regard, the US 

Food and Drug Administration (FDA) is recognized as a leader in the regulation of precision 

medicine because it was the first to set regulatory guidelines in this field9. For example, the 

FDA provides a guided pathway for the development of precision medicine biomarkers that 

are paired with a companion therapeutic agent. These paired biomarkers are termed 

companion diagnostics10. The European Union’s European Medicines Agency (EMA)11,12 

and Japans Pharmaceutical and Medical Device Agency (PMDA)13 have also released 

guidance for companion diagnostics, and harmonization efforts are ongoing within each 

country and between countries to improve regulatory pathways14–16. These regulatory 

processes have resulted in the approval of companion diagnostics such as EGFR biomarkers 

that pair with the EGFR inhibitor afatinib for lung cancer17. Now, international guidelines 

exist for the use of EGFR and other non-small cell lung cancer companion diagnostics18. 

The pathways for FDA approval of other biomarkers (that is, biomarkers of risk, diagnosis, 

response and prognosis not related to a companion therapeutic), designated as Laboratory 

Developed Tests, have fallen under the FDA purview only recently, and a regulatory 

framework for these biomarkers is still being developed19. These other types of biomarker 

have not yet been specifically addressed by the European Union or Japan. With respect to 

technical validity and reproducibility, the United States requires complex biomarkers to be 

tested in a Clinical Laboratory Improvement Amendments of 1988 (CLIA)-certified 

laboratory20, whereas the European Union and Japan do not currently require the use of 

standardized laboratories for biomarker measurement. The development of regulatory 

guidelines in even well-developed countries to ensure the safety and utility of biomarkers is 

an immense effort; thus, the regulation and use of complex biomarkers in less developed 

countries are likely to continue to lag behind.

The aim of precision medicine and its regulation is to move molecular measurements 

through validation and ultimately to patient populations in need of improved diagnostic 

precision. Although the cornerstone of precision medicine will be the large national cohort 

studies, currently, the precision medicine research approach is being used on existing cohorts 

and in clinical trials with a much smaller number of individuals. In these studies, large 

amounts of data from a variety of sources (for example, histology, DNA, protein and RNA) 

are analysed to determine which pieces of data are the best predictors of disease risk, 

treatment response and/or prognosis, and thus should be moved forward for validation as 

biomarkers in future studies. Oncology is a field ripe for using diagnostic tests to subdivide 

patient populations into risk and treatment categories (that is, new disease subtypes or 

taxa)2. Lung cancer, in particular, causes more deaths worldwide than the other top three 

cancers combined21 and therefore presents with a great need for improved diagnostic 

precision. This Review discusses the biological and statistical strengths and weaknesses of 

using different types of molecule as biomarkers. Specific examples will be taken from lung 

cancer to illustrate the potential and pitfalls of each. We then discuss the grouping of 

different molecule types together to form biomarker panels. Finally, we propose future 

pathways for precision medicine biomarkers and discuss the potential of biomarkers to 
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stratify patients with lung cancer into different treatment groups to enable precision 

medicine.

Single-molecule types of biomarker

The measurement of genomics, transcriptomics, pro-teomics, metabolomics, microbiomics 

and other omics’ methods has now reached a point of reasonable return on investment. The 

giant reservoirs of molecular data linked to continuously updated electronic medical records 

envisioned by the Institute of Medicine are now within reach in the foreseeable future. The 

general precision medicine approach to analysing data is conceptually no different from 

what has been performed in the past to identify biomarkers in cohort studies. However, it is 

the proposed magnitude of the amount of data that will need to be collected, stored and 

analysed to identify the most precise biomarkers possible that is challenging this field (BOX 

2).

This section of the Review focuses on studies that have applied a simplified version of the 

precision medicine approach, wherein only a single type of molecule (for example, 

metabolite or protein levels, but not both) in a single biospecimen type is measured in a 

single cohort. Once identified, putative biomarkers should be validated in other cohorts and 

a mechanism of action should be elucidated. Once these steps have been accomplished, if 

the biomarkers were originally measured in tissues that can only be obtained through 

invasive methods (for example, solid tumour tissue), then blood, urine, saliva and other 

routes of less invasive specimen extraction should be tested and validated8. Once a feasible 

platform for measurement is identified (for example, genomic biomarkers may be discovered 

using next-generation sequencing but often PCR is the preferred platform in the clinic), 

these biomarkers can then serve to better classify patients in the clinic.

Genomic biomarkers in precision medicine.

Studies of genomic biomarkers in tumour tissue have advanced our understanding of lung 

adenocarcinoma disease sub-types and taxonomy, particularly at the diagnosis stage. 

Historically, lung cancer has been grouped into small cell carcinoma, non-small cell 

squamous cell carcinoma, non-small cell adenocarcinoma and large cell carcinoma subtypes. 

In the late 1980s and the mid-2000s the research community began to recognize that lung 

adenocarcinoma could further be subdivided beyond histology into cancers that were driven 

by KRAS22 and/or EGFR23 gene mutations (FIG. 3). Finally, the development of next-

generation DNA sequencing technologies facilitated the comprehensive characterization of 

the lung cancer genome. Specifically, The Cancer Genome Atlas (TCGA) network has, to 

date, sequenced approximately 1,025 lung cancer exomes of various histologies and 

identified at least 15 unique candidate genes that can drive oncogenesis in lung 

adenocarcinoma when a somatic mutation occurs7,24. New mutations continue to be 

identified in lung adenocarcinomas such as the recent identification of mutations in protein 

phosphatase 3 catalytic subunit-α (PPP3CA), histone H3K79 methyl-transferase DOT1L 

and FtsJ methyltransferase domain containing 1 (PTSJD1; also known as CMTR2)24. Owing 

to a lack of companion therapeutics and mechanistic studies linkizng newly identified 

subtypes to disease outcomes, only EGFR-driven or anaplastic lymphoma kinase (ALK)-

Vargas and Harris Page 4

Nat Rev Cancer. Author manuscript; available in PMC 2019 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



translocation-driven tumours are treated as different disease subtypes in current clinical 

practice25,26. Multiple reviews have described the ongoing and promising efforts in the 

development of genetic biomarkers that are also targets for therapy in lung cancer27–29.

The measurement of DNA mutations and translocations as biomarkers has paved the way for 

further subdivision of lung adenocarcinomas into subtypes that are associated with different 

outcomes and with different responses to treatment30,31. The best example of these 

biomarkers currently used in the clinic for patients with lung cancer is the PCR-based 

companion diagnostic test for EGFR mutations in tumour tissue. This companion diagnostic 

is used to determine whether the tumour is of the EGFR-positive subtype31; if the patient is 

EGFR positive, then they can be prescribed an EMA-or FDA-approved EGFR-inhibiting 

drug (for example, afatinib17,32). Similarly, ALK translocations identified by fluorescent in 

situ hybridization (FISH) leads to patients being eligible for an EMA-or FDA-approved 

ALK-inhibiting drug30. Despite sequencing efforts on squamous cell lung cancers33, the 

identification of new biomarkers and targeted therapy for this type of lung cancer remains 

limited. However, immunotherapy that targets programmed cell death protein 1 (PD1; also 

known as PDCD1) is an example of a rare success for this histological subtype34. Many 

studies have provided evidence that alterations in the non-coding regions of DNA and gene 

polymorphisms are also associated with disease risk, response or prognosis35–41. The 

targeting of non-coding regions in particular may be a new avenue of exploration for the 

prevention and treatment of lung cancer.

Tissue-level DNA measurements are not without their limitations. First, collection of tissue 

is usually invasive and changes in the DNA are not always functional. Patients with cancer 

routinely undergo biopsy and tumour removal, which makes this approach feasible despite 

its invasiveness for initial treatment decisions. However, if subsequent biopsies are needed to 

make future treatment decisions, then this approach is more challenging. Second, biopsies 

may not be representative of the whole tumour due to the heterogeneity of multiple 

malignant cellular clones within a tumour42. Thus, there is an impetus to find less invasive 

markers of tumour DNA status, for example, measurement of circulating cell-free DNA in 

lung cancer to identify an increase in EGFR mutations43. However, the low sensitivity of 

these blood-based measurements will probably limit their use to monitoring, as opposed to 

diagnosing, lung cancer44. Third, treatment may select for certain cancer clones, as 

evidenced by the rise in the ratio of EGFR mutations observed in patients with lung 

adenocarcinoma who had developed resistance to tyrosine kinase inhibitors45. The 

TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy (Rx)) study46 

aims to monitor the impact of tumour heterogeneity on therapeutic outcomes and will 

address many questions about the response of tumours to treatment over time. The findings 

from this study are particularly relevant to precision medicine because the behaviour of 

tumours over time may explain changes in patient outcome, which will be continuously 

collected from electronic medical records. The invasiveness of biopsies, challenges in 

identifying functional versus non-functional changes, temporal variation in biomarker values 

and tumour heterogeneity are not unique to genomic biomarkers. Rather, these factors are 

challenges to all biomarker development regardless of molecular type.
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Transcriptomic biomarkers in precision medicine.

The global measurement of mRNA expression, termed transcriptomics, has provided an 

understanding of cancer subtypes but, in contrast to DNA, is tissue specific. Evaluation of 

the transcriptome of non-small cell lung cancer to identify mRNA expression biomarkers 

began with microarray technology47–50. Using microarray technologies, many studies have 

identified panels of mRNA expression biomarkers that classify lung cancer into more precise 

subtypes based on associations with disease outcomes51–55. In contrast to microarrays, 

which are limited to preselected mRNA probes, mRNA sequencing enables the sequencing 

of all mRNA present in a sample then, similar to DNA sequencing, maps sequences back to 

a reference library56. Putative mRNA biomarkers in non-small cell lung cancer are being 

identified using this newer, more comprehensive approach to searching for biomarkers (for 

example, Janus kinase (JAK)-signal transduction and activator of transcription (STAT) 

pathway mRNA57 and mRNA of tumour-educated platelets58) but it is still in preliminary 

stages.

Epigenomic biomarkers in precision medicine.

DNA methylation, histone protein modifications (for example, methylation and acetylation), 

microRNA (miRNA) and long non-coding RNA (IncRNA) are all measureable epigenomic 

biomarkers that function principally to regulate RNAs59,60. miRNA and IncRNA can also 

have other functions, such as serving as ligands for receptors61, and are measured using the 

same general methods as mRNA. DNA methylation and histone modifications usually 

require immunoprécipitation of the epigenomic mark of interest62 or, for DNA methylation, 

bisulfite conversion63 or restriction enzyme use64 before microarray or sequencing analyses. 

Epigenomics has been used largely to explore the aetiology of lung cancer, and epigenomic 

biomarkers are candidate mechanistic biomarkers for classifying individuals based on 

disease risk. However, as Lilogou et al.59 have recently reviewed, epigenetic biomarkers also 

have the potential to serve as biomarkers for identifying subclasses of patients with lung 

cancer. For example, the promoter methylation status of five genes was recently identified as 

a classifier of non-small cell lung cancer prognosis65. Global methylation patterns, such as 

CpG island methylator phenotype, have also been associated with prognosis in 

adenocarcinoma66. Interest in this area continues to grow and there are ongoing clinical 

trials to move these biomarkers into the clinic.

Proteomic biomarkers in precision medicine.

Immuno-histochemical staining of proteins in formalin-fixed, paraffin-embedded lung tissue 

samples has been recommended by international experts for use in the clinic to classify 

tumours67. Studies that used tissue microarrays and existing immunohistochemical protein 

stains in a high-throughput manner have identified new, putative lung tissue biomarkers68. 

Advances in mass spectrophotometry that, analogous to next-generation sequencing, enable 

mapping of a multitude of mass spectrophoto-metric peaks to reference libraries to identify 

proteins has facilitated the global assessment of the non-small cell lung cancer 

proteome69,70. Using this new technology, 17 different circulating proteins were recently 

identified and validated as putative biomarkers for non-small cell lung cancer71. Circulating 

proteins have also been explored as less invasive biomarkers in lung cancer. Specifically, due 
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to their role in carcinogenesis72, circulating inflammatory proteins have demonstrated 

clinical utility in lung cancer prognosis73–79. However, moving proteomic biomarkers from 

the exploratory mass spectrophotometry-based analyses phase into the clinic, which would 

require more stable measurement platforms, remains challenging. Füzéry et al.80 have 

thoroughly reviewed such challenges in the framework of the existing FDA approval 

pathways.

Antigenic proteins expressed on lung cancer and immune cell surfaces are attractive targets 

for the development of immunotherapeutic antibodies, and have been reviewed 

extensively81,82. Briefly, intravenous administration of PD1 and PD1 ligand 1 (PDL1) IgG 

antibodies demonstrate efficacy in the treatment of non-small cell lung cancer. Indeed, two 

anti-PDl therapies — pembrolizumab83,84 and nivolumab85,86 — have been approved by the 

EMA and FDA for use in nonsmall cell lung cancer. Recently, PDL1 measurement via 

immunohistochemistry was approved as a companion diagnostic for pembrolizumab by the 

FDA87, but the path to approval for this biomarker was fraught with specificity and 

immunohistochemical challenges88,89. Other attractive immune biomarkers include CD8+ 

lymphocytes identified by quantitative fluorescence in tumours, which have been associated 

with better prognosis90. However, tissue imaging-based biomarker identification is 

hampered by limited throughput and, even with tumour microarrays, often requires a large 

sample input for a small amount of data output compared with proteomics technology. 

Nonetheless, the mechanistic relationship between other antigen biomarkers, as companion 

diagnostics, and antigen-targeting therapies continues to incentivize more research in this 

rapidly advancing area.

Metabolomic biomarkers in precision medicine.

Similar to proteomics, metabolomics (also known as metabo-nomics) can be assessed in a 

targeted or unbiased manner, and mass spectrophotometry is used to identify chromatogram 

peaks as specific metabolites91,92. Metabolomics is particularly promising for biomarker 

development because altered metabolism is considered a hallmark of cancer72. Moreover, 

metabolites are frequently exported to the blood for transport or removal from the body via 

urine or faeces; therefore, these metabolites could serve as non-invasive biomarkers that 

accurately reflect the metabolic activity of tumour tissues. Tissue93,94, blood95–98 and 

urinary99,100 metabolomics analyses have yielded putative biomarkers that classify patients 

into subtypes of lung cancer; however, these findings have yet to be sufficiently validated in 

more than one cohort while also using positive controls to ensure accurate identification of 

the purported metabolite. Validation of metabolomic biomarkers requires not only analyses 

in other cohorts but also a known standard to confirm the identity of the putative metabolite 

peak. Improved libraries of synthesized standards to authenticate peak identity are an area of 

need to move this research forward and to build more reliable platforms for metabolite 

analyses that can progress to the dinic101.

Microbiomic biomarkers in precision medicine.

Using modified extraction procedures, microbial DNA is generally measured in the same 

manner as human-derived DNA, with the popular exception of 16S rRNA-specific gene 

sequencing to identify bacteria predominantly at the genus level102,103. The normal lung was 
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thought to be generally sterile until the advancement of culture-independent microbial DNA 

sequencing techniques for microorganism identification in the lung104,105. As a result of 

such techniques, we know that cigarette tobacco contains bacteria106 and that cigarette 

smoke can disrupt the respiratory tract mucosal barrier107 to allow microbiota migration into 

the lung. These findings have led to the hypothesis that the lung microbiome may play a part 

in carcinogenesis. To our knowledge, the global analysis of the lung cancer tissue 

microbiome remains in progress. However, one study has suggested that bacillus species in 

lung sputum could serve as a non-invasive biomarker of increased lung cancer risk108. The 

recent identification of Fusobacterium nucleatum as a functional microbial biomarker in 

colon cancer109–112 provides strong support for the continued interrogation of the 

microbiome as a functional biomarker with which patients with lung cancer could be 

classified into risk, response or prognostic subtypes. Antibiotic, probiotic or prebiotic 

treatment could then be prescribed for different diagnostic sub-types to modify their risk 

and/or response to therapy113. Standards for faecal microbiome research approaches are 

emerging114,115, but standards for other biosample types are needed to accelerate the 

development of non-faecal microbiome biomarkers.

The exposome in precision medicine.

The term ‘exposome’ was first coined by Christopher Wild in 2005 (REF. 116) and refers to 

all types of molecules and events from the environment to which humans can be exposed; 

for example, drugs, diet or the microbiome (FIG. 4], Aspects of the exposome are commonly 

measured by questionnaires, which are administered to patients in the clinic. For lung cancer 

in particular, information about cigarette smoke and asbestos exposure is requested in 

addition to information on age and sex to generate a panel of information that is used to 

stratify people into subtypes of risk of lung cancer117–119 (also see Further information). 

However, questionnaire responses are biased and error prone. For example, self-reported 

tobacco exposure does not always correlate with measured tobacco carcinogen exposures120. 

Thus, development of molecular biomarkers of tobacco smoke121,122 and other exposures 

that could be used in the clinic to more accurately reflect a patient’s expo-some, and 

therefore lung cancer risk classification, are ongoing.

Interestingly, the exposome alters the effects of other molecular measurements (for example, 

inflammation) and the effects of the exposome may be altered by changes in other molecules 

such that it is imperative that the exposome be considered when developing any type of 

biomarker. Specifically, among patients with lung adenocarcinoma, smokers have a higher 

mutation frequency overall than non-smokers123, and it is known that exposure to smoke can 

cause gain-of-function TP53 mutations124,125, which drive lung carcinogenesis. Although 

questionnaire-derived data have been analysed predominantly by epidemiologists and 

molecular data by basic scientists, these data are more commonly being incorporated 

together in research projects, and collaboration across disciplines is essential to ensure these 

data are analysed to their fullest potential. The combination of the exposome and molecular 

biomarkers for improved prediction of disease subclassifications is discussed in more detail 

below.
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Summary.

Nearly all omics’ analyses are still limited by factors that have slowed the progression of 

biomarkers from discovery to deployment in the clinic. The following are the most important 

factors impeding progress. First, there are technical reproducibility issues of ‘omics’ 

platforms and variability between laboratories126, because the vast majority of biomarker 

studies are not conducted in CLIA-certified or other regulated laboratories. Second, there are 

limitations in the quality and size of the reference library used to identify molecules. Third, 

false positives due to the vast amount of potential biomarkers analysed in global omics’ 

studies127,128. Fourth, statistical reproducibility issues arise owing to biases in the original 

sample or validation cohort, or owing to false discoveries8,129. Fifth, lack of longitudinal 

cohorts in which to validate biomarkers over time. Sixth, the need for functional studies of 

putative biomarkers. Finally, heterogeneity within and between samples leads to inconsistent 

measurements on the same sample or measurements that are out of the dynamic range of a 

test, respectively.

These limitations have led to a plethora of putatively identified biomarkers in the literature 

that lack validation, mechanistic evidence and/or follow-up studies. Moreover, many 

biomarkers are identified at the tissue level. Although tissue-level studies are often crucial in 

identifying a mechanistic link between a biomarker and carcinogenesis, biomarkers 

requiring biopsy are not practical for assessing cancer risk and for monitoring response to 

treatment in the dinic, even in well-developed health-care systems. Perhaps the expansion of 

regulations regarding laboratory developed tests in the United States19, and potentially the 

European Union and Japan, will incentivize the biomedical community to move putatively 

identified biomarkers towards less invasive, validated biomarkers not only for companion 

diagnostics but also for biomarkers of disease prognosis and risk.

The ability of any biomarker to correctly differentiate two subgroups of patients with lung 

cancer in a statistically significant and clinically meaningful manner is dependent on the 

relative number of people in each group and the magnitude of the difference in the value and 

variance of the biomarker in each group (that is, power)127–129. Furthermore, all analyses 

comparing two lung cancer subgroups assumes that the groups are identical to each other in 

all other ways except for the biomarker or biomarkers that differentiate the lung cancer 

subtype130. Thus, the rarer a disease subtype is the less likely it will be that even large 

cohorts will have the power (number of participants and measured differences between 

subgroups) to meet the assumptions to identify these subgroups. Nonetheless, innovative 

clinical trial design approaches (for example, n = 1 studies131) are leading the way for the 

approval of companion diagnostics and are helping to minimize the challenge of not 

observing enough participants in each subgroup27. In addition, the more studies that are 

conducted and the more sensitive or specific molecular measurement platforms and 

procedures become the more statistical power we will have to identify and validate new 

biomarkers. These new approaches, paired with the precision medicine approach6 to 

continuously re-evaluate the outcomes for patients classified to a disease subtype by 

biomarkers in a longitudinal manner, will change the way biomarkers are developed and will 

enable the most precise classification of patients in the future.
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Multi-molecule-types of biomarker panel

The Institute of Medicine’s seminal report envisioned an Information Commons that 

contains multiple omics’ approaches such that biomarker panels containing different 

molecule types, exposome data and/or demographic data could be developed to classify 

diseases into more precise subtypes6. Although single-molecule biomarkers (for example, 

EGFR) have progressed into the clinic31, biomarker panels are still in the discovery stage. 

Biomarker panels containing various types of molecule are attractive because genes, 

proteins, RNAs and metabolites all work in concert to prevent or promote the development 

of the hallmarks of cancer72. However, the development of biomarker panels is still limited 

by two main factors. First, by any weaknesses associated with each individual omics’ 

technique, molecule type and tissue type included in the panel, and second, by amplification 

of the factors identified as challenges common to the identification of any biomarker 

mentioned above8,127–129. Integrating different types of data leads to more potential 

biomarker combinations and, consequently, more functional studies and statistical tests that 

need to be run. These additional statistical tests require more power to detect significant 

differences while still trying to avoid false positives127–129. Two conceptual approaches to 

developing biomarker panels have been used. The first relies on adding new biomarkers to 

existing biomarkers or biomarker panels to improve the sensitivity or specificity of the panel 

because of either an interaction or an independent effect of the new biomarker. The second 

approach employs de novo analysis and integration of multiple sources of molecular data to 

identify the best combination of putative biomarkers.

Adding new biomarkers to existing biomarker panels in precision medicine.

The addition of new biomarkers to existing, validated biomarker, demographic and 

exposome information (for example, smoking status, age, race and sex) panels decreases the 

number of possible biomarker combinations. Thus, the statistical power needed to identify 

additional biomarkers compared with de novo analysis (discussed below) is also decreased 

as compared with de novo analyses. An early, seminal example of adding a biomarker to 

existing predictive information in lung cancer was the discovery that smoking (exposome) 

can cause TP53 mutations and thus alters lung cancer risk124. However, treatments targeting 

p53 or KRAS pathways (KRAS is also frequently mutated7 and associated with smoking in 

lung cancer132) remain in clinical trial stages. Interestingly, most of the work in this area was 

conducted before advanced next-genera-tion sequencing and used exhaustive mechanistic 

studies to identify this relationship. Conversely, the majority of newer biomarker studies pair 

epidemiological evidence with global ‘omics’-based technology, and then, if validated, few 

have identified a mechanism of action that explains the relationship between these 

biomarkers and disease. Identifying a mechanism of action is required for the development 

of viable companion therapeutics.

The precision medicine research approach has been used in lung cancer to interrogate 

whether the addition of new molecular data improves an existing biomarker panel. A recent 

publication using a TCGA dataset has provided evidence that the addition of single-

molecule type biomarkers (copy number alterations, protein and miRNA measurements) to 

existing exposome-only predictors improves prognostic accuracy in lung squamous cell 
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carcinoma133. With respect to early-stage lung adenocarcinoma, mir-21 methylation134, 

homeobox A9 (HOXA9) methylation135 and the expression levels of a panel of four genes55 

have been validated in multiple cohorts to independently predict lung cancer outcomes. 

However, the addition of mir-21 (REF. 51) and HOXA9 methylation status135 to the gene 

expression biomarker panel improves the predictive accuracy above any of these biomarkers 

alone55. Analyses of multiple international cohorts have provided evidence that the risk of 

lung cancer from asbestos exposure is increased by the presence of certain genetic 

variants136. Although not multi-omic’, there are ongoing clinical trials that use traditional 

histological subtyping and then use genomic analysis in patients with lung cancer using a 

variety of platforms. Examples of such trials include the BATTLE-2 trial137 and a US 

National Cancer Institute trial138. These results are then used to make treatment decisions 

and to identify de novo genetic variations associated with disease response and/or prognosis 

as candidate biomarkers. These studies are the pinnacle of precision medicine research as it 

currently exists and, if successful, will change clinical practice within the next decade. This 

relatively straightforward approach of adding new biomarkers requires a thoroughly 

validated existing biomarker or panel of biomarkers and could possibly miss unique 

combinations of biomarkers that may serve as better predictors. With the recent 

improvements in computational technologies, there has also been a movement towards de 

novo analysis of multiple omics’ datasets to truly integrate the data and identify novel 

biomarker panels.

De novo analysis combining global datasets to generate biomarker panels in precision 

medicine.

Integrating multiple datasets, often derived from global omics’ analyses of different types of 

molecule, for biomarker panel development has largely been stymied by a lack of 

methodological approaches that are suitable for combining different data sources. Recent 

advances in network analysis and other mathematical modelling approaches are swiftly 

moving this field forward139–143; however, no preferred approach has emerged. Using 

TCGA data, Li et al,144 integrated genomic, transcriptomic and proteomic information to 

classify patients with non-small cell lung cancer by prognosis. Kim et al.145 integrated 

DNA, mRNA, miRNA and methylation sequencing data to identify putative biomarkers that 

classify female patients with non-smoking-associated lung adenocarcinoma into distinct 

subtypes. However, identifying mechanisms of action and finding cohorts with sufficient 

sample size (with meaningful racial, ethnic and geographic diversity) in which to validate 

these, and other, de novo-assembled biomarker panels remain major challenges. The 

Precision Medicine Initiative cohort1,2, the UK Biobank4, The International Cancer Genome 

Consortium146 and other large studies with molecular measurement data will provide an 

unparalleled opportunity for validating biomarker panels owing to the projected collection of 

multiple ‘omics’ data that is anticipated to be publicly available for researchers.

Summary.

Putative biomarker panels in lung cancer are just beginning to accrue55,133,144,145, but their 

path to the clinic will probably be even longer than for singlemolecule biomarkers owing to 

exacerbation of typical challenges associated with biomarker development by combining 

‘omics’ approaches. Specifically, combining biomarkers leads to multiple potential 

Vargas and Harris Page 11

Nat Rev Cancer. Author manuscript; available in PMC 2019 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



combinations that require the statistical power to be tested. Using different types of molecule 

in one panel also leads to logistical challenges on how to measure different molecule types 

(for example, proteins and DNA) on the same platform when moving towards regulatory 

approval for clinical use. Nonetheless, biomarker panels are hypothesized to provide a more 

realistic picture of aberrant regulation in complex diseases such as cancer because molecules 

do not function in isolation to generate a phenotype. Small shifts in the relative amounts of 

RNA, protein, epigenetic modifications, metabolites and microorganisms over time may also 

be useful for early prediction of disease risk or outcomes. For example, a budding area of 

research in precision medicine is network medicine. Network medicine involves the use of 

emerging network approaches to integrate omics’ measurements139–143 to look for small 

changes over time in the relationship between ‘omics’ that are associated with 

disease143,147–149. Such dynamic analysis is in contrast to the current use of static panels of 

biomarkers. This continual monitoring approach is consistent with the greater vision of 

precision medicine; however, it should rely on only minimally invasive biomarkers and 

therefore lends itself well to the use of microfluidics150.

Summary and conclusions

The reduced cost and increased reproducibility of new ‘omics’ technologies, new 

methodological approaches for integrating different types of molecular data139–143, and the 

number of publicly available datasets with molecular measurements have all been pivotal in 

achieving the substantial leaps forward in biomarker development that we have witnessed 

over the past decade (BOX 3). The precision medicine research approach is simply a faster 

paced, larger scale, integrated version of the traditional, single measurement-based 

biomarker development approach that has only been made possible due to these advances. 

Currently, there are large prospective, international cohort studies (for example, the 

European Prospective Investigation into Cancer and nutrition (EPIC)151 and the Women’s 

Health Initiative152) and electronic medical record-based datasets (for example, electronic 

MEdical Records and GEnomics (eMERGE)153 and the UK Biobank4) with biobanked 

samples that allow for ongoing biomarker discovery. The number of biomarkers moving 

from discovery to clinical trials is worryingly small. Furthermore, the vast majority of 

registered clinical trials test biomarkers as companion diagnostics to treatment because there 

are existing regulatory frameworks for companion diagnostics whereas biomarker panels for 

risk of disease and prognosis (which are unrelated to a specific treatment) have murkier 

regulatory pathways.

In addition to changes in regulations, the field of biomarker discovery has innate practical 

challenges. Specifically, the precision of disease subtyping by biomarkers to predict risk, 

response or prognosis is limited by a high risk of false positives when seeking to identify a 

biomarker from the global measurement of thousands of molecules. Moreover, questions of 

basic statistical power (that is, the number of patients presenting with a disease 

subtype)8,127,129, the need for validation and functional studies, and the follow-through to 

develop non-invasive biomarkers are also limitations. McShane et al.154–162 have published 

a series of manuscripts on REporting recommendations for tumour MARKer prognostic 

studies (REMARK). Consistent adherence to these publishing guidelines will enable 

improved transparency and allow the scientific community to better judge the quality of the 
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plethora of studies reporting putative biomarker identification. Importantly, the success of 

these complex studies will require effective collaborative science; a good example is the 

success demonstrated by the Early Detection Research Network at the US National Cancer 

Institute163. The rate at which new biomarkers enter the clinic will now be benchmarked by 

the requirements set forth by regulatory agencies9–16,19. Changes in regulation that result in 

profitability for biomarkers not tied to a specific drug (for example, biomarker panels to 

estimate disease risk), will serve to spur the movement of biomarkers from lone studies to 

the clinic. The speed of discovery and validation of biomarkers could be improved by real-

time data collection, which would, theoretically, allow for faster monitoring and revision of 

new disease taxa as data on patients are collected. However, this benefit must be balanced 

against the cost of screening a large population multiple times and the increased risk of false 

positives (over-diagnosis) simply due to the number of measurements being undertaken.

Analyses of existing cohorts and the generation of national cohorts (that is, in the United 

States1,2, the United Kingdom4, and in Denmark5 and Germany5) promises to address many 

of the statistical and logistical concerns in biomarker development, allowing for the progress 

of truly precise medicine. One can envision that machine learning could be used to mine and 

continually improve algorithms for calculating patient risk, diagnosis, response and 

prognosis over time. These algorithms could then be applied to the general population to 

ensure patients receive appropriate care while measuring only the necessary biomarkers at 

key time points identified from national cohorts. Furthermore, with respect to the 

heterogeneous nature of cancers, there may be a day in the future when a tumour is profiled 

and then a follow-up biomarker panel and drug are developed in real time specifically for a 

single tumour. Although these possibilities are only likely to be realized decades in the 

future, currently, the precision medicine approach has led to the identification of new 

subtypes of non-small cell lung cancers (EGFR, ALK, TP53 and KRAS) and the translation 

of companion diagnostic biomarkers (for EGFR and ALK) to diagnose and choose 

appropriate treatment regimens for these new subtypes in the clinic31. However, there is an 

ongoing need for translatable biomarkers of disease risk, particularly for smokers, and 

prognosis for patients with EGFR-negative and ALK-negative lung adenocarcinomas. There 

is currently a large screening trial being conducted in the United Kingdom to test the 

efficacy of low-dose computed tomography (LDCT) before initiating a national lung cancer 

screening programme164. LDCT has recently been approved for use in screening individuals 

at high risk for lung cancer in the United States165,166, and its implementation will lead to an 

increased number of individuals diagnosed with early-stage lung cancer. An estimated 8.6 

million to 8.8 million people in the United States meet the current criteria for LDCT167,168 

and, if they are screened, this will lead to an overwhelming number of true and false positive 

findings that will require treatment decisions165,166,169. This large number is because, 

despite ongoing efforts to improve the specificity of imaging-based biomarkers170, the false-

positive rate for LDCT is estimated at >90% (REF. 165). Thus, one especially high impact 

area for the development of precision medicine biomarkers is to further classify early-stage 

(IA and IB) lung cancers into subtypes of patients at high risk for cancer recurrence to 

inform treatment decisions171 (FIG. 5). A similar approach would be useful in 

differentiating findings from mammography, which are also plagued by high false-positive 

rates172. This improved specificity would then allow oncologists to treat the patients who 
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would benefit and minimize overtreatment of those who are unlikely to progress. This 

example is a clear demonstration of the power of precision medicine biomarkers and the 

future of medicine.
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Box 1|

A brief history of the term ‘precision medicine’

Hippocrates gave the field of medicine the sound advice that “It is far more important to 

know what sort of person the disease has than what sort of disease the person has.” Thus, 

the notion that individuals presenting with the same signs and symptoms may require 

different treatment is not new. Precision medicine has a long list of predecessor terms 

with similar meaning, including personalized medicine, P4 (predictive, preventive, 

participatory and personalized) medicine, genomics medicine, predictive medicine and 

individualized medicine. Regardless of the name of the approach, the goal is to use 

molecular data in addition to more traditional clinical information (for example, 

symptoms, personal history and histology) to tailor medical care to provide the most 

benefit while minimizing risk. The application of precision medicine is anticipated to 

improve all areas of medicine, including predicting an individual’s risk of disease, 

disease prognosis and risk of side effects versus positive response to disease treatment 

approaches. Thus far, the greatest advances of precision medicine have been achieved in 

the prediction of response to a drug therapy using companion diagnostics (that is, 

biomarkers that can predict response to a specific drug treatment).
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Box 2 |

The challenges of developing a national precision medicine cohort

More data collected on more individuals are required to generate validated biomarkers 

that can improve the precision to which we can categorize an individual’s risk of disease 

or response to therapy. However, the collection of large amounts of personal data presents 

complex challenges to researchers, the medical community and individuals whose data 

are being collected. The challenges facing countries that are developing national cohorts 

include the following:

• Collecting, handling, storing and transporting millions of biospecimens and 

then analysing these data using multiple different molecular measurement 

techniques

• Collecting electronic medical record data, merging data from different types 

of medical records and questionnaires, and then storing large amounts of 

these data

• Analysing data from different sources (for example, questionnaires, molecular 

measurements and electronic medical records) while respecting the strengths 

and limitations of each type of data

• Combining expertise from multiple different disciplines, including clinicians, 

laboratory researchers, bioinformaticians, biostatisticians and lawyers

• Dissemination of these data for researchers to use while ensuring that legal, 

ethical and privacy concerns of all participants are addressed

The feasibility of national cohorts for the purpose of precision medicine is restricted to 

countries and regions with the resources to meet all of the above challenges. This 

requirement will limit the ability of precision medicine to rapidly move to under-

resourced regions of the world and its applicability to different races and ethnicities.
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Box 3 |

Promising biomarkers in lung cancer

A summary of the promising biomarkers in lung cancer is provided below. For more 

detail, please refer to Lung Cancer and Personalized Medicine: Novel Therapies and 

Clinical Management as part of the Advances in Medicine and Biology series (2016)173.

• Tumour immune and microenvironment biomarkers. For example, 

programmed cell death protein 1 (PD1), PD1 ligand 1 (PDL1) and vascular 

endothelial growth factor A (VEGFA)

• Genetic aberration biomarkers. For example, KRAS, HER2 (also known as 

ERBB2), BRAF, MET, ROSI, RET, fibroblast growth factor receptor 1 

(FGFR1), SRY-BOX 2 (SOX2), platelet-derived growth factor receptor-a 

(PDGFRA), discoidin domain receptor tyrosine kinase 2 (DDR2), PI3K 

catalytic subunit-a(P/K3CA), PTEN, mixed lineage leukaemia 2 (MLL2; also 

known as KMT2D)

• Epithelial-to-mesenchymal transition-associated biomarkers. For example, 

SLUG, forkhead box C2 (FOXC2) and transforming growth factor-β (TGFβ)

• Resistance and susceptibility to treatment biomarkers. For example, ERCCl, 

ribonucleoside-diphosphate reductase (RRM) and thymidylate synthase (TS)
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Figure 1|. Classifying patients into new, specific taxa.

Patients with the same signs and symptoms of cancer often have different outcomes. The 

precision medicine approach provides a research strategy to develop biomarkers that can be 

used to classify patients with the same cancer into finer taxa (subclass 1 versus subclass 2) 

by biomarkers that predict prognoses derived from the synthesis of large amounts of data to 

identify discriminating biomarkers. For example, patients in subclass 1 who have a worse 

prognosis (that is, have biomarkers that are associated with poor survival) may be given a 

more aggressive treatment (treatment X) versus those in subclass 1 who have a better 

prognosis (that is, have biomarkers that are associated with good outcome) and require a less 

aggressive therapy (treatment Y). Additionally, the converse may be true where individuals 

with a worse prognosis are provided less aggressive therapy if no benefit from aggressive 

treatment has been observed for this subclass.
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Figure 2 |. A precision medicine research strategy.

As outlined in the 2011 Institute of Medicines National Research Council report entitled 

Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a 

New Taxonomy of Disease6, an Information Commons will be analysed to develop a 

Knowledge Network to inform research and medicine. The Information Commons will serve 

as a reservoir of data on a group of individuals from multiple sources (clinical data, 

demographic and epidemiological data, and multiple types of ‘omics’ data). Analyses of the 

Information Commons will result in the generation of a Knowledge Network that will 

specify clinical, demographic and ‘omics’ characteristics that predict disease risk, diagnosis, 

response and prognosis, thus allowing for the reclassification of individuals into subtypes 

(taxa). These new taxa will require further research and clinical follow-up to validate their 

existence and to determine the most suitable taxon-specific standards of care. Adapted with 

permission from REF. 6 by the National Academy of Sciences, Courtesy of the National 

Academies Press, Washington, DC, USA.
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Figure 3|. Knowledge of non-small cell lung adenocarcinoma has evolved in recent decades.

Traditionally, lung cancer was grouped by histology into small cell lung cancer and non-

small cell squamous cell carcinoma or adenocarcinoma. In 1987, a KRAS mutation was 

identified in ~25% of all non-small cell lung cancers, and 50% of lung adenocarcinomas22. 

In 2004, epidermal growth factor receptor (EGFR) mutations were identified as an additional 

mutation in lung adenocarcinomas23. The Cancer Genome Atlas (TCGA) Network’s next-

generation sequencing of lung adenocarcinoma in 2014 led to the identification of more than 

15 different gene events that could be exploited for treatment and/or used for subclassifying 

patients into new taxa7. ALK, anaplastic lymphoma kinase; amp, amplification; ex, exon; 

RIT1, Ras like without CAAX1. Data in the left panel were abstracted from Rodenhuis et al.
22. Data in the middle panel were abstracted from Paez et al23 and Riley et al.132. The right 

panel of the figure is from REF. 7, Nature Publishing Group.
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Figure 4|. The lung exposome.

The exposome of the lung comprises a diverse array of molecules and events (including 

carcinogens from tobacco, asbestos and radon) that come from the external and internal lung 

environment. These external and internal influences interact with each other and 

host’omes’to alter the lung cell environment (including inflammation and the microbiome) 

and may promote or protect against the development of the hallmarks of cancer72. Smoking 

is estimated to cause 90% of lung cancers. Occupational exposures to carcinogens and radon 

exposure are estimated to cause 9–15% and 10% of lung cancer cases, respectively174. 

Measurement of the exposome, in addition to other host ‘omics’, has led to the development 

of precise biomarkers of risk, diagnosis, treatment response and prognosis by which patients 

can be classified into new taxa. These new taxa then require different standards of care for 

cancer screening, diagnosis, prevention and therapy.
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Figure 5 |. Use of precision medicine to classify patients with early-stage lung cancer into 
subclasses to provide appropriate treatment.

Approximately 25% of patients with stage I lung cancer will have recurrent disease 

associated with occult metastasis. This figure depicts the classification of early stage (IA and 

IB) lung cancers by a single biomarker or a panel of biomarkers that predicts risk of 

recurrence generated using a precision medicine research strategy into’low risk for 

recurrence’and ‘high risk for recurrence’. Once classified into subclasses (taxa), low-risk 

patients can be observed post-curative surgery whereas high-risk patients can be provided 

options for adjuvant therapy post-surgery.
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